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ABSTRACT
Spectral factorization is a classical tool in signal processing and com-
munications. It also plays a critical role in X-ray crystallography, in
the context of phase retrieval. In this work, we study the problem
of sparse spectral factorization, aiming to recover a one-dimensional
sparse signal from its autocorrelation. We present a sufficient condi-
tion for the recovery to be unique, and propose an iterative algorithm
that can obtain the original signal (up to a sign change, time-shift and
time-reversal). Numerical simulations verify the effectiveness of the
proposed algorithm.

Index Terms— Phase retrieval, sparse spectral factorization,
compressed sensing, frame reconstruction without phase

1. INTRODUCTION

Spectral factorization is a widely used tool in signal processing, com-
munications, optimal control, and many other disciplines. Let xn be
a finite-length real-valued sequence, and an its autocorrelation, i.e.,

an
def
=

X
k

xk xk−n = (xk ∗ x−k)n. (1)

The goal of spectral factorization is to recover xn from an. Repre-
senting (1) in the Fourier domain, we get

A(ejω) = X(ejω)X∗(ejω) = |X(ejω)|2,

where A(ejω) and X(ejω) are the Fourier transforms of an and xn,
respectively. It follows that the task of spectral factorization is equiv-
alent to recovering the missing phase information ofX(ejω) from its
squared magnitude A(ejω). This problem is often called phase re-
trieval [1] in the literature, and plays a critical role in fields such as
X-ray crystallography and astronomical imaging.

Spectral factorization and phase retrieval have been extensively
studied in the past (see, e.g., [1, 2] for comprehensive surveys). One
important question is that of unicity, i.e., whether the sequence xn

can be uniquely determined by its autocorrelation an. The answer is
negative in the one-dimensional (1-D) case [3]. To see this, we can
rewrite (1) in the z-domain as A(z) = X(z)X(z−1).

By construction, the roots of the Laurent polynomial A(z) must
appear in pairs: u is a root of A(z) if and only if u−1 is a root. By
further limiting our attention to real-valued signal xn, the roots of
A(z) will in general appear in quadruples:

u, u∗, u−1, u−∗, (2)
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which might “collapse” into a pair or even a single point when u
lies on the unit circle. Spectral factorization boils down to distribut-
ing these roots between X(z) and X(z−1). To be clear, the as-
signment is nonunique. For each quadruple of roots in (2), we can
either let (u, u∗) → X(z) and (u−1, u−∗) → X(z−1), or have
(u−1, u−∗) → X(z) and (u, u∗) → X(z−1).

Either choice leads to a valid but differentX(z). When the signal
xn is of length N , the total number of different factorizations is ex-
ponential in N . In classical spectral factorization [2], one avoids this
ambiguity by looking for the so-called “minimum phase” solution,
assigning all roots that are inside the unique circle toX(z).

In this work, we consider the following problem, which we call
sparse spectral factorization. Let xn be a 1-D real-valued signal of
length N , containing only K � N nonzero elements. Can we re-
construct xn from its autocorrelation an? Intuitively, although there
exist inherent ambiguities in assigning the roots of A(z), the spar-
sity constraint of the original signal xn will greatly limit the possible
choices, hopefully leading to unique solutions. Sparsity is a reason-
able assumption for the underlying signals in many applications (e.g.,
the unknown channel in a multi-path environment, or the electron
density of protein crystals). It is therefore interesting to investigate if
this additional prior information can be incorporated to an advantage.

In an early paper on phase retrieval [4], Crimmins and Fienup
showed that functions with sufficiently separated supports (therefore,
sparse in some sense) can be uniquely determined by their Fourier
magnitudes. Their study focuses on continuous-domain functions
and assumes that the supports are known a priori. Here, we inves-
tigate the discrete case, under the more challenging setting of un-
known supports, and provide concrete algorithms for signal recon-
structions. The sparsity prior has also been considered in a recent
work [5] to derive efficient acquisition schemes for phase retrieval.
In general, the autocorrelation of a K-sparse signal is also sparse,
consisting of up toK2 nonzero elements, and thus can be determined
from O(K2 log(N)) Fourier samples [5]. Once the autocorrelation
is obtained, the actual spectral factorization (or phase retrieval) in that
work is still done by using classical algorithms [1].

In this paper, we present the following contributions:
1. Unicity: We show in Section 2 that there always exist sparse

signals that cannot be determined by their autocorrelations, no matter
how sparse they are. However, when the sparsity patten is nonuni-
form, most signals are indeed recoverable. We present a sufficient
condition (Theorem 1) for the recovery to be unique.

2. Reconstruction algorithm: Our proof of Theorem 1 is con-
structive in nature, and directly leads to a concrete reconstruction
algorithm. In Section 3, we present an iterative scheme based on
singular value projections that can efficiently recover a sparse signal
from its autocorrelation.
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Fig. 1. Example of how the sparsity prior can help make spectral
factorization unique. (a) A sparse signal xn, supported on [0, 9] and
containing 4 nonzero coefficients. (b) A different signal bxn, having
the same autocorrelation as xn. In the z-domain, X(z) and bX(z)
differ only in one root, but bxn has completely lost the sparsity of xn.

2. ON THE UNICITY OF SPARSE SPECTRAL
FACTORIZATION

2.1. Preliminaries

Before presenting our results on the unicity problem, we first need to
precisely define what we mean by “unique” reconstruction. For any
real-valuedK-sparse signal xn, the following variations

−xn, xn−m, x−n

are still K-sparse and have exactly the same autocorrelation. There-
fore, the best we can strive for is to reconstruct xn up to a sign change,
an unknown shift (bym), and a time-reversal.

Without loss of generality, we shall assume in what follows that
the signal xn is supported on n = 0, 1, . . . , N−1, with the two “end-
points” — x0 and xN−1 — being nonzero. This support constraint
removes the ambiguity in the relative location of xn. In practice, the
signal length N can be estimated from the support of an, which is
equal to [−(N − 1), (N − 1)]. We can further resolve the unknown
sign of xn by setting x0 > 0. Finally, the only remaining ambiguity
is a possible time-reversal, i.e., xn versus xN−1−n.

Example 1 Consider a sparse signal xn shown in Figure 1(a), with
N = 10 and K = 4. Its z-transform X(z) contains one real-valued
root u = 0.7647 and 4 pairs of complex roots. By “flipping” the real
root, i.e., u → u−1, but keeping all the complex ones, we can obtain
a new sequence bxn [see Figure 1(b)] which has the same autocor-
relation as xn. However, comparing Figure 1(a) with Figure 1(b),
we see that the incorrect assignment of just one root will make the
resulting signal drastically non-sparse.

The above example suggests that the sparsity constraint of xn

can indeed help to make the spectral factorization unique. Unfortu-
nately, we can always find sparse signals that cannot be uniquely de-
termined by their autocorrelations. For example, consider the special
case where the nonzero elements of xn are located in equal distances.
In this case, we can write

xn =

K−1X
k=0

ckδn−kM (3)

for some intervalM > 0.

Proposition 1 Two uniformly sparse signals xn =
P

k ckδn−kM

and yn =
P

k dkδn−kM have the same autocorrelation if and only if

C(z)C(z−1) = D(z)D(z−1), (4)

i.e., the two downsampled sequences ck and dk have the same auto-
correlation.

Proof We note that X(z) = C(zM ) and Y (z) = D(zM ). Now, to
show the sufficiency part, we assume (4) holds. It follows that

X(z)X(z−1) = C(zM )C(z−M ) = D(zM )D(z−M ) = Y (z)Y (z−1).

The necessity part is similar. X(z)X(z−1) = Y (z)Y (z−1) implies
that

C(zM )C(z−M ) = D(zM )D(z−M ),

hence, after downsampling byM , we get (4).

Remark 1 For signals xn with uniform supports as in (3), if we
choose their coefficients {ck} from an i.i.d. Gaussian distribution,
we can find (with probability one) different sequences {dk} for which
(4) holds. It follows from Proposition 1 that almost all signals with
uniform sparsity patterns are “nonrecoverable” from their autocor-
relations.

The prospect is much brighter when the sparsity patterns are
nonuniform. Numerical simulations with randomly generated coef-
ficients strongly suggest that, when the sparsity patterns are nonuni-
form, almost all such sequences can be uniquely determined from
their autocorrelations.

2.2. A Sufficient Condition for Unique Reconstruction

In what follows, we present a sufficient condition for the unicity of
sparse spectral factorization (Theorem 1). Our proof is constructive
and leads to a concrete algorithm which will be described in Sec-
tion 3.

For aK-sparse signal xn, let 1n represent the indicator function
of its support set, i.e., 1n = 1 if xn �= 0 and 1n = 0 otherwise.
Denote by

S
def
= supp an and eS def

= supp (1k ∗ 1−k)n (5)

the support sets of the autocorrelation sequences of xn and 1n, re-
spectively. We consider two conditions in our derivations:

Condition 1 We assume that S = eS.
By construction, we always have S ⊆ eS. Here, Condition 1

requires that there should be no “cancellation” of support in the au-
tocorrelation sequence an. This requirement is fairly weak: If the
coefficients of the signal xn are to be drawn from an i.i.d. Gaussian
distribution, then Condition 1 holds with probability one.

To describe the second condition, we first need to construct a
matrix from S . Denote by L

def
= |S| the cardinality of the set S .

Let M ≥ 4N be an integer, and F M the discrete Fourier transform
(DFT) matrix of sizeM × M . We build anM × L matrixA whose
columns are picked from F M . Specifically, the n-th column of F M

is chosen if and only if n ∈ S . Note that here we are using a circular
indexing scheme. So when n is a negative number, the nth column
actually means the (M − 1 + n)th column.
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Condition 2 Denote byR(A) the range space ofA. We require that
almost all c ∈ R(A) be uniquely determined (up to a constant phase
or complex-conjugation) from their absolute values. Specifically, for
almost all c ∈ R(A), we need

{v ∈ R(A) : |vn| = |cn|} = {ξc, ξc∗ : for |ξ| = 1} .

Readers familiar with frame theory will recognize that the matrix
A constructed above corresponds to the analysis operator of a tight
DFT frame. The redundancy factor of such a frame is equal toM/L.
Condition 2 means that the frame expansion coefficients should be
uniquely determined by their absolute values. The problem of frame
reconstruction from magnitude information was recently studied in
[6]. Intuitively, this task is feasible because the loss of phase infor-
mation can be compensated for by the redundancy of the frame.

Theorem 1 Suppose that Conditions 1 and 2 hold. Then, for almost
allK-sparse signals xn supported on 1n, we can uniquely determine
xn (up to a time-reversal) from its autocorrelation sequence an.

Proof LetM ≥ 4N be an integer. Extend the original sequence xn

to length-M by inserting zeros from indices N to M − 1, and call
the extended sequence bxn. Denote by fm themth DFT coefficient ofbxn. From the autocorrelation an, we have access to

˘
|fm|2

¯
m
.

Now, consider the sequence cm
def
= fmf∗

m−1, for 0 ≤ m < M .
We can show1 that the support of the inverse DFT of cm is a subset ofeS as defined in (5). It then follows from Condition 1 that the inverse
DFT of cm is supported on S as well. Consequently, we have

c
def
=

ˆ
c0 c1 . . . cM−1

˜T
∈ R(A), (6)

where A is the frame analysis matrix we constructed before. A key
observation is that we have access to the magnitude of the above
frame coefficients, because

|cm| = |fmf∗

m−1| = |fm| · |fm−1|.

Based on Condition 2, we can (almost always) obtain ξc from
{|cm|}m, for some an unknown constant phase term |ξ| = 1 (or a
complex-conjugate version ξc∗).

For simplicity, we assume that what we obtain is ξc. (If we actu-
ally get the complex conjugate, the derivations will be similar and the
final result differs only by a time-reversal.) For eachm, we construct
a 2 × 2 matrix

M m
def
=

»
fmf∗

m fmf∗

m+1ξ
∗

fm+1f
∗

mξ fm+1f
∗

m+1

–
=

»
fm

fm+1ξ

– ˆ
f∗

m f∗

m+1ξ
∗
˜
.

(7)
Clearly, M m is Hermitian and of rank one. Meanwhile, the factor-
ization in (7) indicates that we can obtain the values of the Fourier
coefficients fm, fm+1ξ through an eigenvalue decomposition ofM .
A catch here is that there exists a fundamental phase ambiguity in
the factorization and we can only obtain fmθm, fm+1ξθm for some
unknown phase term |θm| = 1. Although the matrices M m for
different m will lead to different phase ambiguities, the overlapping
nature of the data

f1θ1 f2ξθ1

f2θ2 f3ξθ2

f3θ3 f4ξθ3

1To verify this property, we apply the polar identity of complex numbers
to write cm = fmf∗

m−1
= (‖fm + fm−1‖2 −‖fm − fm−1‖2 + j‖fm +

jfm−1‖2 − j‖fm − jfm−1‖2)/4. It follows that the inverse DFT of cm is
a linear combination of four different autocorrelations sequences, all of which
are supported within eS.

allows us to “align” all phase ambiguities into a single phase term θ1

and get efm = fmξmθ1, for 0 ≤ m < M, (8)
with some unknown phase terms θ1 and ξ.

We can write the Fourier coefficients as fm =
P

k cke−j2πnkm/M ,
where {ck} and {nk} are the coefficients and locations of the nonzero
elements of xn. It follows that (8) can be rewritten as

efm =

KX
k=1

θ1ck

“
e−j2πnk/Mξ

”m

. (9)

Note that the sum of exponents structure in (9) is a classical object in
spectral analysis [7]. We can borrow tools (such as the annihilation
filter method [7]) from that field to obtain the parameters {θ1ck}k andn

e−j2πnk/Mξ
o

k
from bfm. Finally, after proper normalizations (to

let x0 > 0) and circular shiftings (to enforce the support on [0, N −
1]), we can obtain the coefficients {ck} and the locations {nk}, and
thus reconstruct the sparse signal xn.

3. RECONSTRUCTION ALGORITHM

The proof presented in the previous section is constructive. Algo-
rithm 1 summarizes the main steps of a reconstruction algorithm that
can obtain aK-sparse signal from its autocorrelation.

Algorithm 1 Sparse Spectral Factorization

Input: The autocorrelation sequence an of aK-sparse signal xn.
Output: Reconstruct the sparse signal up to a time-reversal.
1: Obtain the support set S of the autocorrelation sequence an.
Construct a matrix A by picking columns of an M × M DFT
matrix according to S .

2: Obtain cm
def
= fmf∗

m−1 from the absolute values |fmfm−1| up to
some unknown phase ξ or a possible complex conjugation (see
Algorithm 2).

3: Building the 2× 2 matricesM m as in (7), and factorize them to
obtain fmθm, fm+1ξθm.

4: From the overlapping portions of consecutive blocks, align all
unknown phases to a single phase perturbation θ1.

5: Run the annihilation filter algorithm [7] on the sequence (9) to
obtain the coefficients and the desired support set.

All the steps in Algorithm 1 are straightforward, except for step
2, where we want to recover the sequence cm (up to an unknown
phase and complex-conjugation) from their absolute values. In what
follows, we present an iterative algorithm based on singular value
projections to address this remaining challenge.

It follows from (6) that c = Ay for some y ∈ R
L. Since c

can be uniquely determined by y, we focus on estimating y from the
absolute values |c|. Let vm denote the mth column of A∗. We can
easily verify that cm = 〈y, vm〉 and thus

|cm| = |〈y, vm〉|. (10)

Clearly, the mapping from y to |〈y, vm〉| is nonlinear. However, we
can convert it to a linear mapping by embedding the problem in a
higher dimensional Hilbert space.

Definition 1 Let SL denote the space of all L×L Hermitian matri-
ces. For anyX , Y ∈ SL, define their inner product as

〈X, Y 〉
def
= tr (XY ∗), (11)

where tr (·) denotes the trace of a matrix.
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One way to view the inner product defined in (11) is as follows:
Let vec(X) and vec(Y ) represent two vectors in C

L2

obtained by
stacking the columns ofX and Y , respectively. Then

〈X, Y 〉 =
`
vec(Y )

´
∗vec(X),

that is, the matrix inner product is equivalent to the usual Euclidian
scalar product between vec(X) and vec(Y ).

The following is a simple but key observation, whose proof can
be found in e.g., [6]. It is remarkable in that it converts the original
nonlinear condition in (10) into a set of linear constraints in the higher
dimensional space SL.

Proposition 2 Denote by Y = yy∗ and V m = vmv∗

m the rank-
one Hermitian matrices generated by y and vm, respectively. Then

|〈y, vm〉|2 = 〈Y , V m〉, 0 ≤ m < M. (12)

In what follows, we propose a simple and intuitive algorithm for
reconstructing y from the magnitude information in (10). Our algo-
rithm alternates between the following two constraints.

1. Linear constraint: It follows from (12) that each frame coeffi-
cient magnitude in (10) gives us a linear equation in the space of SL.
In general, the set of Y satisfying all these linear constraints forms
an affine subspace in SL.

2. Rank constraint: By construction, Y = yy∗ is a positive-
definite matrix of rank-one. For an arbitrary Hermitian matrix X ,
the best rank-one approximation ofX can be computed by a singular
value decomposition (SVD) ofX .

By iteratively enforcing the above two constraints, we can use
Algorithm 2 to obtain y from the magnitude information (10).

Algorithm 2 Iterative Singular Value Projection

Input: A matrixA of sizeM ×L and the absolute values as in (10).
Output: Reconstruct y up to a constant phase term and a complex
conjugation.
Let y0 = 0 and Y 0 = y0y

∗

0.
Initialize the iteration number: k ← 0
repeat

Enforce the linear constraint and get Xk as the orthogonal
projection of Y k onto the affine subspace.
Enforce the rank constraint using SVD and get Y k+1 as the
best approximation of Xk+1 among all positive semidefinite
rank-one matrices.
k ⇐ k + 1

until The mean squared error MSE def
= ‖Y k − Y k+1‖

2
F /L2 is

smaller than a given threshold δ.
return by from the factorization Y k = by by∗.

Example 2 Figure 2(a) shows the autocorrelation of an unknownK-
sparse signal xn. We do not need to know the exact value of K;
only a rough upper bound will suffice. Applying Algorithm 1, we
obtain a sparse signal bxn, shown in Figure 2(b). We can verify that
it produces the same autocorrelation as the input. Note that another
valid solution will be a time-reversed version, i.e., x−n.

In step 2 of Algorithm 1, we employ the proposed iterative sin-
gular value projection scheme (Algorithm 2) to estimate {cm} from
their absolute values. The algorithm converges within numerical pre-
cision after about 104 iterations. The total running time on a com-
puter with a 2.2 GHz CPU is about 16 seconds.
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Fig. 2. (a) The autocorrelation of a K-sparse signal. (b) The recon-
structed sparse signal bxn obtained by the proposed algorithm.

Remark 2 Numerical experiments suggest that, when the unknown
signal xn is “sufficiently sparse”, Algorithm 2 always converges, de-
spite the nonconvexity of the rank constraint. We leave the rigorous
analysis of this convergence behavior to a future work.

4. CONCLUSION

We studied the problem of recovering a 1-D sparse signal from its
autocorrelation. Our results show that there always exist sparse sig-
nals that cannot be determined by their autocorrelations, no matter
how sparse they are. However, most signals with nonuniform support
patterns are indeed recoverable. We present a sufficient condition
for the reconstruction to be unique, based on which we proposed an
efficient reconstruction algorithm using iterative singular value pro-
jections. Numerical examples verify the effectiveness of the proposed
algorithm.
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