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Abstract—The increasing use of sensor technology for vari-
ous monitoring applications (e.g. air-pollution, traffic, climate-
change, etc.) has led to an unprecedented volume of streaming
data that has to be efficiently stored and retrieved. Real-time
model-based data approximation and filtering is a common
solution for reducing the storage (and communication) overhead.
However, the selection of the most efficient model depends on
the characteristics of the data stream, namely rate, burstiness,
data range, etc., which cannot be always known a priori for
mobile sensors and they can even be dynamic. In this paper,
we investigate the innovative concept of efficiently combining
multiple approximation models in real-time. Our approach
dynamically adapts to the properties of the data stream and
approximates each data segment with the most suitable model. As
experimentally proved, our multi-model approximation approach
always produces fewer or equal data segments than those of the
best individual model. Finally, by employing both simple and
more advanced indexing approaches for modeled data segments,
we prove that multi-model data approximation is preferable to
single model-based approximation in terms of response time for
range-queries sent to big data tables.

I. INTRODUCTION

Recent advances in sensor technology have enabled the
availability of a multitude of (often privately-held) sensors.
Embedded sensing functionality (e.g. noise, accelerometer,
temperature, GPS, RFID etc.) is now included in mobile
devices, such as phones, cars, buses, etc. Environmental and
health-care applications based on community sensing in urban
areas have been already envisioned, e.g. personalized carbon
exposure and impact calculators, healthy lifestyle estimators,
traffic monitoring, etc. Sensor mobility vastly increases cover-
age and provides new opportunities for emerging monitoring
applications. At the same time, the large amount of these
devices and the huge volume of raw monitored data pose new
challenges for the sustainable storage and efficient retrieval of
sensor data streams.

To this end, multiple regression and filtering techniques
(referred to as models) have been proposed [1], [2], [3] for
the online approximation of time series within a certain error
norm (i.e. lossy compression). L., is a common error norm
that allows modeled data values to fall within a maximum
error bound from the raw ones. These models exploit the
correlations (e.g. with time or among data streams) exploited
by time series to split data in pieces and approximate each
segment with a certain mathematical function derived by the

model. However, the potential varying burstiness (and possibly
rate) of the data streams along time and the variable standard
error introduced by the sensor mobility often result on limited
effectiveness of a single model for approximating data within
the prescribed error bound during a certain period. The same
argument is also valid for other time series that may exploit
variable burstiness in different time periods, e.g. stock prices
during volatile or non-volatile market periods.

In this paper, we propose the innovative concept of combin-
ing multiple statistical models for approximating time series.
The intuition behind this approach is that different data periods
of a sensor stream can be better approximated by different
models, thus resulting, overall, in fewer and longer segments.
This is because of the greater flexibility offered by the different
alternative models. We propose our multi-model longest-fit
algorithm and prove its correctness for approximating the
data stream within the specified error bound. By an exten-
sive series of experiments with both real and artificial data
traces, we prove that our approach always produces fewer or
equal segments than any of its constituent models employed
individually. Moreover, when linear models are employed, we
experimentally show that our approach can achieve significant
compression improvement over any constituent linear approx-
imation scheme. We define an appropriate storage scheme and
adopt an efficient indexing approach for intervals, referred to
as RI-Tree [4]. As experimentally proved both for RI-tree and
simple indexing schemes, multi-model compression algorithm
results into significantly lower response times than individual
models for value range and point queries. Our approach is
fully implemented and can serve as a framework for efficiently
combining arbitrary online approximation schemes for time
series.

The remainder of this paper is organized as follows: In
Section 2, we discuss further motivation for our work. In
Section 3, we compare our approach to the related work and
emphasize on the innovative characteristics of our approach.
In Section 4, we introduce our multi-model approximation
algorithm. In Section 5, we define the storage schema for our
approach. In Section 6, we describe how the approximated
time series can be efficiently indexed and queried. In Section 6,
we present our experimental results that prove the effectiveness
of our approach. Finally, in Section 7, we conclude our work.



II. MOTIVATION

The wide availability of sensor technology has enabled
a new era of emerging interesting applications in different
contexts, e.g. environmental conservation, health-care monitor-
ing, surveillance, safety, air-pollution monitoring, personalized
carbon-impact assessment, etc. However, these applications
continuously produce data streams that may be correlated,
erroneous or incomplete. Moreover, the volume of this data
may make them unmanageable in the long-run, if they are not
properly stored. Probabilistic models [3], [5], [6], [7] have
been proposed for data cleaning and for deducing hidden
variables. However, they are not appropriate for compress-
ing the data in storage, as they estimate, store and provide
probability distributions (usually taking more storage space
than the original data), instead of actual values. In Section
III, we reviewed multiple statistical (e.g. regression) and
other filtering techniques that have been proposed for data
compression in storage and in communication. These models
built online and store in database tables the approximated data
segments instead of the raw stream values. Thus, in general,
the fewer the segments that approximate the complete data
stream, or alternatively the higher the average segment length,
the higher the compression that can be achieved. However, the
achievable compression ratio also depends on the complexity
of the model that determines the necessary storage space for
the representation of each stream data segment in the database.

Based on their generation algorithm, different online ap-
proximation models exploit the correlations of the data in
a different way. For example, PMC-MidRange (or simply
MidRange) piece-wise constant approximation is expected to
approximate a longer data segment of a data stream oscillating
across a certain constant value within the error bound, than a
linear piece-wise approximation technique, such as Linear or
Swing filters; the latter models require that the data stream
values consistently follow a certain direction. This case is
illustrated in Fig. 1, where a small period of a raw data
stream produced by a temperature sensor is approximated
by MidRange and Swing models. Only the edge points of
the linear segments produced by each model are plotted in
Fig. 1. As depicted therein, in the beginning of the stream
period, Swing filter approximates with 1 linear segment a
data stream subset of 17 raw values, while, for the same raw
data, MidRange approximation model needs 3 linear segments.
The situation is reversed at the end of the stream period,
where 24 raw data values are approximated with 1 linear
segment by MidRange, as compared to 3 linear data segments
constructed by Swing for the same data. Another example
is that, other stream trends in certain periods that involve
multiple direction changes or periodicity, such as parabolic
or sinoid, could be better approximated by 2nd-degree or Sth-
degree polynomials respectively. Other properties of the data
stream that can be differently exploited in different periods
by the various approximation models, described in Section
I, involve rate variability, oscillation length (i.e. burstiness),
direction of trend, rate of trend change, the approximation
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Fig. 1. Different time segments of the data stream are better approximated
by different models.

error bound, etc.

III. RELATED WORK

There is significant work in the literature related to model-
based data compression. Among several different time series
approximation techniques, piecewise linear approximation has
been widely used [8]. Linear filter is a simple piecewise
linear approximation technique in which the data points are
approximated by a line connecting the first and second point
of the segment. When the new point cannot be approximated
by this line in the specified error bound, a new segment is
started [1].

In [1], two new piece-wise linear approximation models
were proposed, namely Swing and Slide and they were com-
pared to previous linear models, such as cache and linear
filters. Cache filter approximates data within a segment with a
constant value, which can be the first value of the segment, the
mean or the median (referred to as Poor Man’s Compression-
MidRange (PMC-MR) [9]).

In [10], a framework for partitioning and approximating
raw data segments based on a user specified mathematical
function or model is introduced. Data segments are stored in
a special Function Table, coupling the raw data. Instead, our
approach focuses on selecting an efficient collection of models
that transparently approximate different data segments.

In [11], the piecewise linear approximation algorithms are
categorized in three groups, sliding windows, top-down, and
bottom-up. Among these three groups only the sliding win-
dows approaches can be used online. The other two approaches
perform better than sliding windows, but they need to scan
all the data, hence they cannot be used for approximating
streaming data. Based on this observation, the authors propose
a new algorithm which combines the online property of
sliding windows and performance of the bottom-up algorithm.
While this approach can be employed by our multi-modeling
technique, it needs a predefined buffer length. If the buffer is
small then it may produce many small segments and if it is
large, it will delay outputting the approximation of the data
stream.

In [12], a general technique is introduced to reduce the space
complexity of the offline and online optimal and approximate
synopsis construction algorithms. The V-optimal histogram
[13] for synopsis construction tries to find the best piecewise



constant approximation of n values with at most B pieces,
while the sum of the square errors between the actual and ap-
proximated values is minimized. Instead, we try to maximize
the compression ratio by approximating the data in real-time
with multiple models while a predefined error bound is met.

Several approaches [3], [5], [6], [7] employ predictive
probabilistic modeling based approaches for compressing the
data that has to be communicated in wireless sensor networks.
Deshpande et al. [14] also exploit spatial correlations among
different data sources for compression. In the same context,
but for optimizing storage space, the approach in [2] dynami-
cally identifies and exploits correlations among different data
streams and then jointly compresses them within an error
bound employing a polynomial time approximation scheme.
Our approach applies multiple micro-models per sensor stream
and it can also exploit spatial correlations among different
data streams or sensor readings from the same location on
different attributes, e.g. humidity and temperature from the
same sensor. Also, [15] defines a complete framework for
scientific sensor data processing focusing on fast visualization
of scientific models based on random walk sampling.

Also, [16] introduces a framework for defining model-based
views of raw data based on statistical models that are of
interest, such as linear regression and interpolation. Regression
models aim to predict a dependent variable (e.g. next sensor
measurement) based on the values of a set of independent
variables (e.g. previous sensor measurements) and some cal-
culated coefficients. The goal of regression models is to find
the optimal weights that minimize some error metric given the
set of observations and the expected values, such as the root
mean square error, the standard deviation, the mean absolute
error etc. On the other hand, interpolation models are a natural
way to fill missing values. The approach in [16] does not focus
on compression and it can be considered as complementary
to our approach by employing approximated streaming data
instead of raw data to construct model-based views. In [17], the
work of [16] is extended providing a framework to define and
maintain views based on dynamic probabilistic models [18],
[19]. In [17], particles are employed for representing dynamic
probabilistic models, which are weighted samples over con-
ditional probability distributions (CPD) that are learned based
on data using Maximum Likelihood Estimation (MLE). The
weights on particles are updated using the CPD of the observed
values.

Finally, Babu et al. proposed in [20] a heuristic approach for
selecting the classification and regression tree (CaRT) models
that semantically compress columns of huge data tables based
on value correlations within some error bounds in accuracy.
However, this approach is rather offline, as the whole data
table should be available as input to the compression algorithm
which is rather costly, as opposed to our approach which
compresses the data in real-time and thus better suited to
streaming data.

IV. THE BASIC ALGORITHM

Online piece-wise approximation algorithms seek to find
the parameters of a certain mathematical function, so as to
fit the raw values of a segment of the data stream within a
maximum error bound. When a raw data value of the stream
cannot be approximated within the error bound by a specific
instantiation of the “fitting” function of the model, then a
new data segment is initiated; within the new data segment, a
new instantiation of the fitting function has to be found and
employed for data approximation. Each approximation model
has to employ a fixed number of initial raw values in a data
segment, in order to find the instantiation of its fitting function
for this segment; e.g., 1 value for the cache filter, 2 values for
the linear filter, 3 values for 2nd-degree polynomial regression,
etc. We refer to this model requirement as initialization. The
raw data stream values of the segment necessarily fit into the
model function during its initialization, while the minimum
initialization length that may be required by a model is 1 value.

In our approach, a collection of models are jointly employed
for approximating the data stream. Each data segment is
approximated by the most effective model instantiation for that
segment. The model effectiveness for a segment is determined
based on the segment length (i.e. fitting period) in terms of raw
data values that can be approximated by the same instance
of the model and its achievable compression ratio for this
segment.

More formally, we want to construct a multi-segment mathe-
matical formula. For simplicity, we consider the approximation
of a single attribute of the stream that exploits a temporal
correlation.
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where h; is a certain instantiation of the formula f,,(¢) of the
model m that achieves the highest compression ratio for the
data in the time period [t;—1, t;].

We want to select the model m that approximates each seg-
ment ¢, so that the total number N of segments is minimized.
Minimizing the number of segments necessarily achieves the
best compression ratio, since the model selected at each
segment is the cheapest in terms of storage requirements.

For finding the offline optimal solution to the problem,
all possible combinations of models should be enumerated,
which is a NP-complete problem. To this end, we propose
a greedy algorithm (described in Algorithm 1) for selecting
for each segment the model that i) maximizes its length
(i.e. approximates the largest number of raw values), and
ii) it is the cheapest to be stored. The algorithm achieves
this as follows: Consider a set M of models that jointly
approximate a certain data segment of the data stream S.
Each raw data item < ¢,v >, i.e. with value v at time ¢,
is examined by each of the initialized models for this data
segment whether it falls (“hit”) or not (“miss”) within the



error bound e from the estimated data value by the model
at time ¢, i.e. whether |f,(f) — v| < € or not for a model
m with an instantiated function f,,,. All uninitialized models
succeed into approximating the raw data item < ¢,v > in this
segment by default. We calculate the compression ratio 7, for
each missing model m and we exclude m from the models
that are further examined against the aforementioned hitting
condition for this segment. We repeat examining the hitting
condition for all subsequent raw data items of the stream,
until all models “miss”. At this point, the model m* with the
highest compression ratio r,,, is dumped into the database
to approximate the data segment until the time ¢,,. that it
missed. Afterwards, the data stream is retracted to time ¢,,«,
the approximation formulas of all models are cleared and all
models are considered for the approximation of the next data
segment according to the aforementioned procedure. If at the
time that all models miss, there are several missed models
with the same highest compression ratio, then the one with
minimum root mean squared error is selected to be dumped
in the database.

The formulation (1) applies to the approximation of the data
stream with connected segments. In this case, the approxi-
mation of a new segment starts from the ending time of the
last segment. In case that a data stream is approximated by
disconnected segments, the approximation of a new segment
starts at the time of the “miss” for fitting a raw data stream
value.

The optimal offline combination of arbitrary models could
be found by Dijkstra algorithm for finding the shortest path in
communication networks as follows. The nodes are the data
items of the stream, while the models are potential outgoing
links at each node. Each model leads to a different ending
time for a segment and it has a different storage cost that is
used as the weight of the link. Each node is connected to its
subsequent node in the stream by a link annotated with the cost
of storing a linear segment. We want to find the path across
the data items from the starting time of the stream until now,
which is expected to achieve the highest compression ratio,
i.e. the minimum storage cost. Overall, this algorithm would
have complexity O(N|M|+ Nlog N).

The uncertainty of our greedy algorithm lies on the fact
that the selection of a certain model that maximizes the
compression ratio for approximating a segment, may lead
to subsequent increase of the number of segments that are
required to approximate the data stream. However, as exper-
imentally proved in Section VII, our greedy algorithm for
multi-model approximation always produces fewer or equal
segments to the ones produced by the most efficient of the
models when individually employed for approximating the
data stream.

A. Correctness

Theorem 4.1: The approximate data stream produced by
our multi-model fitting algorithm always satisfies the pre-
specified error bound.

Algorithm 1 Multi-model data approximation

Require: Set M of models, stream S = {< t;, X; >}
F+ M
F*«0
while |S| > 0 do
< t,v >« fetch(S)
if Ym € M, is_initialized(m) = false then
to=1
end if
for all m € F do
if is_initialized(m) = false then
initialize(m, < t,v >)
continue
end if
if [v — fi(t)| > € then
F="F\{m)
F*=F*U{m}
else
tm 1
end if
{check if all models are dropped}
if ' = () then
fmx & fm st.m® € F* and 7,,, is maximum
dump(to, tims, fms)
F+M
F*«
for all m € F do
clear(m)
end for
retract(< t¥,,v* >, 5)
end if
end for
end while

Proof: Assume that a certain raw data item is not ap-
proximated within the error bound. Then, there should be
a data segment that includes this data item approximated
by a certain model that violates the error bound within the
segment. However, according to Algorithm 1, a violation of
the error bound would lead to the automatic exclusion of the
missing model from the considered ones for this data segment.
If all approximating models concurrently violated the error
bound for this particular raw data item, then the previous data
segment would be dumped to the database, while the raw data
item would belong to a subsequent segment. Then, if again
no model could approximate this raw data item in the new
segment, then the raw data item itself would be dumped to
the database, i.e. as in lossless approximation. Therefore, there
cannot be a raw data item that is not approximated by our
algorithm within the pre-specified error bound. [ ]

V. STORING

There are multiple alternatives for model materialization in
the databases, based on the purpose of the approximation. For
example, if models are employed for constructing data views,
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Fig. 2. The database schema for multi-model materialization.

then the view data have to be either materialized and updated
in real-time or re-calculated on-demand based on raw data. The
former approach may involve huge storage requirements, while
the latter may introduce huge latency. Since we are employing
the approximation models for compression purposes, only the
approximated data segments are stored in the database, instead
of the raw values of the data stream. A generic database
schema for multi-model approximation consists of one table
(SegmentTable) for storing the data segments, and a second
table (ModelTable) for storing the model functions, as depicted
in Figure 2.

A tuple of the SegmentTable contains the approximation
data for a segment in the period [start_time, end_time]. The
attribute id stands for identification of the model that is used
in the segment. The primary key in the SegmentTable is the
start_time, while in the ModelTable is the id.

When both linear and non-linear models are employed
for the approximation, left_value is the lowest raw value
encountered in the segment and right_value is the high-
est raw value encountered in the segment. In this case,
start_time, end_time, left_value, right_value define a
rectangular bucket that contains the values of this segment,
which is employed for indexing purposes, as explained in
Section VI. Also, the attribute model_params stores the
parameters of the instance of the model id that approximates
this segment, e.g. the regression coefficients for a regres-
sion model. The attribute model_params has variable length
(VARCHAR or VARBINARY data types in SQL) and it
stores the concatenation of the parameters or their compressed
representation (by means of standard compression techniques,
such as Deflate(gzip), bzip2, LZMA(7zip), etc.). Each tuple in
the ModelT able corresponds to a model with a particular id
and a certain function. The attribute function represents the
name of the model and it corresponds to the name of two user
defined functions (UDFs) stored in the database: i) one that

implements the mathematical formula of the model, and ii)
one that implements the inverse mathematical formula of the
model, if any. Both are employed for answering value-based
queries, and specifically the latter for equation solving, while
the former for value regeneration in fixed time steps, referred
to as gridding.

When only linear models are employed, the attributes
left_value, right_value are the edge values of a linear
segment, and thus the attributes ¢d, model_params can be
omitted from the storage schema. Thus, an individual linear
segment is less expensive in storage than a non-linear one.

Also, if the multi-model approximation algorithm is con-
figured to produce connected segments, then the end_time
attribute could be omitted from the segment tuple. However,
this option would deteriorate the efficiency of the storage
scheme for answering time range and point queries, as proper
indexing of data segments would be no longer possible.

VI. INDEXING AND QUERYING

An efficient storage scheme should not only compress the
size of the data on disk, but also allow for efficient query
answering. Here, we discuss indexing solutions for efficient
data retrieval from our storage scheme for time-based and
value-based queries.

A. Time-based queries

In order to be able to efficiently retrieve the approxi-
mate stream values in particular time points or intervals,
we have to build two conventional B-+-tree indexes on
SegmentTable: one on attribute start_time (it already exists
since start_time is a primary key) and a second one on at-
tribute end_time. This way, both linear and non-linear models
approximate the data stream, the data segments of interest
can be efficiently retrieved and the ids of their respective
approximation models are employed for finding the model
names from the ModelTable. The user defined functions
(UDFs) that implement the mathematical formulas of the
models are then employed for data gridding and answering
the queries. If only linear models are employed in multi-
model approximation, then the segments of interest already
contain the information to derive the mathematical formula
that approximates the segment (i.e. a line).

B. Value-based Queries

Here, we discuss on how we can efficiently answer valued-
based range and point queries. To this end, we first describe
the appropriate use of conventional B+-tree indexes and we
subsequently discuss the adoption of a more complex indexing
approach, referred to as Relational Interval Tree (RI-tree) [4].
While our proposed methods based on Rl-tree can efficiently
answer the full range of queries that involve predicates of
the SQL:1999 standard datatype PERIOD, namely precedes,
succeeds, meets, equals, overlaps, contains and during
[4], here, we focus only in the overlap case.



1) Conventional indexes: An owverlap query basically
searches for all the intervals that overlap with the given interval
[lower, upper], i.e. their intersection with the query interval
is not empty. The overlapping intervals can be found by using
the following SQL query.

SELECT id FROM SegmentTable st
WHERE st.left_value <= :upper AND
st.right_value >= :lower;

In order to efficiently answer this query we can build a
composite index on the attributes (left_value, right_value).
For answering point queries, we can represent the query point
as an interval with the same endpoints and then use the
above query. After the relevant model ids were retrieved,
their corresponding model names can be extracted from the
ModelT able. The user defined functions for each model are
consulted and the final results are obtained either mathemati-
cally from the inverse of the function or by gridding. If only
the linear models are used in multi-model approximation, then
the results can be directly obtained from the lines that represent
segments.

2) RI-Tree: The Relational Interval Tree (RI-tree) [4] is a
method to efficiently support intersection queries on intervals
stored in databases. RI-tree employs built-in indexes without
augmenting any internal data structure in the database, hence
it can be used in any relational database management system
(RDBMYS).

The RI-tree technique maintains (virtually) a backbone tree
structure, a balanced binary tree which assigns intervals to its
nodes. We adopt the basic version of Rl-tree, where the root
node is equal to 2"~! and 2"~! < data range < 2". The left
child of a node x has value x — step/2 and the right one has
value z + step/2, where step is initially 2"~2 and it divided
by 2 at each descend. As the tree is descended, an interval
[, u] is assigned to the first node that falls within the interval,
for which is referred to as its fork node. The Rl-tree requires
one table (node,lower, upper,id) for the intervals and two
composite indexes, namely lowerIndex on (node,lower) and
upperIndex on (node,upper). A new interval is assigned to
its corresponding fork node in the virtual tree by descending
the tree. The fork node is stored at the node attribute for this
interval. As the tree is repeatedly traversed for interval inser-
tions, a variable minstep stores the minimum value of step.
According to the RI-tree method, during interval searches, the
tree is further descended only if step > minstep. The original
version of RI-tree was designed for storing integer values. We
modify the basic RI-tree method for storing real values as well
by allowing step to take values arbitrarily lower than 1. Thus,
we can store intervals of arbitrarily small decimal range, while
the height of the RI-tree becomes h — log(minstep).

Answering an intersection query in RI-tree technique con-
sists of two steps. First, the tree is searched and the nodes
at which the potentially overlapping intervals are registered
are collected in two intermediate relations leftNodes(min, max)
and rightNodes(node). Second, a SQL query is issued on the
interval schema and the intermediate relations to find all the

overlapping intervals. For a query interval [lower, upper]|, the
primary structure is descended as follows. First, we descend
from the root node down to the node preceding the fork node
for the interval. For each node z along that path, if x < lower,
then its intervals [, u] intersect [lower, upper| exactly when
lower < wu. In this case, a tuple (z,z) is inserted into the
leftNodes relation. On the other hand, if x > upper then the
interval [l, u] registered at x intersects [lower, upper| exactly
when upper > [. In this case, a tuple (z) is added to the
relation rightNodes. In the next step, we descend from the
fork node down to the closest node to lower. Along this path,
if x < lower, then a tuple (z,z) is added to the leftNodes.
Last, we descend from the fork node down to the closest node
to upper. Along this path, if > upper then a tuple () is
added to the rightNodes. After inserting the query interval
(lower, upper) itself to the leftNodes, the following SQL
query is then issued to report all the intervals that intersect the
query interval by only employing lowerlndex and upperlndex
indexes.

SELECT id FROM Intervals i, leftNodes left
WHERE i.node BETWEEN left.min AND left .max

AND i.upper >= :lower

UNION ALL

SELECT id FROM Intervals i, rightNodes right
WHERE i.node = right.node AND i.lower <= :upper;

The RI-tree requires O(n/b) disk blocks of size b to store
n intervals, O(log, n) operations for insertion or deletion, and
O((h —log(minstep)) - log, n+ r/b) 1/Os for an intersection
query that produces r results.

VII. EVALUATION
A. Experimental setup

We fully implemented our multi-model approximation algo-
rithm in Java and the proposed database schema both in Oracle
11g and in MySQL 5.1. Moreover, all proposed indexing
approaches were implemented in both databases. For the RI-
tree method, two main user defined functions (UDFs) were im-
plemented, namely insertInterval() and queryIntervals(),
for inserting an interval into the index and for sending value-
based range queries respectively. Our experiments were run on
a (Core2Duo 2.5GHz CPU, 4GB) machine. As we obtained
similar results from both database implementations, we will
only present our results with Oracle 11g (default parameters,
580MB memory).

B. Compression

In our experiments, both real and synthetic data sets were
employed. As real data sets, we used measurements for various
environmental parameters (air temperature, humidity, wind
direction) collected from existing sensor deployments in the
Swiss Alps by the Swiss Experiment project (Www.swiss-
experiment.ch) and sea surface temperature sensor data from
the TAO project (www.pmel.noaa.gov/tao/). Air temperature,
sea surface and humidity time series exploit smooth statistical
behavior (due to their inherent physical laws), while the wind
direction data set is highly bursty and quite unpredictable in




nature. We also used two synthetic data sets. As a synthetic
data set, we generated Lorenz time series. The Lorenz attractor
is a three-dimensional structure corresponding to the long-
term behavior of a chaotic flow [21]. We employed as Prantl
number o = 10, as Rayleigh number p = 28, and as physical
proportion 5 = %, in the ordinary differential equations of
the Lorenz attractor. For the Lorenz synthetic data set, we
calculated 10000 Lorenz samples with a step width of 102
and employed the x-coordinate of the attractor.

All data sets were approximated within 3 different maxi-
mum error bounds: 3.16%, 5%, and 10% of the data range.
We implemented multiple models including Swing (SW),
MidRange (MR), Linear Filter (LF), Linear Regression (LR),
Least Squares Line (LS), Constant Filter (CF), and Chebyshev
Polynomial with different degrees (referred to as Cheb in
figures with the degree specified in parenthesis).

a) Connected vs. Disconnected segments and Optimality:
We first assess the effectiveness of our multi-model approx-
imation algorithm for compressing a data stream with con-
nected or disconnected segments. Recall from Section V that,
when connected segments are employed, each data segment
could be represented by one attribute less (i.e. end_time is
redundant), as compared to the disconnected segments. How-
ever, these space savings would come at the cost of inefficient
data retrieval in the case of time-based range queries. Thus,
the omission of end_time can be exploited only for data
communication compression. On the other hand, disconnected
segments offer more flexibility to the models for approximat-
ing data, as they do not have to start the approximation of
a new segment from the ending time of the previous one.
In this experiment, we approximate the data combining six
different linear models, namely Swing (SW), MidRange (MR),
Linear Filter (LF), Linear Regression (LR), Least Squares
Line (LS) and Constant Filter (CF). As depicted in Figure
3, our algorithm with disconnected segments achieves better
storage compression than with connected ones both for sea
temperature and for wind direction data sets, and for all the
different maximum error bounds considered. The achieved
compression improvement increases for more bursty data sets,
such as wind direction, as shown in Figure 4. Similar results
were obtained for all different data sets considered and for
various combinations of both linear and non-linear models.
Therefore, disconnected segments are employed by the models
for data approximation in the rest of this paper.

b) Multiple linear models: We now assess the com-
pression effectiveness of our multi-model approximation as
compared to the compression achieved by its constituent linear
models when individually applied to the data stream. Combin-
ing linear models is interesting, because they are computation-
ally very efficient, very cheap to store as discussed in Section
V, and they achieve comparable effectiveness to their more
complex counterparts. As depicted in Figures 5 and 7, our
multi-model algorithm achieves better compression ratio, than
any individual linear model, both for smooth (humidity) and
bursty (wind direction) real time series respectively. However,
the more bursty the data set, the lower the achievable compres-
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Fig. 3.  Compression ratios achieved by generating connected compared to
disconnected segments (Ocean temperature dataset). If we want to store the
connected segments in a database using the proposed schema, the compression
ratio degrades as we need to store both start and end timestamps.
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Fig. 4. Compression ratios achieved by generating connected compared
to disconnected segments (wind direction dataset). If we want to store the
connected segments in a database using the proposed schema, the compression
ratio degrades as we need to store both start and end timestamps.

sion ratio. Also, as shown in Figures 6 and 8, our approach
indeed produces up to 80% fewer segments than any of the
individual models, according to its design objective. The better
compression effectiveness of the multi-model approximation
algorithm over the individual linear models remains stable for
the synthetic data sets, e.g. as depicted in Figures 9 and 10 for
the Lorenz data set. Figure 11 depicts how the multi-model
approximation selects different individual models.

c) Combination of Linear and Non-Lineal Models: We
finally assess the compression effectiveness of our multi-
model approximation algorithm when both linear and non-
linear models are combined together. Non-linear models may
be more effective to approximate complex data trends of
time series, but their segments are also more costly to be
stored. As shown in Figure 12, the combination of multiple
linear and non-linear models achieves the highest compression
ratio for approximating the Lorenz synthetic data set. More
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Fig. 6. Improvements in the number of segments for Humidity dataset

interestingly, combining linear and non-linear models for ap-
proximating this data set has better compression effectiveness
than the combination of only the subset of linear models.
In this case, our greedy algorithm achieved to exploit the
most of the benefits and avoid most of the weakness of its
constituent models. Almost the same result is achieved for the
sea surface time series in Figure 13. The contradiction here is
that for maximum error bound 10%, the combination of the
subset of linear models achieves slightly better compression
ratio than the combination of all models. Still, this result only
means that our multi-model combination algorithm is very
efficient into finding a combination of models that achieves
higher compression than the individual ones, however, it is
not guaranteed to find the optimum model combination, as
expected.

C. Data Retrieval

Here, we evaluate the effectiveness of multi-model approxi-
mation algorithm for data retrieval when the indexing solution
of Section VI are employed. It is expected that as our algorithm
approximates the data series with fewer data segments than
its constituent models when individually used, it also results

uncompressed/compressed

error threshold (% of range)

Fig. 7. Compression Ratio for Wind dataset
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Fig. 8. Improvements in the number of segments for Wind dataset

into lower index sizes and consequently better query response
times.

In the absence of very long real data set to be approximated,
we generate a synthetic-linear data set, as follows: The value
x; of point ¢ is calculated as z;_; + s; - r;, where s; can
take -1 or 1 each with the probability of 0.5 and r; is the
amount of decrease or increase which is selected from the
uniform distribution U(0, 100). Each value is also forced to
be in the interval [0, 100]. These data series were approximated
by an efficient linear model, namely Swing (SW), and by our
algorithm combining Swing (SW), Linear Filter (LF), Constant
Filter (CF), Least Squares Line (LS), Linear Regression (LR),
and MidRange (MR) models within a maximum error bound
of 7.5% of the data range. We generated five long enough
synthetic-linear data series, so that the Swing model produces
10k, 100k, 1m, 10m, and 20m segments respectively. The data
segments produced both by the multi-model algorithm and by
Swing are stored in the database and indexed by conventional
and Rl-tree indexes, as described in Section VI. Next, we
generated a series of random queries for intervals of various
fixed lengths, specifically of 2, 4, 8 and 16, and we sent them
to the database. The length of the queried interval determines
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Fig. 10. Improvements in the number of segments for Lorenz dataset

its selectivity. We sent multiple random value-based queries
and we calculated the average response times for the queries
of the same interval length. Before executing each query,
the database cache was flushed. As depicted in Figure 14,
when data segments are indexed by the RI-tree method, an
up to 40% improvement in response time can be achieved
by the multi-model approximation algorithm, as compared to
approximating the data set with Swing. On the other hand,
as shown in Figure 15, when conventional database indexes
are employed, multi-model approximation achieves an up to
24% improvement in response time. The achievable improve-
ment in response time initally improves, then it gradually
deteriorates, until it shows signs of convergence for larger
data sets. This is explainable, because for small data sets,
the use of indexes is ineffective for query answering, while
their effectiveness increases as the tables grow. However, as
tables grow, so does the answer for an interval query of a
given length. Similar trends in the results are observed for the
queries of the various selectivities considered. We performed
similar experiments for point and time-based interval queries
that verified that the fewer number of segments produced
by the multi-model algorithm for approximating the data, as
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Fig. 11. The distribution of selected individual models for Humidity dataset
experiment with %10 error threshold
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Fig. 12.  The compression achieved by combining linear and polynomial
models compared to combining only linear models (Lorenz dataset).

compared to single approximation models, results into more
efficient data retrieval.

VIII. CONCLUSION

In this paper, we investigated the innovative concept of com-
bining multiple models that approximate time series within a
maximum error bound for achieving higher compression effec-
tiveness than the individual models themselves. We proposed
a greedy algorithm for finding an efficient model combination
for high data compression and experimentally verified its
effectiveness for all real and synthetic time series considered.
Specifically, as found by the experiments up to 80% compres-
sion improvement can be achieved by our algorithm against
individual approximation models. Moreover, we proposed an
efficient database schema for storing and indexing the data
segments produced by the models. When this storage schema
is employed, our multi-model approximation algorithm is
experimentally found to achieve 40% lower response time
than that resulting by single-model approximation of the same
data. As a future work, we intend to theoretically evaluate
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dataset). For %10 error threshold combination of linear models outperforms
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Fig. 14. Response time improvements using Rl-tree indexing technique

the effectiveness of our algorithm as compared to the optimal
combination of models for approximating the data segments
of time series.
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