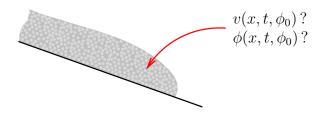
Velocity profiles inside concentrated particle suspensions flows

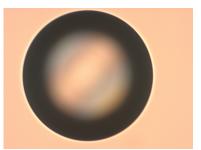
N. Andreini, S. Wiederseiner, M. Rentschler, C. Ancey

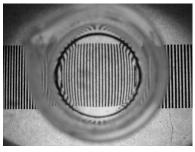

Laboratoire d'Hydraulique Environnementale Ecole Polytechnique Fédérale de Lausanne

October 13th, 2008

LHE (EPFL) TRAMM meeting October 13th, 2008

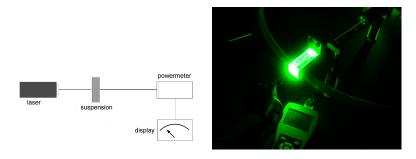
Goal


Measure velocity and concentration profiles in a free-surface flow of concentrated particle suspension (solid fraction \geq 50%)

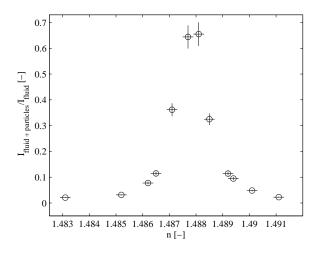


 \mapsto region of special interest : the front

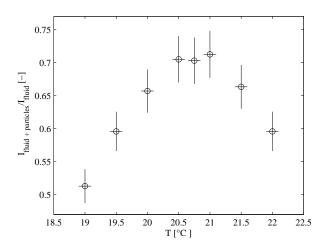
Suspensions



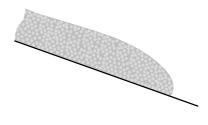
2 fluids \rightarrow control refraction index 3 fluids \rightarrow control refraction index + $\Delta \rho$ 4 fluids \rightarrow control refraction index + $\Delta \rho$ + μ work at constant temperature (± 0.2 °C)

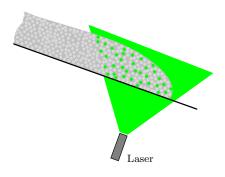

Optimization of the suspensions

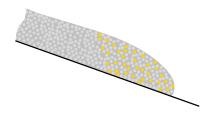
optimization of the fluid refraction index :

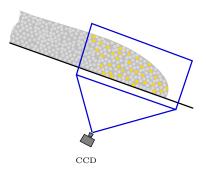


- optimization of the fluid density :
 - → sedimentation test at constant temperature

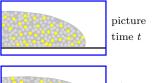

Transmission in the suspension vs fluid refraction index

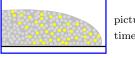

Transmission in the suspension vs temperature


- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$

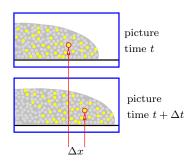

- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$

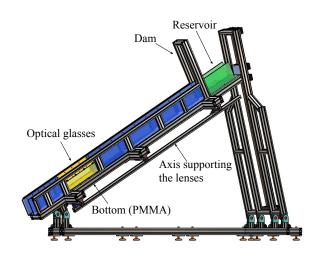
- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$




- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$

- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$

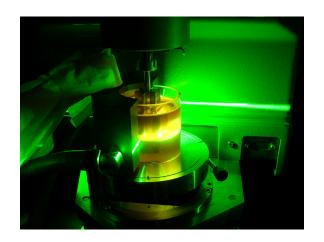

- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$


 $\begin{array}{l} \text{picture} \\ \text{time } t + \Delta t \end{array}$

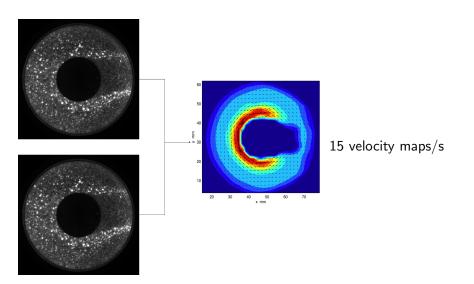
- tag a fraction of the particles with fluorescent molecules
- laser pulse
- the tagged particles emit light
- take a picture
- wait Δt
- repeat the process
- $v = \frac{\Delta x}{\Delta t}$

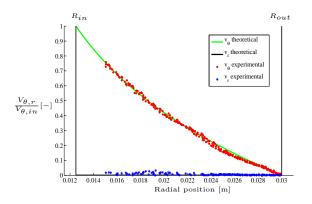
LHE (EPFL)

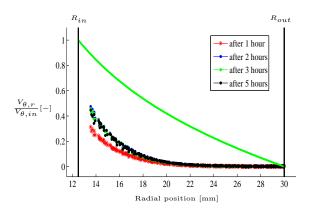
Facility (under construction)



length $3.5~\mathrm{m}$, width $0.1~\mathrm{m}$, $10\mathrm{l}$ of suspension released


Facility (under construction)


Experiments in Couette cell


Experiments in Couette cell

Results in Couette cell - newtonian fluid

Results in Couette cell - suspension $\phi=50\%$

Conclusion

- ullet suspension preparation and handling o OK
- velocity measurements → OK
- ullet channel setup o ready for test at the end of the year
- concentration measurements → still working on