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Abstract

Strong electron correlation lies at the root of many quantum collective phenomena
observed in solids, including high 7, superconductivity. Theoretically, the problem of
many interacting electrons is difficult to treat, however, and a microscopic understand-
ing of strongly correlated systems remains one of the foremost challenges in modern
physics. A particularly clean realisation of this general problem is found in magnetic
systems, where theory and experiment are both well developed and complementary.
The role of the chemist in this endeavour is to provide model experimental systems to
both inspire new developments in theory and to confirm existing predictions. This the-
sis aims to demonstrate aspects of both synthesis and physical characterisation of such
model systems, with particular emphasis on materials which exhibit unusual quantum
ground states due to a combination of reduced dimensionality, low spin, and geometric
frustration. Four materials are considered: The first among these is a new material,
KTi(SO4)2-(H20), which was prepared using a hydrothermal route, and characterised
by magnetic susceptibility, specific heat, and high field magnetisation measurements.
Fitting exact diagonalisation and series expansion results to these data imply that
KTi(SO4)2-(H20)is a long-sought experimental realization of the S = 1/2 Heisenberg
frustrated (J; — Jo2) chain model in the dimerised regime of the phase diagram. The
anhydrous analogue of KTi(SO4)2:(H20), KTi(SO4)2, was also investigated, and found
by magnetic neutron scattering to exemplify the S = 1/2 Heisenberg anisotropic tri-
angular lattice model in the 1D chain limit. The final two materials discussed are the
naturally occurring minerals volborthite and herbertsmithite, both thought to realise
the S = 1/2 Heisenberg kagome antiferromagnet model. Diffuse and inelastic magnetic
neutron scattering experiments, however, indicate that the kagome physics are partially

destroyed by defects in the former and lattice distortion in the latter.
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Chapter 1

Introduction

“But I think the Loadstone, is a mixture of stone and Iron, as an Iron stone,
or a stone of Iron. Yet do not think the stone is so changed into Iron, as
to lose its own nature, nor that the Iron is so drowned in the stone, but
it preserves itself, and while one labors to get the victory of the other, the
attraction is made by the combat between them. In that body, there is
more of the stone, than of Iron, and therefore the Iron, that it may not be
subdued by the stone, desires the force and company of Iron, that being
not able to resist alone, it may be able by more help to defend itself. For
all creatures defend their being.”

The quote above, from the 7% volume of John Baptista Porta’s “Natural Magick” [Porta
(1658 edition)], illustrates just how much ground the field of magnetism has covered
since the end of the 16" century. While the concept of inanimate matter having a “soul”
is rather poetic, these days it has been replaced by the laws of quantum mechanics,
which are able to efficiently explain the origin of a macroscopic magnetic moment
in bulk material. Likewise, the “attraction” between two bulk magnets, rather than
arising from an epic-sounding “war” between stone and iron, can be fully described by
classical electromagnetism. Despite these considerable advances in theory, we do not
have all the answers yet, something the huge current interest on the topic of magnetism
1 testifies to. In fact, the material which started it all, lodestone, or magnetite, as it
is more commonly known in scientific literature, is ironically still not fully understood,

and remains the subject of much work to this day.

While the mathematical framework to treat systems of interacting quantum mechanical
particles has existed for a number of decades, the problem quickly becomes computa-
tionally intractable when more than a few such particles are involved. In fact, the

largest object which can be calculated analytically remains the Hydrogen atom, which

1(conservatively estimated at an impressive 50,000 publications in the last year alone)
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Figure 1.1: Schematic illustration of the density of states of respectively a.) a band insulator

b.) a metal (¢ > U) and c.) a Mott insulator (¢t < U).

was first solved as long ago as 1914 [Bohr (1913)]. The main issue which renders treat-
ment of larger systems currently impossible is the issue of electon correlation. If we
wish to calculate the physical properties of bulk materials containing at the order of
N4 particles, considerable simplifications, and particularly a solution to the problem
of correlation, are therefore necessary. For example, to understand the electronic prop-
erties of a crystalline solid, it is a common first approximation to consider the motion
of electrons as a hopping process between lattice sites, and interelectronic correlations
are crudely assumed to be dominated by a simple potential which disfavours double
2

occupation of an orbital. The result is the deceptively simple Hubbard Hamiltonian
[Hubbard (1963)]:

H=t (clycio+ Hee ) + U huiy (1.1)
(i,5) o=1.) i
where the first term represents hopping as creation and annihilation of uncharged par-
ticles with spin o between a pair of sites i, j with an amplitude, ¢, proportional to the
electron kinetic energy. The second term describes the on-site Coulomb repulsion of
strength U. The most trivial solution to this problem is found if there are an even
number of sites, n, per unit cell, with a single electron per site. In this case, diago-
nalisation yields n/2 filled and n/2 unfilled bands (figure 1.1). This is referred to as
a band insulator. If n is odd, however, a rich phase diagram of possible states opens
up, ranging from metallic behaviour to magnetic and charge order, and perhaps even

superconductivity [Anderson (2002)] (figure 1.2).

*Named after Hubbard, but originally introduced by Gutzwiller [Gutzwiller (1963)].
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Figure 1.2: Mean field phase diagram of the infinite dimensional Hubbard model. Half
filling is indicated by a vertical line, and the Mott transition at t ~ U is represented by a
black dot. Adapted from Fazekas [Fazekas (1999)].

The compounds we shall be concerned with for the duration of this thesis all fall into
the class of materials referred to as Mott insulators [Mott (1990)]. These arise when the
Hubbard model is in the vicinity of half filling, and when U > ¢ (see figure 1.2). In a
Mott insulator, the charges become localised due to the on-site repulsion U, resulting in
an electron “solid”, where each site houses a single unpaired electron. In the insulating
ground state, there remains an additional twofold degeneracy at each site related to
the spin degree of freedom. By invoking processes involving a concerted hopping, or
exchange, of electrons between sites?, this degeneracy is lifted. Then, projecting onto
the subspace of spin configurations, the following effective Hamiltonian is arrived at

[Anderson (1959)]:

H=-J) SS; (1.2)
(i.4)

where J = 4t? /U is the exchange integral (typically ranging in magnitude from .J/kp =
1 K to 1000+ K), and S are the spin operators at sites ¢ and j, respectively. Depending
on the spatial arrangment of orbitals connecting sites ¢ and j, J can be either positive
or negative, resulting in either coparallel (ferromagnetic) or antiparallel (antiferromag-
netic) aligments of spins being favoured. The above Hamiltonian is widely known as the
Heisenberg model , and will provide the foundation for much of the physics discussed

in the remainder of this thesis.

Considering the number of simplifications, approximations, and assumptions made thus

3Single electron hopping processes result in double occupancy.
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far, one would think that the Heisenberg model should be rather easily solvable. As it
turns out, it is anything but. Assuming a single electron per site with S = 1/2, the size
of the Hamiltonian matrix of the pure spin system scales with system size as 2V x 2V,
Even using the symmetries of the problem to block diagonalise #H, it is thus only
possible to reach N = 40 4, with modern supercomputers. If Monte Carlo techniques
are used, N may be increased to a few hundred sites, but this is only possible when
circumstances are favourable. While many experimental observables can be accurately
reproduced down to low temperatures at these system sizes, information on the ground

state for the infinite lattice is limited.

In order to gain a more complete understanding of the ground state, an analytically
solvable effective model is thus necessary. For the S > 1 Heisenberg model on most
simple lattices, for example, simple classical mean field theory [Weiss (1906)] or semi-
classical spin wave theory [Kubo (1952)] generally suffice to describe both the ground
state and dynamics. In some circumstances, however, particularly when S < 1, the
connectivity of the lattice small, the dimensionality low, and the topology frustrated
® they do not, and the full quantum mechanical problem must be dealt with. In-
conveniently, Monte Carlo techniques also generally break down in this limit [Foulkes
et al. (2001)], leaving only exact diagonalisation as the generally applicable numerical

method.

Solving the problem of the ground state in a frustrated, low dimensional quantum
magnet is often a difficult enterprise, requiring a close interplay between cutting edge
theory and advanced experiments. For the latter, access to materials which accurately
capture the properties of theoretically interesting Hamiltonians is essential. This finally
brings us to the issues which lie at the heart of this work: firstly, how do we realise
new quantum magnets with unusual properties and, secondly, how can their physical
properties be probed? Our attempt to answer these difficult questions will take us from
chemical “design” of materials, to measurements using one of the leading techniques in

solid state physics, neutron scattering.

The structure of this thesis will be as follows: Chapter 2 will describe the ingredients
needed to promote quantum ground states, and some of their basic properties. Chapter
3 will then outline the chemical principles involved in designing a model magnet, before
briefly discussing the primary experimental techniques used: polarised neutron scat-

tering and inelastic time of flight neutron scattering. Chapters 4 and 5 constitute the

4Corresponding to 1,099,511, 627, 776 basis states!

5This term will be explained in Chapter 2. Frustration can be induced by geometry, when the lattice
is constructured of polygons with an odd number of sides, and the interactions are antiferromagnetic,
or by competing interactions.



main body of experimental work undertaken during this thesis: Chapter 4 discusses the
synthesis and properties of two novel Ti*T-based quantum magnets, KTi(SOy4)2-(H20),
and its anhydrous analogue, KTi(SO4)2. These respectively realise the 1D Heisenberg
J1 — Ja chain model in the dimerised region of the phase diagram and the 1D Heisen-
berg chain model with frustrating interchain interactions, J’. Chapter 5 contains neu-
tron scattering results on the (purportedly) S = 1/2 kagome compounds volborthite,
Cu3V307(OH)2 - 2(H20), and herbertsmithite, CugZn(OH)sClg, showing that the for-
mer probably maps onto an entirely different model, whilst the physics of the latter is

dominated by defects. Chapter 6 will attempt to sum up.






Chapter 2

The Ingredients of Quantum

Magnetism

Having established a motivation for investigating quantum magnetism in
antiferromagnetic Mott insulators in the previous chapter, it is now time
to ask ourselves: what are the ingredients required to produce quantum
ground states in such systems? Even limiting ourselves to this (relatively
speaking) small class of models and materials, there is still an enormous
phase space of parameters to explore, which includes: the properties of the
individual spins, the type and sign of the couplings, and the connectivity
and topology of the lattice, amongst others. Furthermore, most models
which can be constructed from these parameters order classically. This
chapter will show using some simple theoretical tools how new promising
quantum magnets can be identified, and, more generally, what combinations
of ingredients lead to interesting ground states. The essential requirements
are shown to be small spin length, S, low connectivity, z, low dimensionality,
D, and, crucially, frustration (geometric or otherwise). Two hallmarks of a
quantum magnet are shown to be the presence of instabilities in the semi-
classical spin-wave theory, as well as unusual behaviour in the spectrum of
a finite size cluster. Finally, a few examples of what kinds of states result

when Néel order breaks down are given.
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2.1 Some Basic Results

2.1.1 Quantum and Classical Spins

Before beginning the discussion in earnest, it may be useful (at least it is for the author)

to review a few basic properties of the electronic spin:

e The Stern-Gerlach experiment [Gerlach and Stern (1921)] shows that the elec-
tron has an intrinsic angular momentum in addition to that generated by its
orbital motion. This “spin” angular momentum has a size S = 1/2, and its three
Cartesian components (x,y, z) may take on values +1/2. Furthermore, only one
such component of the spin may be measured simultaneously, implying that their

respective operators do not commute.

e The spin angular momentum operator is thus defined as a three-component vector
S = (Sg, Sy, S:), with each component in the case of S = 1/2 corresponding to a

Pauli matrix of dimension 25 + 1. In the case of S = 1/2, these are:

01 0 —2 1 0
szﬁgx;am: Sy:f‘(,y;ay: v SZ:EO'Z;O'Z:
2 10 2 i 0 2 0 —1

and |1)

The eigenstates of the only diagonal matrix among them, S?, represented as

e The eigenstates of these matrixes are typically written as |1)

x?y7z x7y7Z :

l4), and |1), (or simply ||) and [1)), are chosen as a convenient basis. The
Pauli matrixes form an SU(2) algebra, describing the rotational symmetry of the

quantum mechanical spin.

e The operation of either S* or SY on an S* state |1), flips the spin from up to
down, and vice versa for ||),. Hence, S* and SY are often referred to as spin flip

operators.

e It is often useful to reformulate the S, and S, operators as raising and lowering
operators ST and S™!, defined as: ST = S* +i8Y, S~ = S¥ —iSY. Applying
these to any state |mg) yields ST |mg) = 1/S(S + 1) — mg(ms + 1) |ms + 1) and
S~ |mg) = /S(S + 1) — ms(ms — 1) |mg — 1), respectively.

e As S is increased to oo, the spin is able to point in any direction, and may hence
be represented as a Cartesian vector S = (&,7, 2). If each component is finally

normalised such that S§+S§+S§ = 1, the resulting object is known as a classical

! Analogously with the quantum harmonic oscillator.
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spin. In practical terms, we can get away with this much simpler representation

of the spin when S > 3/2.

e When S < 3/2, however, the quantum mechanical nature of the spin is often
highly relevant to the physics, as we will see in the coming chapters. At the root
of this behaviour lies in the action of the spin flip terms S* and SY, or the so-
called quantum fluctuations. Hence, S = 1/2 and S = 1 are called quantum

spins.

2.1.2 The Heisenberg Dimer

The simplest realisation of the Heisenberg model we hand-wavingly derived in the
previous chapter is the S = 1/2 antiferromagnetic spin pair, described by the following

Hamiltonian:

H = J12S1 - So (2.1)

where Ji9 is positive, thus favouring antiferromagnetic (antiparallel) alignment of spins.

This can be rewritten in matrix representation as:

(MR (MHUD)  (MHHIND HHID L0 0 0
o | PRI () ) R | g fo -1 2 0
AT (AR (R R [ 4o 2 -1 0
(LRI (WHID  (WHIND GHHED 0 0 0 1
Diagonalisation yields the following eigenvalues and eigenvectors:
v) S E (S:)
\N>\/§|¢T> 0 _3/41s 0
‘TT) 1 1/4J12 1
|\L~l/> 1 1/4J12 -1

The ground state of the S = 1/2 Heisenberg dimer is the so-called singlet state, an
antisymmetric superposition of the |1]) and ||1) states. This unit is considered one

of the basic building blocks of quantum magnetism, and is an archetypal example of
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an entangled state 2. The excited state, separated from the ground state by a gap
A = Jis is a triplet level with S = 1. At this point, we note that the classical ground
state |1]), is not even an eigenstate of the Hamiltonian, and furthermore has energy

En = —J12/4, considerably higher than that of the actual ground state.

As S is increased, the basis consists of (25+1)? states, resulting in a Hamiltonian matrix
of dimension (25 + 1)? x (25 + 1)2. This becomes a considerable task to diagonalise
(at least by hand) for S > 1. Using the fact that the Hamiltonian commutes with

Stot = S1 + So, however, it is still easy to find the eigenvalues:

J
H=Ji2S1-S2 = 7[(S1+82)° — ST -8} = T[S, — ST -8} (22)
The ground state of the spin S Heisenberg dimer is thus an S = 0 singlet with Fy =
—JS(S +1). The first of the 2S5y, + 1 excited states occurs at £y = Ey + J. The
ground state energy of the classical state, on the other hand, scales as Ey = —JS2,

meaning that the quantum correction to the classical energy is of the order En/Ey =
—JS?/[JS(S +1)] =1/8.

2.1.3 Towards Extended Systems

Having established that the ground state of the antiferromagnetic Heisenberg dimer
is a singlet (an entirely quantum mechanical object), we now wish to understand the
observation that most extended lattice antiferromagnets order classically at relatively
high temperatures. To achieve this, the ground state energy in the thermodynamic limit
must be calculated and compared to the classical value. It quickly becomes apparent
that this is no small matter: the dimension of the Hamiltonian matrix for a system
containing N spins of size S grows as (25+1)" x (25+1)¥. Although the commutation
of S% with the total spin S allows for block diagonalisation of H, the largest sector still

has dimension:

N! N! 93
nT!(N—nT)! x nT!(N—nT)! ( ' )

where ny is N/2 for even N and N/2 + 1 for odd N. Even for S = 1/2, this matrix
quickly becomes too large to diagonalise on all but the most powerful supercomputers

— in fact, the current world record for an S = 1/2 system is a mere 40 spins! While

2Entanglement is a property of a quantum mechanical system of two objects or more, whereby the
state of one constituent cannot be described without also considering the state of the other [Einstein
et al. (1935)].



2.1. Some Basic Results 11

Figure 2.1: Decomposition of the square lattice into independent clusters.

it is obviously impossible to calculate the ground state energy in the thermodynamic
limit exactly, its lower bound can be estimated by decomposing the lattice into N
independent clusters, then summing up the energy of these clusters. Taking the example
of the square lattice, the cluster chosen is a cross of 5 spins. The cluster Hamiltonian

is written [Fazekas (1999)]:

N
H=> H (2.4)
=1
where:
2 2
J z 1 z z
H¢:28i-j;sj:2 si+§j:sj ~S8(S+1) - Ej:sj (2.5)

H; (2.5) is minimised by making the total spin of the z nearest neighbours as large

as possible, due to the last term (— Z]Z SjQ)7 and then minimising the first term

2
((Si +375 Sj) ) by creating one singlet (see figure 2.1). The lowest energy level is
thus found to be:

E;g= —252 (1 + le> (2.6)

‘H can no longer be minimised locally once the number of clusters is increased beyond
one, as the clusters overlap. Nevertheless, a lower bound for the energy can be found

by performing the summation in (2.4) assuming N independent clusters:

By > —‘”\;ZS <s + 1) (2.7)

z

This can be compared to the classical ground state energy, Enx = J vaj S; - gj, where

i and j are neighbouring spins, and S are classical vectors. Assuming each spin is able
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to arrange itself such that it is antiparallel with respect to all its nearest neighbours,

the resulting energy is:

_JN252
2

En = (2.8)

which, as expected, is higher than Ey. The true ground state energy of the extended
lattice Heisenberg antiferromagnet thus lies in the range Fy < Eygs < En. The gap
between the upper and lower bounds is proportional to 1/(zS), implying that the
quantum and classical ground states become identical for large z and S (figure 2.2).
Conversely, when z and S are small, the quantum corrections should be large — but are

they are large enough to destroy classical order completely?

Figure 2.2: Scaling of Ey/EN with respect to S and z. The colourscale indicates the
magnitude of the quantum correction to the classical energy, running from large (blue) to
small (red).

2.1.4 Spin Wave Theory

One way to test the stability of the classical ground state is to assume long range order,
then introduce quantum fluctuations to the system by some means. A particularly
elegant way to implement these is by representing the action of the spin operators
as creations and annihilations of bosons through a Holstein-Primakoff transformation

[Holstein and Primakoff (1940)],[Kubo (1952)]:
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S; = S— aj-ai
S = V2S5\/1- ajaiai
¢ 25
T
S7 = v2Saly/1- % (2.9)

—

where the spin is assumed to lie along the local S* direction, a; and a; create and

T

7

i
annihilate S = 1 bosons, whilst a;a; counts the total number of bosons. The term
inside the square root limits the boson population number to the physical subspace of
the 25 4 1 eigenstates of the spin operators. This term has the side effect of rendering
the Hamiltonian impossible to write in diagonal form, however, and is therefore dealt
with by expanding the square root as its Taylor series /1 — 2 =1 — 2/2 — 2%/8... and
keeping only the leading constant. This corresponds to assuming 25 >> a;fai (the

number of bosons is small versus S), a reasonable assumption to make for classical

spins.

One of the simplest examples of linear spin wave theory is found for the S = 1/2 square
lattice antiferromagnet (QHSA). Due to the small spin and small coordination number
(z = 4), strong quantum effects resulting from the spin flip terms, and perhaps even a
breakdown of long range order are expected. The classical ground state of the QHSA
is a simple arrangement whereby each spin lies antiparallel with respect to its nearest
neighbour. As such, it is natural to break the lattice into two sublattices, A and B,
where the spins on each sublattice point in the same direction. Another useful trick is

then to rewrite the Hamiltonian as a sum over nearest neighbours:

H=> >8-S+ (2.10)
i 4

where § are a set of vectors coupling the A and B sublattices — in the case of the square
lattice § = {é5, —€,, €y, —€,}. Thus, the operators residing on the A and B sublattices

may be Fourier transformed as follows:

2 kR, 2 kR,
e PIL TS ETED SR

keBZ keBZ

2 KR, 2 ikR;
bj:,/Z > ekfipy b}:,/z > ey (2.11)

keBZ keBZ
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where L is the occurence of a given boson in the unit cell, and k is a wavevector in the
reduced Brillouin zone of the square lattice. The spin wave Hamiltonian which results

is:

2N JS?
+

How = — 28y [a;r(ak + bl by + e (aLbL - akbk>] (2.12)

k
where the first term is recognizable as the classical ground state energy and the second
represents the lowering of ground state energy due to quantum fluctuations. The v =
s e’ % term encapsulates the geometry of the lattice. While not diagonal yet 3, Hgw

can be easily diagonalised by a Bogoliubov transformation:

QK = UGk — ’Uka_k a;r{ = ukaL — vb_x
P = ubi — UkaT_k BIT{ = —uka_x + ukbL (2.13)
The bosonic commutation relations [al,ak] = [ﬁl, Bk} = 0 require the coefficients

u and v to satisfy the condition |u|? — |v|?> = 1. Hgw can thus finally be written in

diagonal form as:

Hsw = EN—FZJSZ\/I _712< [(aﬂak—i— ;) + (ﬁltﬂk—i- ;)] (2.14)
k

= Enx+ Zwk (aLak + 51];,31() (2.15)
k

where wy = 2JS+/1 —~2 is the spin wave dispersion, and is degenerate for o and /3
bosons (figure 2.3). Spin wave dispersions can be measured experimentally with great

precision using neutron scattering.

With the spin wave Hamiltonian finally diagonal, it is now also possible to evaluate the

quantum correction to the classical ground state energy as follows:

N 2
Egs = _Z ;75 +zJSZ\/1—7ﬁ—1 (2.16)
k

_ZNJS
2

S+§Z(1—ﬂ)] (2.17)

k

In the case of the S = 1/2 Heisenberg square lattice antiferromagnet (QHSA), the

lowering in energy versus the classical ground state 6 = 0.158, with Exy = 1. The

3 After all, the ground state is not the vacuum of bosons.
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Figure 2.3: The dispersion relation wy of the square lattice Heisenberg antiferromagnet
along the high symmetry directions of the Brillouin zone in several different magnetic fields.

H._ is the saturation magnetization.

amount of energy by which the quantum ground state is reduced versus the classical

again depends inversely on the size both S and z, as expected.

While the ground state of the spin wave Hamiltonian contains no Bogoliubov bosons aj
and Py, the true ground state will contain a finite number of ay and by due to quantum
fluctuations. These reduce the magnetization on a given sublattice by the expectation

value of the boson number on that sublattice:

m=5-85 = §— ;Ek: (o) + (bl )

- S—

1 1

— E — -1 2.1

N /1 2 (2.18)
k — Yk

Substituting the sum for an integral, the reduction of the sublattice magnetisation, 4.9,

becomes:

1 dPk 1
55 = = —1 2.1
=5 /(%)D o (2.19)

Tk
For the square lattice, 6S = 0.175, which corresponds to 35% of the spin length, a
rather large reduction; the earlier supposition that low z favours quantum fluctuations
thus appears to be correct. One important consideration which has not been made
yet is for dimensionality. In the above expression, the dimensionality of the lattice,

D, enters through the sum over k, which in the integral representation becomes a D
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Model LRO E, oS

3D Cubic Yes | 0.097 | 0.078
2D Triangular | Yes | 0.220 | 0.39

2D Square Yes | 0.158 | 0.65

1D Chain No 2 0

™

Table 2.1: The spin wave values the quantum correction to the classical ground state
energy, E,. and sublattice magnetization for some simple lattices in one, two, and three

dimensions.

dimensional integral. In one dimension, this integral diverges entirely, meaning that
the sublattice magnetisation vanishes — in other words, quantum fluctuations destroy
classical order in one dimension. Thus, one dimensional systems are a natural place
to look for exotic quantum ground states. In two dimensions and above, the integral
generally remains finite, though in some special cases, it diverges. The spin reduction
is the smallest for 3D lattices. In the case of the S = 1/2 cubic lattice, 6S becomes
only 15% of the spin length, a fact that is verified by neutron scattering [de Jongh
and Miedema (2001)]. The ground state energies and spin reductions for a variety of

lattices are given in table 2.1.

2.1.5 Finite Clusters

Spin wave theory allows for solution of the Heisenberg Hamiltonian in the thermo-
dynamic limit, giving access to quantities such as the sublattice magnetisation, an
important indicator of the stability of classical order. It is, however, not the only way
to identify a potential quantum magnet — the low energy spectrum of an exactly di-
agonalisable cluster for a given model also contains many clues as to the behaviour of
the system in the thermodynamic limit. For a two dimensional bipartite system with
two sublattice order (such as the QHSA), the lowest set of eigenvalues (up to S ~ v/N)
can be described with the Hamiltonian of a quantum rotor (like a diatomic molecule)
[Fisher (1989)],[Neuberger and Ziman (1989)]:

82

Heff = E0+2NX0 (2.20)
S(S+1

E(S) = E0+;N;0) (2.21)

where Fj is the ground state energy, and 1/Nyg is the inverse susceptibility. In the
thermodynamic limit, the latter term vanishes, resulting in the lowest energy level in

each S sector becoming degenerate. It is this collapse of the so-called quasi-degenerate
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joint states (QDJS) which mark the rotational symmetry breaking characteristic of
long range order. The nature of the order may be surmised from the symmetry of the
E(S) states, which possess the symmetry of the ordering wavevector. In the case of the
triangular lattice antiferromagnet, for example, the QDJS correspond to wavevectors
of k; = (0,0) and ko = (£47/3,0).

Returning to the finite size sample, the next set of energy levels above the QDJS are
the magnon bands, which develop into the spin waves discussed in the previous section
in the thermodynamic limit. As system size increases, the lowest energy levels of the
magnons tend towards Ey as 1/ V'L, revealing the ungapped spectrum characteristic of

a long range ordered antiferromagnet.
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Figure 2.4: (left) The low energy spectrum versus S(S + 1) for the S = 1/2 Heisenberg
square lattice antiferromagnet (right) The scaling of the lowest energy eigenstates for a
range of different system sizes. The spectrum collapses towards Ej linearly with IV, as
expected for a set of QDJS. Also, the ground state energy per bond converges to ap-
proximately —0.355 [Richter et al. (2004)], which is practically identical to the spin wave
estimate of —0.3552 [Zheng and Hamer (1993)]. Figure adapted from J. Richter. et. al.
[Richter et al. (2004)]

Taking the QHSA as an example again, it is possible to access lattice sizes up to
40 numerically due to the small spin and high symmetry. The resulting spectrum,
as calculated by Richter and Honecker [Richter et al. (2004)], is shown in figure 2.4.
As expected, the lowest energy eigenvalues in each spin sector obey equation 2.21.
Furthermore, by considering the scaling of E,,(S) with system size N, it can be
deduced that E,,;n(S) — Ey as N — oo. In other words, the QDJS show that S =

1/2 square lattice antiferromagnet does order in the thermodynamic limit. A similar
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analysis can be performed for more complicated topologies than the square lattice —
here, the number of QDJS scales as the number of sublattices, or, in the case of helical

orders, as twice the number of sublattices.

Signs of exotic magnetic behaviour may be observed in the absence of a clear set of
QDJS, or, more subtly, in unusual scaling of these. If the gap between the lowest lying
singlet state and the lowest states in other spin sectors does not close as N — oo, a
gapped ground state, usually composed of singlets or some other localised object, is
implied. More exotic finite size spectra, for instance, when the gap between the lowest
S =0 and S =1 levels is filled with singlets, can imply even more unusual orders (see

figure 2.5).

l

0 | | | |
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=

Figure 2.5: The low energy spectra of (left) a classically ordered magnet (centre) a gapped
system and (right) an exotic quantum ground state. After F. Mila. [Mila (2000)].

2.1.6 Frustration

Except for the particular case of one dimension, it appears from the discussion so far
that classical order is rather persistent with respect to quantum fluctuations. There
are however other means of destabilising long range order beyond small D, small S,

4 are placed on each corner of

and small z. This becomes apparent if Ising spins
an equilateral triangle, then coupled antiferromagnetically — the resulting situation,
where it is impossible to satisfy all interactions simultaneously, is called frustrated
[Toulouse (1977)], and is shown in figure 2.6. Frustration can be realised in a number
of other ways, such as through competing nearest neighbour interactions, next-nearest-

neighbour interactions (figure 2.6) or spatial disorder.

Returning to the case of the isolated triangle, and geometric frustration: if the Ising
spins are replaced by classical Heisenberg spins, the frustration is partly relieved by

the adoption of a compromise ground state with the spins coplanar and oriented at

4Spins with only one component. The spins lie along an axis and may point only up or down with
respect to this axis.
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Figure 2.6: (left) A single triangle with Ising (black) and Heisenberg (red) spins. The
Ising spins are unable to satisfy all nearest neighbour couplings simultaneously, resulting
in a ground state degeneracy. In the case of Heisenberg spins, the frustration is relieved
by adoption of a coplanar 120° state. A twofold degeneracy associated with the chiraliy
remains, however (see figure 2.7). (centre) Another frustrated unit, a tetrahedron. When
populated with Ising spins, the ground state is again degenerate. (right) An example of
frustration on a square plaquette with next nearest neighbour couplings. If both J and J’
are antiferromagnetic, it is impossible to satisfy all interactions simultaneously. If many
such plaquettes are assembled in an edge-sharing manner, the so called frustrated square
lattice results. The Heisenberg model on this lattice exhibits a breakdown of classical order
at the point J = 2J’. As will be seen later in this chapter, this is a consequence of being

able to rewrite the classical ground state as a local constraint.

120° with respect to each other. The energy per site of this state is only —.JS52/4,
versus —.JS2/2 for fully antiparallel spins — from this fact alone, one might expect an
enhancement of quantum effects. Furthermore, there are two degenerate ways to realise
the 120° degree state, which are not connected by a simple global rotation of the spins:

to describe these, a so-called scalar chirality, x, may be defined as follows:

2 ( — — — — — —
p= {2 ) (Six Sa+ 8o x Sy + 85 x ) 2.22
<3\/§ > (222
where the sites are indexed in the clockwise direction and x may take on values of +1.
When many triangles are put together, the intriguing possibility of a disordered, enor-
mously degenerate ground state arising from this degree of freedom arises, providing it
survives in the thermodynamic limit. This does not happen in the case of the triangular

lattice (z = 4, D = 2), where the edge sharing of the triangular building blocks destroys

the twofold degeneracy, but is a possibility for corner sharing geometries.

Even though the classical ground state of the triangular lattice is (dissapointingly)
ordered, the effect of frustration again becomes apparent when the spherical symmetry

of the Heisenberg model is reduced to axial by application of a magnetic field H.
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Returning to the case of the isolated triangle, the classical ground state becomes any
of an infinite number of configurations which fulfill the condition §1 + gg + gg =H/2J
(figure 2.7). In the thermodynamic limit, this infinite degeneracy is reduced to 2
possible long range ordered ground states: either a coplanar up-up-down (UUD) state,

or an umbrella state.

Reducing the spin length from oo to the quantum limit S = 1/2, the first question
which arises is whether the zero field classical ground state survives in the presence of
quantum fluctuations. While this was a hotly debated topic for a number of decades,
it is now well established that the S = 1/2 triangular lattice antiferromagnet indeed
orders at T'= 0 [Huse and Elser (1988)]. The frustration strongly reduces the sublattice
magnetization to only 40% of its classical value, however, considerably smaller than the
value calculated for the QHSA of 65%.

Having established that the ordered ground state persists at H = 0, it is time to re-
turn to the finite field ground state. In the quantum limit, the degeneracy between
the classically degenerate UUD and umbrella states is destroyed by a somewhat coun-
terintuitive phenomenon known as order by disorder [Villain et al. (1980)],[Chubukov
and Golosov (1991)]. As demonstrated in the previous section on spin wave theory,
quantum fluctuations lower the classical ground state energy through a term contain-
ing the integral of the spin wave dispersion. In the case of the quantum triangular
antiferromagnet in a magnetic field, it turns out that the UUD state is favoured over
the umbrella by this term. Thus, quantum fluctuations play a dual role in frustrated
spin systems - while destabilising the ground state, they may simultaneously select a
long range order from the degenerate manifold of classical states. Similar arguments
to the above can be made for ground state selection at finite temperatures by thermal

fluctuations.

As hinted at earlier, the connectivity between the triangles is another way to induce
degeneracies in the classical ground state. This can be illustrated by considering the
simple example of two triangles sharing a single vertex: the ground state allows for free
rotation of the four non-shared spins about the axis of the shared spin. Even when the
spin directions are fixed on one triangle, the twofold chiral degree of freedom remains

for the other, unlike in the edge sharing geometry (figure 2.7).

Extending from two triangles to an infinite number, the local rotational degree of
freedom results in a macroscopic degeneracy within ground state manifold, with the
only constraint being that on a single triangle Si4+5+8=0T hus, a criterion for
breakdown of classical order in frustrated systems is that the Hamiltonian is expressable

as a sum over the basic building blocks of the lattice [Chalker (2009)], be they triangles,
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A

Figure 2.7: (left) Two triangles arranged in a corner sharing geometry. Even when the
chirality is fixed on one triangle (left), there remains a twofold degeneracy associated with
the choice of chirality on the adjacent triangle, represented by the red and blue arrows.
In the edge sharing geometry this additional degeneracy is suppressed, as is the case for
the triangular lattice. (centre) A graphical representation of the condition which defines
the ground state of a single triangular plaquette. (right) Ground state degeneracy may be
restored by applying a magnetic field, H, perpendicular to the plane of the plaquette. The
new ground state condition allows for an infinite number of possible spin arrangements.

One ground state is shown in red, another possibility in yellow.

tetrahedra, or more exotic units. That is:

H=35 5= S|P+ (2.23)

1,5) 2

where L = 57 + S + S3, the sum over z is a, and ¢ is a constant.

Are order from disorder mechanisms again able to select a unique ground state from the
degenerate ground state manifold, as they did for the triangular lattice? As it turns out,
not quite: to demonstrate this, consider the example of the kagome lattice (z =4, D =
2) 5, a 2D lattice composed of triangles arranged in a traditional pattern of Japanese
basketweaving [Syozi (1951)]. As for the triangular lattice, order by disorder  enforces
a coplanar ground state. The chiral degree of freedom remains in the reduced ground
state manifold, however, suppressing long range order. In Monte Carlo simulations on
the classical kagome antiferromagnet, it is found that correlations tend towards a motif
with staggered chirality known as v/3 x v/3 order [Reimers and Berlinsky (1993)] 7, but
this order is only short ranged. Going from the S = oo case to finite spin, spin wave
theory on the v/3 x /3 state shows a completely flat mode at wy = 0, indicative of its
instability with respect to quantum fluctuations [Yildirim and Harris (2006)].

5This lattice will be discussed extensively in chapter 5.

Sthis time through thermal fluctuations, as we are discussing a classical model

"The unit cell increases in size by v/3a along both dimensions, where a is the nuclear lattice param-
eter.
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Reducing the number of shared spins between two triangles from two (edge sharing)
to one (corner sharing) has seemingly done the trick — the classical ground state in the
thermodynamic limit will retain the degeneracy of the isolated units which compose
the lattice. This thesis will consider several systems where frustration is an important

ingredient in leading to exotic physics.

2.2 The “Zoo” of Quantum Ground States

Now that the ingredients which lead to breakdown of classical order in magnetic systems
have been identified as small S, low D, low z, and frustration (geometric or otherwise),
it is time to investigate what kind of states may replace the classical long range ordered
state, and what their characteristics are. In this discussion, only states arising at the
quantum limit of the Heisenberg model on ordered lattices will be considered — that is,
states like disorder induced spin glasses and classical cooperative paramagnets will be

ignored.

An oft used umbrella term to describe states with an absence of classical long range
order is spin liquid. This does not necessarily mean that the correlation functions and
dynamics of the state in question correspond to those of actual liquids, but rather that
the state does not break the symmetry of the lattice and/or the spin despite strong
correlations. There are a vast multitude of states which fulfill either one or both of

these conditions, some of which are be briefly summarised below:

2.2.1 Algebraic Spin Liquids

Earlier in this chapter, it was shown that classical order in the 1D Heisenberg chain
model is destroyed by quantum fluctuations. One question which naturally arises from
this observation is; what replaces classical order as the ground state? While answering
this is generally not trivial, an exact solution fortunately exists in the case of the S =
1/2 Heisenberg chain. Furthermore, it is amenable to a number of other approaches,
including conformal field theory and bosonization, and powerful numerical methods
such as density matrix renormalization group (DMRG). This renders the S = 1/2

Heisenberg chain one of the best understood models in quantum magnetism.

Even though the ground state has zero sublattice magnetization, it is surprisingly found

to be Néel ordered on a rather large length-scale. Indeed, the correlation function
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(SiSi+r) decays with distance r as:

s

An algebraic decay of (S;S;+r) is a characteristic feature of a system close to a phase

(SiSitr) ~

(2.24)

transition, where correlations diverge before long range order sets in. As a result, the
ground state is often called a critical spin liquid. Also in common with long range
ordered systems is the presence of gapless excitations. One crucial difference between
these and their long range order analogues is that while the latter are S = 1 magnons,
the excitations in the ground state of the 1D chain are spinons, gapless S = 1/2
quasiparticles. In a cartoon picture of the ground state, these may be regarded domain

walls which can move at no energy cost.

The existence of algebraic liquid states in two dimensions is still a point of contention,
though the S = 1/2 kagome antiferromagnet is one model for which such a state has

been found to be a possibility [Hermele et al. (2008)].

2.2.2 Valence Bond Crystals and Solids

One of the simplest solutions for the ground state of a frustrated lattice model is the
valence bond solid (VBS), an ordered covering of the lattice by singlets. Depending
on the details of the lattice and interactions, these may be dimers, tetramers or even
larger objects. Generally, in VBS type ground states, the correlation function decays
exponentially with distance:

(S;Sisr) ~ S2e”¢ (2.25)

where ( is the correlation length. In an ideal VBS, the correlations are limited in extent
to the singlet unit, but usually fluctuations render ( slightly longer in distance. Al-
though the SU(2) rotational symmetry of the spins is preserved in such a ground state,
this is not necessarily true of the translational symmetry. Depending on whether or
not this is broken, two classes of VBS arise: spontaneous VBS, where the translational
symmetry is destroyed by singlet formation, and explicit VBS, which are translationally
invariant (see figure 2.8). The former is typically encountered when the Hamiltonian
contains competing interactions, such as next nearest neighbour (nnn) couplings, whilst
the latter occurs when an alternation of exchanges isolate a structural unit capable of
singlet formation. Another universal feature of a VBS ground state is a gap to the low-
est lying magnetic excitation. This gap is connected with the breaking of the singlet
objects making up the ground state. The excitations above the gap are not universal,

however.
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One famous example of a spontaneous VBS state is the ground state of the S = 1/2
chain with antiferromagnetic nnn couplings, Js, topologically equivalent to an edge
sharing ladder of triangles ®. In a broad region of the phase diagram with respect to the
frustration parameter a = Jo/Jy, the frustrating interaction Jy induces a dimerisation
of neighbouring spins into localised singlets residing on the J; bonds. The resulting
ground state is doubly degenerate, as the singlets may cover either right or left leaning
diagonals along the chain. Spin excitations are, as in the uniform chain, S = 1/2
spinons, although the excitation spectrum has now acquired a gap connected to the
breaking of a nearest neighbour singlet. Spontaneous VBS are also observed in two
dimensional models where the unit cell of the lattice contains an even number of spins,
such as the square lattice with 3"¢ nearest neighbour couplings. In this case, the ground

state is singly degenerate, and the excitations are S = 1 magnons.

A typical case of an explicit VBS is encountered on the so-called Shastry-Sutherland
lattice, a square lattice where every second triangle is decorated by a diagonal bond.
The ground state in the limit of the diagonal bonds, J, being stronger than the square
bonds, J', consists of singlets on the diagonal bonds. Frustration is thus relieved by
effectively “switching off” the frustrating coupling, J. In this state, the ground state
remains both translationally and spin rotationally invariant. Excitations are gapped,
and confined even at rather large J' due to frustration, which results in a rather flat

dispersion.

Returning to the Heisenberg chain model, the ground state takes on radically different
character if S is increased from 1/2 to 1 (or more generally, for any integer S). In this
case, rather than possesing algebraic correlations and gapless spinon excitations, the
ground state exhibits extremely short range correlations, consistent with condensation
of nearest neighbour singlets, as well as gapped S = 1 magnons in the excitation
spectrum. The origin of these singlets is initially puzzling, as the lattice translational
symmetry apparently remains unbroken. To explain this apparent paradox, Haldane
made the observation that the S = 1 spins can be broken into two S = 1/2 ”virtual“
spins, each of which may form a singlet with a similar object on a neighbouring site. As
such, the S = 1 chain is often called the Haldane chain, with the resulting gap between
the ground state and first excited triplet referred to as the Haldane gap. A powerful
proof of the validity of this interpretation are the presence of end of chain defects with

S =1/2, observable in NMR experiments on doped samples.

While the spin correlations decay exponentially in both VBS and VBC states, they do

possess a long range order of sorts in the singlet-singlet correlations. Thus, the order

8 Again, this model will be covered in greater detail in Chapter 4.
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Figure 2.8: (left) Some examples of spontaneous VBS, including the ring exchange and

J1 — Jo — J3 models on the square lattice, and the S = 1/2 J; — Js chain. The lattice
symmetry is broken by singlet formation. (right) An explicit VBS on the Shastry-Sutherland
lattice (above) and VBC on the Haldane chain (below). For the latter, the dotted circles

denote a single site, with the red ellipses indicating singlets.

parameters of these states are typically formulated in terms of such objects.

2.2.3 RVB Liquid

Originally proposed by Anderson and Fazekas for the triangular lattice in 1973 [Ander-
son (1973)], the resonating valence bond, or RVB, state may be considered a fluctuating
analogue of the VBS and VBC states. Its wavefunction is expressed as a superposition

of dimer coverings over the entire lattice as follows:
[Wrve) = A(C)ICi) (2.26)
C;

where C; is a dimer configuration, usually expressed as a product of singlet states,
A(C;) is an amplitude, and the sum runs over all such possible configurations. There
are two flavours of RVB liquid, depending on the nature of the dimer wavefunctions
used: a short range liquid, where the amplitude of a dimer configuration a(h, k) decays
exponentially with distance, and a long range liquid, where a(h, k) falls off algebraically.
Generally, the former has been considered in the greatest detail so far, as it is possible
to treat the problem in a nearest neighbour singlet basis known as the quantum dimer

model.

Thus far, the RVB state has mainly been found to arise for rather artificial models, like

the quantum dimer model on the square and triangular lattices [Rokhsar and Kivelson
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State Spatial Symmetry | Spin Symmetry
Néel v v
VBS (Spontaneous) v X
VBS (Explicit) v v
RVB X X
Critical/algebraic SL X v
Nematic X v

Table 2.2: Some magnetic ground states and their broken symmetries.

(1988)]. An experimental realisation in a condensed matter system thus remains on

the distant horizon.

2.2.4 Nematic Phases

The spin liquid states discussed so far have all retained the SU(2) spin rotational
symmetry of the Heisenberg model. It is also possible for a spin liquid state to break
this symmetry, but leave the translational symmetry of the lattice untouched. Broadly
speaking, such states are called nematic, as they (like liquid crystals) are disordered in
the spin correlations, but nonetheless show an ordering in the spin fluctuations. Such
order can often be captured in the higher powers (quadrupolar, octupolar etc.) of the
spin operators. One example of a nematic phase is encountered on the square lattice
when S is increased to 1 and a biquadratic exchange (S;- Sj)2 is added to the Heisenberg
Hamiltonian [Téth (2010)].

2.3 Anisotropies: Switching Quantum Mechanics Off Again

The discussion so far has assumed perfect isotropy of the Heisenberg spins, only bilinear
(S;i - S;) interactions between them, and in the case of low dimensional models, no 3D
couplings between the structural elements (i.e. chains, planes, etc.). As we know,
however, things are very rarely so simple in nature. This section will address some
of the perturbations which arise in real systems, in particular anitrosopies of both the

single ion and exchange variety.
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Figure 2.9: (left) The octahedral coordination and (right) its level splitting scheme. Addi-

tional splitting due to a tetragonal Jahn-Teller distortion is also shown.

2.3.1 Crystal Fields, Spin Orbit Coupling and Resulting Anisotropies

Because the rich physics described so far occurs within the bounds of the Heisenberg
model, it is natural to look to first row transition metal ions as sources of spin for ex-
perimental realisations. In these ions, the orbital moment is often considered quenched
(though this is not always the case), which means that spin-orbit coupling to crystal
field split levels is at first order excluded as a source of spin anisotropy. In order to
understand why this is the case and under what circumstances it is not, it is necessary
to consider in a little more detail the behaviour of d-orbitals in both symmetric and
asymmetric crystal fields. We will concentrate on two electronic configurations: d'
and d?, as these not only correspond to the configurations of the Cu?* and Ti** ions
which form the basis of the experimental part of this work, but also because they are

instructive in illuminating the physics of individual 3d metal ions.

In the free ion case, the five 3d levels are degenerate, and the ground state term symbol
is 2D for both the d' and d” configurations. When an octahedral crystal field is applied
to these states, they are split into a lower triplet of ¢, symmetry, and an upper doublet
of e4 symmetry (see figure 2.9). As the 3d orbitals are quite extended in space, they
interact strongly with the crystal field, and the splitting between the t2, and eg4 levels
is typically on the order of 1 eV, which is far greater than both the spin orbit (LS)
coupling and Hund’s third rule. An important consequence of this is that Hund’s third
rule breaks down - that is, J is no longer a good quantum number (though L and S so
far remain unaffected). Therefore, in determining the magnetic properties of a single

ion the ground state resulting from the crystal field must be considered.

The basis functions for the to, and e, levels may be constructed from linear combina-
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tions of the spherical harmonics )" as follows:

irz [y2 y_2]
m P25+ Yy~ =y
’[”2 [y21 — y2_ 1] ~ Iz t29 eg

T’ng ~ 322 — 2
PV + Yy 1] ~yz

An important observation about these functions, called tesseral harmonics, is that they
are all real functions. Therefore, acting on them with the purely imaginary angu-
lar momentum operator L, will only yield a real eigenvalue if (L) = 0. The orbital
moment is thus (apparently) quenched. This is not necessarily true in all cases, how-
ever — the above choice of basis is not unique, and the complex basis {), 1,y22 —
Yy 2 -1 —yg,yg,yg + 5 2} (in that order) may instead be chosen. The angular

momentum operators can thus be rewritten:

0 1 0 |—/3 -1
, 1 0 1 0 0
L,=—— 0 1 0 3 1 2.27
7 V3 (2.27)
-3 0 V3| 0 0
1 0 1 0
0 1 0 |v3 -1
‘ -1 0 1 0 0
7
L,=— 0 -1 0 3 —1 2.28
-3 V310
1 0 1 0 0
1 0 010 O
0 0 0 —2
L.=—1 0 0 -1{0 0 (2.29)
0 0 0 0
0 -2 010

Looking closely at these matrices, it becomes apparent that the top left quadrant,
corresponding to the to, subspace, has a rather similar form to the angular momentum
operators for L = 1 (p) orbitals. In fact, the two are simply related by Ly,, = —L;,. On
the other hand, the bottom right quadrant, describing the e, orbitals, shows complete
quenching. What are the implications of this for, respectively, d' and d” electronic
configurations when the crystal field is perfectly octahedral? Also, what happens when

the octahedral symmetry is lifted, by for example a Jahn-Teller distortion?
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e O, Symmetry: When the t3, level contains only one electron, as is the case for
Ti3*, the spin-orbit coupling to the effective L = —1 angular momentum lifts the
threefold degeneracy of the ground state. The resulting spin-orbit ground state
is a Kramers doublet with both L = 0 and S = 0. In the d° case, on the other
hand, the orbital moment is completely quenched (as expected), and only the

spin angular momentum contributes to the total moment?.

e Jahn-Teller Distorted: In a real material, of course, the crystal field is rarely of
perfect Oy symmetry. This is often a consequence of the Jahn-Teller distortion,
which (at least partially) lifts the degeneracy of degenerate electronic configu-
rations. If this results in a singly degenerate ground state, the orbital angular
momentum is quenched again, and the magnetic moment is due to the spin only.
Even in these circumstances, application of the spin orbit (LS) coupling may re-
store some orbital angular momentum by mixing higher lying orbital states (with
L # 0) into the ground state. The magnitude of the restoration of the moment is
proportional to A\2/A, where A is the splitting between the ground and excited
orbital states and A is the spin-orbit coupling constant. The deviation from per-
fect Heisenberg spin symmetry, or single ion anisotropy, due to the LS coupling

is written:

H =DS?+ E(S: - 52) (2.30)

where the sign and magnitude of D and E depend on the details of the crystal
field.

The effect of a small single ion anisotropy on a quantum ground state is generally
to favour long range order. For example, in the 1D spin chain, the sublattice mag-
netization in the presence of a small anisotropy along the z-direction is restored
as (1/m)log[(1+ d)/d], where d = D/(4]J]).

Additional anisotropies may arise when the magnetic exchange between ions is switched
on. One example of particular importance is the Dzyaloshinskii-Moriya (DM) interac-
tion, which results from a process whereby two neighbouring atoms are simultaneously
excited by the exchange interaction, J, before being restored to their respective ground

states by the LS coupling. This process has an amplitude ()\t?j JAU).

The Dzyaloshinskii-Moriya Hamiltonian is written:

%In fact, this is not always true when the exchange interaction, J, between ions is switched on. If
the spin orbit (LS) coupling excites an ion to an orbital state with nonzero L, the exchange interaction
will acquire an anisotropic component. This is called exchange anisotropy, and can be responsible for
shifts in the g-value of up to 10%.
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Hpy = DyS; x S; (2.31)

where D;; is the DM vector, and has components given according to Moriya’s rules
[Moriya (1960)]. The first, and most important, of these is that D;; = 0 if the bond
between the neighbouring atoms has inversion symmetry. The DM interaction has
been found responsible for the small canting of the ordered moment in materials like
LagCuO4'° — this effect is called DM ferromagnetism. The influence of the DM interac-
tion on quantum ground states will be discussed in more detail in Chapter 5. Generally,

however, they lead to magnetic order.

2.3.2 Interchain and Interplane Couplings

The most common experimental testing grounds for the physics discussed so far are
crystalline solids. In order to realise a 1D or 2D model as a 3-dimensional crystal,
the magnetically interesting structural elements (be they chains, planes etc.) must be
separated in space. If this separation is imperfect, a residual interchain or interplane

interaction, usually denoted J’, may be present.

Just like the aforementioned anisotropies, interchain/plane couplings also tend to in-
crease the tendency for long range order '!. Taking the example of the square lattice an-
tiferromagnet, the ordering temperature increases logarithmically as Ty = (2.3.J)/[2.43—

In J’/J] when an interplane coupling is introduced.

2.3.3 Summing it all up

This chapter has hopefully provided an overview of the interesting physics which can
arise when ingredients like small S, small z, low dimensionality, and geometric frustra-
tion are combined within the confines of the Heisenberg model. The materials which
will be studied in this thesis all manifest some configuration of these variables, result-
ing in a range of novel physical properties. Chapter 4 will deal with two 1D titanate
systems, where one, KTi(SO4)2-(H20), provides a rare example of a spontaneous VBS
on the frustrated chain lattice, and the other is described as a 1D algebraic liquid with
spinon excitations. Chapter 5 will mainly concern the kagome lattice antiferromagnets
volborthite and herbertsmithite, though mainly focussing on why these compounds

do not realise the exotic quantum ground states one expects. As a fitting coda to

The end member of the famous Lay_,SrzCuQOy4 family of supercondutors.
1 One exception being when these are frustrated.
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this Chapter, these models are placed on a "master“ phase diagram for the S = 1/2

Heisenberg model, shown below.

D=1 { D=2
E @)

frustration

LRO

Y

Figure 2.10: Schematic phase diagram for an S = 1/2 antiferromagnetic Heisenberg
model with respect to frustration, z, and D. The yellow region indicates where long
range order breaks down and is replaced by a quantum ground state. The shade of red
roughly reflects the size of 4.5, the reduction in the sublattice magnetization. The trian-
gle represents the frustrated chain lattice model manifested experimentally in the mate-
rial KTi(SO4)2-(H20), while the circle and square indicate the kagome [CuzV207(OH)s; -
2(H20) and Cu3Zn(OH)sCly] and chain lattices [KTi(SO4)2], respectively.






Chapter 3

Experimental Methods: From
Design to Synthesis to

Measurements

In the last chapter, the ingredients which lead to novel quantum ground
states in spin models were identified. This chapter will focus on how to
realise these models experimentally, and how to measure the properties of

the resulting materials.

3.1 Sources of Model Magnets

“What would the properties of materials be if we could really arrange the
atoms the way we want them?”
— Richard Feynman [Feynman (1960)]

A major obstacle to advancing our understanding of quantum phenomena in the solid
state is a dearth of suitable model materials. This lack may be easily understood if
one reflects on the long list of conditions which must be fulfilled for such phenomena
to occur. First, a suitable source of spin, in terms of both correct value of S and spin
symmetry (Ising, XY, or Heisenberg), must be identified — this is typically a transition
metal ion or organic radical. Second, these must be arranged into secondary units,
like chains or planes, of the desired geometry and connectivity (e.g. kagome, square
lattice). Third, a three-dimensional structure must be constructed from these units,
minimising unwanted interactions between them. Additional considerations such as

disorder and anisotropies are also to be accounted for. Creating a new quantum magnet,

33
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in other words, is far from an easy taskF Fortunately, this process may sometimes be
circumvented, as the work of preceding chemists and nature have proven rich sources

of model magnets.

e Previously Synthesised Structures — The scientific literature contains count-
less examples of magnetic materials, many of which were not necessarily synthe-
sised from the perspective of realising a magnetic model. These form a vast source
of potential realisations, which until now has been far from exhausted. Examples

of materials originally discovered in this way are shown in chapters 5 and 6.

If a realisation cannot be directly found in the literature, it is often possible
to modify an existing structure to achieve the desired result. For example, a
common approach for synthesising transition metal oxide or halide based magnets
is substitution of ions in an existing structure (such as pyrochlore, perovskite etc.),
since these are often robust and behave predictably, and because the synthesis is
relatively straightforward. This approach, while having yielded dozens of much
studied magnetic compounds, will not be discussed here, as it is not of direct

relevance to the forthcoming chapters.

e Minerals — Some more exotic geometries, such as the kagome lattice, have thus
far proven elusive to the efforts of synthetic chemists. Interestingly, an espe-
cially rich vein of frustrated magnets has been found among minerals, and “data
mining” of mineral databases has yielded many much studied materials, such
as jarosites, herbertsmithite, volborthite, vesignieite, tapiolite, yavapaiite, and
beyond magnetism, the skutterudites. Such materials are often synthesised hy-
drothermally, as these reaction conditions closely emulate those in the upper crust

of the earth, where most minerals are formed.

3.2 Crystal Engineering

Should neither nature or literature yield the desired realisation, an a priori approach
to synthesising new model magnets must be used. While exact prediction of the final
crystal structure of a material from the chemical constituents present in the reaction
mixture is currently impossible (if not, there would be a lot of unemployed chemists),
there nonetheless exist several means by which the general architecture of a material
can be influenced: these strategies are often referred to as crystal engineering, after
Schmidt [Schmidt (1971)].

In organic chemistry, the revolution brought about by retrosynthetic analysis in the
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D3y, + Dap, Dy, + Cop Ty+ Ty

Figure 3.1: Examples of combinations of spin source (black) with bridging ligand (red).

1980’s allowed for the synthesis of a number of complex molecules which until then
were inaccessible by less rational routes [Corey and Cheng (1995)]. Retrosynthetic
analysis involves sequentially breaking the desired molecule into small virtual building
blocks called synthons. These virtual objects are then converted into commercially
available synthetic equivalents by considering the polarisation at the site of connection
with respect to the closest polar functional group. Using this strategy, complex com-
pounds such as natural products may be prepared with relative ease. The concept of
retrosynthetic analysis can be borrowed for the purposes of crystal engineering, where
the final crystal structure substitutes for the target molecule, and the synthons can be
ions, molecules, or even supramolecular objects [Moulton and Zaworotko (2001)]. In
the case of the type of magnetic materials we are concerned with, the synthons may be

grouped into three categories:

e Sources of spin — Usually, charged first row transition metal ions are used as
the source of spin, though organic radicals can also fulfill this role. Examples
of the latter include the TTF (TTF = tetrathiafulvalene) molecule in the fa-
mous Bechgaard salts [Jerome et al. (1980)] and the family of k—BEDT-TTFyX
(BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, X is a monovalent anion,
typically a Cu complex) [Taniguchi et al. (2003)], materials. In the present work,
the sources of spin used will be the metal ions Ti** and Cu?*, both which provide
S=1/2.

e Bridging groups — In order to generate a magnetic lattice, the metal ions must
be connected to each other by a bridging group capable of mediating superex-
change. This role can be fulfilled by anything from an oxygen atom (Chapter 5)

to sulfate ions (Chapter 4) to organic molecules.

e Spacers — As established in the previous chapter, quantum phenomena are en-
hanced in low dimensions. As a result, it is desirable to separate the 1D or 2D

magnetic networks with spacers in a 3D crystal. Counterions or solvent may
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fulfill this role (for instance, K™ in Chapter 4), as may neutral co-ligands.

Whereas only polarisation at the site of connection needs to be considered for organic

synthons, the “supramolecular” synthons are considerably more complex:

e Charge — As the spin source is usually a charged species, charged bridging groups
and spacers must also be used. The charge degree of freedom can thus be ex-
ploited in the design of a material - for example, if a ligand which does not fully
compensate the charge of the spin source is selected, counter ions can be included

to play the role of spacers between the structural elements.

e Symmetry — The preferred local symmetry of the transition metal ion combined
with the symmetry and possible binding modes of the ligand will give all the
possibilities for the networks which can be formed from these two species. For
example, if the spin source is a transition metal ion favouring octahedral coor-
dination, and the ligand is effectively linear, with a binding site at each end,
structures such as chains, square lattices, and cubic lattices are favoured. Figure
3.1 summarises some lattices which can be formed from combinations of transition

metal ions and bridging ligands.

e Noncovalent Bonding — When the ligand or spacer is organic, or contains
hydrogen, it is able to participate in forms of bonding that purely ionic synthons
cannot. Two particularly useful types of interaction that can be exploited in

crystal engineering are w-stacking and H-bonding.

It is clear that when dealing with such complex objects, structure prediction is unre-
alistic. Nevertheless, by a combination of luck, trial and error, and a bit of design,
new and interesting structures may be realised. In this work, one such structure,

KTi(SO4)2-(H20), is reported in Chapter 4.

3.2.1 Hydrothermal Inorganic Synthesis

The types of material we would like to apply the above principles to are generally
inorganic metal hydrates, and our preferred method is hydrothermal synthesis. This
method involves heating the reagents in aqueous solution to temperatures between
100°C to 250°C inside a teflon-lined steel vessel. The combination of high temperature
and high pressure with the aqueous environment emulate the conditions encountered in
the upper crust of the earth. Thus, hydrothermal synthesis has proven a particularly
successful route to synthesising minerals, and indeed, all the materials studied in this

thesis have naturally occuring analogues.
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Due to the high temperature and pressures generated, and because the reaction is per-
formed in one step in a sealed vessel, there are not many junctures at which the outcome
of the reaction can be controlled. The most important element of design in hydrother-
mal syntheses is thus the choice of the spin source, bridging groups, and spacers. In
Chapter 4, the combination of the T,; symmetric S Oz_ group, the octahedral Ti3* ion,
and the K spacer yields a low dimensional frustrated structure. Slight tweaking of
the conditions gives the anhydrous analogue, which consists of 2D triangular planes

(although the physics turn out to be one dimensional).

3.3 Experimental Techniques

Measuring classical long range order is usually rather straightforward — the order pa-
rameter, sublattice magnetization, is directly proportional to several experimentally
measurable quantities. For example, ordering in a simple antiferromagnet is detectable
by a kink in the magnetization at Ty, appearance of Bragg peaks at positions corre-
sponding to the ordering wavevector in magnetic neutron scattering, and oscillations
in muon spin relaxation (uSR). The order parameters of the quantum ground states
discussed in Chapter 2 are more complicated, however, and often several experimental
techniques must be applied to unambiguously assign a ground state. Some of the tech-
niques in the toolbox of the experimental physicist and the pieces of the puzzle they

can contribute are summarised in table 3.1.

Detailed discussion of experimental techniques in this work will be limited to neutron

scattering techniques.

3.3.1 Neutron Scattering

One of the most powerful experimental techniques in modern solid state physics is neu-
tron scattering, due to its exceptional ! sensitivity to both atomic and magnetic struc-
ture and dynamics. While the formalism of neutron scattering is relatively straight-
forward, it is nonetheless somewhat lengthy to derive (and is besides well covered in
[Squires (1978)], [Furrer et al. (2009)]). Therefore, only the basic results of the types
of cross section which result, respectively, from nuclear, magnetic, spin incoherent,

and isotope incoherent scattering from a crystalline solid will be given. The starting

'Though new X-ray techniques such as magnetic resonant X-ray scattering (MRXS) and resonant
inelastic X-ray scattering (RIXS) are challenging this monopoly.
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Technique Measured Quantity | Extent | Timescale
Magnetization (M) bulk large
d.c. Susceptibility X bulk large
a.c. Susceptibility X' (v),x”(v) bulk ~ v
Specific heat 1n(E)mag bulk large
NMR Xloc local O(107%)s
ESR Xloc local 0(107%)s
1SR Mo local O(1079)s
Elastic neutron scatt. F(Q) bulk O(10712)s
Inelastic neutron scatt. X7 (Q) bulk O(10~12)s
MXRS F(Q) bulk 1071 s
RIXS Complex bulk 1079 s

Table 3.1: Some common modern measurement techniques. Only scattering techniques

are able to yield spatially resolved quantities.

point, as usual, is Fermi’s golden rule, which can be re-expressed as a neutron partial

differential cross section as follows:

2
ks, 07, X\ |UR) ki, 00, \i)

2
dgdaEf (277712> Z ZPA Do;

Af,05 Aiy0;
x §(hw + By, — By,) (3.1)

where k; and k are the wavevectors of the incoming and outgoing neutron, respectively,
o; and o are the corresponding neutron spin states, and \; y represent the initial and
final state of the system. U is the operator which describes the interaction between the
neutron and the system. dg%ﬂf is the probability of scattering a neutron into a solid
angle element () with an energy Ey. By replacing the d-function with its integral form,
and simplifying the matrix element, the above expression can be rewritten in a more

convenient form:

d2o kf m \2 1 ;] .
_ N m —iwt ([1(k Kk 2
d0dw K, (%h?) 27rh/dte <U( U ’t)> (3.2)

We will now consider the types of cross section which result for the processes listed

above.
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3.3.1.1 Nuclear Scattering

Of the two types of scattering event commonly encountered in condensed matter, the
first we will discuss is nuclear scattering. As this interaction is mediated by the weak
nuclear force, which is much shorter in range than the neutron wavelength, the scat-

tering potential may be approximated as originating from a point object:

. 2 h2
O(r) = mh

> bré(r — Rg) (3.3)
R

where bp is the nuclear scattering length (equivalent to the scattering power) and Rp

is the position of the Rth atom. Rewriting this potential in Fourier space gives:

. 2mh2
O(q) = 2" =% Rbpe 'R (3.4)

Evaluating the matrix element then yields:

<U(k, O)U(k,t)> - (2”712) ZbRle< (R()-R/(0 >>> (3.5)

R,R!

The amplitude of bg is determined by both the internal structure of the nucleus and
the orientation of the nuclear spin, and as a result varies greatly across the periodic
table. Assuming a scattering system containing a large number of atoms of type (5, the
global variation of br can be expressed as a distribution Y f(bg) = 1, which reflects
both the possible orientations of the nuclear spin and random population of isotopes of
B. The mean of the distribution is then bgp = > brf(br). Recalling that the equation
3.5 applies to pairs of atoms, the scattering lengths brbg/ are replaced with the mean
brbr which is (b)? when R # R’ and b2 when R = R'. The sum may thus be broken

into two components:

Z brOR AR rr = Z (0)*Ap g + Z b2AR g

R,R! R#R! R=R'
= Z ( ARR’+Zb2 2ARR’ (36)
R,R’

where Ap pr = <eik'(R(t)_Rl(0))>. The first term in this equation, corresponding to
scattering from different (and same) atoms at different times, is the coherent contri-

bution to the cross section. It is this part which gives rise to interference effects which
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can yield structural information. The second term, corresponding to scattering from
the same atom at different times, is called the incoherent part, and does not contain
any structural information. The coherent and incoherent cross sections are written out

explicitly as follows:

do ok 1 it 72 /_ik-(R(t)—R'(0))
<deEf>Coh = ko) M€ sz:y(b) (e ) (3.7)

do B kr 1 iw — - ik Y
<deE‘f>”w = E% dt e t ; (b2 — (b)Q) <€ k (R(t) R (0))> (38)

3.3.1.2 Magnetic Scattering

The operator describing the interaction between a neutron and a magnetic field H is
written:

U= —yuné-H (3.9)

where 6 are the Pauli matrixes. In the case where the field is generated by an unpaired

electron, H is written:

(3.10)

H:vx<M€XR>—eV€XR

IR[? c|R[?
where R is the distance between the electron and the point at which H is measured,
and pe = 2upS is the electron spin operator. The two terms in the expression above
represent the fields due to the spin and orbital angular momenta, respectively. Sub-
stituting this potential into the master equation for the partial differential scattering
cross section, and assuming a spin-only contribution to H, the expression which results

is:

d? k 2 o
T /?fN(’V"”OV !%f(cz)] ;; (6ap — QuQs)S*?(Q,w) (3.11)

where Q is the scattering vector, defined as the difference between the incoming and
outgoing neutron wavevectors k; — k. f(Q) is the so-called form factor, and results
from the Fourier transform of the real space spin-density distribution: the larger the
spatial extent of the electron cloud, the more sharply f(Q) drops off. For a d-block
ion like Cu?*, the scattering cross section is reduced to 50% of its Q = 0 value within
Q = 4 A=, whereas for a 4f element, where the orbitals are rather contracted, the
form factor falls off more slowly, and the scattering is only halved at Q ~ 8 A~

daB — QaQﬂ is the polarisation factor, which implies that neutrons can only couple to
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the magnetization perpendicular to the the scattering vector Q. Multiplying out the
leading constants in the expressions for nuclear and magnetic scattering, it turns out
that both are of the order rg, implying that neutrons are approximately equally likely
to scatter from a nucleus as from an electron. This highlights one advantage of neutron
scattering over X-ray techniques, where the magnetic cross section is dwarfed by the

structural by almost 5 orders of magnitude.

The physics of the system is contained within the scattering function (often also called
the dynamical structure factor), S(Q,w), which contains the Fourier transform of the

space and time dependent spin-spin correlation function:

5°(Qu) = 1y [ 3 R (508}, (0) (312)
R,R/

where S# are the o, 8 = z,y,z components of the spin operators at the positions
R; ;.. Considering only the elastic scattering, that is, scattering arising at infinite time,
the correlation function above reduces to the expectation values of the spin operators,
(8) and (S%). For elastic scattering from a magnetically ordered system, the above
expression is replaced by the elastic (sometimes also referred to as static) structure

factor:

S*(7) = (%) f(7) > oae™? (3.13)
d

where d is a vector specifying the position of an atom in the unit cell and 7 is a magnetic

Bragg vector.

3.3.1.3 Powder Averaging

For many materials, it is impractical to grow crystals of a sufficient size for single
crystal experiments. As a result, powder samples are often measured instead: the
resulting powder averaged cross section is proportional to the spherical integral of
S(Q,w), defined as follows:

S(Q,w) = 417T/d¢ sin 0dOS([Q sin € cos 1, @ sin 6 sin 1), Q cos 0], w) (3.14)

The above operation is not reversible (except in specific circumstances), and therefore
usually entails a significant loss of information, particularly in the case of inelastic data,

where scattering is distributed over a broad range of () and w.
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3.3.2 Neutron Polarisation and zyz Polarisation Analysis

The presence of a polarisation dependent term in the magnetic cross section hints that
the spin of the neutron can be used as yet another probe of the system under study,
in addition to the neutron momentum and energy. To see what information can be
extracted from it, it is necessary to revisit the polarisation dependence of the various

cross sections shown above.

As the neutron is an S = 1/2 particle, its eigenstates may be represented in the usual
manner: |[1) and |}). Considering all the scattering processes discussed previously
(nuclear, isotope incoherent, spin incoherent, and magnetic), and recalling the rule that
the neutron is only sensitive to components of the magnetization, M, perpendicular to
Q, the matrix elements for spin flip and non-spin flip scattering events may be written

down as follows:

o . A .
(MO = Bl +il,) — 3-0(M, +iM,)
uB
o . T .
WO = Bl — ily) = 322 (M, — iM,) (3.15)
- - r
(HO1) = b+ 2"°M, - BI
2B
oW = b- 16 4 BI, (3.16)
2B
where B = l’;ﬂbli , b and bt are the cross sections for scattering events when the neutron

spin is respectively parallel or antiparallel to the nuclear spin, I is the nuclear spin,
and b is the average nuclear scattering length. M, , and M, are the components of the
magnetization perpendicular and parallel to the neutron spin direction, respectively
[Stewart et al. (2009)],[Moon et al. (1969)].

Given a polarised beam and some means by which the spin flip and non spin flip
contributions to the cross section can be analysed, the neutron spin can thus be used as
a tool to separately probe different parts of the cross section. In the simple case of purely
magnetic scattering, for example, analysis of the polarisation allows for separation of the
scattering function, S(Q,w), into its longitudinal [S**(Q,w)] and transverse [S™*(Q,w)

and SYY(Q,w)] components.

In the more complicated situation where scattering from more than one process en-
ters the cross section, one way to completely separate all the contributions is three-
directional (zyz) polarisation [Scharpf and Capellman (1993)] analysis. The experi-

mental geometry required for application of this technique is shown in figure 3.2: the
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incoming beam is polarised in three orthogonal directions, x, y and z, and scattered
from the sample into a 2D detector lying in the xy plane. The angle formed between
Q and the direction of the polarisation is called «, the Scharpf angle. Finally, for each
polarisation, both spin-flip and non spin-flip cross sections are measured. The resulting

6 cross sections are written down as follows:

do\" _ 1(do\  1(do\  (do
dQ z a 2 dQ mag 3 dQ st Q/ nuc
do\*! 1 (do 2 (do
ao N 2= 1
<d9>z 2 <dQ>mag+3 (dﬂ)sz (3 7)
The magnetic, nuclear, and isotope/spin incoherent cross sections can thus be separated

by rearranging the above system of equations. The magnetic cross section is written:

do do\ %/ <d0> sf <d0> sf
el —9 (= 4+ = -2 = 3.18
<dQ>ma9 [<d9>$ dq y do/, ( )
do do\ "/ < da> nsf <da ) nsf
— =2 — — | — -2 — 3.19
<dQ>ma9 [<dQ>$ do y do . ( )
The details of how to put this method into practice are given in the next section.

3.3.3 Neutron Instrumentation

An ideal neutron instrument would be able to probe both the atomic and magnetic
statics and dynamics of a sample (whether powder or single crystal), over a large
range in both @) and w. In reality, of course, this is impossible, and therefore neutron
instruments are usually specialised for a narrower range of applications. In condensed
matter physics, the types of instruments used range from powder diffractometers and
single crystal diffractometers for elastic scattering, to triple axis spectrometers and time

of flight spectrometers for inelastic experiments.
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Figure 3.2: Scattering geometry for an xyz polarised experiment with a 2D detector array.
The three orthogonal polarisations of the neutron beam used are indicated by the red arrows,

o is the Scharpf angle.

k;

Figure 3.3: Scattering geometry for a direct geometry time of flight spectrometer.

The main techniques used in this thesis are inelastic time of flight spectroscopy and

polarised diffuse scattering.

3.3.3.1 Inelastic Time of Flight Spectroscopy

Neutrons typically travel at velocities ranging between a few hundred to a few thousand
ms~!. Thus, given a flight path between the sample and the detector, L, on the order
of a few meters, the energy of neutrons scattered from the sample can be resolved by
counting the time they take to traverse L. Accomplishing this experimentally is far
from trivial, however, for one simple reason: as neutrons are typically detected by an
absorption process, they can not be detected both before and after they scatter from
the sample. How then do we count their flight time? The solution is to pulse the beam,
which fixes a well defined starting time for all the neutrons. This is achieved using a
chopper, a rapidly rotating disc with small slots to periodically allow the passage of
neutrons. Placing several choppers in series also allows for monochromatisation of the

beam (although this can also be achieved by a conventional monochromator).

If a monochromatic (constant k;) beam is used, the time of flight experiment must be

able to measure a broad range of wavevectors, k¢, of the scattered neutrons (figure
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(a) An illustration of the IN4 spectrometer at the Institut Laue Langevin (ILL), Greno-
ble, France. The beam first passes through two background choppers, which eliminate
fast neutrons and gamma rays. It is then monochromated by a crystal monochromator
consisting of 55 pyrolitic graphite (PG) pieces, which also focus the beam on a spot of
dimension 2 x 4 cm?. Pulses of 10 s to 50 us are finally achieved using a Fermi chopper,
rotating at up to 40000 rpm. The secondary spectrometer consists of a radial collimator
to reduce background from the sample environment, and a detector array of 3He tubes,
covering scattering angles from —6° to 120°. There is an additional small angle position
sensitive detector, not used for the experiment detailed in Chapter 5. Figure taken from

http://www.ill.eu.
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(b) The IN5 spectrometer at the ILL. The beam is pulsed and monochromated by a series of
choppers. These also eliminate frame overlap, which occurs when two pulses are detected
in the same timeframe. Beyond the sample position is a large evacuated box containing
collimation and detectors. IN5 has one of the largest detector arrays among modern time
of flight spectrometers, with 30 m? of 3He filled position sensitive detectors (PSDs). Figure

taken from http://www.ill.eu.

Figure 3.4
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3.3). To this end, a large area detector array is thus usually employed. Combining the
monochromator/choppers with such an array, and placing the sample in between, the
result is a so-called direct geometry time of flight spectrometer. The three realizations
of such an instrument used in this thesis are the IN4 and IN5 spectrometers at the ILL
reactor source, and the MARI spectrometer on the ISIS pulsed source, the former two
of which are shown in figure 3.4. Their main characteristics are summarised in table

3.2.

IN4 IN5 MARI
Wavelength Range | 2.2 A- 3.6 A PG(002) 1.8 A-20 A 03A-3A
A [AY 1.1 A- 1.8 A PG(004) (cold) (thermal)
0.85 A- 1.5 A Cu(220)
(thermal)
w Resolution 3—6% 1-2% 1-2%
dE;/E;

Flux on Sample ~ 5 x 10° ~1x10° ~2x 103
nem 2 st (at 5 A) (at 1 A)
Detectors ~ —3° —120° —12° —135° 3° —134°

3He tubes 3He PSD (30 m?) | 3He tubes
PSD (small £)

Table 3.2: Main characteristics of the time of flight neutron scattering instruments used in
this work. The w resolution is given as the Gaussian FWHM versus incident energy, and
is determined by the speed of the choppers, their precision, and the time resolution of the

electronics.

3.3.3.2 Polarised Diffuse Scattering

In order to put the principles of xyz polarisation analysis into practice, several things are
needed: a highly polarised neutron beam, a device capable of flipping its polarisation to
an arbitrary direction, and, finally, a means by which the polarisation can be measured.
The former is provided by either a polarising filter, such as a *He cell, a supermirror, or
a polarising crystal, typically a Heusler alloy. The polarisation of the beam produced
by these is typically in the range of 70% for 3He spin filters to in excess of 90% for a

supermirror. This is preserved by using a guide field throughout

The second component, the spin flipper, must be able to adiabatically flip the beam

polarisation to an arbitrary direction with respect to the guide field. This can be
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Figure 3.5: The D7 instrument at the ILL. The neutrons are monochromated by a double
focusing graphite monochromator, then polarised by a Scharpf bender supermirror. The
beam is flipped into the required polarisation by a Mezei flipper. After scattering from the
sample, the neutrons are analysed using a set of supermirror analysers, and finally detected
in the 2D detector array, which covers nearly 150° in scattering angle (though slightly less
at the time of the experiments detailed in Chapter 5). Figure taken from http://www.ill.eu.

achieved using a so-called Mezei coil, a rectangular solenoid oriented at the desired
angle with respect to the guide field. Finally, the analysis of the outgoing beam after
scattering is performed by a supermirror, a multilayer of Ni and Co which reflects only

neutrons of a single polarisation.

The particular realisation of the polarised scattering experiment used during this thesis
is the D7 instrument operating on the high flux reactor at the Institut Laue Langevin
in Grenoble, France. It is one of only two such instruments worldwide (the other being
the DNS spectrometer located at FRMII in Germany). A schematic of its layout is

given in figure 3.5.






Chapter 4

Frustrated Low-Dimensional

Magnetism in Ti°" Alums

In the quest for low dimensional, frustrated quantum magnets, the Ti** ion
(d') has historically been somewhat overlooked as a source of S = 1/2 spins.
This is partly due to its tendency to oxidise to Ti**, which is a complicating
factor in synthesis. Under hydrothermal conditions, this issue can be dealt
with by regulating the pH of the solution, which in this work has produced
one new material, the potassium alum KTi(SO,),-H20, and an improved
synthesis of its anhydrous analogue KTi(SO,)2. This chapter will show that
KTi(SO4)2-H20 is a realisation of the famous J; — J; Heisenberg chain model,
and fits to magnetic susceptibility and specific heat data reveal that it may
be one of the first compounds in the dimerised regime of the phase diagram
defined by 0.2411 < Jy/J; < 1.8. Its anhydrous relative KTi(SO,)2, on the
other hand, is shown to be well described by a Heisenberg chain model with
frustrated interchain interactions. The details of the local crystal field are

found to be crucial in determining the magnetic properties of both.

4.1 Ti*" as a Source of S =1/2

Browsing through the literature on S = 1/2 model magnets, it is impossible not to
notice that by far the most common source of spin is the Cu?* ion. The reasons for
this are manyfold: the availability of a broad range of starting materials, the relative
stability of Cu?* in a variety of chemical environments, the quenched orbital moment

in a cubic crystal field (resulting in Heisenberg spins), and finally the Jahn-Teller in-

49
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stability, which can reduce the dimensionality of the magnetic lattice. In other words,
Cu®T based systems are both easy to make and relatively simple in terms of their sin-
gle ion physics. As a result, however, other sources of S = 1/2 have remained rather
underexplored. The Ti3* ion is seemingly the simplest among these, possessing only 1

d electron, but yields surprisingly rich single ion physics (as we shall see).

In a cubic crystal field, the 2D free ion term of the Ti3T ion is split into a low lying
triplet of t9, states, consisting of the d,, d,. and d,. orbitals, separated from the
upper e, doublet (d,2_,2 and d.2) by a gap A, proportional to the magnitude of the
crystal field. The lone d electron occupies the lower lying set of ta, orbitals, resulting
in a triply degenerate 27 orbital ground state. One consequence of the remaining
degeneracy in the ground state, as discussed in Chapter 2, is that the orbital angular
momentum is not entirely quenched, and can be represented using a p orbital basis
with the signs reversed. In the absence of any further perturbations, the ground state
is thus a Kramers doublet with both (L) = 0 and (S) = 0.

This contradicts experimental observations, which indicate that the Ti*t ion usually
has a finite (albeit often strongly reduced and anisotropic) moment. To explain this,
perturbations beyond the cubic crystal field must be considered. Some logical candi-

dates for these include both lower symmetry crystal fields and Jahn Teller coupling.

Taking the simplest case and considering only the influence of a tetragonal field of
magnitude Ay, the single ion Hamiltonian can be diagonalised to yield the dependence
of the g—tensor on Ay.;. For positive sign of A, that is, favouring a slight compression
of the octahedron along a Cy axis, the degeneracy of the to, levels is broken, and the
ground state is an orbital singlet with L = 0. This is reflected in the powder averaged
Jav = (91 +2g||)/3 increasing rapidly with increasing A as the LS coupling becomes
less efficient at mixing in higher lying orbital states. For the opposite sign, that is, when
the octahedron is elongated along the Cy axis, the orbital ground state is a nonmagnetic

doublet, as in the unperturbed case (figure 4.2).

An early experimental example of the d' ion in the presence of low symmetry fields
is the series of doped alums of formula A[AL:Ti](SOy4)2 - 12H20, where A is an alkali
metal cation. These materials were widely studied from the early 1930’s and onwards as
models for the then fledgling crystal field theory, and were chosen due to their isolated
metal polyhedra. A key finding of this work, represented in table 4.1, is the variation
of the g-tensor with the magnitude of the small orthorhombic component (see figure
4.1) of the crystal field [Dionne and MacKinno (1968)] — the larger this component, the

smaller the reduction of and asymmetry in g.
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Figure 4.1: Energy level structure of Ti3* in an orthorhombic crystal field.
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Figure 4.2: Variation of the g—factor with distortion in a trigonal field assuming A =

200cm~! (slightly greater than the experimentally measured A ~ 150 cm~! for Ti3*).

Alum 9z Gy J» 81 (em™1) 52 (em™1)
CsTi(SO4)s - 12H,0 1.25 1.14 1.14 ? ?
Cs[ALTi](SO4)2 - 12H20 1.241 0.931 0.931 -500 -500
Rb[ALTi](SO4)2 - 12H20 1.895 1.715 1.767 1070 1310
TIALTI|(SO4)s - 12H,0 | 1.938 | 1.790 | 1.834 1462 1483
K[ALTi)(SO4)2 - 12H,0 | 1.875 | 1.828 | 1.807 1780 2047

Table 4.1: g-tensor and crystal field splittings for a range of pure and doped Ti-based alums.
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In the following two sections of this chapter, we will discuss two materials, which be-
long to the more general family of alums, of general formula AB(SOy4)2.2H20. The
first, KTi(SO4)2.H20 (2 = 1) has been prepared for the first time using a hydrother-
mal method, and characterised by a variety of techniques which show it to be a new
realisation of the frustrated Heisenberg chain model in the dimerised regime of the
phase diagram [Nilsen et al. (2008)]. Its anhydrous analogue, KTi(SO4)2 (z = 0),
is the subject of the second part of the chapter. Despite initial expectations that
KTi(SO4)2 was a realisation of the S = 1/2 anisotropic triangular lattice antiferromag-
net, neutron scattering and other studies shows the physics to be describable as quasi

one dimensional.

4.2 KTi(SO4)2(H20), a New Realisation of the Frustrated Chain
Model

4.2.1 Synthesis and Crystal Structure

The combination of a monovalent cation, A, a trivalent d-block ion, B, and the tetrahe-
dral SOZ* ion in hydrothermal conditions has produced a range of frustrated materials
in the past, including the jarosite family AB3(SO4)2(OH)g of kagome antiferromagnets
[Wills (1996)]. The T, symmetry of the SO~ group naturally leads to frustrated con-
nectivities, and the presence of a counterion in the form of A" often leads to reduced

dimensionality:.

KTi(SO4)2-(H2O) was first prepared in an exploration of the A=K, B=Ti system.
K9S0y, Tiz2(SO4)s3, and HaSO4 were combined in the molar ratio 2 : 7 : 15 under
stirring in aqueous solution. The mixture was placed inside a PTFE lined bomb, which
was then heated to 155°C for 48 hours. It was then cooled slowly (10 K h~!) to room
temperature, yielding small (~ 0.1mm?) bluish purple crystals of average size 0.1 mm?,
in addition to large quantities of amorphous impurity. Subsequent optimisation of
the synthesis identified glass as a superior surface for crystal nucleation, resulting in
less of the impurity phase, and higher reliability of product formation. Despite these
attempts, the synthesis remains unpredictable, with a total number of only 7 successes

in approximately 140 attempts, suggesting that KTi(SO4)2-(H2O)may be a metastable
phase. Further details on the synthesis are given in Appendix A.

A crystal of dimensions 0.19 x 0.15 x 0.08 mm?3

was selected for single-crystal diffrac-
tion (details of the refinement and crystal structure are also found in Appendix A).

KTi(SO4)2-(H2O) was thus found to crystallize in the monoclinic P2;/m space group,
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Atoms Length Atoms Angle
Ti-O(1) | 2.051(4) A || O(1)-Ti-O(2) | 175.3(1)°
Ti-O(2) | 2.029(5) A || O(2)-Ti-O(3) | 91.9(1)°
Ti-O(3) | 1.999(3) A || O(3)-Ti-O(3) | 88.0(1)°
Ti-O(4) | 2.054(3) A || O(4)-Ti-O(4) | 90.5(1)°
Ti-Ti(H) | 5.256(4) A
Ti-Ti(D) | 4.928(2) A

Table 4.2: Selected bond lengths and angles for KTi(SO4)2:(H20). H and D indicate
horizontal (along the b direction) and diagonal distances within the frustrated ladders,

respectively (see also figure 4.3).

with lattice parameters a = 7.6492(3) A, b = 5.2580(2) A, ¢ = 9.0485(3) A, and
B = 101.742(2)°. The structure is isomorphous with that of the naturally occur-
ring mineral Krausite (KFe(SO4)2-H20) [Graeber et al. (1965)] and consists of double
chains of Ti octahedra, connected by SO~ groups along the b axis (figure 4.3). The
pairs of chains are separated in the a direction by K* ions and in the ¢ direction by
interpenetrating HoO molecules bound to apices of the octahedra (figure 4.4). The
magnetic ions are connected in an edge sharing triangular motif, with diagonal sep-
arations of 4.93A and horizontal separations of 5.26A. Superexchange is expected to
be mediated by the SOZ* groups, which doubly bridge both nearest and next-nearest
neighbor pairs of magnetic ions. The distances between the chains in the a and c¢ di-
rections are 7.60A and 5.87A, respectively, suggesting that any magnetic exchange in
KTi(SO4)2:-(H20) should be essentially confined to the chains.

Locally, the TiOg octahedra are slightly triclinically distorted, with bond lengths and
angles as shown in table 4.2 and figure 4.5. Assignment of the magnetically active

orbital is not straightforward from geometrical considerations.

4.2.2 Magnetic Susceptibility

Magnetic susceptibility measurements were carried out on KTi(SOy4)2-(H20)down to
1.8K in fields ranging from 0.01 T to 5 T on a polycrystalline sample of KTi(SO4)2-(H20)
using a Quantum Design MPMS, SQUID magnetometer. As there was no strong field

dependence in the range measured, only the 0.01 T data are shown in figure 4.6.

At high temperature (> 50K), the curve is well described by the usual Curie-Weiss
expression x = C/(T — ), where C' is the Curie constant, ~ ugff/S in c.g.s. units,
and 0 is the Weiss constant. Values of perr = 1.557(3)up (i.e. gersf = 1.80) and
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Figure 4.3: The crystal structure of KTi(SOy4)2-(H20)viewed approximately along the a
direction. The TiOg octahedra are indicated in blue, SO, tetrahedra in yellow, and 0%~
and H atoms in red and pink, respectively. KT ions have been left out for clarity. The double
chains of SOy4-bridged TiOg octahedra described in the text run along the b direction, and
are separated along the ¢ direction by the apical water molecules of the TiOg octahedra. The
frustrated chain lattice is superimposed on the crystal structure, with J; and Jo represented

by solid and dotted lines, respectively.

Figure 4.4: The crystal structure of KTi(SO4)2:(H20)viewed along the b—axis. The chains
are separated by K+ along the a direction.
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Figure 4.6: (left) The molar magnetic susceptibility of KTi(SO4)2-(H20) with Curie-Weiss
fit indicated in red. (right) The low temperature part of x,,, showing the broad bump at
4.5 K. An attempted fit to the S = 1/2 Heisenberg chain model shows that the peak can

not be described within the confines of this model.

0 = —9.8(7)K, (i.e. weak antiferromagnetic coupling) were found. The presence of
amorphous impurity, which contains diamagnetic Ti**, means that the value for s, if

should be treated as a lower bound.

When the temperature is lowered, a broad maximum in the susceptibility characteristic
of short-range correlations along the magnetic chains is observed around 7' = 4.5K. No
signs of long-range ordering are observed down to the lowest temperature, confirming
that the interchain coupling is weak. Assuming either the horizontal or diagonal cou-
pling (see figure 4.3) is dominant, the simplest possible microscopic model to describe
the system is the antiferromagnetic S = 1/2 Heisenberg chain (QHC), given by the

Hamiltonian:

H=J7> Si-Sin (4.1)
iyi+1
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Clearly, from the fit (figure 4.6), the 1D chain cannot reproduce either the peak position
or shape, highlighting the probable influence of the other exchange. The Hamiltonian

which results upon its inclusion is:

N N
H=T1> Sn-Sny1+12)> Sn-Snyo (4.2)

where J; and Jo are the antiferromagnetic nearest neighbour and next-nearest neigh-
bour exchange parameters (see figure 4.3), respectively, and o« = J5/J; may be defined
as a measure of the frustration. This model is known by a number of names, including
the zigzag chain model, the nearest neighbour chain model, and the frustrated chain

model (FCM). Henceforth, we shall use the last convention.

4.2.3 Phase Diagram of the Frustrated Chain Model

’D =1, 2=4, S=1/2, frustrated‘

One of the few Heisenberg models for which an exact solution exists is the Majumdar-
Ghosh chain [Majumdar and Ghosh (1969a)],[Majumdar and Ghosh (1969b)]. This
is a special case of the FCM with frustration parameter @ = Jy/J; = 1/2. The two
degenerate VBC ground states of this model correspond to dimer coverings of the

lattice, and can be represented as follows:

T), =...®2,3) @ [4,5)...® |n,n+ 1) (4.3)
W), =...®[1,2)®[3,4)...0n—1,n) (4.4)

where |n,n + 1) denotes a dimer on a nearest neighbour bond. The correlation function
in this state is extremely short ranged, with (S; - Sj) = 0 for j > i+1, and the gap from
the ground state to the first excited triplet is A = J/10 [White and Affleck (1996)].

When « is reduced from ajp;g = 1/2, the system remains spontaneously dimerised
down to a critical . = 0.2411 [Haldane (1982)],[Okamoto and Nomura (1992)], with
the gap decreasing exponentially before vanishing at a.. The ground state is no longer
exact, however, and the ( increases rapidly. Below «, the ground state is an algebraic

spin liquid, as for the unfrustrated 1D chain.

If « is increased beyond a g, the gap first reaches a maximum at a ~ 0.6 [White and
Affleck (1996)], before slowly decreasing and vanishing at a ~ 4 [Kumar et al. (2010)].

Simultaneously, the correlation length increases from ( ~ ry,, and the correlations
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Figure 4.7: The zero temperature phase diagram of the FCM using the angular parametri-
sation indicated on the axis labels. o« = tan (. The yellow region indicates the frustrated

part of the phase diagram, which has the substructure described in the text.

become incommensurate [Somma and Aligia (2001)], as expected from the classical
model, which posesses a spiral ground state in this region of the phase diagram. The
incommensurate spiral state persists as the sign of Ji is changed from AFM to FM.
A number of experimental realisations exist in this quadrant of the phase diagram,
compared to only two, CuGeOs, with o = 0.4 [Hase et al. (1993)], and (NoHj5)CuCls,
with o = 0.25 [Hagiwara et al. (2001)],[Maeshima et al. (2003)], in the AFM-AFM

quadrant of the zero temperature phase diagram 4.7.

4.2.4 Specific Heat and Numerics

To complement the magnetic susceptibility data, specific heat was measured in the
temperature range 480mK to 300K. The data again show a broad feature at around
T = 3K (figure 4.8) corresponding to the point at which the maximum overlap between
buildup of short-range correlations (and hence the magnetic density of states) and ther-
mal population of available states is achieved. Also, as in the magnetic susceptibility,
no anomalies or other indications of long-range order are observed down to the lowest
measured temperature. The full curve was fitted for 7' < 50K using the expression
Cptot = Cpmag + Cpphonon, Where Cp mqqg is the magnetic specific heat of the chains,
and C)p phonon Was approximated using a power series in odd powers of 7" up to order
T7. Again, the S = 1/2 Heisenberg chain curve fails to capture the main features of

the peak.

Because no analytical expression exists for the thermodynamic quantities of the FCM,

numerical approaches must be called on to fit the experimental curves. Two approaches

Oth

were chosen: a 10" order high temperature series expansion (HTSE) supplemented by

Padé approximants [Buhler et al. (2000)], and exact diagonalisations (ED) of finite
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chains. For the former approach, the themodynamic quantities are written as follows:

v = % S anpat(8I)" (4.5)
n,k
Cpmag = Y _ anxa™(BJ)" (4.6)
n,k

where f = 1/T and the expansion coeflicients a, ; are summarised in [Buhler et al.
(2000)],[Buhler et al. (2001)]. The region of validity of the expansion was extended
in T to approximately J/5 by calculation of the Padé approximants up to the [5,5]
approximant using a numerical quotient-difference algorithm continued fraction method
[McCabe (1983)]. Exact diagonalisation was performed for chain lengths up to N = 18
with periodic boundary conditions using the ALPS libraries [Albuquerque et al. (2007)].
Thermodynamic quantities were obtained from the fulldiag_evaluate program. The fits
of the experimental data to the calculated x and C, curves are shown in figure 4.8.
Excellent correspondence between experiment and calculation is found for two sets of

parameters, summarised in the following tables:

Small o
! J1 [K] J2 [K] Jav
ED 0.29(2) 9.5(1) 2.8(1) 1.80(1)
HTSE+[5,5] Padé 0.29(2) 9.5(1) 2.8(1) 1.80(1)

Large «
a Ji [K] Ja [K] Jav
ED 1.48(2) 5.4(2) 8.0(2) 1.80(1)
HTSE-+[5,5] Padé 1.46(2) 5.4(2) 7.9(2) 1.80(1)

Both of the above solutions imply that .J; and .J are antiferromagnetic, and furthermore
that the system is to be found in the gapped, dimerised region of the phase diagram.
While the behaviour at T ~ O(J) for the two models are similar, the gaps of the
two states, as implied above, differ. Based on density matrix renormalisation group
(DMRG) calculations by White et. al. [White and Affleck (1996)], a vanishing gap
< J/20 is implied for the former, whilst the latter possesses a large gap of approximate
magnitude J;/5 ~ 1 K. In the T range measured, it is however difficult to distinguish
between the two, as A < T}, = 1.8 K for both scenarios. No clear anomalies are seen
in the C), measurements, which extend to lower temperatures T5,;, = 0.35 K, implying

a gap, but this should not be taken as conclusive evidence of o < 1.
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Figure 4.8: (top) The magnetic susceptibility (left) and magnetic specific heat (right) of
KTi(SO4)2:(H20), measured down to 1.8 K and 350 mK, respectively. The ED results
for large and small « solutions are indicated by solid lines. The maximum temperatures
shown for x and C), correspond to approximately 40 and 20, respectively. The small bump
observed at ~ 1 K in the C, data for large « is a finite size effect. (below) HTSE+Padé
approximant results, as above. The rapid drop at low 7" in the large « fit to C,, indicates

an overestimation of the spin gap, 4, in the HTSE.
4.2.5 Electronic Structure

In order to help distinguish between the two scenarios proposed above, as well as to
gain insight into the mechanism involved in the selection of the active orbital, ab —
initio calculations using the local density approximation (LDA), LDA with an on-

site repulsion term, U, (L(S)DA+U), and tight binding models were performed by D.

Kasinathan and H. Rosner.

The non-magnetic part of the band structure for U = 0 (i.e. neglecting correlations) is
shown in figure 4.9: the lowest lying band belongs to the d,, orbital, and is separated
from the d,, and d,. bands by gaps of approximately 0.15 eV and 0.25 eV, respectively.
Due to the small size of the gap, it is not straightforward to unambiguously determine

the magnetically active orbital without also considering the effect of correlations.
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Figure 4.9: (left) The electronic band structure states of KTi(SOy4)2:(H20) calculated
in the local density approximation. The bands disperse along the I' — Y and X — M
directions in the Brillouin zone, corresponding to the direction of the chains in the crystal
structure. The gaps between the centre of lowest lying d,. band and the centers of the d,
and d,. bands are about 0.15 eV and 0.25 eV. The double lines represent the upper and
lower bounds of the band. The metallic solution is an artefact of the LDA method. Figure
courtesy of D. Kasinathan. (right) The Wannier function of the ground state d,, orbital.
The ab plane is highlighted by a dotted grey line, whilst the TiOg octahedron is indicated by
solid lines. When the hopping integrals resulting from this orbital arrangement are mapped

onto a Heisenberg model, Jo > Ji, thus apparently favouring the large « scenario.
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The U > 0 problem was treated by two different methods: In the first, a tight binding
model was constructed for each ty, orbital using the bands calculated in LDA. Solving
this model for the hopping integrals ¢, and effective on-site repulsions, U.yr, then
mapping onto a Heisenberg model using J7B = 4¢2 /Ueyyt, it was found that an occupied
dyy orbital would give an o = 2.78, far greater than either of the scenarios proposed
in the previous section. Furthermore, the calculated J’s are almost two orders of
magnitude larger than the experimental values. The same calculation for the d,, and
dy orbital yields more reasonable o values of 0.38 and 0.57, roughly consistent with the
low « scenario, as well as plausible J values of J; =31 K, Jo =11.8 K, and J; =19 K,
Jo = 11 K, respectively.

The second approach, involving an extension of the LDA calculation to include U and
spin, also point towards d,, being the magnetically active orbital. Populating each
band with only up spins, the energy cost is 350 meV higher for the d,. orbital versus
the d,, and much higher for the d,., implying that the that d,, has the lowest magnetic
energy in the ground state. The calculated value of a for d,, is found to be greater

than one for all physically plausible values of U, supporting the large « scenario.

4.2.6 What is the Gap?

The electronic structure calculations appear to favour the large « solution of the two
possibilities proposed above. To confirm this, we performed additional ac susceptibility
measurements on KTi(SO4)2-(H20) in the temperature range 100 mK to 1.5 K, with
the aim of observing gap, A. All measurements were carried out with an excitation
field of 1000 Hz. In the absence of an applied magnetic field, the real component of
the susceptibility, ¥/, is found to almost vanish as T" approaches zero, with only a small

upturn from S = 1/2 paramagnetic defects remaining (figure 4.10).

This component complicates the analysis of the data, and thus the H = 0.3 T tem-
perature scan, where the paramagnetic component is saturated, is selected for further
analysis. Below a kink at T = 