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Abstract

Strong electron correlation lies at the root of many quantum collective phenomena

observed in solids, including high Tc superconductivity. Theoretically, the problem of

many interacting electrons is difficult to treat, however, and a microscopic understand-

ing of strongly correlated systems remains one of the foremost challenges in modern

physics. A particularly clean realisation of this general problem is found in magnetic

systems, where theory and experiment are both well developed and complementary.

The role of the chemist in this endeavour is to provide model experimental systems to

both inspire new developments in theory and to confirm existing predictions. This the-

sis aims to demonstrate aspects of both synthesis and physical characterisation of such

model systems, with particular emphasis on materials which exhibit unusual quantum

ground states due to a combination of reduced dimensionality, low spin, and geometric

frustration. Four materials are considered: The first among these is a new material,

KTi(SO4)2·(H2O), which was prepared using a hydrothermal route, and characterised

by magnetic susceptibility, specific heat, and high field magnetisation measurements.

Fitting exact diagonalisation and series expansion results to these data imply that

KTi(SO4)2·(H2O)is a long-sought experimental realization of the S = 1/2 Heisenberg

frustrated (J1 − J2) chain model in the dimerised regime of the phase diagram. The

anhydrous analogue of KTi(SO4)2·(H2O), KTi(SO4)2, was also investigated, and found

by magnetic neutron scattering to exemplify the S = 1/2 Heisenberg anisotropic tri-

angular lattice model in the 1D chain limit. The final two materials discussed are the

naturally occurring minerals volborthite and herbertsmithite, both thought to realise

the S = 1/2 Heisenberg kagome antiferromagnet model. Diffuse and inelastic magnetic

neutron scattering experiments, however, indicate that the kagome physics are partially

destroyed by defects in the former and lattice distortion in the latter.
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Chapter 1

Introduction

“But I think the Loadstone, is a mixture of stone and Iron, as an Iron stone,
or a stone of Iron. Yet do not think the stone is so changed into Iron, as
to lose its own nature, nor that the Iron is so drowned in the stone, but
it preserves itself, and while one labors to get the victory of the other, the
attraction is made by the combat between them. In that body, there is
more of the stone, than of Iron, and therefore the Iron, that it may not be
subdued by the stone, desires the force and company of Iron, that being
not able to resist alone, it may be able by more help to defend itself. For
all creatures defend their being.”

The quote above, from the 7th volume of John Baptista Porta’s “Natural Magick” [Porta

(1658 edition)], illustrates just how much ground the field of magnetism has covered

since the end of the 16th century. While the concept of inanimate matter having a “soul”

is rather poetic, these days it has been replaced by the laws of quantum mechanics,

which are able to efficiently explain the origin of a macroscopic magnetic moment

in bulk material. Likewise, the “attraction” between two bulk magnets, rather than

arising from an epic-sounding “war” between stone and iron, can be fully described by

classical electromagnetism. Despite these considerable advances in theory, we do not

have all the answers yet, something the huge current interest on the topic of magnetism

1, testifies to. In fact, the material which started it all, lodestone, or magnetite, as it

is more commonly known in scientific literature, is ironically still not fully understood,

and remains the subject of much work to this day.

While the mathematical framework to treat systems of interacting quantum mechanical

particles has existed for a number of decades, the problem quickly becomes computa-

tionally intractable when more than a few such particles are involved. In fact, the

largest object which can be calculated analytically remains the Hydrogen atom, which

1(conservatively estimated at an impressive 50, 000 publications in the last year alone)

1
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E

n(E) 

t>T t<T

UEF

Figure 1.1: Schematic illustration of the density of states of respectively a.) a band insulator

b.) a metal (t > U) and c.) a Mott insulator (t < U).

was first solved as long ago as 1914 [Bohr (1913)]. The main issue which renders treat-

ment of larger systems currently impossible is the issue of electon correlation. If we

wish to calculate the physical properties of bulk materials containing at the order of

NA particles, considerable simplifications, and particularly a solution to the problem

of correlation, are therefore necessary. For example, to understand the electronic prop-

erties of a crystalline solid, it is a common first approximation to consider the motion

of electrons as a hopping process between lattice sites, and interelectronic correlations

are crudely assumed to be dominated by a simple potential which disfavours double

occupation of an orbital. The result is the deceptively simple Hubbard Hamiltonian 2

[Hubbard (1963)]:

H = t
∑

〈i,j〉

∑

σ=↑,↓

(

c†iσciσ +H.c.
)

+ U
∑

i

n̂i↑n̂i↓ (1.1)

where the first term represents hopping as creation and annihilation of uncharged par-

ticles with spin σ between a pair of sites i, j with an amplitude, t, proportional to the

electron kinetic energy. The second term describes the on-site Coulomb repulsion of

strength U . The most trivial solution to this problem is found if there are an even

number of sites, n, per unit cell, with a single electron per site. In this case, diago-

nalisation yields n/2 filled and n/2 unfilled bands (figure 1.1). This is referred to as

a band insulator. If n is odd, however, a rich phase diagram of possible states opens

up, ranging from metallic behaviour to magnetic and charge order, and perhaps even

superconductivity [Anderson (2002)] (figure 1.2).

2Named after Hubbard, but originally introduced by Gutzwiller [Gutzwiller (1963)].
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Figure 1.2: Mean field phase diagram of the infinite dimensional Hubbard model. Half

filling is indicated by a vertical line, and the Mott transition at t ∼ U is represented by a

black dot. Adapted from Fazekas [Fazekas (1999)].

The compounds we shall be concerned with for the duration of this thesis all fall into

the class of materials referred to as Mott insulators [Mott (1990)]. These arise when the

Hubbard model is in the vicinity of half filling, and when U > t (see figure 1.2). In a

Mott insulator, the charges become localised due to the on-site repulsion U , resulting in

an electron “solid”, where each site houses a single unpaired electron. In the insulating

ground state, there remains an additional twofold degeneracy at each site related to

the spin degree of freedom. By invoking processes involving a concerted hopping, or

exchange, of electrons between sites3, this degeneracy is lifted. Then, projecting onto

the subspace of spin configurations, the following effective Hamiltonian is arrived at

[Anderson (1959)]:

H = −J
∑

〈i,j〉

SiSj (1.2)

where J = 4t2/U is the exchange integral (typically ranging in magnitude from J/kB =

1 K to 1000+ K), and S are the spin operators at sites i and j, respectively. Depending

on the spatial arrangment of orbitals connecting sites i and j, J can be either positive

or negative, resulting in either coparallel (ferromagnetic) or antiparallel (antiferromag-

netic) aligments of spins being favoured. The above Hamiltonian is widely known as the

Heisenberg model , and will provide the foundation for much of the physics discussed

in the remainder of this thesis.

Considering the number of simplifications, approximations, and assumptions made thus

3Single electron hopping processes result in double occupancy.
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far, one would think that the Heisenberg model should be rather easily solvable. As it

turns out, it is anything but. Assuming a single electron per site with S = 1/2, the size

of the Hamiltonian matrix of the pure spin system scales with system size as 2N × 2N .

Even using the symmetries of the problem to block diagonalise H, it is thus only

possible to reach N = 40 4, with modern supercomputers. If Monte Carlo techniques

are used, N may be increased to a few hundred sites, but this is only possible when

circumstances are favourable. While many experimental observables can be accurately

reproduced down to low temperatures at these system sizes, information on the ground

state for the infinite lattice is limited.

In order to gain a more complete understanding of the ground state, an analytically

solvable effective model is thus necessary. For the S > 1 Heisenberg model on most

simple lattices, for example, simple classical mean field theory [Weiss (1906)] or semi-

classical spin wave theory [Kubo (1952)] generally suffice to describe both the ground

state and dynamics. In some circumstances, however, particularly when S ≤ 1, the

connectivity of the lattice small, the dimensionality low, and the topology frustrated

5, they do not, and the full quantum mechanical problem must be dealt with. In-

conveniently, Monte Carlo techniques also generally break down in this limit [Foulkes

et al. (2001)], leaving only exact diagonalisation as the generally applicable numerical

method.

Solving the problem of the ground state in a frustrated, low dimensional quantum

magnet is often a difficult enterprise, requiring a close interplay between cutting edge

theory and advanced experiments. For the latter, access to materials which accurately

capture the properties of theoretically interesting Hamiltonians is essential. This finally

brings us to the issues which lie at the heart of this work: firstly, how do we realise

new quantum magnets with unusual properties and, secondly, how can their physical

properties be probed? Our attempt to answer these difficult questions will take us from

chemical “design” of materials, to measurements using one of the leading techniques in

solid state physics, neutron scattering.

The structure of this thesis will be as follows: Chapter 2 will describe the ingredients

needed to promote quantum ground states, and some of their basic properties. Chapter

3 will then outline the chemical principles involved in designing a model magnet, before

briefly discussing the primary experimental techniques used: polarised neutron scat-

tering and inelastic time of flight neutron scattering. Chapters 4 and 5 constitute the

4Corresponding to 1, 099, 511, 627, 776 basis states!
5This term will be explained in Chapter 2. Frustration can be induced by geometry, when the lattice

is constructured of polygons with an odd number of sides, and the interactions are antiferromagnetic,
or by competing interactions.
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main body of experimental work undertaken during this thesis: Chapter 4 discusses the

synthesis and properties of two novel Ti3+-based quantum magnets, KTi(SO4)2·(H2O),

and its anhydrous analogue, KTi(SO4)2. These respectively realise the 1D Heisenberg

J1 − J2 chain model in the dimerised region of the phase diagram and the 1D Heisen-

berg chain model with frustrating interchain interactions, J ′. Chapter 5 contains neu-

tron scattering results on the (purportedly) S = 1/2 kagome compounds volborthite,

Cu3V2O7(OH)2 · 2(H2O), and herbertsmithite, Cu3Zn(OH)6Cl2, showing that the for-

mer probably maps onto an entirely different model, whilst the physics of the latter is

dominated by defects. Chapter 6 will attempt to sum up.





Chapter 2

The Ingredients of Quantum

Magnetism

Having established a motivation for investigating quantum magnetism in

antiferromagnetic Mott insulators in the previous chapter, it is now time

to ask ourselves: what are the ingredients required to produce quantum

ground states in such systems? Even limiting ourselves to this (relatively

speaking) small class of models and materials, there is still an enormous

phase space of parameters to explore, which includes: the properties of the

individual spins, the type and sign of the couplings, and the connectivity

and topology of the lattice, amongst others. Furthermore, most models

which can be constructed from these parameters order classically. This

chapter will show using some simple theoretical tools how new promising

quantum magnets can be identified, and, more generally, what combinations

of ingredients lead to interesting ground states. The essential requirements

are shown to be small spin length, S, low connectivity, z, low dimensionality,

D, and, crucially, frustration (geometric or otherwise). Two hallmarks of a

quantum magnet are shown to be the presence of instabilities in the semi-

classical spin-wave theory, as well as unusual behaviour in the spectrum of

a finite size cluster. Finally, a few examples of what kinds of states result

when Néel order breaks down are given.

7



8 Chapter 2. The Ingredients of Quantum Magnetism

2.1 Some Basic Results

2.1.1 Quantum and Classical Spins

Before beginning the discussion in earnest, it may be useful (at least it is for the author)

to review a few basic properties of the electronic spin:

• The Stern-Gerlach experiment [Gerlach and Stern (1921)] shows that the elec-

tron has an intrinsic angular momentum in addition to that generated by its

orbital motion. This “spin” angular momentum has a size S = 1/2, and its three

Cartesian components (x, y, z) may take on values ±1/2. Furthermore, only one

such component of the spin may be measured simultaneously, implying that their

respective operators do not commute.

• The spin angular momentum operator is thus defined as a three-component vector

S = (Sx, Sy, Sz), with each component in the case of S = 1/2 corresponding to a

Pauli matrix of dimension 2S + 1. In the case of S = 1/2, these are:

Sx =
~

2
σx;σx =

(

0 1

1 0

)

Sy =
~

2
σy;σy =

(

0 −i
i 0

)

Sz =
~

2
σz;σz =

(

1 0

0 −1

)

• The eigenstates of these matrixes are typically written as |↑〉x,y,z and |↓〉x,y,z.
The eigenstates of the only diagonal matrix among them, Sz, represented as

|↓〉z and |↑〉z (or simply |↓〉 and |↑〉), are chosen as a convenient basis. The

Pauli matrixes form an SU(2) algebra, describing the rotational symmetry of the

quantum mechanical spin.

• The operation of either Sx or Sy on an Sz state |↑〉z flips the spin from up to

down, and vice versa for |↓〉z. Hence, Sx and Sy are often referred to as spin flip

operators.

• It is often useful to reformulate the Sx and Sy operators as raising and lowering

operators S+ and S−1, defined as: S+ = Sx + iSy, S− = Sx − iSy. Applying

these to any state |mS〉 yields S+ |mS〉 =
√

S(S + 1)−mS(mS + 1) |mS + 1〉 and
S− |mS〉 =

√

S(S + 1)−mS(mS − 1) |mS − 1〉, respectively.

• As S is increased to ∞, the spin is able to point in any direction, and may hence

be represented as a Cartesian vector S = (x̂, ŷ, ẑ). If each component is finally

normalised such that S2
x+S

2
y+S

2
z = 1, the resulting object is known as a classical

1Analogously with the quantum harmonic oscillator.
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spin. In practical terms, we can get away with this much simpler representation

of the spin when S ≥ 3/2.

• When S < 3/2, however, the quantum mechanical nature of the spin is often

highly relevant to the physics, as we will see in the coming chapters. At the root

of this behaviour lies in the action of the spin flip terms Sx and Sy, or the so-

called quantum fluctuations. Hence, S = 1/2 and S = 1 are called quantum

spins.

2.1.2 The Heisenberg Dimer

The simplest realisation of the Heisenberg model we hand-wavingly derived in the

previous chapter is the S = 1/2 antiferromagnetic spin pair, described by the following

Hamiltonian:

H = J12S1 · S2 (2.1)

where J12 is positive, thus favouring antiferromagnetic (antiparallel) alignment of spins.

This can be rewritten in matrix representation as:

H =















〈↑↑|H|↑↑〉 〈↑↑|H|↓↑〉 〈↑↑|H|↑↓〉 〈↑↑|H|↓↓〉
〈↑↓|H|↑↑〉 〈↑↓|H|↓↑〉 〈↑↓|H|↑↓〉 〈↑↓|H|↓↓〉
〈↓↑|H|↑↑〉 〈↓↑|H|↓↑〉 〈↓↑|H|↑↓〉 〈↓↑|H|↓↓〉
〈↓↓|H|↑↑〉 〈↓↓|H|↓↑〉 〈↓↓|H|↑↓〉 〈↓↓|H|↓↓〉















=
J

4















1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1















Diagonalisation yields the following eigenvalues and eigenvectors:

|Ψ〉 S E 〈Sz〉
|↑↓〉 − |↓↑〉√

2
0 −3/4J12 0

|↑↑〉 1 1/4J12 1

|↓↓〉 1 1/4J12 -1
|↑↓〉+ |↓↑〉√

2
1 1/4J12 0

The ground state of the S = 1/2 Heisenberg dimer is the so-called singlet state, an

antisymmetric superposition of the |↑↓〉 and |↓↑〉 states. This unit is considered one

of the basic building blocks of quantum magnetism, and is an archetypal example of
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an entangled state 2. The excited state, separated from the ground state by a gap

∆ = J12 is a triplet level with S = 1. At this point, we note that the classical ground

state |↑↓〉z is not even an eigenstate of the Hamiltonian, and furthermore has energy

EN = −J12/4, considerably higher than that of the actual ground state.

As S is increased, the basis consists of (2S+1)2 states, resulting in a Hamiltonian matrix

of dimension (2S + 1)2 × (2S + 1)2. This becomes a considerable task to diagonalise

(at least by hand) for S > 1. Using the fact that the Hamiltonian commutes with

Stot = S1 + S2, however, it is still easy to find the eigenvalues:

H = J12S1 · S2 =
J12
2

[(S1 + S2)
2 − S2

1 − S2
2] = J12[S

2
tot − S2

1 − S2
2] (2.2)

The ground state of the spin S Heisenberg dimer is thus an S = 0 singlet with E0 =

−JS(S + 1). The first of the 2Stot + 1 excited states occurs at E1 = E0 + J . The

ground state energy of the classical state, on the other hand, scales as EN = −JS2,

meaning that the quantum correction to the classical energy is of the order EN/E0 =

−JS2/[JS(S + 1)] = 1/S.

2.1.3 Towards Extended Systems

Having established that the ground state of the antiferromagnetic Heisenberg dimer

is a singlet (an entirely quantum mechanical object), we now wish to understand the

observation that most extended lattice antiferromagnets order classically at relatively

high temperatures. To achieve this, the ground state energy in the thermodynamic limit

must be calculated and compared to the classical value. It quickly becomes apparent

that this is no small matter: the dimension of the Hamiltonian matrix for a system

containing N spins of size S grows as (2S+1)N×(2S+1)N . Although the commutation

of Sz with the total spin S allows for block diagonalisation of H, the largest sector still

has dimension:

N !

n↑!(N − n↑)!
× N !

n↑!(N − n↑)!
(2.3)

where n↑ is N/2 for even N and N/2 + 1 for odd N . Even for S = 1/2, this matrix

quickly becomes too large to diagonalise on all but the most powerful supercomputers

– in fact, the current world record for an S = 1/2 system is a mere 40 spins! While

2Entanglement is a property of a quantum mechanical system of two objects or more, whereby the
state of one constituent cannot be described without also considering the state of the other [Einstein
et al. (1935)].
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Figure 2.1: Decomposition of the square lattice into independent clusters.

it is obviously impossible to calculate the ground state energy in the thermodynamic

limit exactly, its lower bound can be estimated by decomposing the lattice into N

independent clusters, then summing up the energy of these clusters. Taking the example

of the square lattice, the cluster chosen is a cross of 5 spins. The cluster Hamiltonian

is written [Fazekas (1999)]:

H =
N
∑

i=1

Hi (2.4)

where:

Hi =
J

2
Si ·

z
∑

j=1

Sj =
1

2







Si +
z
∑

j

Sj





2

− S(S + 1)−





z
∑

j

Sj





2

 (2.5)

Hi (2.5) is minimised by making the total spin of the z nearest neighbours as large

as possible, due to the last term (−∑z
j Sj

2), and then minimising the first term

(
(

Si +
∑z

j Sj

)2
) by creating one singlet (see figure 2.1). The lowest energy level is

thus found to be:

Ei,0 = −zS2

(

1 +
1

zS

)

(2.6)

H can no longer be minimised locally once the number of clusters is increased beyond

one, as the clusters overlap. Nevertheless, a lower bound for the energy can be found

by performing the summation in (2.4) assuming N independent clusters:

E0 > −JNzS
2

(

S +
1

z

)

(2.7)

This can be compared to the classical ground state energy, EN = J
∑N

i,j
~Si · ~Sj , where

i and j are neighbouring spins, and ~S are classical vectors. Assuming each spin is able



12 Chapter 2. The Ingredients of Quantum Magnetism

to arrange itself such that it is antiparallel with respect to all its nearest neighbours,

the resulting energy is:

EN = −JNzS
2

2
(2.8)

which, as expected, is higher than E0. The true ground state energy of the extended

lattice Heisenberg antiferromagnet thus lies in the range E0 < Egs < EN . The gap

between the upper and lower bounds is proportional to 1/(zS), implying that the

quantum and classical ground states become identical for large z and S (figure 2.2).

Conversely, when z and S are small, the quantum corrections should be large – but are

they are large enough to destroy classical order completely?

0.5
1

1.5
2

2.5

2
3

4
5

6
0

0.2

0.4

0.6

0.8

1

Sz

E
N

/
E

0

Figure 2.2: Scaling of E0/EN with respect to S and z. The colourscale indicates the

magnitude of the quantum correction to the classical energy, running from large (blue) to

small (red).

2.1.4 Spin Wave Theory

One way to test the stability of the classical ground state is to assume long range order,

then introduce quantum fluctuations to the system by some means. A particularly

elegant way to implement these is by representing the action of the spin operators

as creations and annihilations of bosons through a Holstein-Primakoff transformation

[Holstein and Primakoff (1940)],[Kubo (1952)]:
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Sz
i = S − a†iai

S+
i =

√
2S

√

1− a†iai
2S

ai

S−
i =

√
2Sa†i

√

1− a†iai
2S

(2.9)

where the spin is assumed to lie along the local Sz direction, ai and a†i create and

annihilate S = 1 bosons, whilst a†iai counts the total number of bosons. The term

inside the square root limits the boson population number to the physical subspace of

the 2S + 1 eigenstates of the spin operators. This term has the side effect of rendering

the Hamiltonian impossible to write in diagonal form, however, and is therefore dealt

with by expanding the square root as its Taylor series
√
1− x = 1− x/2− x2/8... and

keeping only the leading constant. This corresponds to assuming 2S >> a†iai (the

number of bosons is small versus S), a reasonable assumption to make for classical

spins.

One of the simplest examples of linear spin wave theory is found for the S = 1/2 square

lattice antiferromagnet (QHSA). Due to the small spin and small coordination number

(z = 4), strong quantum effects resulting from the spin flip terms, and perhaps even a

breakdown of long range order are expected. The classical ground state of the QHSA

is a simple arrangement whereby each spin lies antiparallel with respect to its nearest

neighbour. As such, it is natural to break the lattice into two sublattices, A and B,

where the spins on each sublattice point in the same direction. Another useful trick is

then to rewrite the Hamiltonian as a sum over nearest neighbours:

H =
∑

i

∑

δ

Si · Si + δ (2.10)

where δ are a set of vectors coupling the A and B sublattices – in the case of the square

lattice δ = {êx,−êx, êy,−êy}. Thus, the operators residing on the A and B sublattices

may be Fourier transformed as follows:

ai =

√

2

L

∑

k∈BZ

eik
~Riak a†i =

√

2

L

∑

k∈BZ

eik
~Riak

bj =

√

2

L

∑

k∈BZ

eik
~Ribk b†j =

√

2

L

∑

k∈BZ

eik
~Rjbk (2.11)



14 Chapter 2. The Ingredients of Quantum Magnetism

where L is the occurence of a given boson in the unit cell, and k is a wavevector in the

reduced Brillouin zone of the square lattice. The spin wave Hamiltonian which results

is:

HSW = −zNJS
2

2
+ zJS

∑

k

[

a†kak + b†kbk + γk

(

a†kb
†
k + akbk

)]

(2.12)

where the first term is recognizable as the classical ground state energy and the second

represents the lowering of ground state energy due to quantum fluctuations. The γ =
∑

δ e
ik·δ term encapsulates the geometry of the lattice. While not diagonal yet 3, HSW

can be easily diagonalised by a Bogoliubov transformation:

αk = ukak − vkb
†
−k α†

k = uka
†
k − vkb−k

βk = ukbk − vka
†
−k β†k = −vka−k + ukb

†
k (2.13)

The bosonic commutation relations
[

α†
k, αk

]

=
[

β†k, βk

]

= 0 require the coefficients

u and v to satisfy the condition |u|2 − |v|2 = 1. HSW can thus finally be written in

diagonal form as:

HSW = EN + zJS
∑

k

√

1− γ2k

[(

α†
kαk +

1

2

)

+

(

β†kβk +
1

2

)]

(2.14)

= EN +
∑

k

ωk

(

α†
kαk + β†kβk

)

(2.15)

where ωk = zJS
√

1− γ2 is the spin wave dispersion, and is degenerate for α and β

bosons (figure 2.3). Spin wave dispersions can be measured experimentally with great

precision using neutron scattering.

With the spin wave Hamiltonian finally diagonal, it is now also possible to evaluate the

quantum correction to the classical ground state energy as follows:

Egs = −zNJS
2

2
+ zJS

∑

k

√

1− γ2k − 1 (2.16)

= −zNJS
2

[

S +
2

N

∑

k

(

1−
√

1− γk

)

]

(2.17)

In the case of the S = 1/2 Heisenberg square lattice antiferromagnet (QHSA), the

lowering in energy versus the classical ground state δE = 0.158, with EN = 1. The

3After all, the ground state is not the vacuum of bosons.
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Figure 2.3: The dispersion relation ωk of the square lattice Heisenberg antiferromagnet

along the high symmetry directions of the Brillouin zone in several different magnetic fields.

Hc is the saturation magnetization.

amount of energy by which the quantum ground state is reduced versus the classical

again depends inversely on the size both S and z, as expected.

While the ground state of the spin wave Hamiltonian contains no Bogoliubov bosons αk

and βk, the true ground state will contain a finite number of ak and bk due to quantum

fluctuations. These reduce the magnetization on a given sublattice by the expectation

value of the boson number on that sublattice:

m = S − δS = S − 1

N

∑

k

(〈

a†kak

〉

+
〈

b†kbk

〉)

= S − 1

N





∑

k

1
√

1− γ2k

− 1



 (2.18)

Substituting the sum for an integral, the reduction of the sublattice magnetisation, δS,

becomes:

δS =
1

2





∫

dDk

(2π)D
1

√

1− γ2k

− 1



 (2.19)

For the square lattice, δS = 0.175, which corresponds to 35% of the spin length, a

rather large reduction; the earlier supposition that low z favours quantum fluctuations

thus appears to be correct. One important consideration which has not been made

yet is for dimensionality. In the above expression, the dimensionality of the lattice,

D, enters through the sum over k, which in the integral representation becomes a D
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Model LRO Eq δS

3D Cubic Yes 0.097 0.078

2D Triangular Yes 0.220 0.39

2D Square Yes 0.158 0.65

1D Chain No 2
π 0

Table 2.1: The spin wave values the quantum correction to the classical ground state

energy, Eq. and sublattice magnetization for some simple lattices in one, two, and three

dimensions.

dimensional integral. In one dimension, this integral diverges entirely, meaning that

the sublattice magnetisation vanishes – in other words, quantum fluctuations destroy

classical order in one dimension. Thus, one dimensional systems are a natural place

to look for exotic quantum ground states. In two dimensions and above, the integral

generally remains finite, though in some special cases, it diverges. The spin reduction

is the smallest for 3D lattices. In the case of the S = 1/2 cubic lattice, δS becomes

only 15% of the spin length, a fact that is verified by neutron scattering [de Jongh

and Miedema (2001)]. The ground state energies and spin reductions for a variety of

lattices are given in table 2.1.

2.1.5 Finite Clusters

Spin wave theory allows for solution of the Heisenberg Hamiltonian in the thermo-

dynamic limit, giving access to quantities such as the sublattice magnetisation, an

important indicator of the stability of classical order. It is, however, not the only way

to identify a potential quantum magnet – the low energy spectrum of an exactly di-

agonalisable cluster for a given model also contains many clues as to the behaviour of

the system in the thermodynamic limit. For a two dimensional bipartite system with

two sublattice order (such as the QHSA), the lowest set of eigenvalues (up to S ∼
√
N)

can be described with the Hamiltonian of a quantum rotor (like a diatomic molecule)

[Fisher (1989)],[Neuberger and Ziman (1989)]:

Heff = E0 +
S2

2Nχ0
(2.20)

E(S) = E0 +
S(S + 1)

2Nχ0
(2.21)

where E0 is the ground state energy, and 1/Nχ0 is the inverse susceptibility. In the

thermodynamic limit, the latter term vanishes, resulting in the lowest energy level in

each S sector becoming degenerate. It is this collapse of the so-called quasi-degenerate
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joint states (QDJS) which mark the rotational symmetry breaking characteristic of

long range order. The nature of the order may be surmised from the symmetry of the

E(S) states, which possess the symmetry of the ordering wavevector. In the case of the

triangular lattice antiferromagnet, for example, the QDJS correspond to wavevectors

of k1 = (0, 0) and k2 = (±4π/3, 0).

Returning to the finite size sample, the next set of energy levels above the QDJS are

the magnon bands, which develop into the spin waves discussed in the previous section

in the thermodynamic limit. As system size increases, the lowest energy levels of the

magnons tend towards E0 as 1/
√
L, revealing the ungapped spectrum characteristic of

a long range ordered antiferromagnet.
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Figure 2.4: (left) The low energy spectrum versus S(S + 1) for the S = 1/2 Heisenberg

square lattice antiferromagnet (right) The scaling of the lowest energy eigenstates for a

range of different system sizes. The spectrum collapses towards E0 linearly with N , as

expected for a set of QDJS. Also, the ground state energy per bond converges to ap-

proximately −0.355 [Richter et al. (2004)], which is practically identical to the spin wave

estimate of −0.3552 [Zheng and Hamer (1993)]. Figure adapted from J. Richter. et. al.

[Richter et al. (2004)]

Taking the QHSA as an example again, it is possible to access lattice sizes up to

40 numerically due to the small spin and high symmetry. The resulting spectrum,

as calculated by Richter and Honecker [Richter et al. (2004)], is shown in figure 2.4.

As expected, the lowest energy eigenvalues in each spin sector obey equation 2.21.

Furthermore, by considering the scaling of Emin(S) with system size N , it can be

deduced that Emin(S) → E0 as N → ∞. In other words, the QDJS show that S =

1/2 square lattice antiferromagnet does order in the thermodynamic limit. A similar
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analysis can be performed for more complicated topologies than the square lattice –

here, the number of QDJS scales as the number of sublattices, or, in the case of helical

orders, as twice the number of sublattices.

Signs of exotic magnetic behaviour may be observed in the absence of a clear set of

QDJS, or, more subtly, in unusual scaling of these. If the gap between the lowest lying

singlet state and the lowest states in other spin sectors does not close as N → ∞, a

gapped ground state, usually composed of singlets or some other localised object, is

implied. More exotic finite size spectra, for instance, when the gap between the lowest

S = 0 and S = 1 levels is filled with singlets, can imply even more unusual orders (see

figure 2.5).

0 2 6 0 2 6 0 2 6

E E E

S(S+1) S(S+1) S(S+1)

∆ ∆

0

Figure 2.5: The low energy spectra of (left) a classically ordered magnet (centre) a gapped

system and (right) an exotic quantum ground state. After F. Mila. [Mila (2000)].

2.1.6 Frustration

Except for the particular case of one dimension, it appears from the discussion so far

that classical order is rather persistent with respect to quantum fluctuations. There

are however other means of destabilising long range order beyond small D, small S,

and small z. This becomes apparent if Ising spins 4 are placed on each corner of

an equilateral triangle, then coupled antiferromagnetically – the resulting situation,

where it is impossible to satisfy all interactions simultaneously, is called frustrated

[Toulouse (1977)], and is shown in figure 2.6. Frustration can be realised in a number

of other ways, such as through competing nearest neighbour interactions, next-nearest-

neighbour interactions (figure 2.6) or spatial disorder.

Returning to the case of the isolated triangle, and geometric frustration: if the Ising

spins are replaced by classical Heisenberg spins, the frustration is partly relieved by

the adoption of a compromise ground state with the spins coplanar and oriented at

4Spins with only one component. The spins lie along an axis and may point only up or down with
respect to this axis.
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Figure 2.6: (left) A single triangle with Ising (black) and Heisenberg (red) spins. The

Ising spins are unable to satisfy all nearest neighbour couplings simultaneously, resulting

in a ground state degeneracy. In the case of Heisenberg spins, the frustration is relieved

by adoption of a coplanar 120◦ state. A twofold degeneracy associated with the chiraliy κ

remains, however (see figure 2.7). (centre) Another frustrated unit, a tetrahedron. When

populated with Ising spins, the ground state is again degenerate. (right) An example of

frustration on a square plaquette with next nearest neighbour couplings. If both J and J ′

are antiferromagnetic, it is impossible to satisfy all interactions simultaneously. If many

such plaquettes are assembled in an edge-sharing manner, the so called frustrated square

lattice results. The Heisenberg model on this lattice exhibits a breakdown of classical order

at the point J = 2J ′. As will be seen later in this chapter, this is a consequence of being

able to rewrite the classical ground state as a local constraint.

120◦ with respect to each other. The energy per site of this state is only −JS2/4,

versus −JS2/2 for fully antiparallel spins – from this fact alone, one might expect an

enhancement of quantum effects. Furthermore, there are two degenerate ways to realise

the 120◦ degree state, which are not connected by a simple global rotation of the spins:

to describe these, a so-called scalar chirality, κ, may be defined as follows:

κ =

(

2

3
√
3

)

(

~S1 × ~S2 + ~S2 × ~S3 + ~S3 × ~S1

)

(2.22)

where the sites are indexed in the clockwise direction and κ may take on values of ±1.

When many triangles are put together, the intriguing possibility of a disordered, enor-

mously degenerate ground state arising from this degree of freedom arises, providing it

survives in the thermodynamic limit. This does not happen in the case of the triangular

lattice (z = 4, D = 2), where the edge sharing of the triangular building blocks destroys

the twofold degeneracy, but is a possibility for corner sharing geometries.

Even though the classical ground state of the triangular lattice is (dissapointingly)

ordered, the effect of frustration again becomes apparent when the spherical symmetry

of the Heisenberg model is reduced to axial by application of a magnetic field H.
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Returning to the case of the isolated triangle, the classical ground state becomes any

of an infinite number of configurations which fulfill the condition ~S1+ ~S2+ ~S3 = H/2J

(figure 2.7). In the thermodynamic limit, this infinite degeneracy is reduced to 2

possible long range ordered ground states: either a coplanar up-up-down (UUD) state,

or an umbrella state.

Reducing the spin length from ∞ to the quantum limit S = 1/2, the first question

which arises is whether the zero field classical ground state survives in the presence of

quantum fluctuations. While this was a hotly debated topic for a number of decades,

it is now well established that the S = 1/2 triangular lattice antiferromagnet indeed

orders at T = 0 [Huse and Elser (1988)]. The frustration strongly reduces the sublattice

magnetization to only 40% of its classical value, however, considerably smaller than the

value calculated for the QHSA of 65%.

Having established that the ordered ground state persists at H = 0, it is time to re-

turn to the finite field ground state. In the quantum limit, the degeneracy between

the classically degenerate UUD and umbrella states is destroyed by a somewhat coun-

terintuitive phenomenon known as order by disorder [Villain et al. (1980)],[Chubukov

and Golosov (1991)]. As demonstrated in the previous section on spin wave theory,

quantum fluctuations lower the classical ground state energy through a term contain-

ing the integral of the spin wave dispersion. In the case of the quantum triangular

antiferromagnet in a magnetic field, it turns out that the UUD state is favoured over

the umbrella by this term. Thus, quantum fluctuations play a dual role in frustrated

spin systems - while destabilising the ground state, they may simultaneously select a

long range order from the degenerate manifold of classical states. Similar arguments

to the above can be made for ground state selection at finite temperatures by thermal

fluctuations.

As hinted at earlier, the connectivity between the triangles is another way to induce

degeneracies in the classical ground state. This can be illustrated by considering the

simple example of two triangles sharing a single vertex: the ground state allows for free

rotation of the four non-shared spins about the axis of the shared spin. Even when the

spin directions are fixed on one triangle, the twofold chiral degree of freedom remains

for the other, unlike in the edge sharing geometry (figure 2.7).

Extending from two triangles to an infinite number, the local rotational degree of

freedom results in a macroscopic degeneracy within ground state manifold, with the

only constraint being that on a single triangle ~S1 + ~S2 + ~S3 = 0. Thus, a criterion for

breakdown of classical order in frustrated systems is that the Hamiltonian is expressable

as a sum over the basic building blocks of the lattice [Chalker (2009)], be they triangles,
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Figure 2.7: (left) Two triangles arranged in a corner sharing geometry. Even when the

chirality is fixed on one triangle (left), there remains a twofold degeneracy associated with

the choice of chirality on the adjacent triangle, represented by the red and blue arrows.

In the edge sharing geometry this additional degeneracy is suppressed, as is the case for

the triangular lattice. (centre) A graphical representation of the condition which defines

the ground state of a single triangular plaquette. (right) Ground state degeneracy may be

restored by applying a magnetic field, H, perpendicular to the plane of the plaquette. The

new ground state condition allows for an infinite number of possible spin arrangements.

One ground state is shown in red, another possibility in yellow.

tetrahedra, or more exotic units. That is:

H =
∑

〈i,j〉

~Si · ~Si =
J

2

∑

z

|~L|2 + c (2.23)

where ~L = ~S1 + ~S2 + ~S3, the sum over z is a, and c is a constant.

Are order from disorder mechanisms again able to select a unique ground state from the

degenerate ground state manifold, as they did for the triangular lattice? As it turns out,

not quite: to demonstrate this, consider the example of the kagome lattice (z = 4, D =

2) 5, a 2D lattice composed of triangles arranged in a traditional pattern of Japanese

basketweaving [Syozi (1951)]. As for the triangular lattice, order by disorder 6 enforces

a coplanar ground state. The chiral degree of freedom remains in the reduced ground

state manifold, however, suppressing long range order. In Monte Carlo simulations on

the classical kagome antiferromagnet, it is found that correlations tend towards a motif

with staggered chirality known as
√
3×

√
3 order [Reimers and Berlinsky (1993)] 7, but

this order is only short ranged. Going from the S = ∞ case to finite spin, spin wave

theory on the
√
3×

√
3 state shows a completely flat mode at ω0 = 0, indicative of its

instability with respect to quantum fluctuations [Yildirim and Harris (2006)].

5This lattice will be discussed extensively in chapter 5.
6this time through thermal fluctuations, as we are discussing a classical model
7The unit cell increases in size by

√

3a along both dimensions, where a is the nuclear lattice param-
eter.
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Reducing the number of shared spins between two triangles from two (edge sharing)

to one (corner sharing) has seemingly done the trick – the classical ground state in the

thermodynamic limit will retain the degeneracy of the isolated units which compose

the lattice. This thesis will consider several systems where frustration is an important

ingredient in leading to exotic physics.

2.2 The “Zoo” of Quantum Ground States

Now that the ingredients which lead to breakdown of classical order in magnetic systems

have been identified as small S, low D, low z, and frustration (geometric or otherwise),

it is time to investigate what kind of states may replace the classical long range ordered

state, and what their characteristics are. In this discussion, only states arising at the

quantum limit of the Heisenberg model on ordered lattices will be considered – that is,

states like disorder induced spin glasses and classical cooperative paramagnets will be

ignored.

An oft used umbrella term to describe states with an absence of classical long range

order is spin liquid. This does not necessarily mean that the correlation functions and

dynamics of the state in question correspond to those of actual liquids, but rather that

the state does not break the symmetry of the lattice and/or the spin despite strong

correlations. There are a vast multitude of states which fulfill either one or both of

these conditions, some of which are be briefly summarised below:

2.2.1 Algebraic Spin Liquids

Earlier in this chapter, it was shown that classical order in the 1D Heisenberg chain

model is destroyed by quantum fluctuations. One question which naturally arises from

this observation is; what replaces classical order as the ground state? While answering

this is generally not trivial, an exact solution fortunately exists in the case of the S =

1/2 Heisenberg chain. Furthermore, it is amenable to a number of other approaches,

including conformal field theory and bosonization, and powerful numerical methods

such as density matrix renormalization group (DMRG). This renders the S = 1/2

Heisenberg chain one of the best understood models in quantum magnetism.

Even though the ground state has zero sublattice magnetization, it is surprisingly found

to be Néel ordered on a rather large length-scale. Indeed, the correlation function
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〈SiSi+r〉 decays with distance r as:

〈SiSi+r〉 ∼
(−1)|r|

|r| S2 (2.24)

An algebraic decay of 〈SiSi+r〉 is a characteristic feature of a system close to a phase

transition, where correlations diverge before long range order sets in. As a result, the

ground state is often called a critical spin liquid. Also in common with long range

ordered systems is the presence of gapless excitations. One crucial difference between

these and their long range order analogues is that while the latter are S = 1 magnons,

the excitations in the ground state of the 1D chain are spinons, gapless S = 1/2

quasiparticles. In a cartoon picture of the ground state, these may be regarded domain

walls which can move at no energy cost.

The existence of algebraic liquid states in two dimensions is still a point of contention,

though the S = 1/2 kagome antiferromagnet is one model for which such a state has

been found to be a possibility [Hermele et al. (2008)].

2.2.2 Valence Bond Crystals and Solids

One of the simplest solutions for the ground state of a frustrated lattice model is the

valence bond solid (VBS), an ordered covering of the lattice by singlets. Depending

on the details of the lattice and interactions, these may be dimers, tetramers or even

larger objects. Generally, in VBS type ground states, the correlation function decays

exponentially with distance:

〈SiSi+r〉 ∼ S2e
− r

ζ (2.25)

where ζ is the correlation length. In an ideal VBS, the correlations are limited in extent

to the singlet unit, but usually fluctuations render ζ slightly longer in distance. Al-

though the SU(2) rotational symmetry of the spins is preserved in such a ground state,

this is not necessarily true of the translational symmetry. Depending on whether or

not this is broken, two classes of VBS arise: spontaneous VBS, where the translational

symmetry is destroyed by singlet formation, and explicit VBS, which are translationally

invariant (see figure 2.8). The former is typically encountered when the Hamiltonian

contains competing interactions, such as next nearest neighbour (nnn) couplings, whilst

the latter occurs when an alternation of exchanges isolate a structural unit capable of

singlet formation. Another universal feature of a VBS ground state is a gap to the low-

est lying magnetic excitation. This gap is connected with the breaking of the singlet

objects making up the ground state. The excitations above the gap are not universal,

however.
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One famous example of a spontaneous VBS state is the ground state of the S = 1/2

chain with antiferromagnetic nnn couplings, J2, topologically equivalent to an edge

sharing ladder of triangles 8. In a broad region of the phase diagram with respect to the

frustration parameter α = J2/J1, the frustrating interaction J2 induces a dimerisation

of neighbouring spins into localised singlets residing on the J1 bonds. The resulting

ground state is doubly degenerate, as the singlets may cover either right or left leaning

diagonals along the chain. Spin excitations are, as in the uniform chain, S = 1/2

spinons, although the excitation spectrum has now acquired a gap connected to the

breaking of a nearest neighbour singlet. Spontaneous VBS are also observed in two

dimensional models where the unit cell of the lattice contains an even number of spins,

such as the square lattice with 3rd nearest neighbour couplings. In this case, the ground

state is singly degenerate, and the excitations are S = 1 magnons.

A typical case of an explicit VBS is encountered on the so-called Shastry-Sutherland

lattice, a square lattice where every second triangle is decorated by a diagonal bond.

The ground state in the limit of the diagonal bonds, J , being stronger than the square

bonds, J ′, consists of singlets on the diagonal bonds. Frustration is thus relieved by

effectively “switching off” the frustrating coupling, J . In this state, the ground state

remains both translationally and spin rotationally invariant. Excitations are gapped,

and confined even at rather large J ′ due to frustration, which results in a rather flat

dispersion.

Returning to the Heisenberg chain model, the ground state takes on radically different

character if S is increased from 1/2 to 1 (or more generally, for any integer S). In this

case, rather than possesing algebraic correlations and gapless spinon excitations, the

ground state exhibits extremely short range correlations, consistent with condensation

of nearest neighbour singlets, as well as gapped S = 1 magnons in the excitation

spectrum. The origin of these singlets is initially puzzling, as the lattice translational

symmetry apparently remains unbroken. To explain this apparent paradox, Haldane

made the observation that the S = 1 spins can be broken into two S = 1/2 ”virtual“

spins, each of which may form a singlet with a similar object on a neighbouring site. As

such, the S = 1 chain is often called the Haldane chain, with the resulting gap between

the ground state and first excited triplet referred to as the Haldane gap. A powerful

proof of the validity of this interpretation are the presence of end of chain defects with

S = 1/2, observable in NMR experiments on doped samples.

While the spin correlations decay exponentially in both VBS and VBC states, they do

possess a long range order of sorts in the singlet-singlet correlations. Thus, the order

8Again, this model will be covered in greater detail in Chapter 4.
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Figure 2.8: (left) Some examples of spontaneous VBS, including the ring exchange and

J1 − J2 − J3 models on the square lattice, and the S = 1/2 J1 − J2 chain. The lattice

symmetry is broken by singlet formation. (right) An explicit VBS on the Shastry-Sutherland

lattice (above) and VBC on the Haldane chain (below). For the latter, the dotted circles

denote a single site, with the red ellipses indicating singlets.

parameters of these states are typically formulated in terms of such objects.

2.2.3 RVB Liquid

Originally proposed by Anderson and Fazekas for the triangular lattice in 1973 [Ander-

son (1973)], the resonating valence bond, or RVB, state may be considered a fluctuating

analogue of the VBS and VBC states. Its wavefunction is expressed as a superposition

of dimer coverings over the entire lattice as follows:

|ψRV B〉 =
∑

Ci

A(Ci) |Ci〉 (2.26)

where Ci is a dimer configuration, usually expressed as a product of singlet states,

A(Ci) is an amplitude, and the sum runs over all such possible configurations. There

are two flavours of RVB liquid, depending on the nature of the dimer wavefunctions

used: a short range liquid, where the amplitude of a dimer configuration a(h, k) decays

exponentially with distance, and a long range liquid, where a(h, k) falls off algebraically.

Generally, the former has been considered in the greatest detail so far, as it is possible

to treat the problem in a nearest neighbour singlet basis known as the quantum dimer

model.

Thus far, the RVB state has mainly been found to arise for rather artificial models, like

the quantum dimer model on the square and triangular lattices [Rokhsar and Kivelson
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State Spatial Symmetry Spin Symmetry

Néel X X

VBS (Spontaneous) X ×
VBS (Explicit) X X

RVB × ×
Critical/algebraic SL × X

Nematic × X

Table 2.2: Some magnetic ground states and their broken symmetries.

(1988)]. An experimental realisation in a condensed matter system thus remains on

the distant horizon.

2.2.4 Nematic Phases

The spin liquid states discussed so far have all retained the SU(2) spin rotational

symmetry of the Heisenberg model. It is also possible for a spin liquid state to break

this symmetry, but leave the translational symmetry of the lattice untouched. Broadly

speaking, such states are called nematic, as they (like liquid crystals) are disordered in

the spin correlations, but nonetheless show an ordering in the spin fluctuations. Such

order can often be captured in the higher powers (quadrupolar, octupolar etc.) of the

spin operators. One example of a nematic phase is encountered on the square lattice

when S is increased to 1 and a biquadratic exchange (Si ·Sj)
2 is added to the Heisenberg

Hamiltonian [Tóth (2010)].

2.3 Anisotropies: Switching Quantum Mechanics Off Again

The discussion so far has assumed perfect isotropy of the Heisenberg spins, only bilinear

(Si · Sj) interactions between them, and in the case of low dimensional models, no 3D

couplings between the structural elements (i.e. chains, planes, etc.). As we know,

however, things are very rarely so simple in nature. This section will address some

of the perturbations which arise in real systems, in particular anitrosopies of both the

single ion and exchange variety.
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Figure 2.9: (left) The octahedral coordination and (right) its level splitting scheme. Addi-

tional splitting due to a tetragonal Jahn-Teller distortion is also shown.

2.3.1 Crystal Fields, Spin Orbit Coupling and Resulting Anisotropies

Because the rich physics described so far occurs within the bounds of the Heisenberg

model, it is natural to look to first row transition metal ions as sources of spin for ex-

perimental realisations. In these ions, the orbital moment is often considered quenched

(though this is not always the case), which means that spin-orbit coupling to crystal

field split levels is at first order excluded as a source of spin anisotropy. In order to

understand why this is the case and under what circumstances it is not, it is necessary

to consider in a little more detail the behaviour of d-orbitals in both symmetric and

asymmetric crystal fields. We will concentrate on two electronic configurations: d1

and d9, as these not only correspond to the configurations of the Cu2+ and Ti3+ ions

which form the basis of the experimental part of this work, but also because they are

instructive in illuminating the physics of individual 3d metal ions.

In the free ion case, the five 3d levels are degenerate, and the ground state term symbol

is 2D for both the d1 and d9 configurations. When an octahedral crystal field is applied

to these states, they are split into a lower triplet of t2g symmetry, and an upper doublet

of eg symmetry (see figure 2.9). As the 3d orbitals are quite extended in space, they

interact strongly with the crystal field, and the splitting between the t2g and eg levels

is typically on the order of 1 eV, which is far greater than both the spin orbit (LS)

coupling and Hund’s third rule. An important consequence of this is that Hund’s third

rule breaks down - that is, J is no longer a good quantum number (though L and S so

far remain unaffected). Therefore, in determining the magnetic properties of a single

ion the ground state resulting from the crystal field must be considered.

The basis functions for the t2g and eg levels may be constructed from linear combina-



28 Chapter 2. The Ingredients of Quantum Magnetism

tions of the spherical harmonics Ym
l as follows:

ir2

m
[Y2
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An important observation about these functions, called tesseral harmonics, is that they

are all real functions. Therefore, acting on them with the purely imaginary angu-

lar momentum operator L, will only yield a real eigenvalue if 〈L〉 = 0. The orbital

moment is thus (apparently) quenched. This is not necessarily true in all cases, how-

ever – the above choice of basis is not unique, and the complex basis {Y−1
2 ,Y2

2 −
Y−2
2 ,−Y1

2 ,−Y1
2 ,Y0

2 ,Y2
2 + Y−2

2 } (in that order) may instead be chosen. The angular

momentum operators can thus be rewritten:
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Lz = −
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Looking closely at these matrices, it becomes apparent that the top left quadrant,

corresponding to the t2g subspace, has a rather similar form to the angular momentum

operators for L = 1 (p) orbitals. In fact, the two are simply related by Lt2g = −Lp. On

the other hand, the bottom right quadrant, describing the eg orbitals, shows complete

quenching. What are the implications of this for, respectively, d1 and d9 electronic

configurations when the crystal field is perfectly octahedral? Also, what happens when

the octahedral symmetry is lifted, by for example a Jahn-Teller distortion?
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• Oh Symmetry: When the t2g level contains only one electron, as is the case for

Ti3+, the spin-orbit coupling to the effective L = −1 angular momentum lifts the

threefold degeneracy of the ground state. The resulting spin-orbit ground state

is a Kramers doublet with both L = 0 and S = 0. In the d9 case, on the other

hand, the orbital moment is completely quenched (as expected), and only the

spin angular momentum contributes to the total moment9.

• Jahn-Teller Distorted: In a real material, of course, the crystal field is rarely of

perfect Oh symmetry. This is often a consequence of the Jahn-Teller distortion,

which (at least partially) lifts the degeneracy of degenerate electronic configu-

rations. If this results in a singly degenerate ground state, the orbital angular

momentum is quenched again, and the magnetic moment is due to the spin only.

Even in these circumstances, application of the spin orbit (LS) coupling may re-

store some orbital angular momentum by mixing higher lying orbital states (with

L 6= 0) into the ground state. The magnitude of the restoration of the moment is

proportional to λ2/∆, where ∆ is the splitting between the ground and excited

orbital states and λ is the spin-orbit coupling constant. The deviation from per-

fect Heisenberg spin symmetry, or single ion anisotropy, due to the LS coupling

is written:

H = DS2
z + E(S2

x − S2
y) (2.30)

where the sign and magnitude of D and E depend on the details of the crystal

field.

The effect of a small single ion anisotropy on a quantum ground state is generally

to favour long range order. For example, in the 1D spin chain, the sublattice mag-

netization in the presence of a small anisotropy along the z-direction is restored

as (1/π) log [(1 + d)/d], where d = D/(4|J |).

Additional anisotropies may arise when the magnetic exchange between ions is switched

on. One example of particular importance is the Dzyaloshinskii-Moriya (DM) interac-

tion, which results from a process whereby two neighbouring atoms are simultaneously

excited by the exchange interaction, J , before being restored to their respective ground

states by the LS coupling. This process has an amplitude (λt2ij/∆U).

The Dzyaloshinskii-Moriya Hamiltonian is written:

9In fact, this is not always true when the exchange interaction, J , between ions is switched on. If
the spin orbit (LS) coupling excites an ion to an orbital state with nonzero L, the exchange interaction
will acquire an anisotropic component. This is called exchange anisotropy, and can be responsible for
shifts in the g-value of up to 10%.
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HDM = DijSi × Sj (2.31)

where Dij is the DM vector, and has components given according to Moriya’s rules

[Moriya (1960)]. The first, and most important, of these is that Dij = 0 if the bond

between the neighbouring atoms has inversion symmetry. The DM interaction has

been found responsible for the small canting of the ordered moment in materials like

La2CuO4
10 – this effect is called DM ferromagnetism. The influence of the DM interac-

tion on quantum ground states will be discussed in more detail in Chapter 5. Generally,

however, they lead to magnetic order.

2.3.2 Interchain and Interplane Couplings

The most common experimental testing grounds for the physics discussed so far are

crystalline solids. In order to realise a 1D or 2D model as a 3-dimensional crystal,

the magnetically interesting structural elements (be they chains, planes etc.) must be

separated in space. If this separation is imperfect, a residual interchain or interplane

interaction, usually denoted J ′, may be present.

Just like the aforementioned anisotropies, interchain/plane couplings also tend to in-

crease the tendency for long range order 11. Taking the example of the square lattice an-

tiferromagnet, the ordering temperature increases logarithmically as TN = (2.3J)/[2.43−
ln J ′/J ] when an interplane coupling is introduced.

2.3.3 Summing it all up

This chapter has hopefully provided an overview of the interesting physics which can

arise when ingredients like small S, small z, low dimensionality, and geometric frustra-

tion are combined within the confines of the Heisenberg model. The materials which

will be studied in this thesis all manifest some configuration of these variables, result-

ing in a range of novel physical properties. Chapter 4 will deal with two 1D titanate

systems, where one, KTi(SO4)2·(H2O), provides a rare example of a spontaneous VBS

on the frustrated chain lattice, and the other is described as a 1D algebraic liquid with

spinon excitations. Chapter 5 will mainly concern the kagome lattice antiferromagnets

volborthite and herbertsmithite, though mainly focussing on why these compounds

do not realise the exotic quantum ground states one expects. As a fitting coda to

10The end member of the famous La2−xSrxCuO4 family of supercondutors.
11One exception being when these are frustrated.
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this Chapter, these models are placed on a ”master“ phase diagram for the S = 1/2

Heisenberg model, shown below.

Figure 2.10: Schematic phase diagram for an S = 1/2 antiferromagnetic Heisenberg

model with respect to frustration, z, and D. The yellow region indicates where long

range order breaks down and is replaced by a quantum ground state. The shade of red

roughly reflects the size of δS, the reduction in the sublattice magnetization. The trian-

gle represents the frustrated chain lattice model manifested experimentally in the mate-

rial KTi(SO4)2·(H2O), while the circle and square indicate the kagome [Cu3V2O7(OH)2 ·
2(H2O) and Cu3Zn(OH)6Cl2] and chain lattices [KTi(SO4)2], respectively.





Chapter 3

Experimental Methods: From

Design to Synthesis to

Measurements

In the last chapter, the ingredients which lead to novel quantum ground

states in spin models were identified. This chapter will focus on how to

realise these models experimentally, and how to measure the properties of

the resulting materials.

3.1 Sources of Model Magnets

“What would the properties of materials be if we could really arrange the
atoms the way we want them?”
– Richard Feynman [Feynman (1960)]

A major obstacle to advancing our understanding of quantum phenomena in the solid

state is a dearth of suitable model materials. This lack may be easily understood if

one reflects on the long list of conditions which must be fulfilled for such phenomena

to occur. First, a suitable source of spin, in terms of both correct value of S and spin

symmetry (Ising, XY , or Heisenberg), must be identified – this is typically a transition

metal ion or organic radical. Second, these must be arranged into secondary units,

like chains or planes, of the desired geometry and connectivity (e.g. kagome, square

lattice). Third, a three-dimensional structure must be constructed from these units,

minimising unwanted interactions between them. Additional considerations such as

disorder and anisotropies are also to be accounted for. Creating a new quantum magnet,

33
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in other words, is far from an easy taskF Fortunately, this process may sometimes be

circumvented, as the work of preceding chemists and nature have proven rich sources

of model magnets.

• Previously Synthesised Structures – The scientific literature contains count-

less examples of magnetic materials, many of which were not necessarily synthe-

sised from the perspective of realising a magnetic model. These form a vast source

of potential realisations, which until now has been far from exhausted. Examples

of materials originally discovered in this way are shown in chapters 5 and 6.

If a realisation cannot be directly found in the literature, it is often possible

to modify an existing structure to achieve the desired result. For example, a

common approach for synthesising transition metal oxide or halide based magnets

is substitution of ions in an existing structure (such as pyrochlore, perovskite etc.),

since these are often robust and behave predictably, and because the synthesis is

relatively straightforward. This approach, while having yielded dozens of much

studied magnetic compounds, will not be discussed here, as it is not of direct

relevance to the forthcoming chapters.

• Minerals – Some more exotic geometries, such as the kagome lattice, have thus

far proven elusive to the efforts of synthetic chemists. Interestingly, an espe-

cially rich vein of frustrated magnets has been found among minerals, and “data

mining” of mineral databases has yielded many much studied materials, such

as jarosites, herbertsmithite, volborthite, vesignieite, tapiolite, yavapaiite, and

beyond magnetism, the skutterudites. Such materials are often synthesised hy-

drothermally, as these reaction conditions closely emulate those in the upper crust

of the earth, where most minerals are formed.

3.2 Crystal Engineering

Should neither nature or literature yield the desired realisation, an a priori approach

to synthesising new model magnets must be used. While exact prediction of the final

crystal structure of a material from the chemical constituents present in the reaction

mixture is currently impossible (if not, there would be a lot of unemployed chemists),

there nonetheless exist several means by which the general architecture of a material

can be influenced: these strategies are often referred to as crystal engineering, after

Schmidt [Schmidt (1971)].

In organic chemistry, the revolution brought about by retrosynthetic analysis in the
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Figure 3.1: Examples of combinations of spin source (black) with bridging ligand (red).

1980’s allowed for the synthesis of a number of complex molecules which until then

were inaccessible by less rational routes [Corey and Cheng (1995)]. Retrosynthetic

analysis involves sequentially breaking the desired molecule into small virtual building

blocks called synthons. These virtual objects are then converted into commercially

available synthetic equivalents by considering the polarisation at the site of connection

with respect to the closest polar functional group. Using this strategy, complex com-

pounds such as natural products may be prepared with relative ease. The concept of

retrosynthetic analysis can be borrowed for the purposes of crystal engineering, where

the final crystal structure substitutes for the target molecule, and the synthons can be

ions, molecules, or even supramolecular objects [Moulton and Zaworotko (2001)]. In

the case of the type of magnetic materials we are concerned with, the synthons may be

grouped into three categories:

• Sources of spin – Usually, charged first row transition metal ions are used as

the source of spin, though organic radicals can also fulfill this role. Examples

of the latter include the TTF (TTF = tetrathiafulvalene) molecule in the fa-

mous Bechgaard salts [Jerome et al. (1980)] and the family of κ−BEDT-TTF2X

(BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, X is a monovalent anion,

typically a Cu complex) [Taniguchi et al. (2003)], materials. In the present work,

the sources of spin used will be the metal ions Ti3+ and Cu2+, both which provide

S = 1/2.

• Bridging groups – In order to generate a magnetic lattice, the metal ions must

be connected to each other by a bridging group capable of mediating superex-

change. This role can be fulfilled by anything from an oxygen atom (Chapter 5)

to sulfate ions (Chapter 4) to organic molecules.

• Spacers – As established in the previous chapter, quantum phenomena are en-

hanced in low dimensions. As a result, it is desirable to separate the 1D or 2D

magnetic networks with spacers in a 3D crystal. Counterions or solvent may
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fulfill this role (for instance, K+ in Chapter 4), as may neutral co-ligands.

Whereas only polarisation at the site of connection needs to be considered for organic

synthons, the “supramolecular” synthons are considerably more complex:

• Charge – As the spin source is usually a charged species, charged bridging groups

and spacers must also be used. The charge degree of freedom can thus be ex-

ploited in the design of a material - for example, if a ligand which does not fully

compensate the charge of the spin source is selected, counter ions can be included

to play the role of spacers between the structural elements.

• Symmetry – The preferred local symmetry of the transition metal ion combined

with the symmetry and possible binding modes of the ligand will give all the

possibilities for the networks which can be formed from these two species. For

example, if the spin source is a transition metal ion favouring octahedral coor-

dination, and the ligand is effectively linear, with a binding site at each end,

structures such as chains, square lattices, and cubic lattices are favoured. Figure

3.1 summarises some lattices which can be formed from combinations of transition

metal ions and bridging ligands.

• Noncovalent Bonding – When the ligand or spacer is organic, or contains

hydrogen, it is able to participate in forms of bonding that purely ionic synthons

cannot. Two particularly useful types of interaction that can be exploited in

crystal engineering are π-stacking and H-bonding.

It is clear that when dealing with such complex objects, structure prediction is unre-

alistic. Nevertheless, by a combination of luck, trial and error, and a bit of design,

new and interesting structures may be realised. In this work, one such structure,

KTi(SO4)2·(H2O), is reported in Chapter 4.

3.2.1 Hydrothermal Inorganic Synthesis

The types of material we would like to apply the above principles to are generally

inorganic metal hydrates, and our preferred method is hydrothermal synthesis. This

method involves heating the reagents in aqueous solution to temperatures between

100◦C to 250◦C inside a teflon-lined steel vessel. The combination of high temperature

and high pressure with the aqueous environment emulate the conditions encountered in

the upper crust of the earth. Thus, hydrothermal synthesis has proven a particularly

successful route to synthesising minerals, and indeed, all the materials studied in this

thesis have naturally occuring analogues.
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Due to the high temperature and pressures generated, and because the reaction is per-

formed in one step in a sealed vessel, there are not many junctures at which the outcome

of the reaction can be controlled. The most important element of design in hydrother-

mal syntheses is thus the choice of the spin source, bridging groups, and spacers. In

Chapter 4, the combination of the Td symmetric SO2−
4 group, the octahedral Ti3+ ion,

and the K+ spacer yields a low dimensional frustrated structure. Slight tweaking of

the conditions gives the anhydrous analogue, which consists of 2D triangular planes

(although the physics turn out to be one dimensional).

3.3 Experimental Techniques

Measuring classical long range order is usually rather straightforward – the order pa-

rameter, sublattice magnetization, is directly proportional to several experimentally

measurable quantities. For example, ordering in a simple antiferromagnet is detectable

by a kink in the magnetization at TN , appearance of Bragg peaks at positions corre-

sponding to the ordering wavevector in magnetic neutron scattering, and oscillations

in muon spin relaxation (µSR). The order parameters of the quantum ground states

discussed in Chapter 2 are more complicated, however, and often several experimental

techniques must be applied to unambiguously assign a ground state. Some of the tech-

niques in the toolbox of the experimental physicist and the pieces of the puzzle they

can contribute are summarised in table 3.1.

Detailed discussion of experimental techniques in this work will be limited to neutron

scattering techniques.

3.3.1 Neutron Scattering

One of the most powerful experimental techniques in modern solid state physics is neu-

tron scattering, due to its exceptional 1 sensitivity to both atomic and magnetic struc-

ture and dynamics. While the formalism of neutron scattering is relatively straight-

forward, it is nonetheless somewhat lengthy to derive (and is besides well covered in

[Squires (1978)], [Furrer et al. (2009)]). Therefore, only the basic results of the types

of cross section which result, respectively, from nuclear, magnetic, spin incoherent,

and isotope incoherent scattering from a crystalline solid will be given. The starting

1Though new X-ray techniques such as magnetic resonant X-ray scattering (MRXS) and resonant
inelastic X-ray scattering (RIXS) are challenging this monopoly.
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Technique Measured Quantity Extent Timescale

Magnetization 〈M〉 bulk large

d.c. Susceptibility χ bulk large

a.c. Susceptibility χ′(ν), χ”(ν) bulk ∼ ν

Specific heat n(E)mag bulk large

NMR χloc local O(10−6)s

ESR χloc local O(10−6)s

µSR Mloc local O(10−9)s

Elastic neutron scatt. F (Q) bulk O(10−12)s

Inelastic neutron scatt. χ”(Q) bulk O(10−12)s

MXRS F (Q) bulk 10−15 s

RIXS Complex bulk 10−15 s

Table 3.1: Some common modern measurement techniques. Only scattering techniques

are able to yield spatially resolved quantities.

point, as usual, is Fermi’s golden rule, which can be re-expressed as a neutron partial

differential cross section as follows:

d2σ

dΩdEf
=
kf
ki

( m

2π~2

)2 ∑

λf ,σf

∑

λi,σi

pλipσi

∣

∣

∣
〈kf , σf , λf |Û(R)|ki, σi, λi〉

∣

∣

∣

2

× δ(~ω + Eλi − Eλf
) (3.1)

where ki and kf are the wavevectors of the incoming and outgoing neutron, respectively,

σi and σf are the corresponding neutron spin states, and λi,f represent the initial and

final state of the system. Û is the operator which describes the interaction between the

neutron and the system. d2σ
dΩdEf

is the probability of scattering a neutron into a solid

angle element Ω with an energy Ef . By replacing the δ-function with its integral form,

and simplifying the matrix element, the above expression can be rewritten in a more

convenient form:

d2σ

dΩdω
=
kf
ki

( m

2π~2

)2 1

2π~

∫

dt e−iωt
〈

Û(k, 0)Û(k, t)
〉

(3.2)

We will now consider the types of cross section which result for the processes listed

above.
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3.3.1.1 Nuclear Scattering

Of the two types of scattering event commonly encountered in condensed matter, the

first we will discuss is nuclear scattering. As this interaction is mediated by the weak

nuclear force, which is much shorter in range than the neutron wavelength, the scat-

tering potential may be approximated as originating from a point object:

Û(r) =
2π~2

m

∑

R

bRδ(r−RR) (3.3)

where bR is the nuclear scattering length (equivalent to the scattering power) and RR

is the position of the Rth atom. Rewriting this potential in Fourier space gives:

Û(q) =
2π~2

m

∑

RbRe
−iq·R (3.4)

Evaluating the matrix element then yields:

〈

Û(k, 0)Û(k, t)
〉

=

(

2π~2

m

)2
∑

R,R′

bRbR′

〈

eik·(R(t)−R′(0))
〉

(3.5)

The amplitude of bR is determined by both the internal structure of the nucleus and

the orientation of the nuclear spin, and as a result varies greatly across the periodic

table. Assuming a scattering system containing a large number of atoms of type β, the

global variation of bR can be expressed as a distribution
∑

f(bR) = 1, which reflects

both the possible orientations of the nuclear spin and random population of isotopes of

β. The mean of the distribution is then bR =
∑

bRf(bR). Recalling that the equation

3.5 applies to pairs of atoms, the scattering lengths bRbR′ are replaced with the mean

bRbR′ which is (b)2 when R 6= R′ and b2 when R = R′. The sum may thus be broken

into two components:

∑

R,R′

bRbR′AR,R′ =
∑

R 6=R′

(b)2AR,R′ +
∑

R=R′

b2AR,R′

=
∑

R,R′

(b)2AR,R′ +
∑

R

b2 − (b)2AR,R′ (3.6)

where AR,R′ =
〈

eik·(R(t)−R′(0))
〉

. The first term in this equation, corresponding to

scattering from different (and same) atoms at different times, is the coherent contri-

bution to the cross section. It is this part which gives rise to interference effects which
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can yield structural information. The second term, corresponding to scattering from

the same atom at different times, is called the incoherent part, and does not contain

any structural information. The coherent and incoherent cross sections are written out

explicitly as follows:

(

dσ

dΩdEf

)

coh

=
kf
ki

1

2π~

∫

dt e−iωt
∑

R,R′

(b)2
〈

eik·(R(t)−R′(0))
〉

(3.7)

(

dσ

dΩdEf

)
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kf
ki

1

2π~

∫

dt e−iωt
∑

R

(

b2 − (b)2
)〈

eik·(R(t)−R′(0))
〉

(3.8)

3.3.1.2 Magnetic Scattering

The operator describing the interaction between a neutron and a magnetic field H is

written:

Û = −γµN σ̂ ·H (3.9)

where σ̂ are the Pauli matrixes. In the case where the field is generated by an unpaired

electron, H is written:

H = ▽×
(

µe ×R

|R|3
)

− eve ×R

c|R|3 (3.10)

where R is the distance between the electron and the point at which H is measured,

and µe = 2µBS is the electron spin operator. The two terms in the expression above

represent the fields due to the spin and orbital angular momenta, respectively. Sub-

stituting this potential into the master equation for the partial differential scattering

cross section, and assuming a spin-only contribution to H, the expression which results

is:

d2σ

dΩdE′
=
kf
ki
N(γr0)

2
∣

∣

∣

g

2
f(Q)

∣

∣

∣

2∑

α,β

(δαβ − Q̂αQ̂β)S
αβ(Q, ω) (3.11)

where Q is the scattering vector, defined as the difference between the incoming and

outgoing neutron wavevectors ki − kf . f(Q) is the so-called form factor, and results

from the Fourier transform of the real space spin-density distribution: the larger the

spatial extent of the electron cloud, the more sharply f(Q) drops off. For a d-block

ion like Cu2+, the scattering cross section is reduced to 50% of its Q = 0 value within

Q = 4 Å−1, whereas for a 4f element, where the orbitals are rather contracted, the

form factor falls off more slowly, and the scattering is only halved at Q ∼ 8 Å−1.

δαβ − Q̂αQ̂β is the polarisation factor, which implies that neutrons can only couple to
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the magnetization perpendicular to the the scattering vector Q. Multiplying out the

leading constants in the expressions for nuclear and magnetic scattering, it turns out

that both are of the order r0, implying that neutrons are approximately equally likely

to scatter from a nucleus as from an electron. This highlights one advantage of neutron

scattering over X-ray techniques, where the magnetic cross section is dwarfed by the

structural by almost 5 orders of magnitude.

The physics of the system is contained within the scattering function (often also called

the dynamical structure factor), S(Q, ω), which contains the Fourier transform of the

space and time dependent spin-spin correlation function:

Sαβ(Q, ω) =
1

2π~

∫

∑

R,R′

eiωt−iQ·(R−R′) 〈Sα
R(t)S

β
R′(0)〉 (3.12)

where Sα,β are the α, β = x, y, z components of the spin operators at the positions

Rj,j′ . Considering only the elastic scattering, that is, scattering arising at infinite time,

the correlation function above reduces to the expectation values of the spin operators,

〈Sα〉 and 〈Sβ〉. For elastic scattering from a magnetically ordered system, the above

expression is replaced by the elastic (sometimes also referred to as static) structure

factor:

Sz(τ) = 〈Sz〉 f(τ)
∑

d

σde
iτ ·d (3.13)

where d is a vector specifying the position of an atom in the unit cell and τ is a magnetic

Bragg vector.

3.3.1.3 Powder Averaging

For many materials, it is impractical to grow crystals of a sufficient size for single

crystal experiments. As a result, powder samples are often measured instead: the

resulting powder averaged cross section is proportional to the spherical integral of

S(Q, ω), defined as follows:

S(Q,ω) =
1

4π

∫

dψ sin θdθS([Q sin θ cosψ,Q sin θ sinψ,Q cos θ], ω) (3.14)

The above operation is not reversible (except in specific circumstances), and therefore

usually entails a significant loss of information, particularly in the case of inelastic data,

where scattering is distributed over a broad range of Q and ω.
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3.3.2 Neutron Polarisation and xyz Polarisation Analysis

The presence of a polarisation dependent term in the magnetic cross section hints that

the spin of the neutron can be used as yet another probe of the system under study,

in addition to the neutron momentum and energy. To see what information can be

extracted from it, it is necessary to revisit the polarisation dependence of the various

cross sections shown above.

As the neutron is an S = 1/2 particle, its eigenstates may be represented in the usual

manner: |↑〉 and |↓〉. Considering all the scattering processes discussed previously

(nuclear, isotope incoherent, spin incoherent, and magnetic), and recalling the rule that

the neutron is only sensitive to components of the magnetization, M , perpendicular to

Q, the matrix elements for spin flip and non-spin flip scattering events may be written

down as follows:

〈↑|Û |↓〉 = B(Ix + iIy)−
γnr0
2µB

(Mx + iMy)

〈↓|Û |↑〉 = B(Ix − iIy)−
γnr0
2µB

(Mx − iMy) (3.15)

〈↑|Û |↑〉 = b+
γnr0
2µB

Mz −BIz

〈↓|Û |↓〉 = b− γnr0
2µB

Mz +BIz (3.16)

where B = b↑+b↓

2I+1 , b
↑ and b↓ are the cross sections for scattering events when the neutron

spin is respectively parallel or antiparallel to the nuclear spin, I is the nuclear spin,

and b is the average nuclear scattering length. Mx,y and Mz are the components of the

magnetization perpendicular and parallel to the neutron spin direction, respectively

[Stewart et al. (2009)],[Moon et al. (1969)].

Given a polarised beam and some means by which the spin flip and non spin flip

contributions to the cross section can be analysed, the neutron spin can thus be used as

a tool to separately probe different parts of the cross section. In the simple case of purely

magnetic scattering, for example, analysis of the polarisation allows for separation of the

scattering function, S(Q, ω), into its longitudinal [Szz(Q, ω)] and transverse [Sxx(Q, ω)

and Syy(Q, ω)] components.

In the more complicated situation where scattering from more than one process en-

ters the cross section, one way to completely separate all the contributions is three-

directional (xyz) polarisation [Scharpf and Capellman (1993)] analysis. The experi-

mental geometry required for application of this technique is shown in figure 3.2: the
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incoming beam is polarised in three orthogonal directions, x, y and z, and scattered

from the sample into a 2D detector lying in the xy plane. The angle formed between

Q and the direction of the polarisation is called α, the Schärpf angle. Finally, for each

polarisation, both spin-flip and non spin-flip cross sections are measured. The resulting

6 cross sections are written down as follows:
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The magnetic, nuclear, and isotope/spin incoherent cross sections can thus be separated

by rearranging the above system of equations. The magnetic cross section is written:
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The details of how to put this method into practice are given in the next section.

3.3.3 Neutron Instrumentation

An ideal neutron instrument would be able to probe both the atomic and magnetic

statics and dynamics of a sample (whether powder or single crystal), over a large

range in both Q and ω. In reality, of course, this is impossible, and therefore neutron

instruments are usually specialised for a narrower range of applications. In condensed

matter physics, the types of instruments used range from powder diffractometers and

single crystal diffractometers for elastic scattering, to triple axis spectrometers and time

of flight spectrometers for inelastic experiments.
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Figure 3.2: Scattering geometry for an xyz polarised experiment with a 2D detector array.

The three orthogonal polarisations of the neutron beam used are indicated by the red arrows,

α is the Schärpf angle.

Figure 3.3: Scattering geometry for a direct geometry time of flight spectrometer.

The main techniques used in this thesis are inelastic time of flight spectroscopy and

polarised diffuse scattering.

3.3.3.1 Inelastic Time of Flight Spectroscopy

Neutrons typically travel at velocities ranging between a few hundred to a few thousand

ms−1. Thus, given a flight path between the sample and the detector, L, on the order

of a few meters, the energy of neutrons scattered from the sample can be resolved by

counting the time they take to traverse L. Accomplishing this experimentally is far

from trivial, however, for one simple reason: as neutrons are typically detected by an

absorption process, they can not be detected both before and after they scatter from

the sample. How then do we count their flight time? The solution is to pulse the beam,

which fixes a well defined starting time for all the neutrons. This is achieved using a

chopper, a rapidly rotating disc with small slots to periodically allow the passage of

neutrons. Placing several choppers in series also allows for monochromatisation of the

beam (although this can also be achieved by a conventional monochromator).

If a monochromatic (constant ki) beam is used, the time of flight experiment must be

able to measure a broad range of wavevectors, kf , of the scattered neutrons (figure
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(a) An illustration of the IN4 spectrometer at the Institut Laue Langevin (ILL), Greno-

ble, France. The beam first passes through two background choppers, which eliminate

fast neutrons and gamma rays. It is then monochromated by a crystal monochromator

consisting of 55 pyrolitic graphite (PG) pieces, which also focus the beam on a spot of

dimension 2× 4 cm2. Pulses of 10 µs to 50 µs are finally achieved using a Fermi chopper,

rotating at up to 40000 rpm. The secondary spectrometer consists of a radial collimator

to reduce background from the sample environment, and a detector array of 3He tubes,

covering scattering angles from −6◦ to 120◦. There is an additional small angle position

sensitive detector, not used for the experiment detailed in Chapter 5. Figure taken from

http://www.ill.eu.

(b) The IN5 spectrometer at the ILL. The beam is pulsed and monochromated by a series of

choppers. These also eliminate frame overlap, which occurs when two pulses are detected

in the same timeframe. Beyond the sample position is a large evacuated box containing

collimation and detectors. IN5 has one of the largest detector arrays among modern time

of flight spectrometers, with 30 m2 of 3He filled position sensitive detectors (PSDs). Figure

taken from http://www.ill.eu.

Figure 3.4
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3.3). To this end, a large area detector array is thus usually employed. Combining the

monochromator/choppers with such an array, and placing the sample in between, the

result is a so-called direct geometry time of flight spectrometer. The three realizations

of such an instrument used in this thesis are the IN4 and IN5 spectrometers at the ILL

reactor source, and the MARI spectrometer on the ISIS pulsed source, the former two

of which are shown in figure 3.4. Their main characteristics are summarised in table

3.2.

IN4 IN5 MARI

Wavelength Range 2.2 Å- 3.6 Å PG(002) 1.8 Å- 20 Å 0.3 Å- 3 Å

λ, [Å−1] 1.1 Å- 1.8 Å PG(004) (cold) (thermal)

0.85 Å- 1.5 Å Cu(220)

(thermal)

ω Resolution 3− 6% 1− 2% 1− 2%

δEi/Ei

Flux on Sample ∼ 5× 105 ∼ 1× 106 ∼ 2× 103

n cm−2 s−1 (at 5 Å) (at 1 Å)

Detectors ∼ −3◦ − 120◦ −12◦ − 135◦ 3◦ − 134◦

3He tubes 3He PSD (30 m2) 3He tubes

PSD (small ∠)

Table 3.2: Main characteristics of the time of flight neutron scattering instruments used in

this work. The ω resolution is given as the Gaussian FWHM versus incident energy, and

is determined by the speed of the choppers, their precision, and the time resolution of the

electronics.

3.3.3.2 Polarised Diffuse Scattering

In order to put the principles of xyz polarisation analysis into practice, several things are

needed: a highly polarised neutron beam, a device capable of flipping its polarisation to

an arbitrary direction, and, finally, a means by which the polarisation can be measured.

The former is provided by either a polarising filter, such as a 3He cell, a supermirror, or

a polarising crystal, typically a Heusler alloy. The polarisation of the beam produced

by these is typically in the range of 70% for 3He spin filters to in excess of 90% for a

supermirror. This is preserved by using a guide field throughout

The second component, the spin flipper, must be able to adiabatically flip the beam

polarisation to an arbitrary direction with respect to the guide field. This can be
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Figure 3.5: The D7 instrument at the ILL. The neutrons are monochromated by a double

focusing graphite monochromator, then polarised by a Schärpf bender supermirror. The

beam is flipped into the required polarisation by a Mezei flipper. After scattering from the

sample, the neutrons are analysed using a set of supermirror analysers, and finally detected

in the 2D detector array, which covers nearly 150◦ in scattering angle (though slightly less

at the time of the experiments detailed in Chapter 5). Figure taken from http://www.ill.eu.

achieved using a so-called Mezei coil, a rectangular solenoid oriented at the desired

angle with respect to the guide field. Finally, the analysis of the outgoing beam after

scattering is performed by a supermirror, a multilayer of Ni and Co which reflects only

neutrons of a single polarisation.

The particular realisation of the polarised scattering experiment used during this thesis

is the D7 instrument operating on the high flux reactor at the Institut Laue Langevin

in Grenoble, France. It is one of only two such instruments worldwide (the other being

the DNS spectrometer located at FRMII in Germany). A schematic of its layout is

given in figure 3.5.





Chapter 4

Frustrated Low-Dimensional

Magnetism in Ti3+ Alums

In the quest for low dimensional, frustrated quantum magnets, the Ti3+ ion

(d1) has historically been somewhat overlooked as a source of S = 1/2 spins.

This is partly due to its tendency to oxidise to Ti4+, which is a complicating

factor in synthesis. Under hydrothermal conditions, this issue can be dealt

with by regulating the pH of the solution, which in this work has produced

one new material, the potassium alum KTi(SO4)2·H2O, and an improved

synthesis of its anhydrous analogue KTi(SO4)2. This chapter will show that

KTi(SO4)2·H2O is a realisation of the famous J1−J2 Heisenberg chain model,

and fits to magnetic susceptibility and specific heat data reveal that it may

be one of the first compounds in the dimerised regime of the phase diagram

defined by 0.2411 < J2/J1 < 1.8. Its anhydrous relative KTi(SO4)2, on the

other hand, is shown to be well described by a Heisenberg chain model with

frustrated interchain interactions. The details of the local crystal field are

found to be crucial in determining the magnetic properties of both.

4.1 Ti3+ as a Source of S = 1/2

Browsing through the literature on S = 1/2 model magnets, it is impossible not to

notice that by far the most common source of spin is the Cu2+ ion. The reasons for

this are manyfold: the availability of a broad range of starting materials, the relative

stability of Cu2+ in a variety of chemical environments, the quenched orbital moment

in a cubic crystal field (resulting in Heisenberg spins), and finally the Jahn-Teller in-

49
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stability, which can reduce the dimensionality of the magnetic lattice. In other words,

Cu2+ based systems are both easy to make and relatively simple in terms of their sin-

gle ion physics. As a result, however, other sources of S = 1/2 have remained rather

underexplored. The Ti3+ ion is seemingly the simplest among these, possessing only 1

d electron, but yields surprisingly rich single ion physics (as we shall see).

In a cubic crystal field, the 2D free ion term of the Ti3+ ion is split into a low lying

triplet of t2g states, consisting of the dxy, dxz and dyz orbitals, separated from the

upper eg doublet (dx2−y2 and dz2) by a gap ∆o proportional to the magnitude of the

crystal field. The lone d electron occupies the lower lying set of t2g orbitals, resulting

in a triply degenerate 2T orbital ground state. One consequence of the remaining

degeneracy in the ground state, as discussed in Chapter 2, is that the orbital angular

momentum is not entirely quenched, and can be represented using a p orbital basis

with the signs reversed. In the absence of any further perturbations, the ground state

is thus a Kramers doublet with both 〈L〉 = 0 and 〈S〉 = 0.

This contradicts experimental observations, which indicate that the Ti3+ ion usually

has a finite (albeit often strongly reduced and anisotropic) moment. To explain this,

perturbations beyond the cubic crystal field must be considered. Some logical candi-

dates for these include both lower symmetry crystal fields and Jahn Teller coupling.

Taking the simplest case and considering only the influence of a tetragonal field of

magnitude ∆tet, the single ion Hamiltonian can be diagonalised to yield the dependence

of the g−tensor on ∆tet. For positive sign of ∆tet, that is, favouring a slight compression

of the octahedron along a C4 axis, the degeneracy of the t2g levels is broken, and the

ground state is an orbital singlet with L = 0. This is reflected in the powder averaged

gav = (g⊥ +2g||)/3 increasing rapidly with increasing ∆tet as the LS coupling becomes

less efficient at mixing in higher lying orbital states. For the opposite sign, that is, when

the octahedron is elongated along the C4 axis, the orbital ground state is a nonmagnetic

doublet, as in the unperturbed case (figure 4.2).

An early experimental example of the d1 ion in the presence of low symmetry fields

is the series of doped alums of formula A[Al:Ti](SO4)2 · 12H2O, where A is an alkali

metal cation. These materials were widely studied from the early 1930’s and onwards as

models for the then fledgling crystal field theory, and were chosen due to their isolated

metal polyhedra. A key finding of this work, represented in table 4.1, is the variation

of the g-tensor with the magnitude of the small orthorhombic component (see figure

4.1) of the crystal field [Dionne and MacKinno (1968)] – the larger this component, the

smaller the reduction of and asymmetry in g.
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Figure 4.1: Energy level structure of Ti3+ in an orthorhombic crystal field.

Figure 4.2: Variation of the g−factor with distortion in a trigonal field assuming λ =

200cm−1 (slightly greater than the experimentally measured λ ∼ 150 cm−1 for Ti3+).

Alum gx gy gz δ1 (cm−1) δ2 (cm−1)

CsTi(SO4)2 · 12H2O 1.25 1.14 1.14 ? ?

Cs[Al:Ti](SO4)2 · 12H2O 1.241 0.931 0.931 -500 -500

Rb[Al:Ti](SO4)2 · 12H2O 1.895 1.715 1.767 1070 1310

Tl[Al:Ti](SO4)2 · 12H2O 1.938 1.790 1.834 1462 1483

K[Al:Ti](SO4)2 · 12H2O 1.875 1.828 1.897 1780 2947

Table 4.1: g-tensor and crystal field splittings for a range of pure and doped Ti-based alums.
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In the following two sections of this chapter, we will discuss two materials, which be-

long to the more general family of alums, of general formula AB(SO4)2.xH2O. The

first, KTi(SO4)2.H2O (x = 1) has been prepared for the first time using a hydrother-

mal method, and characterised by a variety of techniques which show it to be a new

realisation of the frustrated Heisenberg chain model in the dimerised regime of the

phase diagram [Nilsen et al. (2008)]. Its anhydrous analogue, KTi(SO4)2 (x = 0),

is the subject of the second part of the chapter. Despite initial expectations that

KTi(SO4)2 was a realisation of the S = 1/2 anisotropic triangular lattice antiferromag-

net, neutron scattering and other studies shows the physics to be describable as quasi

one dimensional.

4.2 KTi(SO4)2(H2O), a New Realisation of the Frustrated Chain

Model

4.2.1 Synthesis and Crystal Structure

The combination of a monovalent cation, A, a trivalent d-block ion, B, and the tetrahe-

dral SO2−
4 ion in hydrothermal conditions has produced a range of frustrated materials

in the past, including the jarosite family AB3(SO4)2(OH)6 of kagome antiferromagnets

[Wills (1996)]. The Td symmetry of the SO2−
4 group naturally leads to frustrated con-

nectivities, and the presence of a counterion in the form of A+ often leads to reduced

dimensionality.

KTi(SO4)2·(H2O) was first prepared in an exploration of the A=K, B=Ti system.

K2SO4, Ti2(SO4)3, and H2SO4 were combined in the molar ratio 2 : 7 : 15 under

stirring in aqueous solution. The mixture was placed inside a PTFE lined bomb, which

was then heated to 155◦C for 48 hours. It was then cooled slowly (10 K h−1) to room

temperature, yielding small (∼ 0.1mm3) bluish purple crystals of average size 0.1 mm3,

in addition to large quantities of amorphous impurity. Subsequent optimisation of

the synthesis identified glass as a superior surface for crystal nucleation, resulting in

less of the impurity phase, and higher reliability of product formation. Despite these

attempts, the synthesis remains unpredictable, with a total number of only 7 successes

in approximately 140 attempts, suggesting that KTi(SO4)2·(H2O)may be a metastable

phase. Further details on the synthesis are given in Appendix A.

A crystal of dimensions 0.19 × 0.15 × 0.08 mm3 was selected for single-crystal diffrac-

tion (details of the refinement and crystal structure are also found in Appendix A).

KTi(SO4)2·(H2O) was thus found to crystallize in the monoclinic P21/m space group,
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Atoms Length Atoms Angle

Ti–O(1) 2.051(4) Å O(1)-Ti-O(2) 175.3(1)◦

Ti–O(2) 2.029(5) Å O(2)-Ti-O(3) 91.9(1)◦

Ti–O(3) 1.999(3) Å O(3)-Ti-O(3) 88.0(1)◦

Ti–O(4) 2.054(3) Å O(4)-Ti-O(4) 90.5(1)◦

Ti–Ti(H) 5.256(4) Å

Ti–Ti(D) 4.928(2) Å

Table 4.2: Selected bond lengths and angles for KTi(SO4)2·(H2O). H and D indicate

horizontal (along the b direction) and diagonal distances within the frustrated ladders,

respectively (see also figure 4.3).

with lattice parameters a = 7.6492(3) Å, b = 5.2580(2) Å, c = 9.0485(3) Å, and

β = 101.742(2)◦. The structure is isomorphous with that of the naturally occur-

ring mineral Krausite (KFe(SO4)2·H2O) [Graeber et al. (1965)] and consists of double

chains of Ti octahedra, connected by SO2−
4 groups along the b axis (figure 4.3). The

pairs of chains are separated in the a direction by K+ ions and in the c direction by

interpenetrating H2O molecules bound to apices of the octahedra (figure 4.4). The

magnetic ions are connected in an edge sharing triangular motif, with diagonal sep-

arations of 4.93Å and horizontal separations of 5.26Å. Superexchange is expected to

be mediated by the SO2−
4 groups, which doubly bridge both nearest and next-nearest

neighbor pairs of magnetic ions. The distances between the chains in the a and c di-

rections are 7.60Å and 5.87Å, respectively, suggesting that any magnetic exchange in

KTi(SO4)2·(H2O) should be essentially confined to the chains.

Locally, the TiO6 octahedra are slightly triclinically distorted, with bond lengths and

angles as shown in table 4.2 and figure 4.5. Assignment of the magnetically active

orbital is not straightforward from geometrical considerations.

4.2.2 Magnetic Susceptibility

Magnetic susceptibility measurements were carried out on KTi(SO4)2·(H2O)down to

1.8K in fields ranging from 0.01 T to 5 T on a polycrystalline sample of KTi(SO4)2·(H2O)

using a Quantum Design MPMS2 SQUID magnetometer. As there was no strong field

dependence in the range measured, only the 0.01 T data are shown in figure 4.6.

At high temperature (> 50K), the curve is well described by the usual Curie-Weiss

expression χ = C/(T − θ), where C is the Curie constant, ∼ µ2eff/8 in c.g.s. units,

and θ is the Weiss constant. Values of µeff = 1.557(3)µB (i.e. geff = 1.80) and
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Figure 4.3: The crystal structure of KTi(SO4)2·(H2O)viewed approximately along the a

direction. The TiO6 octahedra are indicated in blue, SO4 tetrahedra in yellow, and O2−

and H atoms in red and pink, respectively. K+ ions have been left out for clarity. The double

chains of SO4-bridged TiO6 octahedra described in the text run along the b direction, and

are separated along the c direction by the apical water molecules of the TiO6 octahedra. The

frustrated chain lattice is superimposed on the crystal structure, with J1 and J2 represented

by solid and dotted lines, respectively.

Figure 4.4: The crystal structure of KTi(SO4)2·(H2O)viewed along the b−axis. The chains

are separated by K+ along the a direction.
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Figure 4.5: The TiO6 octahedron.
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Figure 4.6: (left) The molar magnetic susceptibility of KTi(SO4)2·(H2O) with Curie-Weiss

fit indicated in red. (right) The low temperature part of χm, showing the broad bump at

4.5 K. An attempted fit to the S = 1/2 Heisenberg chain model shows that the peak can

not be described within the confines of this model.

θ = −9.8(7)K, (i.e. weak antiferromagnetic coupling) were found. The presence of

amorphous impurity, which contains diamagnetic Ti4+, means that the value for µeff

should be treated as a lower bound.

When the temperature is lowered, a broad maximum in the susceptibility characteristic

of short-range correlations along the magnetic chains is observed around T = 4.5K. No

signs of long-range ordering are observed down to the lowest temperature, confirming

that the interchain coupling is weak. Assuming either the horizontal or diagonal cou-

pling (see figure 4.3) is dominant, the simplest possible microscopic model to describe

the system is the antiferromagnetic S = 1/2 Heisenberg chain (QHC), given by the

Hamiltonian:

H = J
∑

i,i+1

Si · Si+1 (4.1)
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Clearly, from the fit (figure 4.6), the 1D chain cannot reproduce either the peak position

or shape, highlighting the probable influence of the other exchange. The Hamiltonian

which results upon its inclusion is:

H = J1

N
∑

n

Sn · Sn+1 + J2

N
∑

n

Sn · Sn+2 (4.2)

where J1 and J2 are the antiferromagnetic nearest neighbour and next-nearest neigh-

bour exchange parameters (see figure 4.3), respectively, and α = J2/J1 may be defined

as a measure of the frustration. This model is known by a number of names, including

the zigzag chain model, the nearest neighbour chain model, and the frustrated chain

model (FCM). Henceforth, we shall use the last convention.

4.2.3 Phase Diagram of the Frustrated Chain Model

D = 1, z = 4, S = 1/2, frustrated

One of the few Heisenberg models for which an exact solution exists is the Majumdar-

Ghosh chain [Majumdar and Ghosh (1969a)],[Majumdar and Ghosh (1969b)]. This

is a special case of the FCM with frustration parameter α = J2/J1 = 1/2. The two

degenerate VBC ground states of this model correspond to dimer coverings of the

lattice, and can be represented as follows:

|Ψ〉1 = . . .⊗ |2, 3〉 ⊗ |4, 5〉 . . .⊗ |n, n+ 1〉 (4.3)

|Ψ〉2 = . . .⊗ |1, 2〉 ⊗ |3, 4〉 . . .⊗ |n− 1, n〉 (4.4)

where |n, n+ 1〉 denotes a dimer on a nearest neighbour bond. The correlation function

in this state is extremely short ranged, with 〈Si · Sj〉 = 0 for j > i+1, and the gap from

the ground state to the first excited triplet is ∆ = J/10 [White and Affleck (1996)].

When α is reduced from αMG = 1/2, the system remains spontaneously dimerised

down to a critical αc = 0.2411 [Haldane (1982)],[Okamoto and Nomura (1992)], with

the gap decreasing exponentially before vanishing at αc. The ground state is no longer

exact, however, and the ζ increases rapidly. Below αc the ground state is an algebraic

spin liquid, as for the unfrustrated 1D chain.

If α is increased beyond αMG, the gap first reaches a maximum at α ∼ 0.6 [White and

Affleck (1996)], before slowly decreasing and vanishing at α ∼ 4 [Kumar et al. (2010)].

Simultaneously, the correlation length increases from ζ ∼ rnn and the correlations
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Figure 4.7: The zero temperature phase diagram of the FCM using the angular parametri-

sation indicated on the axis labels. α = tan ζ. The yellow region indicates the frustrated

part of the phase diagram, which has the substructure described in the text.

become incommensurate [Somma and Aligia (2001)], as expected from the classical

model, which posesses a spiral ground state in this region of the phase diagram. The

incommensurate spiral state persists as the sign of J1 is changed from AFM to FM.

A number of experimental realisations exist in this quadrant of the phase diagram,

compared to only two, CuGeO3, with α = 0.4 [Hase et al. (1993)], and (N2H5)CuCl3,

with α = 0.25 [Hagiwara et al. (2001)],[Maeshima et al. (2003)], in the AFM-AFM

quadrant of the zero temperature phase diagram 4.7.

4.2.4 Specific Heat and Numerics

To complement the magnetic susceptibility data, specific heat was measured in the

temperature range 480mK to 300K. The data again show a broad feature at around

T = 3K (figure 4.8) corresponding to the point at which the maximum overlap between

buildup of short-range correlations (and hence the magnetic density of states) and ther-

mal population of available states is achieved. Also, as in the magnetic susceptibility,

no anomalies or other indications of long-range order are observed down to the lowest

measured temperature. The full curve was fitted for T < 50K using the expression

Cp,tot = Cp,mag + Cp,phonon, where Cp,mag is the magnetic specific heat of the chains,

and Cp,phonon was approximated using a power series in odd powers of T up to order

T 7. Again, the S = 1/2 Heisenberg chain curve fails to capture the main features of

the peak.

Because no analytical expression exists for the thermodynamic quantities of the FCM,

numerical approaches must be called on to fit the experimental curves. Two approaches

were chosen: a 10th order high temperature series expansion (HTSE) supplemented by

Padé approximants [Buhler et al. (2000)], and exact diagonalisations (ED) of finite



58 Chapter 4. Frustrated Low-Dimensional Magnetism in Ti3+ Alums

chains. For the former approach, the themodynamic quantities are written as follows:

χ =
1

T

∑

n,k

an,kα
k(βJ)n (4.5)

Cp,mag =
∑

n,k

an,kα
k(βJ)n (4.6)

where β = 1/T and the expansion coefficients an,k are summarised in [Buhler et al.

(2000)],[Buhler et al. (2001)]. The region of validity of the expansion was extended

in T to approximately J/5 by calculation of the Padé approximants up to the [5, 5]

approximant using a numerical quotient-difference algorithm continued fraction method

[McCabe (1983)]. Exact diagonalisation was performed for chain lengths up to N = 18

with periodic boundary conditions using the ALPS libraries [Albuquerque et al. (2007)].

Thermodynamic quantities were obtained from the fulldiag evaluate program. The fits

of the experimental data to the calculated χ and Cp curves are shown in figure 4.8.

Excellent correspondence between experiment and calculation is found for two sets of

parameters, summarised in the following tables:

Small α

α J1 [K] J2 [K] gav

ED 0.29(2) 9.5(1) 2.8(1) 1.80(1)

HTSE+[5,5] Padé 0.29(2) 9.5(1) 2.8(1) 1.80(1)

Large α

α J1 [K] J2 [K] gav

ED 1.48(2) 5.4(2) 8.0(2) 1.80(1)

HTSE+[5,5] Padé 1.46(2) 5.4(2) 7.9(2) 1.80(1)

Both of the above solutions imply that J1 and J2 are antiferromagnetic, and furthermore

that the system is to be found in the gapped, dimerised region of the phase diagram.

While the behaviour at T ∼ O(J) for the two models are similar, the gaps of the

two states, as implied above, differ. Based on density matrix renormalisation group

(DMRG) calculations by White et. al. [White and Affleck (1996)], a vanishing gap

< J/20 is implied for the former, whilst the latter possesses a large gap of approximate

magnitude J1/5 ∼ 1 K. In the T range measured, it is however difficult to distinguish

between the two, as ∆ < Tmin = 1.8 K for both scenarios. No clear anomalies are seen

in the Cp measurements, which extend to lower temperatures Tmin = 0.35 K, implying

a gap, but this should not be taken as conclusive evidence of α < 1.
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Figure 4.8: (top) The magnetic susceptibility (left) and magnetic specific heat (right) of

KTi(SO4)2·(H2O), measured down to 1.8 K and 350 mK, respectively. The ED results

for large and small α solutions are indicated by solid lines. The maximum temperatures

shown for χ and Cp correspond to approximately 4θ and 2θ, respectively. The small bump

observed at ∼ 1 K in the Cp data for large α is a finite size effect. (below) HTSE+Padé

approximant results, as above. The rapid drop at low T in the large α fit to Cp, indicates

an overestimation of the spin gap, ∆, in the HTSE.

4.2.5 Electronic Structure

In order to help distinguish between the two scenarios proposed above, as well as to

gain insight into the mechanism involved in the selection of the active orbital, ab −
initio calculations using the local density approximation (LDA), LDA with an on-

site repulsion term, U , (L(S)DA+U), and tight binding models were performed by D.

Kasinathan and H. Rosner.

The non-magnetic part of the band structure for U = 0 (i.e. neglecting correlations) is

shown in figure 4.9: the lowest lying band belongs to the dxz orbital, and is separated

from the dxy and dyz bands by gaps of approximately 0.15 eV and 0.25 eV, respectively.

Due to the small size of the gap, it is not straightforward to unambiguously determine

the magnetically active orbital without also considering the effect of correlations.
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Figure 4.9: (left) The electronic band structure states of KTi(SO4)2·(H2O) calculated

in the local density approximation. The bands disperse along the Γ − Y and X − M

directions in the Brillouin zone, corresponding to the direction of the chains in the crystal

structure. The gaps between the centre of lowest lying dxz band and the centers of the dxy

and dyz bands are about 0.15 eV and 0.25 eV. The double lines represent the upper and

lower bounds of the band. The metallic solution is an artefact of the LDA method. Figure

courtesy of D. Kasinathan. (right) The Wannier function of the ground state dxz orbital.

The ab plane is highlighted by a dotted grey line, whilst the TiO6 octahedron is indicated by

solid lines. When the hopping integrals resulting from this orbital arrangement are mapped

onto a Heisenberg model, J2 > J1, thus apparently favouring the large α scenario.
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The U > 0 problem was treated by two different methods: In the first, a tight binding

model was constructed for each t2g orbital using the bands calculated in LDA. Solving

this model for the hopping integrals t, and effective on-site repulsions, Ueff , then

mapping onto a Heisenberg model using JTB = 4t2/Ueff , it was found that an occupied

dxy orbital would give an α = 2.78, far greater than either of the scenarios proposed

in the previous section. Furthermore, the calculated J ’s are almost two orders of

magnitude larger than the experimental values. The same calculation for the dxz and

dyz orbital yields more reasonable α values of 0.38 and 0.57, roughly consistent with the

low α scenario, as well as plausible J values of J1 = 31 K, J2 = 11.8 K, and J1 = 19 K,

J2 = 11 K, respectively.

The second approach, involving an extension of the LDA calculation to include U and

spin, also point towards dxz being the magnetically active orbital. Populating each

band with only up spins, the energy cost is 350 meV higher for the dyz orbital versus

the dxz and much higher for the dyz, implying that the that dxz has the lowest magnetic

energy in the ground state. The calculated value of α for dxz is found to be greater

than one for all physically plausible values of U , supporting the large α scenario.

4.2.6 What is the Gap?

The electronic structure calculations appear to favour the large α solution of the two

possibilities proposed above. To confirm this, we performed additional ac susceptibility

measurements on KTi(SO4)2·(H2O) in the temperature range 100 mK to 1.5 K, with

the aim of observing gap, ∆. All measurements were carried out with an excitation

field of 1000 Hz. In the absence of an applied magnetic field, the real component of

the susceptibility, χ′, is found to almost vanish as T approaches zero, with only a small

upturn from S = 1/2 paramagnetic defects remaining (figure 4.10).

This component complicates the analysis of the data, and thus the H = 0.3 T tem-

perature scan, where the paramagnetic component is saturated, is selected for further

analysis. Below a kink at Tk = 0.65 K, the curve is found to follow an exponential

decay, consistent with the opening of a gap of magnitude ∆ = 1.05(5)K. The mag-

netic field dependence of M =
∫

χ′dH at 90 mK tells a similar story (4.10): as field is

applied, there is a small initial rise which can be ascribed to saturation of the defect

contribution. This is followed by a rapid increase of M at H ∼ 0.8 T, caused by a

crossover into a magnetic state. The gap obtained by linear extrapolation of the crit-

ical field, Hc = 0.9, is ∆ = gµBSHc = 1.0(1) K, with g = 1.9. This is consistent with

that determined from the temperature scans. Interestingly, Tk remains nearly constant
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Figure 4.10: (left) Scans of the real component of the susceptibility, χ′, versus T measured

at multiple applied fields between H = 0 T and H = 1.5 T. (right) Scans of χ′ versus T

measured at fields of H = 0 T and H = 0.3 T. The curves exhibit a kink at approximately

Tk = 0.65 K with a subsequent exponential decay of χ′ as T → 0. The higher value of χ′

at low temperatures for the H = 0 T curve is due to the presence of paramagnetic defects,

which are saturated at H = 0.3 T. The gap extracted from an exponential fit to the low

T part of the curve is ∆ = 1.05(5) K. (inset) An H scan of M =
∫

χ′dH measured at

90 mK. The gap is estimated to be approximately 1 K from a linear extrapolation of M at

H > gµbSHcs.

until its disappearance at 0.8 T.

The gap value ∆ ∼ J1/5 = 1.05(5) K almost exactly corresponds to the prediction

from the DMRG results of White and Affleck [White and Affleck (1996)] for large α,

namely ∆ = J1/5 = 1.1 K. More recently, another suggestion on the size of ∆ was

produced by a modified DMRG approach [Kumar et al. (2010)]. An exponential fit to

the α dependence of ∆ yields the following:

∆/J2 = 3e−2.94/α−2/3
(4.7)

Entering J2 = 8.0 K into this expression, an approximate ∆ = 0.06J2 = 0.5 K is ex-

tracted. While too small by a factor of two compared with the experimentally measured

∆, agreement is nonetheless still better for the large α scenario.

A third independent verification of the validity of the large α solution was achieved by

performing high field magnetisation measurements at the Dresden High Magnetic Field

Laboratory – these experiments were carried out by A. Tsirlin and D. Kasinathan. The

magnetisation isotherm measured at 1.8 K in pulsed fields up to 22 T is shown in figure

4.11. Again, comparison of ED results for the two with experiment yield excellent
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Figure 4.11: Magnetization of KTi(SO4)2·(H2O) measured at 1.8 K in fields up to 20 T.

The dotted lines represent ED calculations for N = 20 performed by O. Janson.

agreement for α ∼ 1.5. The slight upturn at H > 18 T is an experimental artefact.

4.3 Quasi-1D Magnetism in Titanium Yavapaiite

During the attempts to optimise the synthesis of KTi(SO4)2·(H2O), a light blue Ti-

containing phase was often found to result instead of the target material. This myste-

rious phase was identified by X-ray diffraction to be the anhydrous end member of the

titanium alum family, KTi(SO4)2 (x = 0). Unlike KTi(SO4)2·(H2O), KTi(SO4)2 is

not a new material – its structural and magnetic properties were first reported in 1996

by Bramwell et. al. [Bramwell et al. (1996)], who identified it as a possible realisation

of the Ising model on an anisotropic triangular lattice. Our magnetic susceptibility

and neutron scattering support a different interpretation, instead indicating that the

system is best described as a one-dimensional Heisenberg chain. This difference is a

consequence of the improved sample purity yielded by our preparation method.

4.3.1 Synthesis and Structure

The literature synthesis of KTi(SO4)2 requires vacuum dehydration of a stoichiometric

solution of K2SO4 and Ti2(SO4)3, then several cycles of regrinding and annealing at

350◦ C [Bramwell et al. (1996)]. Our method is radically different, rather resembling
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Figure 4.12: The structure of KTi(SO4)2viewed along the c axis. Only the Ti(SO4)2 planes

are shown, with the K+ ions left out for clarity. The TiO6 octahedra are coloured light

blue, while SO4 tetrahedra are yellow. Each Ti3+ ion is linked with its six neighbouring

ions by two SO2−
4 bridges, a similar bridging motif as in KTi(SO4)2·(H2O). The anisotropic

triangular lattice is superimposed on the structure, with the solid lines representing J , and

dotted lines J ′. The distances corresponding to these are 5.15 Åand 4.85 Å, respectively.

that used for KTi(SO4)2·(H2O): experimental details are given in Appendix A. The

synthesis of KTi(SO4)2 is significantly more robust than that of KTi(SO4)2·(H2O),

indicating that the latter is perhaps only a metastable state, with KTi(SO4)2 being

the global thermodynamic minimum in much the region of phase space explored.

The crystal structure of KTi(SO4)2 is found by both powder and single crystal diffrac-

tion to be consistent with that reported by Bramwell et. al. [Bramwell et al. (1996)].

The space group is monoclinic C2/m, with lattice parameters a = 8.28 Å, b = 5.22 Å,

c = 7.84 Å, and β = 94◦ (further details are given in Appendix A). Structurally,

KTi(SO4)2 consists of TiO6 octahedra bridged by SO4 groups to form slightly dis-

torted 2D triangular layers (figure 4.12). These are separated along the c direction by

K+ ions, yielding an interplanar distance of 7.94 Å(figure 4.13). The bridging motif

within the planes in KTi(SO4)2 is rather similar to that seen in KTi(SO4)2·(H2O),

and indeed the structures can be related by a simple transformation: starting from the

structure of KTi(SO4)2·(H2O), the hydrogen atoms are removed from the apical H2O

molecule. Then, the double chains are squeezed together along the c direction to form

triangular planes. Crucially, the TiO6 octahedra become tetragonally distorted during

this transformation, with axial and equatorial Ti-O distances of 1.95 Åand 2.00 Å,

respectively.
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Figure 4.13: The stacking of the Ti(SO4)2 planes in KTi(SO4)2: the separation of two

Ti3+ ions on adjacent planes is 7.94 Å. The colour scheme of the previous figure is adopted

for the Ti(SO4)2 planes, with K+ ions indicated in purple.

4.3.2 Magnetic Susceptibility

The magnetic susceptibility of KTi(SO4)2 was originally reported in the study of

Bramwell et. al.. The temperature dependence of χ shows a shoulder around 7− 9 K,

with a large Curie tail at lower temperatures (figure 4.14). The µeff and θ extracted

from the high temperature region were found to be 1.39 µB and −10.2(1) K, the former

well short of the spin only value of 1.73 µB. This reduction was ascribed to coupling

to an unquenched orbital moment of effective l = −1, yielding an Ising anisotropy

in addition to the diminished moment. Magnetic data on samples synthesised by our

method are found to tell a rather different story. A plot of χ versus T measured in a

SQUID magnetometer at 100 Oe for a representative sample is shown in figure 4.14.

Fitting the high temperature part of the susceptibility to the Curie-Weiss law, χ =

C/(T − θ), yields parameters of µeff = 1.69µB and θ = −20 K. The former is rather

close to the spin only value 1.73 µB, in contradiction with previous results. The lat-

ter is weakly antiferromagnetic, and roughly compatible with the values observed for

KTi(SO4)2·(H2O). No order is observed down to the lowest T measured, 1.8 K.

The essentially spin-only moment extracted from the Curie-Weiss fit is easily explained

by considering the influence of the crystal field on the orbital ground state of the Ti3+

ion. As shown at the beginning of this chapter, a tetragonal crystal field potential of

positive sign (i.e. the octahedron is compressed along the unique axis) results in an

orbital singlet ground state with L = 0 and S = 1/2. As the distortion is substantial,

it is expected that the splitting between the ground state and the doubly degenerate

excited state is likewise large, making the restoration of orbital moment due to LS

coupling negligible.
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Figure 4.14: (left) Magnetic susceptibility of a sample prepared by the new hydrothermal

method. The Curie tail has nearly been eliminated, and a clear peak is observed at 10 K.

The Curie-Weiss fit is indicated by a solid black line, while the fit to the ED data for the

QHC model is represented by a solid red line. (right) The magnetic susceptibility of a sample

synthesised using the literature method and measured using the Faraday method compared

with the magnetic susceptibility of a new sample prepared hydrothermally, plotted versus

reduced temperature Tr = JkB/[|J |S(S+1)]. The large upturn at low temperature in the

literature sample is a Curie tail associated with presence of paramagnetic defects. These

are almost entirely absent in the sample prepared by the new hydrothermal method. The

red curve again denotes the fit to ED data for the QHC model. Literature curve adapted

from Bramwell et. al. [Bramwell et al. (1996)].
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Figure 4.15: (left) The collinear antiferromagnetic (CAF) state predicted in the ATHA for

J >> J ′ by the renormalization group field theoretical approach of Starykh et. al. [Starykh

and Balents (2007)]. (right) The calculated S(Q, ω) within a slightly more general model

where an additional interchain exchange is allowed. Deviations from the purely 1D spinon

spectrum are seen due to interactions between spinons “living” on neighbouring chains: in

the spectrum on the left, the δ function at ω = 0 arises due to formation of triplon bound

states, whereas the spectrum on the right shows redistribution of intensity to ω = π/2 from

repulsion of spinons [Kohno et al. (2007)].

The ground state wavefunction selected by the crystal field is of the dxy type, resulting

in the unpaired electron effectively lying in the bc plane. As such, the exchange is

expected to be strongest along the b direction, where the overlap between the dxy and

O 2p orbitals is largest. Along the a direction, there is no direct overlap of these

wavefunctions, and exchange along this direction can only occur assuming some mixing

in of higher orbital states through the LS coupling.

Judging by the plausible orbital structure, the magnetic susceptibility may thus be

described as arising due to 1D chains of S = 1/2 Heisenberg spins along the b direction,

the Hamiltonian of which is:

H = J
∑

i,i+1

Si · Si+1 (4.8)

Fits to exact diagonalisation results for this simple model indeed yield a good fit in the

full temperature range measured, with fitted parameters of J = 15.4 K, and g = 1.96.

4.3.3 The Anisotropic Triangular Lattice Model

Even though the fit to χ versus T yielded by the simple quantum Heisenberg chain

model (QHC) is almost perfect, it should not be taken for granted that the interchain

coupling, J ′, is negligible. Indeed, the inclusion of such an interaction can subtly

affect the ground state in ways which are not necessarily manifested in the thermo-
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dynamic quantities. This was found to be the case for the distorted triangular lattice

antiferromagnet Cs2CuCl4 [Coldea et al. (1997)], where neutron scattering indicated a

considerable interchain exchange J ′ = 0.34J , despite an almost perfect correspondence

between theoretical results for the QHC and thermodynamic data.

The Hamiltonian including the interchain interactions may be written as follows:

H = J
∑

i,i+1∈n

Si · Si+1 + J ′
N
∑

〈i∈n,j∈n±1〉

Si · Sj (4.9)

where the former sum runs over the chains, whilst the latter describes the interchain

interactions – this model is known as the anistropic triangular lattice Heisenberg an-

tiferromagnet (ATHA). By varying the ratio of J ′/J , the ATHA interpolates between

the square lattice in the limit J ′/J → ∞, the triangular lattice for J ′/J = 1, to the

chain lattice for J ′/J → 0. Though J ′ may be non-negligible in KTi(SO4)2, it is still

expected to be small. Thus, we find ourselves most interested in the chain limit of the

ATHA.

Starting from isolated chains and switching on J ′ within the classical ATHA, the angle

between nearest neighbouring spins along the chains begins to deviate from π, forming

a spiral along the J direction. The relationship between the pitch angle of the spiral φ,

and the relative magnitudes of J ′ and J is φ = 2arcsin [J ′/(2J)] [Coldea et al. (2003)].

In the quantum ATHA model, the presence of a finite J ′ is much less efficient at

inducing order than in the unfrustrated case. Indeed, the energy scale for ordering is

(J ′)4/J3 [Starykh and Balents (2007)]. Neither does J ′ induce a canting of the spins,

as expected from the classical result. This effect is due to the stabilisation of collinear

structures (figure 4.15) by quantum fluctuations: A renormalisation group analysis of

the perturbing J ′ interaction in the framework of the critical Wess-Zumino-Novikov-

Witten (WZNW) conformal field theory shows that the collinear structure is stable up

to a large critical (J ′/J)c = 0.63. While the quantum renormalization of pitch angle

ensures that the dispersion remains identical at low J ′, the effect of the increasingly

2D nature of the system makes itself felt through the distribution of spectral weight

in (Q,ω) space. For example, δ function anomalies are found to arise at ω = 0 due to

formation of a so-called triplon state from two spinons on adjacent chains [Kohno et al.

(2007)] (figure 4.15).
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Figure 4.16: Temperature dependence of the lattice parameters a, b, c scaled to their room

temperature values. A large contraction of a and c is observed cooling from room temper-

ature to 1.8K.

4.3.4 Elastic and Inelastic Neutron Scattering

In order to gain a greater insight into the presumed microscopic model behind the

magnetism of KTi(SO4)2, both elastic and inelastic neutron scattering investigations

were performed.

4.3.4.1 Elastic Powder Diffraction

Neutron diffraction was performed on the D1B instrument at the Institut Laue Langevin

with the kind assistance of C. Ritter. Spectra were measured at 4 temperatures: 1.8 K,

4.0 K, 150 K and 300 K. As expected from the magnetic susceptibility data, no magnetic

order is found down to the lowest temperatures measured. Neither do any structural

transitions occur. Rietveld refinement of the data reveals two features, however: the

first is the presence of an impurity phase determined to be the rutile phase of TiO2.

This material, however, is diamagnetic, and does not affect either χ (beyond a small

diamagnetic background), nor the later inelastic scattering experiments.

The second observation is that the refined lattice parameters exhibit a strong T -

dependence, with the a and c parameters decreasing by respectively 0.5 and 1 percent

versus the room temperature structure, and the b parameter (corresponding to the di-

rection of the chains) slightly increasing (figure 4.16). The softness of the lattice in the

a direction versus the b direction implies occupation of the dxy orbital.
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4.3.4.2 Inelastic Scattering: Temperature Dependence

The excitation spectrum of KTi(SO4)2 was measured using the inelastic time of flight

method on the IN5 spectrometer at the Institut Laue Langevin. Approximately 12 g

of powder from several batches, all of which had been characterised by XRD and

magnetic susceptibility prior to combination, were loaded into a Cu can which was

mounted on the end of a dilution refrigerator. Spectra were measured at several wave-

lengths and temperatures: 4.4 Å (0.05, 1.5, 3.0, 5.0, 7.0, 10.0K), 5 Å(0.05, 1.0, 1.8 K),

7 Å(0.05, 1.3, 1.8, 5.0 K), and 8.5 Å(0.05, 1.3 K).

First, we consider the temperature dependence of the background subtracted dynami-

cal scattering function S(Q,ω) measured at the shortest wavelength, 4.4 Å(figure 4.17).

S(Q,ω) at 10 K reveals two prominent branches of scattering, one strong, the other

weaker, originating at Q = 0.35Å−1. The weaker branch disperses linearly with ω, with

an approximate slope of 6 meV/Å−1. The stronger remains at low ω, with pronounced

maxima at Q = 0.5 Å−1, ω = 0.8 meV and Q = 0.65 Å−1, ω = 1 meV. Investigation of

background spectra and data taken at other wavelengths reveal these two to be artifacts

due to scattering from the sample environment, enhanced by multiple scattering pro-

cesses involving the sample and its surroundings. As a result, background subtraction

does not yield a clean spectrum.

In addition to the spurious features, a broad continuum of magnetic scattering is visible

between 0.4 Å−1 < Q < 1.5 Å−1 and from ∼ 1 meV up to 2.5 meV. As T is reduced,

the intensity of this continuum increases, particularly between 0.5 Å−1 < Q < 0.8 Å−1,

and it acquires a peak at a constant ω = 2.2 meV for all Q. Below 5 K, spectral

weight is observed to move from the continuum to the 2.2 meV peak. Simultaneously,

the continuum takes on the approximate form of a sinusoidal dispersion emerging from

Q ∼ 0.6 Å−1, with a bandwidth equal to the energy of the flat band.

Moving to longer wavelengths, the magnetic response of the system can be more clearly

resolved from the background scattering, as the latter shifts to lower Q. At 0.05 K and

5 Å (figure 4.18), the dispersive feature is largely unaffected at ω > 0.2 meV, whilst

the peak only intersects the spurious scattering at Q = 0.5 Å−1. The sinusoidal form of

the dispersion is confirmed, and intensity is observed to be concentrated on the branch

dispersing upwards in Q. Data taken at 7 Å (figure 4.18) and 8.5 Å finally reveal that

the dispersion is gapless, and allow for a more accurate determination of the position

at which is reaches zero energy as Q = 0.6 Å.
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Figure 4.17: The temperature dependence of S(Q,ω) for KTi(SO4)2. The boundaries of

the two-spinon continuum, ω2,l and ω2,u are indicated by white lines in the top left panel.
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Figure 4.18: (left) S(Q,ω) at 5 Å−1 measured at 0.05 K. The solid line represents the

lower bound of the two-spinon continuum, ω2,l, as discussed in the text. (right) As left, for

7 Å. The flat feature at approximately 0.12 meV is spurious.

4.3.4.3 Analysis of Inelastic Spectra

From the structure of the material, as well as the magnetic susceptibility, the 1D chain

Heisenberg antiferromagnet is a logical starting point for the analysis. The earliest work

on the excitation spectrum of 1D S = 1/2 Heisenberg antiferromagnet was perfomed by

des Cloizeaux and Pearson [des Cloizeaux and Pearson (1962)], who found the spinon

(S = 1/2) dispersion relation to be:

ω =
πJ

2
| sin (Q)| (4.10)

Of course, neutron scattering is only sensitive to processes with ∆S = ±1 and it is thus

the 2-spinon continuum which is the quantity of interest. This continuum has upper

and lower bounds as follows:

ω ≥ ω2,l =
πJ

2
| sin (Q)| (4.11)

ω ≤ ω2,u = πJ | sin
(

Q

2

)

| (4.12)

where ω2,l and ω2,u are the upper and lower bounds, respectively.

Using the value of J extracted from the fit to the magnetic susceptibility, good agree-

ment between the position of the two-spinon continuum and the experimental data is

achieved assuming a two dimensional propagation vector q = (0, 1/2) (figure 4.18). De-

spite the two dimensionality, the incommensuration along b expected from semi-classical

spin wave theory is not observed. This may be a result of the well known effect whereby

quantum fluctuations select commensurate wavevectors in frustrated low dimensional
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Figure 4.19: The T -dependence of the constant-ω anomaly at 2.2 meV. (inset) The T -

dependence of the peak intensity. The apparent divergence of this quantity is interpreted

as evidence for the 1D nature of the system.

systems. For example, in the 1D frustrated chain compound LiCuVO4 [Enderle et al.

(2005)], the experimentally observed helical order has a far greater pitch angle α ∼ π/2

than expected classically.

In order to extract more detailed information on the applicability of the 1D Heisenberg

model to KTi(SO4)2, the dynamical structure factor must be considered in more depth.

The two-spinon S(Q,ω) has recently been derived exactly from the XXZ limit by J.-S.

Caux [Caux et al. (2008)], yielding the expression:

S(Q,ω)2 =
1

2

e−I(ρ(Q,ω))

√

ω2
2,u(Q)− ω2

Θ(ω2,u(Q)− ω)Θ(ω − ω2,l(Q)) (4.13)

where Θ is the Heaviside step function, and I(ρ) and ρ are given as follows:

cosh (πρ(Q,ω)) =

√

√

√

√

ω2
2,u − ω2

2,l

ω2 − ω2
2,l

(4.14)

I(ρ) =

∫ ∞

0
dt
et

t

cosh (2t) cos (4ρt)− 1

cosh (t) sinh (2t)
(4.15)

Powder averaging of the result, usually a tedious and computationally demanding task

for systems of D ≥ 2, is greatly simplified in D = 1, reducing to a simple polar integral

as follows:
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Figure 4.20: (left) The experimental S(Q,ω) measured at 5 Å. (right) The theoretical

result as calculated in the text.
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Figure 4.21: As above for 7 Å.

S(Q, ω)p =
1

Q

∫ 1

−1
d(cos θ)

∫ 2π

0
dψ

S(qx, ω)

4π

=
1

Q

∫ 1

0
d(cos θ)S(Q′, ω)

=
1

Q

∫ Q

0
dQ′S(Q′, ω) (4.16)

where Q′ = Q cos θ. Finally, the powder averaged cross section was convoluted with a

Gaussian instrumental resolution determined by fitting the Q-width of several Bragg

peaks, as well as the ω incoherent background for each wavelength. Qualitative agree-

ment between calculation and experimental is at first sight very good (figures 4.20 and

4.21). The sharp, flat feature at ωp = 2.2 meV seems to be an artefact of powder

averaging a one dimensional dispersion. It is in this respect similar to the van Hove
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Figure 4.22: Fits of selected cuts through S(Q,ω) at 4.4 Å as described in the text. A

cut through a high background region is indicated on the left, with a cleaner cut shown on

the right.
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Figure 4.23: Fits of selected cuts through S(Q,ω) at 5 Å as described in the text. A

typical cut through a region of low multiple scattering and background is shown on the

right, whereas a multiple scattering affected cut is shown on the left.

singularities observed in the electronic density of states of low dimensional conductors.

Several ω and Q cuts of the experimental S(Q,ω) were fitted to the theoretical result

scaled by an amplitude, A, which was kept constant for all the cuts. The only free

parameter in each fit was thus a small, flat background, which turns out to be fairly

uniform. The results of this procedure are shown in figures 4.22 and 4.23. At small

ω, and at ωp, where the scattering is comparatively strong, the intensity extends much

further in Q than is the case for the theoretically predicted cross section. As a large

sample was used, this is at least partially due to multiple scattering. The fact that the

data are better described by theory in regions where the scattering is weaker supports

this interpretations.
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As discussed in Chapter 2, the critical temperature of the 1D Heisenberg chain model

is zero. As such, a number of experimentally measureable quantities of the system are

anticipated to diverge logarithmically as T → 0. Using the bosonization approach, this

has been shown to be the case for the ω = 0 scattering function S(Q, 0), which scales as

S(Q, 0) ∼ (1/T )
√

ln Λ/T , where Λ = 24.27 is a constant [Kokalj and Prelovsek (2009)].

The exact details of the finite temperature scaling at ω > 0 are less well established, but

recent DMRG studies [Barthel et al. (2009)] indicate that a similar dependence should

be expected for the peak amplitude along the lower bound of the spinon continuum.

Returning to the 4.4 Å data, the temperature dependence of the peak feature should

crudely reflect this tendency. Indeed, the peak amplitude does appear to diverge as

T → 0 (figure 4.19).

4.3.5 Conclusions

A new synthetic route to titanium yavapaiite, KTi(SO4)2, has been discovered and

optimised to yield samples of unsurpassed quality. Fitting of the high temperature

region of the magnetic susceptibility to the Curie-Weiss law indicates that the spin

symmetry is Heisenberg, rather than Ising-like, as previously suggested [Bramwell et al.

(1996)]. The entirety of the susceptibility curve is well described by the theoretical

result for the 1D Heisenberg chain, as calculated from exact diagonalisations of chains

up to 18 spins. This result can be understood to arise as a consequence of the tetragonal

distortion of the TiO6 octahedra, which selects dxy as the active orbital. Hence, the

only effective superexchange pathway is along the b direction, with couplings along a

arising only at higher order. The distortion also accounts for the large and symmetric

moment observed in the magnetic susceptibility.

Elastic neutron scattering data support the orbital ordering hypothesis by indicating

that the a and c lattice parameters strongly contract as T is reduced, with b remain-

ing constant. The inelastic neutron scattering spectra are well described by an exact

S(Q,ω) derived for the QHC using the Bethe ansatz, despite prominent background

features, powder averaging, and multiple scattering. Furthermore, these measurements

hint at coherence between the chains based on the position of the antiferromagnetic

zone centre, which is only consistent with a collinear antiferromagnetic ordering vector

q = (0, 1/2). Such behaviour has been predicted from a renormalisation group anal-

ysis of a perturbing interchain interaction within the WZNW conformal field theory

[Starykh and Balents (2007)].

One particular areas of interest for future work is to determine to what extent the
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spectrum is affected by the presence of the interchain interaction, J ′.





Chapter 5

S = 1/2 Kagome Antiferromagnets:

Volborthite and Herbertsmithite

D = 2, z = 4, S = 1/2, frustrated

The S = 1/2 Heisenberg model on the kagome lattice is one of the most

extreme combinations of the ingredients of quantum magnetism, namely

low dimensionality, low connectivity, and frustration, and hence also one of

the strongest candidates for displaying quantum ground states. This chapter

will discuss the mystery of the ground state of the quantum kagome model,

and how experiments on two systems, volborthite and herbertsmithite, have

attempted to solve it. While they ultimately fail to do so, much novel

physics is nonetheless uncovered.

5.1 The Classical Kagome Antiferromagnet

Kagome, a basket weaving pattern named after the Japanese kanji for “eye” and “bas-

ket”, describes a two-dimensional Archimedean lattice of corner sharing triangles, as

shown in figure 5.1 [Syozi (1951)].

When the vertices of the kagome lattice are populated with classical spins, the ground

state is macroscopically degenerate (see Chapter 2). This classical degeneracy is demon-

strated by the fact that Hamiltonian may be rewritten entirely in terms of a local

constraint:

79
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Figure 5.1: The kagome lattice. When populated with classical Heisenberg spins, the

geometry of the lattice leads to macroscopic degeneracy. Order by disorder mechanisms

select the ground states with the highest density of soft modes, one of which is shown on

the right, where the spins are arranged in a so called staggered chirality of
√
3×

√
3 order.

H =
∑

〈i,j〉

~Si · ~Si =
J

2

∑

△

|~L|2 + c (5.1)

where the sum runs over all triangles, and ~L is the total spin on a triangular plaquette

~L = ~S1 + ~S2 + ~S3. A ground state is thus any of an infinite number of configurations

where ~L = 0 is locally satisfied. Thermal fluctuations select coplanar states from the

ground state manifold, but the degree of freedom associated with the chirality on each

triangle remains. As a result of this, the ground state is still extensively degenerate.

Higher order spin wave theory and classical Monte Carlo (CMC) however indicate

that the degeneracy is at least partly broken, and that correlations tend towards a

pattern of staggered chiralities on adjacent triangles known as q =
√
3×

√
3 order. The

q =
√
3 ×

√
3 pattern is favoured due to the especially high density of soft modes in

this state. These manifest themselves as free rotations of spins within a hexagon about

the axis of the spins bounding the hexagon.

In light of these results, it may come as somewhat of a surprise that most realisations

of the classical kagome antiferromagnet (CKHAF) order in a 120◦ pattern with uni-

form chirality, the so-called q = 0 order (see figure 5.2). How can this experimental

fact be reconciled with the theoretical predictions? Of course, moving from theory to

experimental realisation, a number of additional terms enter the Hamiltonian as per-

turbations. By lifting the macroscopic degeneracy of the ground state, these usually

result in magnetically ordered ground states. Two examples of perturbations which

result in long range order are DM interactions and next nearest neighbour couplings:



5.2. The S = 1/2 (Quantum) Kagome Antiferromagnet 81

applying an infinitesimally small Dz, the CKHAF classically orders in the q = 0 order

at finite temperature [Elhajal et al. (2002)]. Antiferromagnetic next nearest neighbour

couplings, on the other hand, restore q =
√
3×

√
3 order [Harris et al. (1992)].

5.2 The S = 1/2 (Quantum) Kagome Antiferromagnet

What happens to the ground state of the Heisenberg kagome antiferromagnet when

the spin length is reduced from S = ∞ to S = 1/2? Will quantum fluctuations

select static order, as was the case for the triangular lattice in a magnetic field? The

answer, at least within linear spin wave theory, is no. For any ordered ground state

on the kagome lattice, LSWT yields a completely flat band at ω = 0, which ends

up destroying the classical order parameter. As for what replaces the classical ground

state, the theoretical consensus appears to be converging towards a 36-sublattice valence

bond crystal (VBC). This section will discuss the properties of this state as well as

some of its experimental signatures, in addition to highlighting what happens when

perturbations such as anisotropies (single ion or Dzyaloshinskii-Moriya (DM)), presence

of vacancies on the lattice, or reduction of lattice symmetry are included into the

Heisenberg Hamiltonian. The influence of these perturbations will prove crucial to

understanding the experimental results presented in coming sections.

5.2.1 Ground State and Excitations

The quantum kagome Heisenberg antiferromagnet (QKHAF) first rose to prominence in

the late 1980’s, when both linear spin wave theory and large-N (Schwinger boson) mean

field theory were found to imply a breakdown of classical order for small spin [Sachdev

(1992)]. Later, it was indicated that order from disorder effects at higher order in spin

wave theory select q =
√
3×

√
3 long range order. This prediction was refuted soon after

through an analysis of the low energy spectra of clusters up to 36 spins [Waldtmann

et al. (1998)],[Zeng and Elser (1995)]. No easily identifiable quasi-degenererate joint

states (see Chapter 2) are present in the spectrum, and furthermore, the gap between

the lowest states in the S = 0 and S = 1 sectors contains an exponentially large

number of singlets, scaling with system size as ∼ 1.15N , a feature not seen in classical

antiferromagnets (figure 5.3). In addition, the spin-spin, quadrupolar, octupolar, and

dimer-dimer correlations all fall off extremely rapidly, only extending as far as next-

nearest neighbours [Chalker and Eastmond (1992)].

Another important piece of evidence which can be extracted from the numerical data
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Figure 5.2: Some classically ordered patterns on the kagome lattice. (top left and centre)

The q =
√
3 ×

√
3 and q = 0 orders proposed for the pure kagome lattice. The latter of

these is favoured in the case of finite Dzyaloshinskii-Moriya or single ion anisotropies. (top

right) The chirality stripe (CS) state suggested for the spatially anisotropic kagome lattice,

with α = J ′
1/J1 > 1.3. (bottom left) Octahedral order induced by a further neighbour

interaction J3 ∼ J1. (bottom right) Helical order proposed for J1 − J ′
1 − J2 model, where

J2 and J ′
1 are antiferromagnetic, and J1 is ferromagnetic.
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Figure 5.3: (left) The singlet and triplet density of states as calculated from exact diagonal-

isation. The gap between the lowest singlet and lowest triplet is filled with a high density of

singlet states, 244 in the case of the N = 36. Adapted from Waldtmann et. al. (right) The

36-site VBC state originially proposed by Zeng and Elser. P marks pinwheel configurations

and D defect triangles, that is, triangles which lack a valence bond.

concerns the spin gap, ∆ = Emag(S = 1) − Emin(S = 0), between the lowest S = 1

excitation and the lowest lying S = 0 state. In an ordered antiferromagnet, ∆ vanishes

as ∼ 1/N2, revealing the appearance of the Goldstone mode as N → ∞. A 1/N2

extrapolation of ∆ shows that this is not the case for the QKHAF, however – a small

gap of ∼ 0.05J remains in the thermodynamic limit. While controversial for several

years due to its small size, the presence of a gap has been verified more recently by

DMRG calculations, which specify its value to be ∆ = 0.055J ± 0.005 [Jiang et al.

(2008)].

As the spin correlations are extremely short ranged and the ground state gapped, it is

natural to turn to a nearest neighbour dimer state (whether a fluctuating RVB or static

VBC) as a possible ground state for the QKHAF. This possibility was first proposed as

early as 1991 by Marston and Zeng [Marston and Zeng (1991)] and developed by Zeng

and Elser [Zeng and Elser (1995)] within the quantum dimer model. The ground state

of this model is expressed as as a product of nearest neighbour dimers, |D〉 =∏i,j [ij],

where [ij] is a nearest neighbour dimer.

Treating the hopping of these objects in the same way as the hopping of electrons in

the Hubbard model, all singlet coverings of the lattice are found to be degenerate up

to 2nd order in t. At this level, the configurations which contain a maximal number

of so-called pinwheels are selected by the fluctuations [Singh and Huse (2007)]. This

favours the 36-sublattice VBC ground state shown in figure 5.3. The energy of this

configuration is −0.438377J , consistent with that extrapolated from ED results.

The spin-1 excitations associated with breaking a local singlet in the VBC are gapped
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Figure 5.4: Enhancement of local singlet correlations in the vicinity of a defect, from exact

diagonalisation studies by Dommange et. al.. The thicknesses of the bonds are proportional

to the pair correlation function 〈SiSj〉.

pairs of spinons called kink-antikink pairs [Hao and Tchernyshyov (2009)]. The an-

tikinks remain localized and are gapless, whilst kinks are mobile and have a gap of

0.218J . Another kind of spin-1 excitation arises at yet lower energies from exciting

defect triangles, that is, triangles which lack a singlet bond, which may be considered

a bound pair of antikinks. The gap corresponding to such an excitation is 0.06J , cor-

responding to the singlet-triplet gap observed in the ED results. The low ω (< J/2)

structure factor, S(Q), of antikink excitations was shown by Hao et. al. [Hao and Tch-

ernyshyov (2009)] to follow the nearest neighbour antiferromagnetic structure factor,

[1− sin (Qrnn)/(Qrnn)], where rnn is the nearest neighbour distance.

5.2.2 Defects, Anisotropies and Dzyaloshinkii-Moriya Interactions

Going from a simple theoretical model to experimental realisation usually also entails

inclusion of terms beyond the simple bilinear exchange term in the Heisenberg Hamilto-

nian. These terms may include single ion anisotropies, further neighbour interactions,

as well as the DM interaction. In addition, vacancies may be introduced. As it turns

out, these interactions have a crucial effect on the ground state of the QKHAF:

• Dzyaloshinksii-Moriya - As was the case for its classical analogue, DM interac-

tions induce long range order in the QKHAF. Whereas in the classical model, an

infinitesimally small Dz is sufficient to generate q = 0 order, in the quantum case,

order only occurs for |D|c > 0.1 [Cepas et al. (2008)]. The ordered and disordered

ground states are separated by a quantum phase transition. The magnitude of

the critical value Dc hints at a small spin gap protecting the ground state.

• Vacancies - Inevitably, a real crystalline material will contain defects. The



5.2. The S = 1/2 (Quantum) Kagome Antiferromagnet 85

easiest type of defect to treat theoretically is a point defect, such as a vacancy.

Dommange et. al. [Dommange et al. (2003)] considered small clusters of 27

spins, with one or two vacancies distributed among them. The most dramatic

effect of introducing a vacancy is a strong enhancement of the nearest neighbour

correlation function 〈SiSj〉 in the immediate vicinity of the vacancy (figure 5.4).

This effect may be understood to arise due to a local relief of frustration.

• Lattice Anisotropy - A large amount of work has also been carried out on the

spatially anisotropic kagome lattice antiferromagnet, particularly in the context

of the material volborthite, which will be the subject of the next section. This

model is described by the Hamiltonian:

H = J1
∑

[i,j]

Si · Sj + J ′
1

∑

〈i,k〉

Si · Sj (5.2)

where the former sum runs over spins lying along one axis, whilst the latter

couples spins on the chains with spins in between 5.2.

Classically, this model has a rather rich phase diagram: starting from the limit

J ′
1 >> J1, corresponding to a square lattice decorated with an additional spin

on each bond, the ground state is ferrimagnetic, with 2 spins up for each spin

down. At the point α = J ′
1/J1 = 2, the system crosses over into a spiral regime,

where the ground state becomes degenerate, with the local constraint to satisfy

being that the nearest neighbour spins along the unique direction are at angle, θ,

with respect to each other, determined by θ = arccosJ ′
1/2J1. This state persists

through the α = 1 point, which regenerates the isotropic CKHAF, and beyond.

At large α, the lattice eventually separates into decoupled chains.

The quantum mechanical calculation for the AKAF has been attempted by several

different approaches: large-N Schwinger boson mean field theory [Yavors’kii et al.

(2007)], spin wave theory, chirality mean field theory, and exact diagonalisations

[Wang et al. (2007)]. The consensus from these is that for 1 < α < 1.3 and α 6= 1,

quantum fluctuations stabilise the
√
3×

√
3 state, whilst for α > 1.3, an entirely

new order arises: the so-called chirality stripe order [Wang et al. (2007)]. In this

ground state (see figure 5.2), the chiralities form stripes along the J1 direction,

with the chirality alternating along the J ′
1 direction. The excitations spectrum

goes from being gapless over the entire Brillouin zone, to only being soft along a

single direction. The unique behaviour of the QKHAF is only recovered at the

isotropic point, α = 1.
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Figure 5.5: The distorted kagome planes in volborthite. Green octahedra indicate Cu(1),

and blue Cu(2). The top VO4 tetrahedron of the pyrovanadate column (V2O7) is shown

in red. J1 and J ′
1 are indicated by, respectively, solid and dotted lines, and correspond to

Cu-Cu distances of 2.93 Åand 3.03 Å.

Figure 5.6: The stacking of the kagome planes along the c-axis. The interplane distance is

approximately 7.2 Å.

5.3 Volborthite

5.3.1 Structure

Among the first materials identified as a candidate for realising the KHAFM was vol-

borthite, Cu3V2O7(OH)2 · 2H2O, a rare mineral originating in the Ural mountains

[Lafontaine et al. (1990)]. It crystallises in the monoclinic C2/m spacegroup, with

lattice parameters a = 10.61 Å, b = 5.86 Å, c = 7.21 Å, and β = 94.9◦. The space

group lacks the threefold axis required to generate a perfect kagome lattice, and indeed,

the triangular building blocks which make up the kagome plane are isosceles, with one

short and two long edges (figure 5.6). Due to the distortion, there are also two crystal-

lographically distinct Cu sites: the first, Cu(1), resides in a strongly axially distorted

octahedron (rax = 2.37 Å, req = 2.04 Å) and makes up the bases of the triangles. Cu(2)
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Figure 5.7: The magnetically relevant orbitals in volborthite. The singly occupied orbital

on the axially distorted Cu(1) site is the dx2−y2 orbital, whereas dz2 is selected by the

tetragonal distortion on the Cu(2) site. Superexchange proceeds via the oxygen 2p orbitals

(not shown), as well as the 2p orbitals of the central µ3-O. The structural motif along the

b axis resembles that of several J1−J2 chain materials, where J1 is typically ferromagnetic

and J2 antiferromagnetic.

is coordinated in a tetragonally distorted octahedron (rax = 1.91 Å, req = 2.16 Å) and

populates the apices of the triangles. The local geometry at the two Cu sites points to

orbital ordering, with the unpaired electrons on the Cu(1) and Cu(2) sites, respectively

residing in the dz2 and the dx2−y2 orbitals (figure 5.7). Magnetic exchange proceeds

through two different pathways: Cu(1) is linked to Cu(2) via a single µ3-OH bridge.

The Cu-O-Cu bond angle is 105◦, and the Cu-Cu distance is 3.03 Å. The other pathway

connects two Cu(1) sites along the b axis. For this interaction, a µ3-OH group and a

µ2-O participate in bridging the two Cu ions. The Cu-O-Cu angles are 91◦ and 100◦,

respectively, and the Cu-Cu distance is 2.93 Å. Henceforth, the Cu(1)-Cu(1) interaction

will be called J1 and the Cu(1)-Cu(2) interaction J ′
1.

The structural motif along the b direction, consisting of edge sharing chains of axi-

ally distorted octahedra, particularly resembles the CuO4 edge sharing motif seen in

a number of one dimensional frustrated magnets, such as CuGeO3 [Hase et al. (1993)]

and LiCu2O2 [Masuda et al. (2005)]. In both materials, the dx2−y2 orbitals carry the

spin, and the nearest neighbour Cu-O-Cu angle is close to 90◦. The consequence of this

arrangement is that the nearest neighbour interaction is typically weak and ferromag-

netic, whilst the next nearest neighbour interaction is stronger and antiferromagnetic.

This interaction, which we will call J2, will prove important in the case of volborthite,

as we shall see later.
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Figure 5.8: (left) The magnetic susceptibility of volborthite measured at 100 Oe. The

Curie-Weiss fit to the data is shown in red, with parameters as indicated in the top right

corner. These are approximately consistent with the literature values, µeff = 1.83 µB

and θ = −115 K – the discrepancy in θ is a consequence of the fitting ranges used. The

upturn at low temperature is a Curie tail associated with the presence of approximately 1%

(with respect to the total sample mass) of paramagnetic defects. (right) A comparison of

the experimental susceptibility data (black line) with the results of exact diagonalisations

on finite clusters of size N = 18, 24. Jav = (J1 + 2J ′
1)/3. The best agreement between

experiment and theory is achieved for α = 1 (red lines) [Sindzingre (2007)].

5.3.2 Experimental Background

Magnetic susceptibility measurements on volborthite reveal no features indicating long

range magnetic order down to 1.8 K (figure 5.8). There is however a broad maximum

centered at around χmax = 20 K, which implies short range correlations. At low

temperature, a Curie tail is observed due to a small [O(1%)] population of paramagnetic

defects. A fit to the Curie-Weiss law χ = C/(T −θ), in the region 250−300 K (>∼ 3θ)

yields a µeff of 1.83µB, corresponding to a geff = 2.12, typical of Cu2+. The Weiss

constant, θ = −95 K, indicates dominant antiferromagnetic couplings. In earlier studies

by Hiroi et. al. [Hiroi et al. (2001)] a fit of the HTSE for the isotropic kagome lattice to

the magnetic susceptibility yields Jav = (J1 + 2J ′
1)/3 = 84 K, crudely consistent with

θ.

The simplest realistic model Hamiltonian which can be formulated to describe the

magnetism of volborthite is the anistropic kagome antiferromagnet (AKAF), where

only J1 and J ′
1 are considered relevant:

H = J1
∑

〈i,j〉

Si · Sj + J ′
1

∑

Si · Sj (5.3)
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Figure 5.9: (left) The half widths of the NMR spectrum measured at 1/2 and 1/5 of the

maximum peak height. The inset shows the T -dependence of the spin lattice relaxation

rate, 1/T1. (right) The NMR spectrum measured for two delay times τ = 40 µs and 200 µs

at T = 0.35 K. The locally ordered component appears as a square feature in the former

spectrum. Both figures adapted from Bert. et. al. [Bert et al. (2005)].

Both J1 and J ′
1 have historically been assumed to be antiferromagnetic. Attempts to

fit the entirety of the χ versus T curve to exact diagonalisation results for the above

Hamiltonian fail to provide an accurate description of data, although α = 1 gives the

best agreement between theory and experiment (figure 5.8) [Sindzingre (2007)]. Like-

wise, numerical results poorly reproduce the specific heat – a double peaked structure

is predicted, but only one peak is observed experimentally. It is thus clear that the

Hamiltonian is more complicated than first assumed. Indeed, determining its parame-

ters remains one of the main challenges in unravelling the mystery of the ground state

of volborthite.

Further experimental studies using 51V NMR and µSR at temperatures down to 0.35 K

reveal a slowing down of the fluctuations around T ∗ ∼ 1 K [Bert et al. (2005)],[Bert

et al. (2004)] (figure 5.9). The time-integrated NMR lineshape measured below this

temperature is complex, containing several contributions, which can be partly resolved

by applying a pulse sequence of the form π/2− τ −π/2, where τ is a delay on the order

of µs (figure 5.9). The quickly relaxing component, which is probed by a delay time

τ = 40 µs, is dominated by a square signal, implying local order on the NMR timescale.

From the magnitude of the local field generated by the 6 Cu ions surrounding the 51V

site, this order is speculatively assigned as being of the
√
3 ×

√
3 type. The slower

component, isolated using a longer τ = 200 µs, effectively reflects a disordered local

environment. The approximate ratios of these two contibutions are 40% : 60%, meaning

that the bulk of the sample remains disordered to the lowest temperatures.
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Figure 5.10: (left) H-T phase diagram of volborthite. The full squares and triangles

represent the onset of freezing as detemined from line broadening, whilst the circles show

the position of the peak in 1/T1. The stars indicate the onset of hysteresis in the magnetic

susceptibility associated with a small impurity phase. Figure adapted from Yoshida et. al.

[Yoshida et al. (2009b)]. (right) M vs H isotherms for volborthite measured up to 55 T

at 1.4 K and 4.2 K. dM/dH shows clear kinks at at Hs1 = 4.3 T, Hs2 = 25.5 T, and

Hs2 = 46.0 T below T ∗. The magnetizations corresponding to these fields are approximately

1/45, 1/6, and 1/3, respectively. Figure adapted from Yoshida et. al. [Yoshida et al.

(2009a)].

Extending the low T 51V NMR measurements to higher applied fields reveals a phase

transition between different local orders at approximately Hc = 4.5 T (figure 5.10)

[Yoshida et al. (2009b)]. The lineshape atH < 4.5 T is anomalous, suggesting a complex

order, whilst above Hc it becomes more conventional. No assignment of either order

is made however. High field magnetization results echo these results, revealing a small

step in the magnetization at Hs1 = 4.3 T ∼ Hc, and a further two such steps at Hs2 =

25.5 T and Hs3 = 46.0 T (figure 5.10) [Yoshida et al. (2009a)]. The magnetizations

corresponding to the latter two are rather close to 1/6 and 1/3, respectively, and suggest

the possibility of several magnetization plateaux.

Despite potentially providing the ultimate insight into the structure and dynamics of

voborthite, no neutron scattering studies have been reported thus far.

5.3.3 xyz Polarised Diffuse Neutron Scattering

Looking more closely at the formula of volborthite, the reason why neutron scatter-

ing experiments have not been attempted becomes clear: the presence of V (σinc =

5.08 barns) and H (σinc = 80.26 barns) means that any experiment on this compound

is likely to suffer from a large incoherent background. In order to partially circumvent
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Q [Å−1]

d
σ
/
d
Ω

,
[b

a
rn

s
st

−
1

f.
u
.−

1
]

Magnetic       
Spin Incoherent
Nuclear + II   

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Q [Å−1]
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Figure 5.11: (left) The nuclear and isotope incoherent (blue), spin incoherent (green),

and magnetic cross sections (red) for a powder sample of volborthite, measured at 5 K.

The magnetic signal corresponds to about 1% of the nuclear and incoherent cross sections

combined. (right) The spin incoherent cross section and magnetic cross section multiplied

by 10. Positions of nuclear Bragg peaks are marked with black arrows, and coincide with

regions in which the spin incoherent cross section deviates from flatness. It is expected this

also has some effect on the magnetic cross section, especially at Q > 1.7 Å−1.

this problem, it is necessary to substitute as much of the hydrogen in the sample as

possible for deuterium. Details on how this was achieved are given in Appendix A.

In the case of magnetically disordered materials like volborthite, a particularly use-

ful technique to probe 〈SiSj〉 is xyz polarised neutron scattering. The underlying

principles of this method were briefly introduced in Chapter 3. Experiments on vol-

borthite were performed on the D7 instrument at the ILL facility: 35.7g of deuterated

volborthite powder were loaded into a Cu can, which was mounted on the end of a

dilution refrigerator, allowing access to temperatures down to 50 mK. Spectra were

measured at λ = 3.1Å−1 (Ei = 8.5 meV), yielding an integrated energy window of

−∞ < ω < 7.2 meV. Flipping ratio, background, and detector efficiency corrections

were performed using quartz, cadmium, and vanadium, respectively. Spin flip and non

spin flip cross sections were measured for three orthogonal polarisations of the beam at

temperatures of between 300 mK, 5 K, 10 K, 15 K, and 200 K. The nuclear and isotope

incoherent [(dσ/dω)nuc+II ], spin incoherent [(dσ/dω)SI ], and magnetic [(dσ/dω)mag]

cross sections were separated using xyz polarisation analysis. The three cross sections

are shown in figure 5.11 for the 5 K dataset.

Despite the high deuteration level of the sample, estimated to be > 98% from the spin

incoherent cross section, the nuclear/isotope incoherent and spin incoherent cross sec-

tions dominate the rather small magnetic cross section. In fact, the sum of the average

magnitudes of the former two dwarfs the latter by nearly two orders of magnitude.
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Figure 5.12: The magnetic cross section of volborthite at 200 K, 15 K, 10 K, and 5 K.

At high T , the effect of correlations are already visible – the magnetic cross section does

not obey the Cu2+ f2(Q) (dotted black line). At 15 K and 10 K, there is a buildup of

correlations leading to a peak around Q = 1.1 Å−1, also observed as a broad maximum

in S(Q,ω) (figure 5.14). This is well described by a liquid-like structure factor (red line)

superimposed on a paramagnetic background. At 5 K, some spectral weight moves from

this feature into two sharp peaks at Q1 = 0.65(3)Å−1 and Q2 = 1.15(5)Å−1.

This has several implications: when isolating the magnetic cross section via the spin

flip route, the large error bars on the spin incoherent cross section reduce the statistical

quality of the resulting magnetic data. Secondly, any uncertainty in the flipping ratio

correction means that non spin flip scattering can “bleed” into the spin flip channel.

Assuming an error in the flipping ratio of only 0.1%, nuclear Bragg peaks will appear

in the spin flip scattering with a greater intensity than the magnetic scattering. Such

errors may also be observed in small deviations from flatness in the spin incoherent

scattering (figure 5.11). As this issue particularly affects the data at Q > 1.7 Å−1, the

behaviour of the spectrum at lower Q will be emphasised during the analysis.

The magnetic cross sections at 5 K, 10 K, 15 K, and 200 K are shown in figure 5.12. At

200 K ∼ 2θ, (dσ/dΩ)mag only crudely obeys the Cu2+ form factor, f(Q)2, indicating

that some correlations may be present even at this temperature. In addition, the inte-

grated magnetic scattering corresponds to only 40(3)% of the value expected from the

neutron scattering sum rule
∫

S(Q)magdQ ∼ S(S+1), implying that much of the mag-

netic scattering lies outside the Q and ω window of the experiment. Indeed, magnetic
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Figure 5.13: The 5 K magnetic cross section with fit (red line) as described in the text.

The diffuse background is shown by the dotted line. The black arrow indicates the position

of the 1.7 Å−1 feature.

correlations would be expected to distribute spectral weight up to the spin wave zone

boundary energy, which corresponds to 2J for a bipartite antiferromagnet with z = 4,

and 4J for a ferromagnet. Both of these energies are greater than the experimental

ωmax = 8.2 meV ∼ J . Nonetheless, due to the large value of the shortfall, it may not be

excluded that a proportion may be due to oversubtraction in the polarisation analysis.

As T is reduced to 15 K, the to 10 K, the spectral weight at low Q moves into a

broad feature centered at Q ∼ 1.1 Å−1, consistent with the presence of short range

correlations. This feature is well described by a structure factor of the form:

Af(Q)2
[

1− sin (Qr)

(Qr)

]

+Bf(Q)2 (5.4)

where the first term describes short range antiferromagnetic corrlelations at a distance

r = 3.5(2) Å−1, approximately the Cu-Cu nearest neighbour distance∼ 3 Å. The second

term corresponds to effectively uncorrelated spins. The amplitudes A and B are found

to be 0.050(5) and 0.090(5), respectively, and may correspond to contributions from

the two different Cu sites. The broad feature is also observed in the inelastic spectrum,

as will be seen later in this chapter.

At T = 5 K, some of the spectral weight shifts into two additional sharper features at

Q1 = 0.65(3)Å−1 and Q2 = 1.15(5)Å−1, consistent with short range magnetic order.

It is difficult to determine whether these correspond to 2D or 3D correlations, as the

peaks are weak, and the background poorly characterised. There is also a feature at

1.7 Å−1 which is disregarded in the upcoming analysis, as it occurs in the position of
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a nuclear Bragg peak. Fitting the Q1 and Q2 peaks to a Lorentzian convoluted with

instrumental resolution yields a correlation length ζ = 1/∆Q = 12(4) Å, where ∆Q

is the FWHM of the Lorentzian. This corresponds to ∼ 4 nearest neighbour Cu-Cu

distances.

The temperature at which the Q1 and Q2 peaks appear is considerably higher than the

T ∗ = 1 K found from NMR. This is most likely an effect of the different timescales which

neutron scattering, NMR, and µSR respectively probe. While neutrons are sensitive to

correlations on the picosecond (10−12s) timescale, µSR and NMR are only able to detect

spins fluctuating more slowly than approximately ns or µs. Thus, neutron can follow

the buildup of correlations to much higher temperatures than resonance techniques.

5.3.4 Inelastic Time of Flight Neutron Scattering

To investigate the excitations of the low temperature phase, thus hoping to gain insight

into the nature of the ground state, inelastic neutron scattering studies were carried

out on the IN4 instrument at ILL. A 10 g part of the sample that was used for the D7

experiment was loaded in a Cu can, then mounted on a dilution refigerator. Spectra

were collected at T = 0.05, 0.5, 5, 50 K using an incident energy Ei = 17.2 meV, giving

an elastic Q range 0.65 Å−1 < Q < 4.95 Å−1. One further spectrum was collected at

1.7 K using the MARI instrument at ISIS (Ei = 15 meV, 0.45 Å−1 < Q < 4.95 Å−1 at

ω = 0 meV). Data from these experiments are summarised in figure 5.14.

The 50 K (∼ Javg/2) scattering function S(Q,ω) shows only a broad quasielastic re-

sponse centered at Q = 1.1− 1.4 Å−1, characteristic of a correlated paramagnet – this

feature was also observed in the energy integrated data at T < 15 K. Fitting with a

near neighbour S(Q) yields a characteristic lengthscale r = 3.5(2) Å∼ rnn, also consis-

tent with previous findings (figure 5.15(a)). Acoustic phonons are observed dispersing

from nuclear Bragg peak positions at Q > 2 Å−1 and intense phonon scattering is

found above 7 meV, making extraction of the magnetic signal at these energies diffi-

cult. When T is lowered to 5 K (the temperature at which the Q1 and Q2 features are

seen in the energy integrated data), the low Q quasielastic intensity has largely moved

into two features: an intense broad flat band, centered at ω0 = 5 meV, and a vertical

bar of scattering at Q = 1.1 Å−1, which coincides with the Q2 peak in the D7 data.

Both features intensify and sharpen as temperature is reduced towards 0.05 K, and a

second vertical bar of scattering appears around Q = 0.7 Å−1 at 1.7 K, approximately

corresponding to the Q1 feature in the energy integrated data.

Several cuts through the main features observed in the spectra are shown in figure
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Figure 5.14: Inelastic time of flight spectra for volborthite collected on the IN4 and MARI

(top right) instruments. The white rectangles indicate regions of integration for the cuts.

At high T , the magnetic part of the spectrum is dominated by a broad quasielastic feature.

5.15. All the features observed (flat band and vertical bars) were fitted resolution

convoluted Lorentzians. Starting with the ω dependence of the flat mode integrated

between Q = 0.8 Å−1 and Q = 0.95 Å−1, a considerable narrowing of the linewidth

is observed upon cooling from 5 K to 0.05 K, implying an increase in the excitation

lifetime. Likewise, the Q dependence of the two vertical bars, integrated between 2 and

3 meV, shows a narrowing, corresponding to a growing dynamical correlation length.

Both of these quantities appear to saturate below T ∗, though only two datapoints

are available in this temperature range (figure 5.15(d)), consistent with the system

approaching, then passing through a phase transition. The relative intensities of the

Q1 and Q2 bars also change as the sample is cooled, with Q1 becoming the more

prominent of the two as T is lowered. Due to the long wavelength of this excitation, it

is more sensitive to the correlation length than the Q2 mode, possibly explaining this

behaviour. As such, the jump in the intensity of Q1 at T ∗ may be interpreted as a sign

of a jump in the correlation length, consistent with a phase transition.
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Figure 5.15: Temperature dependence of selected cuts through the inelastic data. Fits

to resolution convoluted Lorentzians are shown by solid lines. For the 50 K dataset, the

fit is instead made for a powder averaged, liquid like S(Q). Baselines of the spectra

are represented by a dotted line. (a) Cuts of the Q-dependence of the vertical bars as

temperature is lowered. (b) Cuts of the ω-dependence of the flat mode. (c) Q-dependence

of the flat mode from MARI at 1.7 K. The solid line shows the powder averaged structure

factor anticipated for a singlet-triplet excitation. (d) The temperature dependence of the

ω-linewidth of the flat band (open green squares), the Q-width of the vertical bars (closed

green circles), and the intensities of the Q1 and Q2 bars of scattering (closed blue circles

and open blue squares), respectively.

5.3.5 The Quest for a Microscopic Model

It is obvious that neither the excitation spectrum nor the low-T diffuse scattering

match the predicted spectra for the VBC ground state expected for the pure KHAFM.

Likewise, the flat band cannot be explained by local excitations from singlets pinned

by vacancies [Dommange et al. (2003)]. Although the energy scale O(Javg) seems

consistent, the Q-dependence, expected to follow that of a singlet-triplet excitation,

is different (figure 5.15(c)). Instead, the data appear to point towards semi-classical

order, as also implied by NMR measurements. It is however difficult to identify whether

it is long or short range, mainly due to the absence of (dσ/dΩ)mag data at T < T ∗,

and indeed also the nature of spatial correlations. As such, candidate models must

be compared with all available data, both from resonance experiments and neutron
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scattering, before a positive identification can be made.

The Hamiltonian which has so far been assumed for volborthite is the AKAF with α

close to unity. The correlations in the classical analogue of this model are expected

to be predominantly of the
√
3 ×

√
3 type, and, indeed, this is the state suggested to

describe the local order observed in NMR experiments [Bert et al. (2005)]. Do the

static and dynamic properties of this state match our neutron results, however?

The elastic (static) structure factor, S(τ, ω = 0), is written:

S(τ, ω = 0) = 〈Sz〉 f(τ)
∑

d

σde
iτ ·d

(5.5)

where τ is a magnetic Bragg vector and the sum runs over all the atoms in the unit cell.

Powder averging this, the quantity which results, S(Q,ω = 0), roughly approximates

the instantaneous scattering function, S(Q) ∼ (dσ/dΩ)mag. Figure 5.16 shows that

agreement between calculation and experiment for the q =
√
3 ×

√
3 state is rather

poor. Likewise, the experimentally determined dynamical structure factor can not be

satisfactorily described by a q =
√
3×

√
3 ordering pattern – the spin wave spectrum for

such an ordering would be expected to result in a Goldstone mode at Q = 1.4 Å, as well

as a flat band of scattering at ω0 = 0. Thus, it is necessary to look theoretically further

afield to explain the observed scattering, as well as the other experimental observations:

• QKHAF with DM interactions: As established already, adding a Dzyaloshinskii-

Moriya term of magnitude D > Dc = 0.1J to the QKHAF results in q = 0 or-

der. The finite DM interactions also result in the spin wave spectrum becoming

gapped, with the flat mode lifted to an energy ω0 = S
√

6
√
3JDz + 18D2

z propor-

tional to the strength of the dominant out of plane Dz interaction [Elhajal et al.

(2002)]. A DM interaction can thus provide a mechanism for both the short range

ordering and finite ω of the flat band, although a relatively strong Dz = 0.11J

must be invoked. Allowing for this interaction, the experimental inelastic scat-

tering at 5 K can be rather accurately reproduced by Monte-Carlo simulations

of the CKHAF (figure 5.16) [Robert et al. (2008)] – both the flat mode and the

bar of scattering at Q2 are captured. q = 0 short range order however fails to

explain both the Q1 bar of scattering observed both in the energy integrated and

inelastic data at T ≤ 5 K, and is also at odds with the NMR result, which implies

a finite local field at the V site.
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(b) (left) The 5 K S(Q,ω) measured on IN4. (right) The powder averaged S(Q,ω) from a

classical MC calculation for the CKHAF with an out of plane DM interaction Dz = 0.11J

[Robert et al. (2008)]. Both the flat band at ω = 5 meV and vertical bar at Q ∼ 1.1 Å−1

are reproduced by the theory. Figure courtesy of Benjamin Canals and Julien Robert.

Figure 5.16
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• CKHAF with further neighbour couplings: Messio [Messio (2010)] has re-

cently suggested a further-neighbour interaction induced octahedral state as a

possible source of the Q1 and Q2 features observed in diffuse and inelastic scat-

tering experiments. The state is so called because it describes a 6-sublattice order,

with the spins on each sublattice pointing towards the apices of an octahedron

(figure 5.2). The requirement to favour the octahedral state is a large antiferro-

magnetic J ′
3, corresponding to interactions across the kagome hexagons, as well

as small next nearest neighbour couplings J2 and J3 (figure 5.2).

Within the octahedral state, it is possible to locally rearrange spins along lines

in the lattice at no energy cost. Combining this with either a single ion or DM

anisotropy, it may be possible account for the experimentally observed flat mode.

The Bloc = 0 at the V site fails to explain the NMR results, however, and the

balance of exchanges called for appear inconsistent with the orbital arrangement

in volborthite.

• The Janson-Rosner Model: Janson et. al. [Janson et al. (2010)] have recently

carried out ab-initio studies on volborthite using the L(S)DA+U method. The

material is found to exhibit orbital order, as implied by its structure, in which the

lone electrons on the Cu(1) and Cu(2) sites populate the dx2−y2 and dz2 orbitals,

respectively. Mapping the calculated hopping integrals, t, onto a Heisenberg

model (J = 4t2/U), and keeping the most relevant terms, the Hamiltonian is

written as follows:

H = J1
∑

<i,j>

Si · Sj + J2
∑

<<i,j>>

Si · Sj + J ′
1

∑

<i,j>

Si · Sj (5.6)

where J1 and J2 are, respectively, the nearest and next nearest neighbour ex-

changes along the Cu(1) chains, and J ′
1 is the interaction coupling the Cu(1) and

Cu(2) sites. J1 is expected to be ferromagnetic, while J2 and J ′
1 are both anti-

ferromagnetic. Returning to the crystal structure of volborthite, the pattern of

exchanges extracted from the ab-initio calculation is not entirely surprising, con-

sidering the bonding motif along the b direction. As pointed out earlier, the bond

angles between nearest neighbouring Cu(1) are close to 90◦, which according to

the Goodenough-Kanamori rules favours ferromagnetism, whereas the next near-

est neighbouring Cu(1) bonds have Cu-O-O-Cu angles of close to 180◦, implying

antiferromagnetism.

The classical analogue of the above Hamiltonian has a rather simple phase dia-

gram, with two phases: the first is a ferrimagnetic phase with all spins up along
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Figure 5.17: (left) The phase diagram of the J1 − J ′
1 − J2 model proposed for volborthite.

S and F indicate spiral and ferrimagnetic states, respectively. (right) The dependence on

J2 of the pitch angle φ of the spiral state assuming J1 = −1 and J ′
1 = 2. Volborthite is

thought to have J2 ∼ 1, and thus φ ∼ π/6.

the J1 − J ′
1 chains and all spins down on the interchain sites, favoured when

J2 < |J1|/4 + J ′
1/8 (figure 5.2). The second is a spiral along the J1 − J ′

1 di-

rection, with the pitch being the angle which minimises the following expression

[Furukawa (2010)]:

Eclass =
NS2

3

[

−2J ′
1 cos (φ/2) + J1 cos (φ) + 2J2 cos (2φ)

]

(5.7)

Assuming J1 is twice as small as J ′
1, as implied by the results of the ab-initio

calculations, the dependence of the pitch angle on the third coupling, J2, is shown

in figure 5.17. This coupling was estimated to be approximately 0.6J1 in the

aforementioned study, resulting in a pitch angle φ = π/6. The classical ground

state for this φ is illustrated in the bottom right of 5.2.

The fit of the calculated S(Q,ω = 0) for the spiral state to the experimentally

measured (dσ/dΩ)mag is shown in figure 5.16. While the Q2 feature is reproduced

in the calculation, agreement is poor otherwise. It is also difficult to reconcile

the spiral state with NMR results – the local field, Bloc, at the V site for φ =

π/3 is only 1µB, too small by a factor of three compared to the Bloc found in

[Bert et al. (2005)]. It remains to be seen whether such a state can generate the

experimentally observed S(Q,ω).

5.4 Conclusion

Despite the considerable body of experimental data now available on volborthite, its

ground state still remains somewhat mysterious. In the main, this is due to the lack of
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a suitable candidate Hamiltonian to describe the system, although the Janson-Rosner

model is an important step forward in this respect.

Although they provide insufficient information to completely clarify the issue of the

ground state, experiments thus far carried out do set out a rather stringent list of

requirements for any future candidates:

• NMR, µSR: The local field at the V site must correspond approximately to 3 µB.

This is achievable within the Janson-Rosner model assuming a pitch angle α close

to π/2, but at the expense of the structure factor matching diffuse scattering data.

Within the pure kagome model, neither the q = 0 or q =
√
3 ×

√
3 are able to

explain both the NMR and diffuse scattering data. Finally, the octahedral model

yields zero field at the V site, apparently discounting it as well.

• Instantaneous Structure Factor: Despite the poor statistical quality of the

polarised diffuse scattering data, the proposed short range order should still pro-

duce peaks at both Q1 and Q2.

• Excitation Spectrum: The ground state, whether by the presence of a local

mode in the ground state or via zone boundary effects of powder averaging, should

be able to produce the flat mode observed in the inelastic neutron spectra.

• Magnetization Steps: The final test which a potential ground state of vol-

borthite must be able to pass is to give steps in the magnetization curve, which

contains several steps at nearly rational values of M/Ms.

5.5 Herbertsmithite

5.5.1 Herbertsmithite: The First Perfect S = 1/2 Kagome Material?

The (re)discovery of herbertsmithite, Cu3Zn(OH)6Cl2, in 2005 brought to light the

(ostensibly) first perfect realisation of the QKHAF [Braithwaite et al. (2004)],[Shores

et al. (2005)]. The crystal structure is R3̄m symmetry, yielding perfect planes of CuO6

octahedra arranged to form a kagome lattice, well separated by planes of nonmagnetic

Zn (figure 5.18). Fits of the magnetic susceptibility to HTSE results indicated a J of

approximately 190 K, yet no order down to 1.8 K. Nonetheless, the form of the suscep-

tibility curve is not as anticipated for the QKHAF, with a large, Curie-like increase at

low temperature (figure 5.19).

The initial paper on herbertsmithite was followed by a flurry of activity, both ex-

perimental and theoretical. Some of the experimental techniques which were applied
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Figure 5.18: (left) The crystal structure of herbertsmithite viewed along the c-axis, showing

the perfect kagome planes of CuO6 octahedra (blue). The distances between nearest

neighbour Cu atoms is 3.41 Å. (right) The stacking of the kagome planes. Two triangles

on adjacent planes are linked via the grey interplane Zn site. This site is weakly coupled to

the lattices.

include magnetic susceptibility (to 50 mK), specific heat, neutron diffraction [de Vries

et al. (2008)], neutron spectroscopy [Helton et al. (2007)], NMR [Olariu et al. (2008)],

and µSR. None of these probes were able to find any trace of long range order, despite

the large value of J . Low temperature specific heat and neutron diffraction studies in-

dicate that the T → 0 upturn in χ is due to a small concentration (∼ 6%) of free spins

[de Vries et al. (2008)] (figure 5.19). These arise due to partial (∼ 18%) occupation of

the weakly coupled out of plane Zn2+ site by Cu2+ – as a consequence of this so-called

anti-site mixing, the planes are also depleted by around 6%.

In light of the high defect concentration, it is difficult to see herbertsmithite as a lattice

at all: at around 6% depletion, nearly every David’s star making up the kagome lattice

is missing a spin (figure 5.20). As noted in the introduction of this chapter, one effect of

including a vacancy is to strongly enhance nearest neighbour correlations in its vicinity.

In addition to the defects, ESR measurements by Zorko et. al. [Zorko et al. (2008)]

have shown that the Dzyaloshinskii-Moriya interactions in herbertsmithite are also non-

negligible. Dz was found to be the dominant component of D, with a magnitude of

15(1) K= 0.08J < Dc, while Dxy was estimated to be 2(5) K=0.01J .

Bringing these two perturbations together, theoretical work on the kagome antiferro-

magnet with both defects and DM interactions was carried out using ED [Rousochatza-

kis et al. (2009)]. At D < Dc, the model is expected to show both dimerisation, due

the presence of defects, as well as some restoration of some local moment, as a result of

the finite DM interactions. In addition, the local susceptibility, as measured by NMR,

is expected to be split in two components: the first is associated with nuclei close to

defects, whilst the other results from more distant nuclei. Their relative intensities are
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Figure 5.19: (left) The magnetic susceptibility of a representative sample of herbertsmithite

measured from 1.8 K to 340 K at 100 Oe. (inset) The inverse susceptibility with Curie-

Weiss fit (red line). (right) The specific heat for various compositions of herbertsmithite

measured at temperatures down to 0.3 K at magnetic fields, H = 0 T and 9 T. The open

and closed circles refer to the samples investigated in this study (x = 1), whilst the other

curves are associated with Cu-rich (x < 1) and Cu-depleted (x > 1) samples. The low-T

tail shown in the inset is interpreted as a Schottky anomaly corresponding to weakly coupled

doublets.

expected to be around 1 : 5. All of these features are observed in the T -dependence

of the local susceptibility, χloc, as extracted from 18O NMR experiments [Olariu et al.

(2008)].

Now that the behaviour of the planes have been summarised, what happens to the

interplane defect spins? These are only weakly coupled to the kagome planes, and thus

the temperature scale at which they are expected to manifest themselves physically is

low. Indeed, µSR and low temperature magnetization results imply a slowing down of

these at around 1 K [Mendels et al. (2007)], [Bert et al. (2007)]. Little is known beyond

this, however.

5.5.2 Diffuse and Inelastic Neutron Scattering

To elucidate the nature of the spin correlations in herbertsmithite, an xyz polarised

diffuse scattering was performed on the D7 instrument at the Institut Laue Langevin.

20 g of highly deuterated (∼ 98%), synthesised by Mark de Vries using the literature

method [Shores et al. (2005)], were loaded into a Cu can which was then mounted at

the end of a dilution refrigerator. Spectra were measured at temperatures of 0.1 K,

4 K, 10 K, and 60 K, though as with the aforementioned experiment, the lowest tem-
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Figure 5.20: A 64 site lattice with 4 defects, corresponding to a defect population of 6.25%,

approximately the same as an average sample of herbertsmithite.
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Figure 5.21: (top left) Inelastic spectra measured at T = 2 K and 120 K. (bottom left)

The magnetic contribution to I(Q,ω) at 2 K extracted as described in the text. The main

magnetic feature is the vertical bar of scattering at Q = 1.3 Å−1. (right) Selected Q-cuts

through spectra measured on the IN4 and MARI intstruments. For nearly all energy ranges,

S(Q) obeys the nearest neighbour antiferromagnetic structure factor (dotted line). Figures

courtesy of Mark de Vries.

perature data had to be discarded due to oversubtraction in the polarisation analysis.

The spectrum at low temperature looks rather similar to those observed for volborthite

in the temperature range 10−15 K – the main feature is a broad maximum at approxi-

mately 1.3 Å−1, which is well approximated by the nearest neighbour antiferromagnetic

structure factor (5.4).

The excitation spectrum of herbertsmithite was measured on the IN4 instrument at the

ILL using the same sample as the diffuse scattering experiment. Spectra were collected

at temperatures between 2 K and 120 K using an incident energy Ei = 17 meV. At

T = 120 K ∼ 2J/3 (figure 5.21), the spectrum consists of a broad phonon band at

around 7 meV, several acoustic phonon modes dispersing from nuclear Bragg peak
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positions at Q > 2 Å, and finally, a weak vertical bar of scattering at Q = 1.3 Å−1, the

same position as the maximum seen in (dσ/dΩ)mag. This bar of apparently magnetic

scattering extends from the tail of the incoherent quasi-elastic scattering at ∼ 2 meV,

to the maximum ω measured, 10 meV. It cannot correspond to the excitations of the

36-sublattice VBC, as this is only expected to yield scattering at T ∼ 0.1J [Singh

(2010)]. Furthermore it does not change appreciably in either intensity or sharpness as

T is decreased to 2 K.

As the magnetic scattering appears independent of T , the magnetic component can

be separated from the phonon background by assuming a Bose factor temperature

dependence for the intensity of the latter. The T -dependence of the total intensity for

each pixel in the spectrum, Itot, can thus be fitted to the following expression:

Itot(Q,ω;T ) = Imag(Q,ω) +
π

1− e−ω/kBT
χ′′
p(Q,ω) (5.8)

where χ′′
p is the dynamical susceptibility of the phonons.

The Imag(Q,ω) which results from subtracting the phonon component from Itot is shown

in figure 5.21: The vertical bar at Q = 1.3 Å−1 is, as expected, greatly enhanced versus

the background. Cuts of its Q-dependence integrated over several ranges in ω reveal

that it is well described by a nearest neighbour antiferromagnetic structure factor at

all ω, in agreement with the energy integrated (dσ/dΩ)mag. What then is the origin of

this column of scattering?

The ground state and dynamics of the S = 1/2 Heisenberg model on the depleted

kagome lattice have recently been studied by Singh using a dimer series expansion

approach. At a high concentrations of defects, the 36-sublattice VBC breaks down,

and is replaced by a valence bond glass (VBG) state, where the singlets are frozen in a

pattern determined by the location of the defects [Singh (2010)]. The excitations of this

state are gapped rearrangements of dimer bonds on networks of corner sharing triangles.

Such processes result in an S(Q,ω) which features a continuum of scattering in ω

with the Q-dependence of the nearest neighbour antiferromagnetic structure factor (see

figure 5.22), in qualitative agreement with experiment. The temperature at which the

system crosses over into the singlet ground state again reflects the defect concentration

– spins which lie close in space to a defect, where the enhancement of 〈SiSj〉 is large,

will dimerise at T ∼ J , while the crossover temperature of more remote spins will be

broadly distributed over 0.1J < T < J . Given the high concentration of defect spins

in herbertsmithite, it is expected that most spins are within a few nearest neighbour

distances of a defect, hence the near lack of T -dependence in Imag(Q,ω).
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Q

S
(Q
)

Figure 5.22: The structure factor, S(Q), at various values of ω, scaled to the nearest

neighbour antiferromagnetic structure factor (shown as a dashed white line). Adapted

from Singh [Singh (2010)].

5.5.3 Low Energy Inelastic Neutron Scatteing: Probing the Defect Physics

of Herbertsmithite

Having established that the inelastic spectrum at large ω > 2 meV can be described as

resulting from formation of a VBG state on the kagome planes, it remains to be seen

what happens to the defect spins at T < Tf = 1 K, the slowing down temperature

observed in µSR. To this end, neutron scattering was carried out on the IN5 cold

neutron triple axis spectrometer at the ILL. Spectra were measured at a wavelength of

7 Å(elastic Q-range: 0.27 Å−1 < Q < 1.45 Å−1, ω-range: ωmax = 1 meV> ω > −∞),

and at two temperatures, 1.7 K and 10 K. At the lower temperature, measurements

were performed in both zero field, as well as in applied fields of H = 1.5 T, 2.5 T. A

background spectrum taken at 5 K was subtracted to yield the plots of S(Q,ω) shown

in figure 5.23.

At 10 K>> Tf , I(Q,ω) is rather featureless, showing only a Lorentzian tail character-

istic of a correlated paramagnet. It is difficult to confirm the presence (or absence) of

the continuum of scattering seen at Q = 1.3 Å−1 in the higher Ei data, mainly because

it falls on the edge of the (Q,ω) window of the experiment. At T = 0.05 K< Tf , the

spectrum reveals a broad feature centered at approximately ω = 0.2 meV. This energy

agrees well with the zero field splitting of the interplane spins, ∆E = 1.7 K∼ 0.15 meV,

as predicted from fits of the Schottky anomaly in Cp [de Vries et al. (2008)]. As such,

the observed feature may be tentatively assigned to excitations of these weakly coupled

Cu2+ ions. The Q-integrated energy dependence of the feature is found to be rather
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Figure 5.23: Background subtracted inelastic neutron scattering spectra for herbertsmithite

collected on the IN5 spectrometer. The high temperature (10 K), and three base temper-

ature spectra in different fields (0 T, 1.5 T, 2.5 T) are shown.

broad, reflecting both the Gaussian distribution of local environments indicated by the

aforemention fits, as well as the finite lifetime of the excitations.

One question which logically follows from the assigned origin of the feature is; what do

the interplane spins interact with? The Q-dependence of the feature integrated in the

range ω = 0.2 < ω < 0.4 meV (figure 5.24) shows a broad peak at Q = 1.1 Å−1. This is,

yet again, well fit to a liquid-like stucture factor of the form S(Q) ∼ 1− sin (Qr)/(Qr),

with r = 4.0 Å. It is difficult to match this distance to any specific Cu-Cu distance in

the structure of herbertsmithite, though it is clearly much shorter than that between

two interplane spins, rint = 6.1 Å. Thus, the coupling which leads to the zero field

splitting must be between an interplane spin and some object on the planes – two

possible candidates are defect spins, or small, Dzyaloshinskii-Moriya induced moments.

When a magnetic field of H = 1.5 T is applied, the spectrum changes drastically, with

much of the spectral weight at ω < 0.2 meV shifted up in energy and distributed over

all Q. The latter effect can be observed in the flattening of the Q-dependence of the

scattering integrated over the same region as before, as well as the reduced intensity

of the broad feature. At H = 2.5 T, the feature becomes almost entirely flat in Q,



108 Chapter 5. S = 1/2 Kagome Antiferromagnets: Volborthite and Herbertsmithite

0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

Q [Å−1]
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Figure 5.24: Cuts showing (left) the Q-dependence and (right) ω dependence of the broad

feature observed in S(Q,ω) at various T and H. In the left panel, the solid line represents

a fit to a short range antiferromagnetic structure factor. The large tickmarks on the y-axis

represent the baseline of the spectra. The fits indicated by solid lines on the right are

Lorentzians – the FWHM at H = 0 is 4 times that at H = 2.5 T.

and is considerably narrower in ω versus the H = 0 spectrum. Also, the position

of the peak is shifted from 0.2 meV to 0.35 meV, which corresponds approximately

to the Zeeman splitting ∆ = 2gµBSH = 0.34 meV for g = 2.2. Such behaviour is

consistent with a zero field split doublet system, in which the small internal field, Bloc,

is gradually reoriented as an external field, H, is applied. Eventually, when H exceeds

Bloc (i.e. when the zero field gap disappears), the splitting between up and down states

is primarily due to H.

5.6 Why Volborthite and Herbertsmithite Both Fail As Real-

isations of the KHAFM

As was touched upon in Chapter 2, quantum ground states which emerge from the

Heisenberg model are often sensitive to perturbing terms in the Hamiltonian. In the

case of herbertsmithite, the large population of defects destroys the fragile 36-sublattice

VBC, yielding a valence bond glass state instead. In volborthite, it turns out that

the Hamiltonian describing the system is most likely rather distant from the nearest
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neighbour Heisenberg model. As a consequence, the search for an ideal realisation

of the QKHAF continues. A considerable barrier to the success of this endeavour is

the omnipresence of yet another perturbation in kagome materials composed of metal

octahedra: the Dzyaloshinkii-Moriya interaction. When octahedra are linked to form

a kagome lattice, it is impossible to preserve bond inversion symmetry about the TM-

O-TM bond, and therefore DM interactions are always allowed. In compounds where

the magnitude of the DM interactions have been measured, values on the order of

0.1J are typically found, rather close to the theoretically predicted Dc for emergence

of q = 0 order. Thus, the challenge presented to chemists is to produce a material

which not only realises the R3̄m symmetry of the kagome lattice, and is free of defects,

but also minimises |D|. Clearly, there is still some distance to cover before all these

goals are reached. On the other hand, volborthite and herbertsmithite, despite their

imperfections, still reveal fascinating physics, and the author believes that many more

interesting phenomena will be uncovered on the way to the ideal experimental QKHAF.





Chapter 6

Conclusion

This thesis has addressed several aspects of quantum magnetism, ranging from design

and synthesis of new materials, to sophisticated neutron scattering experiments, to the

interpretation of the results of these experiments in terms of modern condensed matter

theory.

The main findings may be summarised as follows:

• Titanium krausite, KTi(SO4)2·(H2O) – A new realisation of the S = 1/2

frustrated (J1 − J2) Heisenberg chain model has been prepared by hydrothermal

synthesis and studied by magnetic susceptibility, specific heat, low temperature

ac susceptibility, and high field magnetization. These may all be interpreted in

terms of a scenario where α = J2/J1 = 1.5. Electronic structure calculations by

Kasinathan et. al. support this picture, and furthermore identify the orienta-

tion of the water molecule bound to the the TiO6 octahedron as important in

determining the magnetically active orbital.

• Titanium yavapaiite, KTi(SO4)2 – The anhydrous analogue of KTi(SO4)2·(H2O),

KTi(SO4)2, has been synthesised by a novel hydrothermal route, resulting in

samples of unprecedented purity. The magnetic susceptibility of this new sample

implies that KTi(SO4)2 is, in fact, a realisation of the quantum Heisenberg chain

model, rather than of the Ising triangular lattice antiferromagnet, as previously

supposed [Bramwell et al. (1996)]. The new sample was used for low T inelastic

time of flight experiments, which confirm the 1D nature of the system. Despite

multiple scattering and powder averaging, good agreement is achieved between

an exact result for S(Q,ω) of the 2-spinon continuum. The frustrating interchain

interaction J ′ is shown to be non-negligible, however, by shifting the antiferro-

magnetic zone center away from the position expected for a purely 1D system
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to the collinear antiferromagnetic structure proposed in [Starykh and Balents

(2007)].

• Volborthite, Cu3V2O7(OH)2 · 2(H2O) – A highly deuterated sample of the

S = 1/2 quasi-kagome antiferromagnet material volborthite was prepared and

studied by XY Z polarised neutron scattering and inelastic time of flight neu-

tron scattering. Whilst not entirely clearing up the mystery of the ground state,

these considerably narrow down the list of possible candidates. The most promis-

ing model for explaining the experimental data is the so-called Janson-Rosner

model, which features ferromagnetic-antiferromagnetic chains running along the

a direction, coupled antiferromgnetically to the interchain sites.

• Herbertsmithite, Cu3Zn(OH)6Cl2 – When discovered in 2005, the mineral

herbertsmithite was billed as the first structurally perfect realisation of the S =

1/2 Heisenberg kagome model. Subsequent specific heat and neutron diffraction

experiments, however, showed that there is considerable mixing between the in-

plane Cu2+ site and the interplane Zn2+ site. As a result, the kagome planes

are depleted by 6%, and nearly 20% of the interplane sites are populated by

Cu2+. The effects of anti-site mixing are also reflected in our data: inelastic

neutron scattering at high energy transfers shows a column of scattering at Q =

1.3Å−1, which can be explained in the framework of a valence bond glass ground

state. The low energy dynamics at T < 1 K are interpreted as implying that the

interplane Cu2+ defects weakly couple to the kagome planes.

One thing all of the materials listed above have in common (beyond being quantum

magnets, obviously), is that they are produced by hydrothermal synthesis. The high

temperatures and pressures generated in such reactions make single crystal growth dif-

ficult, and the products are therefore usually powders 1. The loss of spatial information

which results from powder averaging presents a considerable challenge in interpreting

experimental data, especially when looking for sometimes subtle quantum effects. An-

other feature shared by the above materials, and particularly the last two on the list, is

the presence of (unavoidable) perturbing terms in the Hamiltonian. Quantum ground

states are easily disturbed by such perturbations, a fact that is especially apparent in

herbertsmithite. Solving these two issues are of key importance.

Beyond the material presented in the main body of this thesis, considerable efforts were

also made in the area of metal-organic synthesis, in particular single crystal growth of

1Although some advances have been made in growth of herbertsmithite crystals, achieved by careful
control of the temperature gradient across the reaction vessel. This has resulted in single crystals of
about 1 mm3.
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2D antiferromagnets such as Cu(N-pyridine oxide)6(BF4)2[Carlin and DeJongh (1986)]

and (CAP)2CuCl4 (where CAP is 5-chloro-2-aminopyridinium) [Coomer et al. (2006)].

Attempts were also made to modify the structure of the former, which resulted in the

synthesis of 3 new materials.

Work from this thesis is published in the following articles:

• G. J. Nilsen, F. C. Coomer, M. A. de Vries, J. R. Stewart, P. P. Deen, A. Harrison,

and H. M. Rønnow, arXiv:1001.2462, submitted to Phys. Rev. B.

• M. A. de Vries, J. R. Stewart, P. P. Deen, J. O. Piatek, G. J. Nilsen, H. M.

Rønnow, and A. Harrison, Phys. Rev. Lett. 103, 237201 (2009)

• G. J. Nilsen, H. M. Ronnow, A. M. Laeuchli, F. P. A. Fabbiani, J. Sanchez-

Benitez, K. V. Kamenev, and A. Harrison, Chem. Mater. 20, 8 (2008)

Several further publications are also in preparation on the high field and low tempera-

ture magnetic data for KTi(SO4)2·(H2O), the excitation spectrum of KTi(SO4)2, and

the low temperature defect physics of Cu3Zn(OH)6Cl2.





Appendix A

Synthetic and Crystallographic

Details

This appendix contains additional detail on synthetic protocol of the com-

pounds discussed in Chapters 4 and 5, as well as details of the structure

solution and refinement of KTi(SO4)2·(H2O).

A.1 KTi(SO4)2·(H2O)

A.1.1 Synthesis

KTi(SO4)2·(H2O)was prepared by first dissolving 0.965 g of K2SO4 (5.5 mmol, 99%,

Sigma Aldrich) in approximately 21 ml of warm (∼ 50◦C) deionised water under stir-

ring. To this solution was added 10.5 ml (15.28 g, 40 mmol) of 45% v/w Ti2(SO4)3

solution (40 mmol, Sigma Aldrich) and 2.1 ml of H2SO4 (40 mmol, 98%, Sigma Aldrich).

10 ml portions of the dark purple solution were pipetted into several 21 ml Parr instru-

ments PTFE lined digestion bombs. The mixture was heated at 155◦C for 48 hours,

before being cooled to room temperature at a rate of approximately 5◦ per hour. Two

of the bombs produced only a white powder, later identified as TiO2. The third con-

tained a mixture of small intergrown clusters of blue-violet crystals alongside a large

amount of the same white powder. The product was collected by suction filtration,

washed several times with water, and dried in a vacuum dessicator. When dry, the two

phases present were separated by hand, easily accomplished due to the differing particle

sizes. The final yield of the product, identified by single crystal X-ray crystallography

as KTi(SO4)2·(H2O), was 0.11 g (1.5% with respect to Ti).
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Subsequent attempts at reproducing the synthesis yielded only amorphous TiO2 side-

product. Efforts to improve the yield of KTi(SO4)2·(H2O)were thus mainly concen-

trated on preventing the oxidation of Ti3+ to Ti4+: deoxygenating the solution, adding

Ti metal, and varying the pH were all tried, but failed to to increase the yield. Changing

the stoichiometry of the reagents to a ratio closer to the stoichiometry of the product

also failed. Finally, the nucleation surface was varied by placing the reaction mixture

in a small glass vessel designed to fit the PTFE bomb liner. This lead to to three more

succesful syntheses, among nearly 144 attempts. To reliably reproduce the synthesis of

KTi(SO4)2·(H2O) is the primary barrier standing in the way of neutron experiments,

which would shed unprecedented light on the dynamics of the frustrated chain antifer-

romagnet.

A.1.2 Crystallographic Details

The crystal structure solution and refinement was carried out by Francesca Fabbiani. A

crystal of dimensions 0.19× 0.15× 0.08 mm3 was selected for single-crystal diffraction.

All data were collected at 150(2) K on a Bruker SMART APEX CCD diffractometer

equipped with an Oxford Cryosystems low temperature (∼ 80K) device. The struc-

ture was solved by direct methods and full matrix least-squares structure refinement

against F 2 was performed using CRYSTALS. Non-hydrogen atoms were modeled with

anisotropic displacement parameters. Hydrogen atoms were located on a difference

map and their positions were refined subject to distance restraints. The coordina-

tion of water rather than hydroxyl was primarily inferred from magnetic susceptibility

measurements, which confirmed the oxidation state of Ti as Ti3+. Details concerning

the crystal, measurement, refinement, atomic positions, displacement parameters, and

bond lengths and angles are given in the following set of tables.
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Crystal data

KTi(SO4)2·(H2O) ρ = 2.766 g cm−3

M = 297.14 Mo-kα radiation, λ = 0.71073 Å

Monoclinic, P21/m Cell parameters from 1401 reflections

Hall symbol: −P2yb θ = 2.298◦ − 25.026◦

a = 7.6593(6) Å µ = 2.393 mm−1

b = 5.2559(4) Å T = 150(2) K

c = 9.0545(9) Å Purple blocks

β = 101.834(6)◦ F (000) = 294

Z = 2 0.19× 0.15× 0.08 mm3

Data collection

Bruker SMART diffractometer 701 independent reflections

Graphite monochromator 539 reflections with I > 2σ(I)

ω scans θmax = 2.298circ θmin = 25.026circ

Absorption correction: multi-scan Rint = 0.060

SADABS (Siemens, 1996) h = −9 → 9

3379 measured reflections k = −6 → 6

l = −10 → 10

Refinement

Refinement on F 2 2 restrains

Least-squares matrix: full Primary atom location: direct methods

R[F 2 > 2σ(F 2)] = 0.0353 H-atom location: difference Fourier map

wR(F 2) = 0.0978 w = 1
σ2F 2

o+(0.0525P )2+0.231P

697 reflections where P = F 2
o+2F 2

c
3

78 parameters ∆ρmax = 1.78, ∆ρmin = −1.26
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Atom x y z Ueq g

Ti 0.91347(16) 0.7500 0.76622(13) 0.0094 1.0000

O(1) 0.9134(7) 0.7500 0.5397(5) 0.0156 1.0000

K(1) 0.57212(19) 0.2500 0.21752(17) 0.0150 1.0000

S(1) 0.6645(2) 0.2500 0.64451(18) 0.0108 1.0000

O(11) 0.7270(4) 0.4785(6) 0.7411(3) 0.0119 1.0000

O(21) 0.7474(6) 0.2500 0.5138(5) 0.0142 1.0000

O(31) 0.4706(6) 0.2500 0.6091(5) 0.0157 1.0000

S(2) 1.1648(2) 1.2500 0.88488(17) 0.0084 1.0000

O(12) 1.1107(4) 1.0205(6) 0.7886(3) 0.0107 1.0000

O(22) 1.0626(6) 1.2500 1.0064(5) 0.0100 1.0000

O(32) 1.3548(6) 1.2500 0.9370(5) 0.0141 1.0000

H(1) 0.810(5) 0.7500 0.483(9) 0.0500 1.0000

H(2) 0.951(7) 0.901(6) 0.535(11) 0.0500 0.5000

Table A.1: Fractional atomic coordinates, isotropic displacement parameters, and occupan-

cies for KTi(SO4)2·(H2O).

Atom U11 U22 U33 U23 U13 U12

Ti(1) 0.0109(7) 0.0013(6) 0.0169(7) 0.0000 0.0054(5) 0.0000

O(1) 0.020(3) 0.013(3) 0.014(2) 0.0000 0.003(2) 0.0000

K(1) 0.0115(8) 0.0107(8) 0.0239(8) 0.0000 0.0062(6) 0.0000

S(1) 0.0121(9) 0.0036(8) 0.0171(9) 0.0000 0.0043(7) 0.0000

O(11) 0.0124(15) 0.0021(15) 0.0227(15) -0.0022(11) 0.0071(12) -0.0007(13)

O(21) 0.018(2) 0.004(2) 0.023(2) 0.0000 0.0109(18) 0.0000

O(31) 0.0119(16) 0.009(2) 0.027(3) 0.0000 0.0054(18) 0.0000

S(2) 0.0084(8) 0.0011(7) 0.0167(9) 0.0000 0.0048(7) 0.0000

O(12) 0.0124(15) 0.0026(15) 0.0188(15) -0.0028(11) 0.0070(12) 0.0002(13)

O(22) 0.012(2) 0.002(2) 0.018(2) 0.0000 0.0067(17) 0.0000

O(32) 0.0083(16) 0.011(3) 0.024(3) 0.0000 0.0045(17) 0.0000

Table A.2: Anisotropic displacement parameters for KTi(SO4)2·(H2O).
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Geometric parameters (Å,◦)s

Ti(1)-O(12)a 2.054(3) Ti(1)-O(22)b 2.029(4)

Ti(1)-O(11)a 1.999(3) Ti(1)-O(1) 2.051(5)

Ti(1)-O(11) 1.999(3) Ti(1)-O(12) 2.054(3)

O(1)-H(2)a 0.849(10) O(1)-H(1) 0.849(9)

O(1)-H(2) 0.849(10) S(1)-O(11) 1.505(3)

S(1)-O(11)a 1.505(3) S(1)-O(21) 1.454(5)

S(1)-O(31) 1.453(5) S(2)-O(12) 1.496(3)

S(2)-O(12)a 1.496(3) S(2)-O(22) 1.476(5)

S(2)-O(32) 1.434(5)

O(12)a-Ti(1)-O(22)b 89.33(12) O(12)a-Ti(1)-O(11)a 177.97(13)

O(22)b-Ti(1)-O(11)a 91.67(13) O(12)a-Ti(1)-O(1) 87.02(13)

O(22)b-Ti(1)-O(1) 174.94(18) O(11)a-Ti(1)-O(1) 91.87(13)

O(12)a-Ti(1)-O(11) 90.63(12) O(22)b-Ti(1)-O(11) 91.67(13)

O(11)a-Ti(1)-O(11) 91.11(18) O(1)-Ti(1)-O(11) 91.87(13)

O(12)a-Ti(1)-O(12) 87.61(17) O(22)b-Ti(1)-O(12) 89.33(12)

O(11)a-Ti(1)-O(12) 90.63(12) O(1)-Ti(1)-O(12) 87.02(13)

O(11)-Ti(1)-O(12) 177.97(13) H(2)a-O(1)-Ti(1) 97(7)

H(2)a-O(1)-H(1) 105.0(9) Ti(1)-O(1)-H(1) 114(6)

H(2)a-O(1)-H(2) 138(12) Ti(1)-O(1)-H(2) 97(7)

H(1)-O(1)-H(2) 105.0(9) O(11)a-S(1)-O(11) 105.9(3)

O(11)a-S(1)-O(21) 109.47(17) O(11)-S(1)-O(21) 109.47(17)

O(11)a-S(1)-O(31) 108.49(17) O(11)-S(1)-O(31) 108.49(17)

O(21)-S(1)-O(31) 114.7(3) Ti(1)-O(11)-S(1) 140.4(2)

O(12)a-S(2)-O(12) 107.5(2) O(12)a-S(2)-O(22) 107.97(16)

O(12)-S(2)-O(22) 107.97(16) O(12)a-S(2)-O(32) 109.45(16)

O(12)-S(2)-O(32) 109.45(16) O(22)-S(2)-O(32) 114.3(3)

Ti(1)-O(12)-S(2) 136.55(18) Ti(1)c-O(22)-S(2) 143.7(3)

Symmetry labels: (a) x,−y + 1/2, z, (b) −x, y + 1/2,−z, (c) −x,−y,−z

Table A.3: Geometric parameters for KTi(SO4)2·(H2O).
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A.2 KTi(SO4)2

A.2.1 Synthesis

KTi(SO4)2was prepared from the same reaction mixture as KTi(SO4)2·(H2O). The

primary difference in the syntheses was the reaction vessel: instead of PTFE lined

steel bombs, 35 ml glass pressure tubes (Ace Glass Co.) were used. After heating the

reaction mixture for 48 hours at 155◦C, it was cooled to room temperature at a rate of

10◦C per hour. Due to the transparency of the tubes, it was possible to monitor the

progress of the reaction throughout its entire duration. Formation of product was found

to start after a period of approximately 18 hours, with the appearance of small, blue

crystals on the walls of the tubes. White TiO2 powder was also observed at this stage.

After approximately 36 hours, it was difficult to discern any further precipitation of

either phase, at least by eye, as the walls of the reaction vessel were entirely covered in

material. The product was collected by suction filtration and washed several times with

water, before being dried in a vacuum dessicator. The final yield of KTi(SO4)2 was

found to be around 0.4 g per vessel, 7% with respect to Ti. The crystal structure

was confirmed both by single crystal and powder X-ray diffraction, as well as SQUID

magnetometry. The lattice parameters were found to be consistent with those stated

by Bramwell et. al. [Bramwell et al. (1996)].

A.2.2 Crystallographic Details

The structure of Ti-yavapaiite was verified by performing powder X-ray diffraction at

room temperature on a ground sample. A typical diffractogram with Rietveld refine-

ment is shown in figure A.1. This was used to extract the lattice parameters quoted in

the text.

A.3 Cu3V2O7(OH)2 · 2(H2O)

A.3.1 Synthesis of Deuterated Sample

The high level of deuteration required from neutron scattering experiments was achieved

by performing the literature [Hiroi et al. (2001)] synthesis with modifications as follows:

CuO (2.39 g, 30 mmol) was dissolved in approximately 30 ml of 1 M D2SO4 at ∼ 60◦C.

A small overpressure of N2 gas was maintained in the reaction vessel in order to avoid

H/D exchange during the reaction. V2O5 (1.815 g, 10 mmol) was then slowly added to
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Figure A.1: The powder X-ray spectrum of KTi(SO4)2. The Rietveld refinement is shown

in red.

the solution, forming a green/orange suspension. Over the course of several hours, the

pH was adjusted to 5.4 by addition of approximately y ml of a 1 M solution of NaOD.

The suspension was refluxed for 3 days at 90◦C, until all the V2O5 was consumed,

leaving a light green/yellow precipitate. In order to avoid H/D exchange, the product

was filtered in a nitrogen filled wet-box. Even with all precautions taken to avoid

contact with air, the deuteration level of the product at this stage was found to be

only 80− 90%. To improve this, the powder was loaded into a teflon lined steel bomb

along with D2O, filling up approximately 80% of the volume of the container. The

mixture was heated at 90◦C for 24 hours, at which point the D2O was decanted off and

replaced by fresh solution. This cycle was repeated 4 times for each sample, with an

estimated replacement of around 50% of the remaining H at each iteration. The final

product was filtered again, and dried under vacuum at 95◦C. By repeating this process

several times, a total mass of 45g of highly deuterated (∼ 98% as estimated from spin

incoherent cross section in polarised neutron scattering) volborthite was produced. Its

purity was checked with X-ray diffraction and SQUID magnetometry, before proceeding

to neutron experiments.
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