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Abstract— An epidemic spreading in a network calls for a
decision on the part of the network members: They should
decide whether to protect themselves or not. Their decision
depends on the trade off between their perceived risk of being
infected and the cost of being protected. The network members
can make decisions repeatedly, based on information that they
receive about the changing infection level in the network.

We study the equilibrium states reached by a network whose
members increase (resp. decrease) their security deployment
when learning that the network infection is higher (resp.
lower). Our main result is that as the learning rate of the
members increases, the equilibrium level of infection increases.
We demonstrate this result both when members are strictly
rational and when they are not. We characterize the domains of
attraction of the equilibrium points. We validate our conclusions
with simulations on human mobility traces.

I. INTRODUCTION

Epidemiology research has made extensive use of disease

spreading models to study how a virus propagates in a

human population [7]. Shortly after the appearance of self-

replicating malicious programs in computers, aptly named

computer viruses, security researchers turned to epidemic

models to study the propagation of these programs [10].

More recently, the proliferation of capable mobile devices,

like smartphones, made mobile networks a fertile ground for

spreading malware [8]. The propagation characteristics of

malware in such networks have been studied and counter-

measures have been proposed [14], [3].

Countermeasures to an infection can be centrally enforced,

or the decision for their adoption can be left to individual

agents such as individual home computer users, companies,

or people in a society. Centralized enforcing is more likely

to work in tightly controlled environments, such as within

a company network where the users are obliged to abide

by the company security policy. However, when it is up

to individual agents to invest in protection against infection

[9], there appear contradicting incentives. Although agents

want to be safe against real or virtual viruses, they would

prefer to avoid investing in security: Security not only costs

money, but it usually also reduces the utility of the network

by, for example, isolating the agent from the rest of the

network, or it reduces the utility of the device by, for

example, slowing it down [16]. Another counterincentive

is that the security of a network agent exhibits positive
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externalities with respect to the decisions of others: If others

patch their computers, everyone becomes more secure, even

those who do not patch their own computer. If others are

vaccinated, everyone becomes safer, even those who are not

vaccinated. Therefore, agents have an incentive to free-ride

on the security investments of others, reaping the benefits

without paying the costs. More background on computer

network security and individual incentives can be found in

two recent books [1], [4].

In this paper, we model individuals’ changing responses

that depend myopically on the fluctuating infection level in

an ongoing epidemic. We combine the epidemic propagation

with a game theoretic description of the user behavior into

an Ordinary Differential Equation (ODE) model. We find

that the network reaches an endemic equilibrium, that is,

an equilibrium where the infection persists. We reach the

counterintuitive conclusion that the higher the learning rate

(the rate at which users learn what the infection level is), the

higher the infection level at the equilibrium.

The rest of the paper is organized as follows: We first

describe our model for the evolution of the network state,

comprising an epidemic propagation component and a user

behavior component. We study the case of users with a

strictly rational behavior, then users with non-strictly rational

behavior. We end the paper with the empirical validation

of our conclusions through simulations on human mobility

traces. Due to space limitations we omit several of the proofs,

and the case of users with heterogeneous behavior.

II. MODEL FOR EPIDEMIC PROPAGATION AND USER

BEHAVIOR

A. Epidemic Propagation

There are N users in the network. Each user can be in

one of three states:

• Susceptible, denoted by S: The user is not currently

deploying security and is not infected.

• Infected, denoted by I: The user has been infected by

the virus, and will spread it to any susceptible user he

makes contact with.

• Protected, denoted by P : The user is deploying security

and is therefore immune to the virus.

The number and fraction of users in each state are denoted,

respectively, by NS , NI , NP and S, I, P . It follows that

NS + NI + NP = N and S + I + P = 1. The state of

the network is x = (S, I, P ), and the set of possible states

is X =
(

NS

N
, NI

N
, NP

N

)

⊆ 1
N
N

3.

The evolution of the network state x is described as a

Continuous Time Markov Process, as follows. With each user



Event Effect ∆x

Meeting between S and I 1

N
(−1,+1, 0)

Update of S 1

N
(−pSP (x), 0,+pSP (x))

Update of P 1

N
(+pPS(x), 0,−pPS(x))

Disinfection of I 1

N
(0,−1,+1)

TABLE I: Possible events and their effect on the network

state

a Poisson alarm clock of rate β+ γ+ δ is associated. When

the clock of user i rings – say at time t – one of three events

happens:

M With probability β
β+γ+δ

, user i has a meeting with

another user, chosen uniformly at random. If the meet-

ing is between a Susceptible and an Infected user, the

Susceptible user becomes Infected. Otherwise nothing

happens.

U With probability γ
β+γ+δ

, user i receives an update about

the network state x, and he has the opportunity to revise

his current strategy if his state is S or P . If i’s state

is S, he switches to P with probability pSP (x). If i’s

state is P , he switches to S with probability pPS(x). If

i is Infected, nothing happens.

D With probability δ
β+γ+δ

, user i has a disinfection oppor-

tunity. That is, if i is Infected, he becomes disinfected,

and we assume he becomes Protected. If i is not

Infected, nothing happens.

Table I summarizes the possible events and their effect on

the network state.

We consider the large population scenario, i.e., the limit

N −→ ∞. Kurtz [11] and Ljung [13] have shown that when

N −→ ∞, the Continuous Time Markov Process described

previously converges to a deterministic function, which is

the solution to a system of Ordinary Differential Equations:

d

dt
S = −βSI − γSpSP (x) + γPpPS(x) (1a)

d

dt
I = βSI − δI (1b)

d

dt
P = δI + γSpSP (x)− γPpPS(x) (1c)

Eliminating P , as S + I + P = 1, the system becomes

d

dt
S = −βSI − γSpSP (x) + γ(1− S − I)pPS(x) (2a)

d

dt
I = βSI − δI, (2b)

together with P = 1 − S − I . The state space is D =
(S, I), 0 ≤ S, I ≤ 1, S + I ≤ 1, and it is bounded. This

system is two dimensional and autonomous. Note that for

γ = 0, the model is identical to the standard SIR epidemic

model [7] (R stands for Recovered).

We will denote the righthand side of the system (2) by

F (x), and we will slightly abuse the notation for x to be

x = (S, I), x ∈ D. So, the system (2) will be written

d

dt
x = F (x). (3)

B. User Behavior

As can be seen from the epidemic propagation model,

the only point at which the users can make a choice is

at an update event. We assume that there is a cost cI
associated with becoming Infected, and a cost cP associated

with becoming Protected. It holds that cI > cP > 0. There

is no cost for being Susceptible. Note that these costs need

not be the actual costs; what influences the decisions of users

are the costs as perceived by the users.

If we assume that each user behaves strictly rationally, the

choice between Susceptible and Protected depends on which

state minimizes the user’s expected cost. Specifically, given

the aforementioned model of random pair meetings, a user’s

expected cost at a particular network state x = (S, I) is cP
if he chooses to be Protected and IcI if he chooses to be

Susceptible risking infection. Therefore, the user’s decision

would be S if IcI < cP , and P if IcI > cP . In this case,

the functions pSP (x) and pPS(x) would be step functions

of I:

pSP (x) = pSP (I) = 1{IcI > cP } (4)

pPS(x) = pPS(I) = 1{IcI < cP }. (5)

If IcI = cP , then both choices are optimal, and any

randomization between them is also optimal. So, when IcI =
cP , the functions pSP (I) and pPS(I) are multivalued. For

convenience, we define

I∗ ≡
cP

cI
. (6)

Note that if we were to set I∗ to a value larger than 1, then

pSP would always be equal to 0, and pPS would always be

equal to 1. In that case, our model would be identical to the

SIRS model [7].

To account for users that cannot be assumed to be strictly

rational, or their perception of the cost is not crisp (e.g., they

are not sure about the exact values of cI and cP ), or they

take the network state report to be not completely accurate,

we consider a different scenario for the functions pSP (·) and

pPS(·). We assume that they can be arbitrary functions of I ,

as long as the former is non-decreasing with I and the latter

is non-increasing with I .

In what follows, first we will consider the case that pSP (·)
and pPS(·) are discontinuous step functions and actually

multivalued at the discontinuity, and then that they are

continuously differentiable.

III. THE USERS ARE STRICTLY RATIONAL

The best response correspondence dictates the shape of

pSP (I) and pPS(I):

pSP (I) =











0, I < I∗

[0, 1], I = I∗

1, I > I∗
pPS(I) =











1, I < I∗

[0, 1], I = I∗

0, I > I∗
.

(7)

As F (x) (recall (3)) is set-valued, we have to solve the

differential inclusion

d

dt
x ∈ F (x), x ∈ D. (8)



The system can also be viewed as a switched non-linear

system [12], or as a positive and compartmental system [2],

[6] because it is characterized by nonnegative solutions for

nonnegative initial conditions. Notice, however, that, unlike

such systems, our system only has point equilibria rather

than a continuum of equilibria.

We define a partition of the state space D into three

domains: D− = D ∩ {(S, I), I < I∗}, D+ = D ∩
{(S, I), I > I∗}, and L = D ∩ {(S, I) : I = I∗}. The

domain L will also be referred to as the discontinuity line.

A. Existence of solutions

A solution for this differential inclusion [5] is an abso-

lutely continuous vector function x(t) defined on an interval

J for which d
dt
x(t) ∈ F (x(t)) almost everywhere on J .

From the theory of differential inclusions we know that a

solution of (8) exists if, for every x ∈ D, the basic conditions

apply: The set F (x) is nonempty, bounded, closed, convex,

and the function F is upper semicontinuous.

The basic conditions apply in our case and therefore a

solution exists.

B. Uniqueness of solutions

In general, because the righthand side of (8) is multivalued,

even though two solutions at time t0 are both at the point

x0, they may not coincide on an interval t0 ≤ t ≤ t1 for any

t1 > t0. If any two solutions that coincide at t0 also coincide

until some t1 > t0, then we say that right uniqueness holds

at (t0, x0). Left uniqueness at (t0, x0) is defined similarly

(with t1 < t0), and (right or left) uniqueness in a domain

holds, if it holds at each point of the domain.

The solution is unique in D− and in D+ because F has

continuous partial derivatives there.

We next show which of the solutions of (8) lying on

the line of discontinuity L can be uniquely continued in

the direction of increasing t. We see that all solutions can

be uniquely continued, except those that start at the point

(S, I) =
(

δ
β
, I∗
)

. Those latter solutions all start at the same

point and then diverge, but none of them can ever approach

that point again in the positive direction of time. So, if we

ignore the initial point of those solutions, all solutions can

be uniquely continued.

C. Stationary points

The stationary points are found by solving for x the

inclusion 0 ∈ F (x).
1) Stationary points above the discontinuity line: There

can be no stationary points in the domain D+. The system

becomes

d

dt
S = −βSI − γS (9a)

d

dt
I = βSI − δI. (9b)

From the first equation, we see that S has to be zero. But

then the second equation implies that I also has to be zero,

which is not an admissible value for I as I = 0 cannot be

above the discontinuity line.

2) Stationary points below the discontinuity line: We look

for stationary points in the domain D−. The system becomes

d

dt
S = −βSI + γ(1− S − I) (10a)

d

dt
I = βSI − δI, (10b)

which is identical to the SIRS case except that the domain

is not the whole state space, it is only D−.

This system has the solutions:

X0 = (S0, I0) = (1, 0) (11)

X1 = (S1, I1) =

(

δ

β
,
1− δ

β

1 + δ
γ

)

. (12)

The second solution, X1, is admissible if and only if X1 ∈
D−, i.e.,

δ

β
≤ 1, (13)

and also
1− δ

β

1 + δ
γ

< I∗. (14)

Note that if δ
β

= 1, then X0 and X1 coincide. Also, it

is not surprising that X1 is the equilibrium point of the

corresponding SIRS model. That is, I∗ does not play an

explicit role in this case, as long as (14) holds.
3) Stationary points on the discontinuity line: We look

for stationary points on the discontinuity line I = I∗, that

is, we solve the inclusion 0 ∈ F (S, I∗) for S. The system

becomes

d

dt
S = −βSI∗ + [−γS, γ(1− S − I∗)] (15a)

d

dt
I = βSI∗ − δI∗. (15b)

Since I∗ > 0, d
dt
I is zero only when S = δ

β
. We then have

to check if it is possible to make d
dt
S equal to zero, that is,

if 0 ∈ F ( δ
β
, I∗). We find that it is possible when I∗ is such

that

I∗ ≤
1− δ

β

1 + δ
γ

. (16)

In that case, the stationary point is

X2 = (S2, I2) =

(

δ

β
, I∗
)

. (17)

In general, there are many combinations of pSP (I
∗) and

pPS(I
∗) that make d

dt
S equal to zero, but there is always

one with pSP (I
∗) = 0. In that case, pPS(I

∗) = δI∗

γ(1− δ
β
−I∗)

.

To summarize, X0 exists always. If δ < β, one more

equilibrium point exists: X1 if I∗ >
1− δ

β

1+ δ
γ

, or X2 otherwise.

D. Local Asymptotic Stability

1) Stability of X0 and X1: We show that, when δ
β
≥ 1,

X0 is asymptotically stable. When δ
β

< 1, X0 is a saddle

point, and if X1 exists it is asymptotically stable. These

results follow by the evaluation of the Jacobian at the points

X0 and X1, and by checking the sign of its eigenvalues.



2) Stability of X2: To show that the stationary point on

the discontinuity line is asymptotically stable we will use

Theorem 1 below [5, §19, Theorem 3]. To use this theorem

we transform the system so that the line of discontinuity

is the horizontal axis, the stationary point is (0, 0), and the

trajectories have a clockwise direction for increasing t.

We set x = δ
β
− S and y = I − I∗. The domains

D,D−, D+ become G = {(x, y)|x ≤ δ
β
, y ≥ −I∗, y − x ≤

1 − I∗ − δ
β
}, G− = G ∩ {(x, y)|y < 0}, and G+ =

G ∩ {(x, y)|y > 0}. Then, the system can be written as

dx

dt
= P−(x, y) (18a)

dy

dt
= Q−(x, y) = −βx(y + I∗) (18b)

for (x, y) ∈ G−, and

dx

dt
= P+(x, y) (19a)

dy

dt
= Q+(x, y) = −βx(y + I∗) (19b)

for (x, y) ∈ G+.

The partial derivatives of P±, that is, of P+ and of P−,

are denoted by P±
x , P±

xx, P
±
y etc., and similarly for Q±. We

define two quantities A± in terms of the functions P±, Q±

and their derivatives at the point (0, 0):

A± =
2

3

(

P±
x +Q±

y

P±
−

Q±
xx

2Q±
x

)

. (20)

Theorem 1: Let the conditions

Q− = Q+ = 0, P− < 0, P+ > 0 (21)

Q−

x < 0, Q+
x < 0 (22)

be fulfilled at the point (0, 0). Then, A+ −A− < 0 implies

that the zero solution is asymptotically stable, whereas A+−
A− > 0 implies that the zero solution is unstable.

All the conditions of Theorem 1 are satisfied in our case,

together with A+ − A− < 0. The condition P− < 0 is

equivalent to (16), i.e., the condition on I∗ that causes the

stationary point to be on the line of discontinuity. All the

other conditions are straightforward to verify.

Therefore, the stationary point (S, I) = ( δ
β
, I∗) is asymp-

totically stable.

E. Domains of attraction

From Theorem 6, §13 [5] we know that for autonomous

systems on the plane, it holds that if a half trajectory T+

is bounded, then its ω-limit set Ω(T+) contains either a

stationary point or a closed trajectory. Recall that the ω-limit

set of a half trajectory T+(x = φ(t), t0 ≤ t < ∞) is the set

of all points q for which there exists a sequence t1, t2, . . .

tending to ∞ such that φ(ti) −→ q as i −→ ∞.

In this section, we show that there are no solutions that

are closed trajectories. So we can conclude that all system

trajectories converge to equilibrium points. When there is

more than one equilibrium point, we show which trajectories

converge to which point.

The main result is that for any half trajectory T+, its ω-

limit set Ω(T ) can only contain equilibrium points, that is,

X0 = (1, 0), X1 = (S1, I1) =

(

δ
β
,
1− δ

β

1+ δ
γ

)

, or X2 = ( δ
β
, I∗).

We will find the following two functions useful:

E(S, I) = S − S1 ln(S) + I +
γ

β
ln(I), (23)

M(S, I) = S − (S1 +
γ

β
) ln(S +

γ

β
) + I − I1 ln(I), (24)

It holds that E(S, I) is constant on trajectories in the area

D+, and M(S, I) is decreasing along trajectories in the area

D−.

Assume that there exists a half trajectory T+ whose limit

set Ω(T ) contains a closed trajectory Γ. By successively

eliminating properties of such a trajectory, we will prove

that it cannot exist. Note that Lemma 1 below is trivial if

( δ
β
, I∗) is an equilibrium point.

Lemma 1: The point ( δ
β
, I∗) cannot be on Γ.

If (S, I) = ( δ
β
, I∗) is not on Γ, then on Γ there holds right

uniqueness. Also, Ω(Γ) = Γ. We will continue by proving

that Γ cannot have more or fewer than two intersection points

with L.

Lemma 2: A closed trajectory Γ that does not pass

through the point ( δ
β
, I∗) can have neither more than two

nor fewer than two intersection points with the discontinuity

line L. If it has two intersection points, they cannot be on

the same side of ( δ
β
, I∗).

Lemma 3: A closed trajectory Γ cannot intersect the dis-

continuity line L on exactly two points that are on opposite

sides of the point ( δ
β
, I∗).

From the previous lemmata, we conclude that there can

be no closed trajectory Γ. Therefore, all trajectories have to

converge to equilibrium points.

F. Conclusion

The total fraction I =
1− δ

β

1+ δ
γ

of Infected at the system

equilibrium increases with the update rate γ, until I becomes

equal to the threshold I∗. The reason for this increase is that,

when the equilibrium value of I is below I∗, the trajectories

will eventually be completely contained in the domain D−

(below I∗). In this domain, every time a Protected is being

informed about the value of I will choose to become Suscep-

tible, thus fueling the infection. In parallel, no Susceptible

will choose to become Protected. The larger the value of

γ, the shorter time a user will spend being Protected, thus

the smaller the fraction of Protected. However, a smaller

fraction of Protected implies a larger fraction of Infected,

as the fraction of Susceptible at equilibrium is necessarily
δ
β

, i.e., it is independent of γ.

When the quantity
1− δ

β

1+ δ
γ

exceeds I∗, the equilibrium value

of I is limited to I∗; further increases of γ have no effect.

The explanation is that, as soon as the instantaneous value

of I exceeds I∗, Susceptible users switch to Protected, and

Protected users stay Protected, thus bringing the infection

level below I∗. However, there is no equilibrium point



for the system in the domain D−, so the only possible

equilibrium value of I is I∗. For I = I∗ there are in general

many combinations of pSP (I
∗) and pPS(I

∗) that lead to an

equilibrium, including one with pSP (I
∗) = 0 and pPS(I

∗) >
0. That combination means that no Susceptible users become

Protected, but some Protected become Susceptible.

IV. THE USERS ARE NOT STRICTLY RATIONAL

For the case of non-strictly-rational users, the behavior

functions pSP (I) and pPS(I) are continuously differentiable,

and we require that d
dI
pSP (I) > 0 and d

dI
pSP (I) < 0. Other

than that, the two functions are arbitrary.

A. Stationary points

The equilibrium points of the system are found by solving

for x the equation F (x) = 0:

d

dt
S = 0 = −βSI − γSpSP (I) + γ(1− S − I)pPS(I)

(25a)

d

dt
I = 0 = βSI − δI (25b)

From (25b) we see that either I = 0 or S = δ
β

.

• Equilibrium point X0

Substituting I = 0 into (25a), we have that X0 =

(S0, I0) =
(

pPS(0)
pSP (0)+pPS(0) , 0

)

. These values of (S0, I0)

are always admissible since they are always non-

negative and at most equal to 1.

Recalling the meaning of pPS(0) and pSP (0), we can

reasonably expect that pPS(0) = 1 and pSP (0) = 0:

Protected have no reason to remain Protected, and

Susceptible have no reason to become Protected, when

there is no infection in the network. In this case, X0 is

the point (1, 0).
• Equilibrium point X1

Substituting S = δ
β

into (25a), we see that I has to

satisfy

g(I) ≡ −δI−
γδ

β
pSP (I)+γ

(

1−
δ

β
− I

)

pPS(I) = 0.

(26)

To solve g(I) = 0 for I we need to know the two re-

sponse functions pSP (I) and pPS(I). But even without

knowing them, we can still prove that g(I) = 0 has a

unique solution for I ∈ [0, 1] under the condition that

δ

β
≤

pPS(0)

pSP (0) + pPS(0)
. (27)

We first show that g(I) is monotonically decreasing in

the interval [0, 1], and then we show that, under the

condition (27), g(0)g(1) ≤ 0. We can then conclude

that there is exactly one solution of g(I) = 0 in the

interval [0, 1].
Denoting by I1 the solution of g(I) = 0, we can now

conclude that X1 = (S1, I1) = ( δ
β
, I1) is uniquely

determined under (27). The values S1, I1 are admissible

since they are both between 0 and 1. Note that if (27)

does not hold then both g(0) < 0 and g(1) < 0, so

the monotonicity of g in [0, 1] implies that X1 does

not exist. So, (27) is really a necessary and sufficient

condition for the existence of X1.

B. Local Asymptotic Stability

To examine the (local) stability of the equilibrium points

X0 and X1 we compute the Jacobian of the system (25) and

evaluate it at these two points. Local stability at a point is

equivalent to the negativity of the eigenvalues of the Jacobian

matrix evaluated at that point. So, X0 is stable when X1 does

not exist, and unstable otherwise. X1 is always stable.

C. Domains of Attraction

Since the system is two dimensional and F is continuously

differentiable, we can use Dulac’s criterion to show that the

system can have no periodic trajectory.

Theorem 2 (Dulac’s criterion): If there exists a continu-

ously differentiable function h : R2 −→ R such that ∇ ·
(hF ) is continuous and non-zero on some simply connected

domain A, then no periodic trajectory can lie entirely in A.

In our case, the domain A is the state space excluding the

line I = 0. Note that there can be no periodic trajectory that

passes from a point with I = 0. We select as function h the

function h(S, I) = 1
I

. We compute ∇ · (hF ) to be

∇ · (hF ) = −β − γ
pSP (I)

I
− γ

pPS(I)

I
< 0, ∀(S, I) ∈ A,

(28)

which is continuous and non-zero in A. Then, from Dulac’s

criterion, no periodic trajectory lies entirely in A, and,

consequently, the system has no periodic trajectory at all.

From the Poincaré-Bendixson theorem, the system can only

converge to a periodic trajectory or an equilibrium point; so,

we can conclude that every trajectory must converge to an

equilibrium point, that is, either to X0 or X1.

D. Conclusion

The equilibrium point X0 is independent of γ. We show

now that, at X1 =
(

δ
β
, I1

)

, the equilibrium level of the

Infected increases with γ. To this end, we take the derivative
dI1
dγ

and we see that is always positive.

V. SIMULATIONS ON MOBILITY TRACES

We validate our conclusions using simulations on human

mobility traces. The traces that we use are Bluetooth contacts

among 41 devices given to participants in a conference [15].

The traces were collected over a period of approximately 72

hours.

The contact rate β is determined by the traces. Actually, β

is a function of time β(t), since the number of contacts per

time unit fluctuates depending on the time of day. We want

to establish whether the fraction of Infected indeed increases

for larger values of the update rate γ. For the simulations

that follow, we set δ = (6hr)−1, and we plot the system

trajectories on the S−I plane (average of 30 simulations) for

three different values of γ, (1hr)−1, (6hr)−1, and (24hr)−1.

The initial conditions for all simulations were 1 Infected and
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Fig. 1: The trajectory of the system (average of 30 simulations) on the SI plane, when δ = (6hr)−1 and γ takes the values

(1hr)−1, (6hr)−1, and (24hr)−1. The thresholds are I∗ = 0.1, 0.5, 0.9. We see that the network experiences higher numbers

of Infected devices for higher values of γ, and for I∗ = 0.1, 0.5 we also observe the limiting effect of I∗.

40 Susceptible. Each simulation runs until either there are no

Infected, or the end of the traces is reached.

We use a piecewise continuous response function

pSP (I) =











0 I < I∗ − ǫ
2

1
ǫ
(I − I∗ + ǫ

2 ) I∗ − ǫ
2 < I < I∗ + ǫ

2

1 I > I∗ + ǫ
2

(29)

and pPS(I) = 1− pSP (I).
In Figure 1 we plot simulation results for I∗ =

0.1, 0.5, 0.9, and ǫ = 0.001, omitting an initial transient

phase. Since β(t) is not constant, the system state oscillates

among two equilibrium points, X0 (when β(t) is low enough

that δ > β(t)) and either X1 or X2, depending on whether

(14) is satisfied or not

(

1− δ
β

1+ δ
γ

< I∗
)

. Despite these period-

icities, we see that for increasing values of γ the system

trajectories go through higher values of I , thus confirming

our main conclusion that the infection level increases with

the update rate. The effect of lowering I∗ is that it limits the

maximum infection at the equilibrium, so the trajectories are

capped at values of I not far above I∗. For lower values of

I∗, we see that the effect of γ on the Infected is smaller.

VI. CONCLUSIONS

We study the effect of network users being cost-sensitive

when deploying security measures. In particular, if users

increasingly deploy security when learning that the level of

network infection is higher, and retract the deployment when

the level of infection drops, then a higher learning rate leads

to a higher equilibrium level of infected users.

We reach this same conclusion in two scenarios. Our main

scenario is when users are strictly rational cost minimizers,

having a discontinuous multi-valued best response behavior.

The conclusion does not change when the response function

is an arbitrary continuous single-valued function, as long as

the function implies that users increasingly choose protection

as the level of infection rises. We validate the conclusions

both theoretically, using a system of differential inclusions or

differential equations, and also with simulations on human

mobility traces.

We use the theory of differential inclusions to prove

properties (existence, uniqueness, stability) of the system

trajectories in the case of multivalued response functions.

In the case of uniform user behavior, either continuous or

discontinuous, the system is two-dimensional, and we are

able to exclude the existence of periodic trajectories and to

characterize the domains of attraction for each equilibrium

point.

REFERENCES
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