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ABSTRACT
We study the spatiotemporal sampling of a diffusion field generated
by K point sources, aiming to fully reconstruct the unknown initial
field distribution from the sample measurements. The sampling op-
erator in our problem can be described by a matrix derived from the
diffusion model. We analyze the important properties of the sam-
pling matrices, leading to precise bounds on the spatial and temporal
sampling densities under which perfect field reconstruction is feasi-
ble. Moreover, our analysis indicates that it is possible to compen-
sate linearly for insufficient spatial sampling densities by oversam-
pling in time. Numerical simulations on initial field reconstruction
under different spatiotemporal sampling densities confirm our theo-
retical results.

Index Terms— Diffusion equation, initial inverse problems,
spatiotemporal sampling, point sources localization, compressed
sensing

1. INTRODUCTION

Sensor networks are spatiotemporal sampling devices. They are of-
ten used to sense phenomena driven by well-known physical fields.
In the case of diffusive fields, the dimensions – space and time – are
not homogenous and increasing the spatial density is often more ex-
pensive than increasing the temporal sampling rate, as more nodes
are needed in the network. In contrast, the temporal frequency can be
increased until the hardware limits imposed by the sensor nodes are
reached. Even if multidimensional sampling is well documented in
literature, there is a lack of results concerning the trade-off between
non-homogenous dimensions, while it is a fundamental aspect for
these sampling scenarios.

In this paper, we consider the spatiotemporal sampling and re-
construction of a one-dimensional diffusive field f(x, t), modeled
by the heat equation. That is

∂f(x, t)

∂t
= γ

∂2f(x, t)

∂x2
+ h(x, t), t ≥ 0, (1)

where γ is the diffusion coefficient and h(x, t) represents the ex-
ternal sources. When t = 0, the field f0(x) = f(x, 0) represents
the initial field distribution. We assume K point sources appear-
ing at t = 0. Generally, the sources are defined in h(x, t), how-
ever, here we know when the sources appear and model them as
an initial field distribution. More precisely, we define f0(x) =
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Fig. 1. A diffusion field induced by three point sources (arrows) at

t = 0, sampled by a network of Ns = 4 sensors (dots •), each

one collecting Nt = 4 samples. The spatiotemporal sampling grid

(crosses x) is the intersection between the position in space of the

sensors and the temporal sampling instants (τ, 2τ, 3τ, 4τ).∑K
m=1 amδ(x−xm), where am are the amplitudes of the K sources

and xm their positions. We consider a sensor network sampling
f(x, t) with Ns < M sensors deployed uniformly in space, and
each sensor collects Nt samples uniformly in time. An example of
a field generated by point sources and the corresponding sampling
grid is given in Fig. 1. The reconstruction scenario we consider is an
inverse initial problem, where we aim at estimating the initial field
distribution using the collected samples. In general, inverse prob-
lems of the diffusion equation are ill-conditioned [1], but the sparsity
constraint on the sources helps to regularize the solution.

The spatial undersampling of the heat equation introduces an-
other issue to the general problem of spatiotemporal sampling: if we
sample the field too early (see Fig. 2(a), for t < τ ), some sensors
may not sense the presence of the sources; conversely, if we collect
samples too late (see Fig. 2(b)), the information content carried by
the field is blurred by the diffusion effect.

An efficient solution to these complex issues will have an im-
pact in different real world scenarios, such as pollution detection [2],
plume source detection [3], and localization of the so-called cold and
hot spots in server rooms, responsible for energy inefficiency [4]. In
this paper, we tackle these challenges taking advantage of the knowl-
edge of the physical model underlying the sampled field and the spar-
sity of the sources, to improve both sampling and reconstruction. In
particular, we study the spatiotemporal sampling problem analyzing
the meaningful properties of a matrix Ψ, which represents the sam-
pling operator acting on the diffusive field. This operator is given as
a function of one spatiotemporal parameter ρ, that represents the ex-
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Fig. 2. The field f(x, t) shown in Fig. 1 at two time instants (a), and at the four sensor positions (b). τ is the first sampling instant.

isting trade-off between the spatial and temporal density. We derive
the optimal spatiotemporal sampling parameter which gives a low
condition number for Ψ and an optimal sampling of all the sources
in the field. We theoretically prove the optimality and give evidence
of it via numerical simulations that assess the reconstruction perfor-
mance. We show that it is possible to reduce the number of sensors
by increasing linearly the number of samples collected in time, pro-
vided that the sensors network is dimensioned properly.

One of the earliest studies of the inverse initial diffusive problem
was conducted by Fourier and Kelvin [5], who estimated the initial
temperature of the earth from the current temperature distribution.
More recently, many approaches have been considered, such as the
hyperbolic heat equation [6], transform techniques [7], spatial super-
resolution [8] and an adaptive spatiotemporal sampling scheme [9].
A similar approach to ours, applied to the wave equation, has been
proposed by Fannjiang et al. [10] where the localization of remote
sparse objects using electromagnetic pulses is solved by compressed
sensing (CS) techniques.

The remainder of the paper is organized as follows. In Section 2,
the matrix representing the sampling operator is defined and closed-
form estimations its characteristics are given as a function of the
spatiotemporal parameters. In Section 3, an evaluation of the recon-
struction performance is conducted using an algorithm derived from
CS. We conclude in Section 4.

2. SAMPLING OF THE DIFFUSION FIELD

In this section, we give a mathematical characterization of the sam-
pling process of a diffusive field and develop it as follows: we de-
scribe the diffusive field as a linear system and construct a sampling
matrix Ψ representing the sampling operator. The key point here is
that Ψ allows us to study easily the properties of the sampler. In
particular, we reach this goal by evaluating the norm of the columns,
the rank and the condition number of Ψ as a function of a single
spatiotemporal parameter defined by the sampling rate in space and
time. From now on, f denotes a vector and f(n) its nth element. If
Ψ is a matrix, then ψm is its mth column and ψm(n) is the nth
element of that column. Unless stated otherwise, the norm under
consideration is the �2 norm.

Two related problems of the diffusion equation are of interest
in this work: the forward problem and the inverse initial problem.
The former aims to find the field f(x, t) for every x and t when the
boundary conditions and the initial field distribution are known. We
consider the solution of the forward problem to define the latter, that
aims at finding the initial field f0(x) given the boundary conditions

and a set of samples from the field f(x, t) at given positions and time
instants. The forward problem of the heat equation can be solved as
a linear system. We consider a circular domain of length D = 1 and
γ = 1 for simplicity of notation. Note that even though the circular
domain requirement seems fairly strong, it is a good approximation
whenever we do not have sources appearing close to the boundaries.
We determine the impulse response, called Green’s function, as

GD(x, t) =
1

2
√
πt

∑
k∈Z

exp

{
− (x+ kD)2

4t

}
, (2)

and obtain the field f(x, t) via the spatial convolution between f0(x)
and G(x, t). That is

f(x, t) =

∫ D

0

GD(x− s, t)f0(s) ds. (3)

Note that the spatial and temporal dimensions are strictly connected
in the diffusion equation. Indeed, scaling in the spatial domain can
be compensated by scaling in the time domain. We see this effect in
the Green’s function (2), since

GαD(αx, t) =
1

α
GD

(
x,

t

α2

)
. (4)

Hereinafter, we use (2) and (3) to construct the sampling matrix.
To define the discrete inverse problem, we constrain the location

xm of the K sources to be on a uniform grid of size M , where
K � M . We define two sets XM = {mΔ1 : 0 ≤ m ≤ M − 1}
and YNs = {nΔ2 : 0 ≤ n ≤ Ns − 1}, where Δ1 = 1

M
and

Δ2 = 1
Ns

= Δ1
M
Ns

, to represent the spatial position of the sensors

and the sources, respectively. We also define a set TNt = {�τ : 1 ≤
� ≤ Nt} to define the temporal sampling grid.

Let f0 be a vector defining the amplitude am of the source at
the mth position of the grid XM , that is f0(m) = am, and let f be
the vector containing all N = NsNt samples collected by all the
sensors. We want to construct a N × M matrix Φ representing the
sampling operator as a discrete linear operator, f = Φf0. Each row
of Φ represents the sampling kernel of a sensor in a given position
and at a given time instant. We organize the matrix in Nt stacked
submatrices Φ� of size Ns×M , where each Φ� models the sampling
of the sensor network for a given time instant �τ ∈ TNt . We define
the elements of the �th submatrix φ�

m(n) for � = 1, . . . , Nt as

φ�
m(n) =

Δ1√
4π�τ

∑
k∈Z

exp

{
− (nΔ2 − kΔ2Ns −mΔ1)

2

4�τ

}
. (5)

Let f �(n) be the sample collected by the nth sensor at the �th sam-
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pling instant, then we write

f �(n) =

M−1∑
m=0

φ�
m(n)f0(m), (6)

that can be rewritten in matrix notation as f � = Φ�f0, where the
vector f � contains all the samples collected at lτ . One can verify that
the discretization of (3), considering x = mΔ1−nΔ2, is equivalent
to (6). We concatenate the Nt measurement vectors f � and sampling
operators Φ� into a single vector f and single matrix Φ, respectively,
to obtain f = Φf0.

Recalling the spatiotemporal scaling in (4), we introduce, with-
out loss of generality, a parameter ρ to have invariance to such scal-
ing and to simplify the analysis of the problem. We choose

ρ =
τ

Δ2
2 , (7)

where Δ2 and τ represent the spatial and temporal sampling densi-
ties, respectively. Note that since the sampling is uniform in time, the
parameter τ provides us with two relevant informations: it represents
the temporal sampling density and the delay between the appearance
of the sources (t = 0), and the first sampling instant. To obtain an
expression of the matrix solely as a function of ρ and to simplify
the analysis of the properties of Φ, we define a new set of Ns ×M
matrices Ψ�, whose elements are defined as

ψ�
m(n) =

1√
Nt

4
√
2π�ρ

∑
k∈Z

exp

{
− (n− kNs −mNs

M
)2

4�ρ

}
. (8)

The elements of Ψ� are equal to those of Φ� up to a scaling factor
unique for every submatrix Ψ�. Thus, we obtain the linear system
y = Ψf0, where y is equivalent to f up to a proportional factor.
In the following propositions, we give three results regarding the
properties of Ψ studied as a function of ρ. All the corresponding
proofs are given in [11]. We first consider ‖ψ‖2, since it represents
the energetic relation between sources and sensors.

Proposition 1 Let Ψ be a NsNt ×M matrix representing the sam-
pling process of a sensor network in a diffusion field with Ns sensors
each collecting Nt samples. If ρ is bounded according to

1

8C
≤ ρ ≤ (Ns − 1)2

Nt72
= ρMAX, (9)

for 0 < C < 1, then ‖ψ0‖2 ≈ 1 and the maximum difference be-
tween the squared norms of any two columns is bounded according
to

max
k,j

(
|‖ψk‖2 − ‖ψj‖2

∣∣) ≤ NtC‖ψ0‖2, ∀ k, j.

If ρ does not satisfy the lower bound in (9), the Green’s function
tends to be a vector with only one element significantly different
from zero, and only the sources which are really close to the sensors
are correctly sampled. Instead, if ρ > ρMAX, then the Gaussian
kernel tends to be almost flat, and the sensed data contains almost no
information about the position and the amplitude of the sources. We
are interested in the differences between the norm of the columns,
because if ‖ψj‖2 is smaller than ‖ψk‖2, the energy collected by
the sensors from the jth source is smaller than the one collected by
the kth one, leading to a sub-optimal estimation of the jth source in
the initial field distribution. The result above guarantees that, since
‖ψ0‖2 is bounded and C can be arbitrarily small, the norms of any
two columns can be arbitrarily close. We extend this analysis to
be more practical and establish a minimum ρ to sense properly all
sources, including the ones far from the sensors.

Proposition 2 Let us consider a sensor network composed of Ns

sensors, each collecting Nt samples uniformly in time. To sense all
the possible sources in the field, the sampling densities must satisfy

ρ >
1

2Nt
= ρMIN. (10)

In practice, Proposition 1 and 2 are meant to prevent the two sam-
pling issues depicted in Fig. 2. Moreover, we wish to have a full-
rank Ψ, otherwise there would be a set of initial field distributions f0
that are in the null space K(Ψ) and generate null measurement vec-
tors f . Thus, it would not be possible to distinguish the elements of
K(Ψ) from the measurement vector. If ρ satisfies (9), we can prove
that Ψ is full rank, but the smallest singular value is exponentially
smaller for increasing values of ρ. This raises the question of the
conditioning, that we improve exploiting the sparsity of the sources.
Namely, if we use an algorithm that searches for a sparse solution,
the optimization is concentrated only on the K columns of Ψ acti-
vated by the sources and the solution is only minimally affected by
the ill-conditioning. Therefore, we introduce a method to compute
the conditioning of a subset of columns of Ψ as a function of ρ and
the K, which is a relevant merit figure for sparse reconstruction.

Proposition 3 Let us consider a NsNt × M sampling matrix Ψ,
where Nt ≥ 1 and N ≤ M . Let S be a set of K indices sk ∈
{0, . . . ,M − 1} representing the position of the sources, let ΨS
be the matrix composed by the columns of Ψ pointed by S and let
Gr(ΨS) = ΨT

SΨS be the Grammian matrix of ΨS . If the parame-
ter ρ satisfies (9), then the elements of Gr(ΨS) are defined as

Gr(ΨS)k,j ≈ 1

Nt

Nt−1∑
�=0

exp

{
−d(sk, sj)

2

8�ρ

(
Ns

M

)2
}
, (11)

where d(sk, sj) is the circular distance between sk and sj .

The approximation in (11) is given by the approximation ‖ψj‖2 ≈
‖ψk‖2, consequence of Proposition 1. The eigenvalues of (11), and
thus the singular values of ΨS can be analytically expressed for low
values of K. Hereinafter, we give the result for K = 3.

Example 1 For K = 3 and S = {1, 2, 3}, ΨS is a Ns × 3 matrix
and its condition number is given by

cond(ΨS) =

√√√√√1 + 2e
1

2�ρ (
Ns
M )

2

+

√
1 + 8e

3
4�ρ (

Ns
M )

2

1 + 2e
1

2�ρ (
Ns
M )

2

−
√

1 + 8e
3

4�ρ (
Ns
M )

2
. (12)

Example 1 has a straightforward interpretation: whenever ρ satisfies
(9), the condition number of a subset of columns is much smaller
than that of Ψ. Moreover, we obtain a better conditioning of ΨS for
a smaller ρ. The theoretical estimation derived in (12) is confirmed
with our numerical simulation, whose results are given in Fig. 3.
In this experiment we measure the condition number of ΨS when
S = {1, 2, 3} for different values of ρ.

As a summary, and concentrating on the effect of ρ on Ψ, we
observe that ρ must satisfy (9) and (10) to have each source sampled
with the same efficiency by the sensor network. Moreover, Propo-
sition 3 together with Example 1 put in evidence that as long as the
aforementioned bounds are respected, a lower ρ corresponds to a bet-
ter condition number of the matrix ΨS . Therefore, the reconstruc-
tion of f0 is optimal whenever ρ tends to ρMIN. This is confirmed by
the numerical experiments presented in the next section.
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Fig. 3. Estimated and condition number of ΨS for S = {1, 2, 3},

that represents the worst case scenario (consecutive columns).

3. RECONSTRUCTION OF THE INITIAL FIELD

To verify our analysis of the sampling operator, we test the recon-
struction performance of a CS algorithm applied to the inversion of
the system (6) with an unknown sparse vector f0 and a sampling ma-
trix Ψ. In particular, we consider Smoothed �0 (SL0) [12], that at-
tempts to minimize directly the �0 norm of a vector subject to linear
constraints, using a smooth approximation within an iterative pro-
cess. We analyze the reconstruction performance fixing M = 64 and
K = 3 and by varying the number of samples collected in time Nt

and ρ. The merit figure is the minimum Ns necessary to reach 99%
of exact reconstruction. A reconstruction is exact when the SNR of
the reconstructed vector is over 30dB. The results are an average
of the results obtained over 5000 sparse vectors and are depicted in
Fig. 4, where we note that the parameter ρ has a strong influence on
the reconstruction. Indeed, when ρ < ρMIN, the algorithm requires
NsNt > M , meaning that undersampling is not possible, confirm-
ing Proposition 2. Namely, each sample has the information of only
one source, thus we need M = Ns sensors. Note that this bound
is tight only for Nt = 1; for Nt > 1, ρMIN seems too conservative
as it is not anymore the smallest ρ at which we obtain the best re-
construction performance. Further investigation of this matter is left
for future work. On the other hand, when ρ increases, the condition
number increases exponentially, and the algorithm cannot recover a
valid solution, no matter how many measurements, spatial or tem-
poral, are collected. This is an effect of the diffusion kernel, that in
such conditions is too wide and each source cannot be distinguished
from the other sources. Note that there is a very well-balanced trade-
off between Ns and Nt. Namely, if we increase linearly the number
of collected time samples Nt, we can reduce the number of sensors
provided that we collect an equal amount of total samples N . As
shown in Fig. 4, if we pick ρ = ρMIN, the possible combinations for
(Ns, Nt) are (40, 1), (19, 2), (13, 3) and (10, 4).

4. CONCLUSIONS

We proposed an innovative approach to model the spatiotemporal
sampling of a diffusive field generated by sparse sources. This ap-
proach allowed us to study the main properties of the sampling pro-
cess through a matrix Ψ. We obtained a theoretical optimal sam-
pling of the field by improving the conditioning of the inverse prob-
lem without any loss of information. Our experiments align with the
theory and show that exact reconstruction is feasible with spatially
undersampled data. Moreover, these results show we can reduce the
spatial sampling density by linearly increasing the temporal one, al-
lowing for a lower cost of the sensor network. In the future, we will
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Fig. 4. Minimum number of sensors Ns for an exact reconstruc-

tion of the initial distribution as a function of Nt and ρ. If the point

(ρ,Ns) is above the threshold, the probability of an exact recon-

struction of the initial field is over 99%.

use our approach to study the theoretical aspects and bounds of two
generalized sampling scenarios: first, where point sources appear at
an unknown instant and second, where sources are not localized any-
more, but sparse with regards to an orthonormal basis. In both cases,
we have promising preliminary numerical results.

5. REFERENCES

[1] C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion, Soc. for Industrial
Math., 1987.

[2] A. El Badia and T. Ha-Duong, “An inverse problem in heat
equation and application to pollution problem,” Inverse and
ill-Posed Problems, vol. 10, pp. 585 – 599, 2002.

[3] D. M. Moreira, T. Tirabassi, and J. C. Carvalho, “Plume disper-
sion simulation in low wind conditions in stable and convective
boundary layers,” Atmospheric Environment, vol. 39, no. 20,
pp. 3643–3650, June 2005.

[4] K. Chen, D. M. Ausl, C. E. Bash, and R. D. Patel, “Local
temperature control in data center cooling,” Tech. Rep., HP
Labs, 2006.

[5] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids,
Oxford University Press, USA, 2 edition, Apr. 1986.

[6] K. Masood and F. D. Zaman, “Investigation of the initial in-
verse problem in the heat equation,” J. of Heat Transfer, vol.
126, no. 2, pp. 294–296, Apr. 2004.

[7] G. Nakamura, S. Saitoh, and A. Syarif, “Representations of
initial heat distributions by means of their heat distributions as
functions of time,” Inv. Prob., vol. 15, pp. 1255–1261, 1999.

[8] Y. M. Lu and M. Vetterli, “Spatial super-resolution of a dif-
fusion field by temporal oversampling in sensor networks,” in
IEEE Int. Conf. on Acoustics, Speech and Signal Proc., Tai-
wan, 2009, pp. 2249–2252.

[9] Y. M. Lu and M. Vetterli, “Distributed Spatio-Temporal sam-
pling of diffusion fields from sparse instantaneous sources,” in
Proc. 3rd Int. Workshop on Comp Adv. in Multi-Sensor Adap-
tive Proc., 2009.

[10] A. Fannjiang, P. Yan, and T. Strohmer, “Compressed remote
sensing of sparse objects,” SIAM J. Imag. Sci., Accepted.

[11] J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Sampling
and reconstruction of a diffusive field: Exploiting the physical
model and sparsity,” Tech. Rep., LCAV-EPFL, 2010.

[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast
approach for overcomplete sparse decomposition based on
smoothed �0 norm,” IEEE Trans. on Signal Proc., vol. 57, no.
1, pp. 289–301, 2009.

4019


