IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

1211

A Mapping Flow for Dynamically Reconfigurable
Multi-Core System-on-Chip Design

Ivan Beretta, Vincenzo Rana, David Atienza, Member, IEEE, and Donatella Sciuto, Fellow, IEEE

Abstract—Nowadays, multi-core systems-on-chip (SoCs) are
typically required to execute multiple complex applications,
which demand a large set of heterogeneous hardware cores with
different sizes. In this context, the popularity of dynamically
reconfigurable platforms is growing, as they increase the ability
of the initial design to adapt to future modifications. This paper
presents a design flow to efficiently map multiple multi-core
applications on a dynamically reconfigurable SoC. The proposed
methodology is tailored for a reconfigurable hardware archi-
tecture based on a flexible communication infrastructure, and
exploits applications similarities to obtain an effective mapping.
We also introduce a run-time mapper that is able to introduce
new applications that were not known at design-time, preserving
the mapping of the original system. We apply our design flow
to a real-world multimedia case study and to a set of synthetic
benchmarks, showing that it is actually able to extract similarities
among the applications, as it achieves an average improvement
of 29% in terms of reconfiguration latency with respect to a
communication-oriented approach, while preserving the same
communication performance.

Index Terms—Field programmable gate arrays, platform-
based design, reconfigurable architectures, run-time adaptability.

I. INTRODUCTION

VER THE last years, multi-core systems-on-chip (SoCs)

have been proposed in many different application sce-
narios, such as in multimedia applications [1]. In fact, those
systems guarantee high performance thanks to the com-
bined execution of many heterogeneous functional units (e.g.,
general-purpose processors, digital signal processors or DSPs,
specific purpose IP-cores), which we refer to as cores in
the remainder of this paper. In multi-core SoCs design, the
definition of a performing and power-efficient communication
infrastructure [2], [3], and the mapping of the cores onto it
are key aspects in the quality of the final product. Other non-
functional requirements, such as high flexibility, have also be-

Manuscript received March 11, 2011; accepted March 21, 2011. Date of
current version July 20, 2011. This work was supported in part by the HIPEAC
network of excellence (www.hipeac.net) and the Swiss National Science
Foundation, under Grant 200021-127282. This paper was recommended by
Associate Editor Y. Xie.

I. Beretta and D. Atienza are with the ESL-Ecole Polytechnique Fédérale
de Lausanne, ESL-IEL-STI-EPFL, Lausanne 1015, Switzerland (e-mail:
ivan.beretta@epfl.ch; vincenzo.rana@epfl.ch; david.atienza@epfl.ch).

V. Rana is with the ESL-Ecole Polytechnique Fédérale de Lausanne,
ESL-IEL-STI-EPFL, Lausanne 1015, Switzerland, and also with the DEI-
Politecnico di Milano, Milan 20133, Italy.

D. Sciuto is with the DEI-Politecnico di Milano, Milan 20133, Italy (e-mail:
sciuto@elet.polimi.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2138140

come an important factor in SoC industry, in order to increase
the versatility and the lifetime of the system. A rising trend
in advanced platforms [4] is to couple traditional processing
elements (CPUs, DSPs, and others) and memories with a large
amount of reconfigurable devices, such as field-programmable
gate arrays (FPGAs). However, the reconfiguration process has
different drawbacks that should be kept under control by the
synthesis tool during the design phase, including high latency
(in the order of hundreds of milliseconds) and high power
consumption. A suitable mapping of cores on the FPGA area
can dramatically reduce the number of reconfigurations and
improve the efficiency of the communication infrastructure,
as cores that communicate frequently can be placed physically
close to each other [5].

In this paper, we propose a mapping methodology for
multi-core applications on reconfigurable devices. We start
from an execution model that allows multiple applications
to be executed on the same platform by switching among
them at run-time by means of dynamic reconfiguration. We
define a versatile hardware architecture, which divides the
reconfigurable area into slots that can be connected using
different communication paradigms, such as networks-on-chip
(NoCs) [3] or buses. Then, we propose a mapping algorithm
for a known set of applications, which we underlined in
[6], to optimize both the number of reconfigurations and
the communication performance of the system. Finally, we
propose a run-time mapper flow that allows the addition of
new applications at run-time, by possibly reusing parts of
the already-deployed applications, as we first discussed in [7]
and [8]. With respect to our previous papers, we propose a
unique flow for both design-time mapping (DTM) and run-
time mapping (RTM), whose main innovative contributions
are the following.

1) We provide a formal definition of the DTM and the RTM
problems, analyzing their computational complexity and
proving their NP-completeness.

2) We include a new RTM algorithm based on a Boolean
satisfiability (SAT) solver, which aims finding a mapping
for a new application by reusing parts of the existing
ones. Unlike the greedy algorithm discussed in [7], the
SAT solver always identifies a solution whenever it
exists, though its complexity is higher.

3) We extend the RTM flow by introducing the support for
a technique known as bitstream relocation [9]. The goal
is to increase the solution space of the mapping problem
in order to improve the quality of the solution.

0278-0070/$26.00 © 2011 IEEE

1212

4) We propose a complete real-world case study based on
video encoding/decoding, and we apply our flow to show
its benefits, especially in terms reconfiguration latency.

This paper is structured as follows. In Section II, we provide

an overview of the related works. We introduce some defini-
tions in Section III, and then we discuss the proposed mapping
flow in Section IV. We then propose a DTM and a RTM algo-
rithm in Sections V and VI. Next, we validate the algorithms
on a real-world case study in Section VII, and using additional
benchmarks in Section VIII. Finally, Section IX concludes the
paper with a summary of the main conclusions of this paper.

II. RELATED WORK

The problem of mapping cores on a reconfigurable device
is widely explored in literature, and many approaches have
been designed to solve the mapping problem to enhance
performance in many different scenarios, such as in network
processors [10], [11]. Most of the related works aim at finding
a suitable mapping at design-time, though a few run-time map-
pers have been proposed. In general, dynamic reconfiguration
is rarely taken into account, as most of the mappers are more
focused on area [12] or communication [5], and they are not
designed to detect core-level similarities among applications.

Over the last years, many design-time approaches have
been proposed to map multi-core applications on specific
communication infrastructures, with a particular emphasis on
the emerging NoCs. The authors of [5], e.g., proposed a
design-time mapper to optimize the communication overhead
of an application mapped onto a NoC. The algorithm in [12]
performs mapping and path selection in order to minimize area
requirements and power consumption. In [13], the authors pro-
posed a technique to evaluate and optimize core mapping, path
selection, and time-slot assignment at the same time. However,
all these approaches are proposed for a design-time scenario
and are not suitable to incrementally add other applications at
run-time. Furthermore, they are meant for static architectures,
thus they do not consider dynamic reconfiguration, whereas
our approach can also reduce the number of reconfigurations
that are required to configure an application on an FPGA.

Dynamic reconfiguration is explicitly considered in [14],
as the authors consider the opportunity of switching among
different parts of the same application at run-time, and they
proposed a design-time algorithm to reduce the reconfiguration
overhead by minimizing the number of required reconfigura-
tions. The main limitation of this approach, in addition to the
fact that only a single application is considered, is the assump-
tions that the application can be divided into smaller tasks with
the same area, and whose execution time is negligible with
respect to its reconfiguration overhead. Conversely, thanks to
the hardware architecture we propose, our approach can effi-
ciently handle cores of different sizes. Moreover, the proposed
mapping methodology does not require any assumption about
the execution time of each core, thus making it applicable to
a larger number of real-world applications.

Even though most of the existing mapping approaches are
design-time algorithms, a few works about RTM can be found
in the literature. In [15], the authors proposed a technique
to generate FPGA configuration files at run-time using a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

sustainable amount of resources. This approach introduces
the so-called parameterizable configurations, which can be
easily converted into specific FPGA configuration files with a
low computation effort. However, the paper does not propose
a complete mapping technique to place applications on the
device to optimize a specific performance metric.

A mapping algorithm that incrementally adds new appli-
cations at run-time is proposed in [16]. This mapper takes
an incoming application and, according to the current device
usage, tries to allocate resources in an incremental way, i.e.,
by exploiting the unused area on the device without modifying
the existing layout. The algorithm is tailored for a NoC-based
architecture, and it aims at optimizing the power consumption
of the on-chip communication. The algorithm proves to be
effective because it is able to take local decisions to improve
the long-term quality of the mapping. In [17], the approach is
extended to consider both internal and external contention of
the network, and to implement a machine learning algorithm
to better respond to run-time changes. However, both [16] and
[17] mainly focused on geometric aspects, i.e., they aimed at
determining the best shape for the new application in order
to fit it in the existing layout, and reconfiguration-related
metrics are not considered. Furthermore, the two works do
not detect similarities among the applications, whereas our
flow effectively collects shared cores in order to improve both
area and reconfiguration-related metrics, such as latency.

The geometric aspects of run-time addition of new applica-
tions are also considered in [18], where a placement algorithm
is proposed to reduce area fragmentation and to optimize
the number of applications that can fit on the FPGA area
at the same time. The authors try to combine the benefits
of a slot-based placement policy, where a new application is
assigned to a fixed-size region of the device, and a flexible
placement technique that does not use redundant resources.
The proposed algorithm starts from a pre-partitioned layout,
and then modifies it whenever the area availability is too
low for the incoming application. The placer can perform
both split and merging of existing regions, and it also avoids
area fragmentation. Still, the approach does not explicitly
optimize any communication-related metric and, like most
of the previously described approaches, it does not detect
similarities among applications.

In this paper, we propose a reconfiguration-aware map-
ping flow, which includes both a design-time and a run-time
dimension. The proposed approach takes advantage of the
similarities among the applications to enforce core reuse and
reduce the transition time between two applications.

III. PRELIMINARY CONCEPTS

This section introduces some basic notions that are es-
sential to understand the proposed mapping problem. First,
we introduce the concept of multi-core application, and we
formalize it using a mathematical representation. We also
provide an overview of how these applications can be actually
deployed on a reconfigurable device, as we introduce the
concept of partial dynamic reconfiguration on FPGAs. We
then propose a reference hardware architecture that supports
dynamic reconfiguration, and guarantees flexibility and good

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

performance. Finally, we define how the applications are
executed on the target architecture, introducing the metrics
that should be considered during the mapping process.

A. Applications

The proposed approach can map many different applications
onto an FPGA device. We define an application as a set
of heterogeneous cores which cooperate and communicate
with each other in order to perform a complex task. An
application can be modeled using an undirected graph called
communication graph (CG), defined as follows.

Definition 1: (Communication graph): A CG is an undi-
rected graph G = (V, E), where each node v; € V represents
an application core, and each edge ¢;; = (v;, v;) € E represents
a communication between cores v; and v;. A weight size;
is associated with each node v; € V, and it represents
the core size in terms of number of FPGA slices that are
required to implement it on the device. Each edge ¢;; € E is
associated with a weight comm;;, representing the bandwidth
of the communication between cores v; and v;, weighted the
criticality of the communication.

The size of a single application should not exceed the device
area, otherwise it is not possible to deploy it at once. This
assumption is not really strict, since modern FPGAs provide
a sufficient amount of resources to host large and complex
applications. Moreover, if an application does not fit into the
device area, it may be possible to partition it [19] into multiple
smaller sub-applications that can be deployed sequentially.
Finally, we assume that the application cannot start until all
the corresponding cores have been configured on the device.

Different applications can share a certain amount of cores to
perform the same operations as part of their overall computa-
tion, which is especially true when such applications belong to
the same domain (e.g., applications related to signal processing
may require to perform a Fourier transform at some point).
Intuitively, two applications are similar when they share a
large percentage of cores, even though their interaction (i.e.,
their communication requirements) may differ. In order to
quantify this idea, we define a metric named application
similarity as the average percentage of shared cores between
each pair of applications in the application set.

B. Dynamic Reconfiguration Support

The proposed mapping flow can be applied to any hardware
device that supports partial dynamic reconfiguration, but it is
best suited for last-generation FPGA families—such as Xilinx
Virtex-4 and Virtex-5 families—because of the large amount of
hardware resources they offer and their fine-grained dynamic
reconfiguration capabilities [20].

In order to physically configure an FPGA with the desired
application, one or more configuration files, called bitstreams,
have to be used. A bitstream can be either full or partial,
depending on whether it configures the whole device, or only
a smaller region. The bitstreams are generated in a process
named bitstream synthesis, which typically requires several
tens of minutes, depending on the complexity of the circuit
and on the number of bitstreams to be generated. Since the
complexity of the circuit is defined by the hardware designer,

1213

Reconfigurable Slot #1 Reconfigurable Slot #2

Core Core X X
A E Core C

Reconfigurable Slot #3 | ylntaree R
o Core
B
F (Core G

Example of core mapping with a NoC-based global interconnection.

Fig. 1.

we can only aim at minimizing the synthesis time by reducing
the number of bitstreams that must be generated from scratch.

C. Hardware Architecture Model

The hardware architecture we employ in this paper is
logically divided into two layers: the communication layer, and
the computation layer, as proposed in [21]. The computation
layer includes the cores of the executed application, while the
communication layer guarantees connectivity between them.
The division between the two layers makes the reconfiguration
process simpler and more efficient, as the same communication
infrastructure can serve multiple applications.

We divide the FPGA area into fixed-size reconfigurable
regions called slots, as shown in Fig. 1. Each slot provides the
same amount of resources [22], and it can be filled with one
or more cores. The homogenous amount of resources in each
slot is a necessary condition to support bitstream relocation, a
feature we will discuss in Section IV-B. Instead, the possibility
to include multiple cores in one region differentiates this
model from other grid-based architectures that can be found
in literature [23], where a slot only contains one core, and
the mapping problem is only driven by communication-related
metrics. Since a core cannot be split among multiple slots,
the minimum slot size is bounded by the largest core in the
application set. A single slot is the smallest amount of area that
can be reconfigured using a partial bitstream; this assumption
fits the requirements of modern FPGAs, where reconfigurable
modules must have a rectangular shape.

The slot size (or, equivalently, the number of slots) in
the hardware architecture is determined at design-time by
analyzing the cores that have to be mapped. In particular, if all
the cores have approximately the same size, then the slot can
be dimensioned to contain only one core, because the amount
of unused area inside the slot is guaranteed to be low. In real
applications, however, cores may have very different size, and
therefore the best strategy is to use larger slots, and let the
mapper assign more cores to each slot to reduce the amount
of unused area. In practice, a number of slots between 6 and 12
(depending on the device size) is generally a good choice. As
we will show in Section VIII-C, the proposed mapping flow
is able to optimize the reconfiguration overhead independently
from the number of slots, but its improvements with respect
to state-of-the-art algorithms increases with slots of large size.

The communication layer is further divided into two levels:
the intra-slot, or local, and inter-slot, or global, communication
infrastructures. In this paper, we opted to implement the
communication infrastructure using a NoC [3], as it provides
a good tradeoff between performance and flexibility, but the
proposed architecture can be adapted to other communication
paradigms. The inter-slot infrastructure connects the different

1214

slots, and it is provided as a fixed communication backbone
that is never reconfigured during the system execution, thus
guaranteeing connectivity even during the reconfiguration pro-
cess. The intra-slot infrastructure connects cores within the
same slot and resolves their communication internally without
accessing the global backbone. This local infrastructure is
configured in the slot during the reconfiguration process along
with the cores. The importance of the intra-slot NoC grows
when a low number of large slots is used, as many cores are
assigned to the same slot, and the communication among them
becomes more complex.

Definition 2: (Slot configuration): A configuration for slot
i is composed of the set of cores that are mapped in i at the
same time, the local communication infrastructure among the
cores, and the access to the global network. A configuration
is encoded by a single partial bitstream, and it may be
reconfigured in the target slot at any time.

The efficiency of the two communication levels is not
uniform, as the intra-slot NoC can be specifically optimized
for the cores in the slot, though this is beyond the scope of
this paper. Conversely, the inter-slot NoC has a fixed topology,
it employs a predetermined routing algorithm (in this case, we
assume a deterministic X-Y routing), and its efficiency can be
optimized by keeping highly communicating cores close to
each other to avoid sending a large amount of traffic over the
network. To estimate the effect of the traffic, which affects
the overall system performance, we define the communication
overhead metric as follows.

Definition 3: (Communication overhead): Given an appli-
cation A and an assignment of each core of A to a slot, the
communication overhead is defined as follows:

Comm__QOverheady = z comm;;j - hops;; (H
i,jeA

where comm;; is the edge weight specified in the CG, and
hops;; is the number of hops that are required to reach core j
from core i in the current assignment.

The value of hops;; is related to the time required to deliver
a message using the inter-slot NoC; if two cores belong
to the same slot, they can communicate using the intra-slot
infrastructure, therefore hops;; is set equal to zero. Finally, it
is possible to specify the maximum amount of traffic that can
be sent on each link of the global NoC, as the algorithm will
exclude all the solutions that violate these constraints.

We successfully implemented the proposed hardware archi-
tecture model on a Xilinx Virtex-5 FPGA, thus proving it is
compliant with the current technology. The implementation
includes six slots, which are connected using a global NoC
with a 2 x 3 mesh grid topology. The interfaces between the
global NoC and each slot are implemented using hard macros
[20], and the infrastructure is proved to be operational even
during the reconfiguration of one of the slots. The dynamic
reconfiguration process is performed within the device, as it
is controlled by a MicroBlaze soft processor that can access
an internal configuration port (named /CAP) to load a partial
bitstream in a desired slot.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

D. Execution Model

As mentioned above, each application is assumed to fit
into the FPGA area, thus it can be deployed at once. Then,
depending to the area requirements of each application, we
can identify two scenarios as follows:

1) if two or more applications can fit into the device area, it
is possible to merge their CGs into a single unconnected
graph and configure them at the same time;

2) if it is not feasible to deploy two applications at once
because of their area requirements, it is possible to
switch among them by reconfiguring part of the device
and loading the required cores. This scenario is more
general and may occur even when more applications
are merged together, and it is more interesting for our
approach.

During an application switching, a timing overhead is in-
troduced, which is proportional to the number of slots that are
reconfigured. Thus, we define a metric called average number
of reconfigurations, which indicates the average number of
slots to be reconfigured while switching between any pair of
applications, as an index of the reconfiguration overhead.

Note that applications may use some common cores, this
they can reuse some of the configurations that were previously
loaded for another application, thus simplifying the switching
process. To increase the exploration space and to optimize the
performance, an application can reuse an existing configura-
tion even if it exploits only some of the cores that are included
in the configuration, as the unused cores can be left idle.

IV. DESIGN FLOW DEFINITION

We summarize the proposed mapping flow in Fig. 2. We
identify a design-time mapping phase, which is computed be-
fore the system deployment over a known set of applications,
and the run-time mapping phase, which arises when a new
application is added to an existing system at run-time. In fact,
the RTM can be considered as a problem on its own because
it has to keep the existing solution computed at design-time
into account, and it has to guarantee that the new application
is available for deployment in a short time, thus making the
algorithm more constrained than the design-time one. In this
section, we define the DTM and the RTM problems in a formal
way, we characterize all the different sub-problems that can
be identified in the flow, and we analyze their complexity.

A. Design-Time Mapping

The mapping of a set of applications, which are known
before the system deployment, can be computed at design-
time. Once the mapping of all the application cores has been
determined, all the corresponding bitstreams must be generated
from scratch. However, the bitstream synthesis process is
performed offline and its length does not affect the run-time
behavior of the system, thus the mapper does not need to
minimize the number of bitstreams.

More formally, given a set of N, applications A; =
(Vi, E}), 0 <i < Ngpp, the DTM problem is the assignment of
each node v € V; of each application A;, to a reconfigurable
slot. A solution Spry contains the binding between each core
and the selected slot, and it should minimize both the average
number of reconfigurations and the communication overhead.

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

Initial Set of Applications
{Available at Design-Tima)

New Application
{Available at Run-Tima)

X

i
No New Cores
Any

-
\ Run-time Mapper

Mew Core(s)

Solution \
N ey
Configuration
[Reuse } A[.‘i‘ﬂs«nlmer} [GeneralCase]

4 N J

k.
Bitstream Generation I
{All applications) N

Fig. 2. Proposed mapping flow.

Design-time Mapper

Bitstream Generation
(Mew Application Only)

Deployment

B. Run-Time Mapping

The design-time mapper focuses on an initial and well-
known set of applications, but new applications may become
available at a later time. The incoming application may or may
not introduce cores that were not included in the applications
mapped at design-time. If the cores are not highly specific, it
is more likely that the new application does not include any
new core, so its cores can be all found in some configuration
computed at design-time. In this case, the fastest way to map
the new application is to find a combination of existing con-
figurations that includes all the required cores, which would
not require the generation of any new bitstream. Formally, we
define the run-time mapping with configuration reuse (RTM-
CR) as a phase of the RTM where, given an initial mapping
Spry and a new application A (whose cores are used by at
least one application known at design-time), the algorithm
aims at finding a combination of configurations of Spry—if
it exists—such that all the cores of A are mapped.

We propose two different approaches to handle the config-
uration reuse problem, as shown in Fig. 2: a greedy algorithm
looks for a good-quality solution, though it may not find a fea-
sible solution in some cases, whereas a SAT solver approach
finds a solution whenever it exists, though no warranty about
its quality is given. According to the designer’s needs, one
of the two approaches can be selected, or they can be used
sequentially to look for any feasible solution whenever the
greedy approach cannot find a good-quality one.

The main issue of configuration reuse is that if two config-
urations have been synthesized for the same slot, they cannot
be both selected to map the new application, and a solution
might not be found. This problem may be avoided if the
existing configurations can be moved to a different slot, thanks
to a process called bitstream relocation. Relocation has been
implemented in older FPGAs [9], such as Xilinx Virtex II-Pro,
and has also been proposed for modern devices [24], such as
Virtex-4 and Virtex-5. For this reason, we decided to include
relocation in the proposed flow, even though we also discuss
how the algorithms have been modified to handle a scenario
where relocation is not supported.

In general, configuration reuse is not sufficient to find a
solution, either because a suitable combination of existing

1215

configuration cannot be found, or because the new application
introduces one or more new cores. In this case, the generation
of at least one new bitstream is required, thus affecting
the deployment time of the new application. However, it is
possible to reduce this overhead by keeping the number of
new bitstreams low, which can be achieved by exploiting
configuration reuse to map only a subset of cores, and then
creating new configurations for the remaining ones: this prob-
lem is named run-time mapping in the general case (RTM-
G). In particular, given a design-time mapping Spry and a
new application A, the RTM-G problem is the assignment of
each core of A to a specific slot, possibly reusing part of
the configurations of Spry, aiming at minimizing the average
number of reconfigurations and the communication overhead
of all the applications, as well as the number of new bitstreams.
Even in the RTM-G phase of the proposed flow, relocation of
existing configurations can be exploited, if it is supported.

C. Complexity Analysis

This section analyzes the computational complexity of the
different parts of the proposed mapping flow. The complexity
of generic mapping problems such as the DTM or the RTM
in the general case has already been estimated [12], [25], as
they are instances of the constrained quadratic assignment
problem, which is known to be NP-Hard. As a consequence,
no deterministic polynomial-time algorithm is known to
solve them, and they can only be tackled using heuristic,
sub-optimal approaches.

The mapping problem based on configuration reuse (RTM-
CR) has never been faced in literature, but it closely recalls
other intractable combinatorial problems.

Theorem 1: RTM-CR is an NP-Complete problem.

Proof: We prove the theorem by using the polynomial
reduction technique [26]. It can be shown that RTM-CR €
NP, i.e., a solution for RTM-CR is certifiable in polynomial
time. In fact, given a solution Sgyy—cg, it is possible to verify
it by scanning all the cores and check that they are mapped in
some slot, check that the area constraints are met, and possibly
evaluate all the objective functions.

In order to complete the proof, we have to reduce an NP-
Complete problem to RTM-CR. We refer to the SAT problem,
which is known to be NP-Complete [27], and we show that
SAT o« RTM-CR. Let f be a Boolean formula written in
conjunctive normal form as follows:

f=CiAnCyA...ANC, 2)
where each clause C; is a disjunction of literals as follows:
Cj=l| VihV..Vi,. 3)

A literal /; may be either a variable x;, or its negation X; =
—x;. The SAT problem aims at finding an assignment for each
variable x; such that all the clauses C; are satisfied.

For each literal /;, we introduce a slot slof; in the target
architecture. Then, we generate two configurations Conf; and
Conf; for slot;, that are defined as follows:

Conf; = {C; | x; appears in C;} @)

Conf; ={C; | x; appears in C;}. 5)

In other words, the configuration Conf; contains the set of
clauses that becomes true if x; is true, whereas Conf; includes

1216

the clauses that are satisfied if x; is false. As only one
configuration can be mapped on slot;, only one of the two
set of clauses can be satisfied by the assignment of literal x;.

The clauses belonging to the configurations represent the
cores of the RTM-CR problem, whereas each literal is a slot.
If an oracle exists for the RTM-CR problem, it will find a
solution Sgry—cr containing a set of configurations, such that
all the cores are mapped. Then, we can easily convert this
solution into a solution for SAT by assigning

true, if Conf; € Sprm—cr
X; = false, if Conf; € Sgprv_cr (6)
any value, otherwise.

That is, if Conf; is mapped on slot;, we assign x; the true
value, and we satisfy all the clauses included in Conf;. If
Conf; is mapped on slot;, the x; is set to false, whereas if
neither Conf; or Conf; have been selected, then the assignment
of x; does not affect the solution.

The proposed reduction of SAT to a RTM-CR problem is
polynomial, and so is the conversion of the solution of RTM-
CR into a solution of SAT. Hence, we have shown that SAT
RTM-CR and, since SAT € NP-Complete, then also RTM-CR
€ NP-Complete. |

V. PROPOSED DESIGN-TIME MAPPER

The DTM problem can be effectively tackled using the
three-stage algorithm that we initially proposed in [6], con-
sisting of: 1) preprocessing; 2) partitioning; and 3) mapping.
The three stages are iterated until a feasible solution is found,
or until its quality meets certain requirements.

The basic idea is to divide the solution in two parts: the base
mapping and the specific configurations. The base mapping
includes a subset of all the cores shared by most of the
applications, so its configurations can be employed by most of
the applications. Due to its high degree of reusability, the base
mapping is initially deployed on the device, and it is consid-
ered as the starting point to deploy each application. On the
contrary, the specific configurations are a set of configurations
that cannot be reused from the base mapping. Each specific
configuration is implemented using a partial bitstream targeted
to a specific slot of the hardware architecture.

A. Preprocessing

The preprocessing phase aims at exploiting similarities
among the applications in the input set. This task is accom-
plished in two steps: the ordering and the selection phases.

1) Ordering: The cores the input applications are ordered
according to a cost metric that takes into account both core size
and the number of times it appears in the set of applications.
The core size core is useful to place large cores on the device,
as they could be difficult to map in a later stage, while the
utilization frequency is needed to maximize core reuse.

2) Selection: The algorithm then selects a subset of cores
called I" such that

Zsizec < i - Device Size. @)
100 -
cel
In other words, the set I" includes a set of cores that can
be deployed at the same time on the device, occupying % of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

the available area. However, since the total area is divided into
slots, it may happen that the cores in I" do not fit into the device
if B is close to the total FPGA area. If the solution generated
with a certain value of 8 is not deployable, the design flow is
restarted from the Selection stage by decreasing the value of
B until a feasible solution is found.

3) Partitioning: After the most frequently used cores have
been collected into I', the set is partitioned into a number
of clusters that represents the contents of a slot. An external
tool named Chaco [28] is used to generate a set of balanced
partitions.

As Chaco requires an input graph, we generate a set of
virtual edges to connect the elements of the I" set. In particular,
the weight of the edge between cores i and j is defined as
follows:

weight; j=o-t+(1 —a)-u (8)

where u is the number of times cores i and j appear in the
same CG. Thus, this variable explicitly keeps similarity among
applications into account. Variable ¢ is equal to

t= Z commf;j 9)

z€Apps

where comm; ; is the communication between i and j in the
CG of application z, and « is the parameter that can be used
to reach the desired tradeoff between u and ¢.

The virtual edges keep track of the similarity among ap-
plications by connecting the cores of I' according to their
relative frequency. Then, Chaco [28] is used to perform a min-
cut partitioning over the global graph, generating a number of

clusters equal to the number of slots.

B. Mapping

The third stage of the algorithm arranges the partitions in
the various slots, in order to build the base mapping. Then, the
cores that have not been selected in the first stage are mapped
into a set of specific configurations.

1) Primary Mapping: The assignment of each partition to a
physical slot on the device is performed by a genetic algorithm
developed for this specific problem. As the partitions are used
to generate the base mapping, which is deployed at once at
the system startup, the only goal of the genetic algorithm is
the minimization of the communication overhead, whereas the
average number of reconfigurations is not considered.

Each chromosome of the genetic algorithm has been coded
as an array of locations (a single location for each slot) that
can be filled up with the identifying marks of the partitions.
The initial population is generated through several random
permutations of the slots on the locations array. The crossover
operation has been coded as an operation between two chro-
mosomes that is able to create a new chromosome in which
the position of the slots that are located in the same place in
both the parents is preserved, while a random permutation is
performed on the positions of all the other slots. The mutation
operation has been coded as a random swap between two slots
in a single chromosome. Both the crossover and the mutation
preserve the validity of all the chromosomes of the population

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

in terms of area utilization, but they may violate the link
capacity constraints of the global NoC. Therefore, a feasibility
check is necessary to guarantee the consistency of the solution
in terms of communication.

2) Secondary Mapping: A second mapping is necessary
to find a suitable position for all the cores that do not belong
to I, and that will be deployed using specific configurations.

For each cluster of cores generated during the partitioning
phase, we define the following metrics.

a) Size (S), i.e., the percentage of area of the slot that can
be set as available in the application being mapped.

b) Reconfiguration (R), i.e., the percentage of times the
slot is reconfigured. The average R for the selected slot
across all the applications is added to this value to con-
sider the probability that the selected slot is reconfigured
by the applications that have not been mapped yet.

¢) Communication (C), i.e., the global communication
overhead that will be generated if the core is mapped
on the selected slot.

A linear combination of S, R, and é is then used to select
in which slot each core not belonging to I'" is mapped. As
shown in [6], it is possible to assign different weights to each
metric in order to obtain different tradeoffs between a system
in which each application can be deployed after another one
with a minimum number of reconfigured regions, and a system

in which the communication among the slots is minimal.

VI. PROPOSED RUN-TIME MAPPER

The design-time mapper discussed in the previous section
cannot be employed when a new application is added at run-
time, as it may generate a brand new mapping that requires
a very long synthesis process. This section addresses the
RTM problem by proposing a specific flow according to the
guidelines of Fig. 2. The proposed approach is divided into
two main subproblems: the first one aims at finding a solution
by reusing existing configurations only, while the second one
generates a suitable mix of reused and new configurations.
The main difference between the two lies in the deployment
time, as in the first case the new application can be deployed
immediately, whereas in the second case a bitstream generation
is required, and this aspect must be explicitly kept into account
by the algorithm.

A. Score-Based Approach for Configuration Reuse

The RTM problem based on configuration reuse (RTM-CR)
assumes that the incoming application does not introduce any
core that was unknown at design-time. Given the timing re-
quirements of the run-time scenario, a polynomial-time greedy
approach has been chosen. Because of its greedy nature, the
proposed algorithm may not find a global optimum, or it may
not even find a feasible solution though a solution actually
exists, but it looks for a good solution by performing a best-
effort minimization of the two objective functions.

The algorithm is logically divided into two phases: in the
first one, it finds a combination of existing configurations, and
in the second one it applies bitstream relocation. The details
of each phase are discussed in the next section.

1217

Algorithm 1 Score-based selection

Unmapped < New application cores

Available < SDTM

Selected < ()

repeat
Scores <= Compute _Scores(Available, Unmapped)
Candidate <— Get _Higher _Score(Scores)
Selected <— Selected U Candidate
Available < Available \ Candidate
Unmapped < Unmapped \ Cores _In(Candidate)

until (Unmapped = @) v (No Free Slot)

1) Selection Phase: The first phase aims at finding a set of
configurations that includes all the cores of the incoming appli-
cation. We propose a score-based technique [7], which aims
at finding a combination of configurations that guarantees a
good quality in terms of reconfigurations and communication.
The score-based selection procedure is shown in Algorithm 1.

The algorithm selects a configuration at each iteration, thus
the number of iterations is bounded by the number of slots
of the device. The selection is performed according to a score
associated with each configuration, which is computed at each
iteration for all the configurations i as follows:

Useful Area
Slot _Size

Internal Comm

+(1 -2

Score; = ¢
Max Comm
(10

The Useful Area term is defined as the amount of area
of a configuration occupied by the cores required by the
incoming application, and gets a higher value as the new
application and the existing ones are more similar to each
other. This term indirectly reduces the average number of
reconfigurations, as configurations with a high percentage of
occupied area are preferred, thus the solution remains compact.
Conversely, Internal _Comm represents the bandwidth among
the cores inside the configuration, and helps reducing the
communication overhead, as the algorithm focuses on config-
urations that resolve large amounts of communication within
the slot, without accessing the global NoC. The ¢ parameter
ranges from O to 1, and can be tuned to favor the number of
reconfigurations (¢ close to 1) or the communication overhead
(¢ close to 0); according to our experience, a value close to 0.6
provides the most balanced tradeoff among the two metrics. It
should be noted that, as the configurations are selected, the
corresponding cores are considered as mapped and do not
contribute to the score computation anymore, which allows
the algorithm to focus only on the unmapped cores and to
increases the probability that a feasible solution will be found.

2) Mapping Phase: The mapping phase assigns each
selected configuration to a specific slot, and its computa-
tional steps are summarized in Algorithm 2. To simplify
the assignment while still reducing the average number of
reconfigurations, we decided to constrain the configurations
of the base mapping (if any) into their original slots.

First, the algorithm identifies the configurations that are
more likely to affect the communication overhead and the
average number of reconfigurations, so they can be handled
first because the algorithm can select the target slot among
a large number of alternatives. In particular, the criticality of

1218

Algorithm 2 RTM: Configuration reuse

Conf < Selection _Phase(Spry)
SrTM—cr < In_Base _Mapping(Conf)
Conf < Conf \ In__Base Mapping(Conf)
repeat
Candidate < Get _Critical _Configuration(Conf)
for all i € Sgry—cr do
Comm <— Compute _Communitation(Candidate, i)
Scores <— Propagate _Communitation(Comm)
end for
Target _Slot <— Get _Highestscore(Scores)
Candidate < Relocate(Candidate, Target _Slot)
SrTM—CR < SrRTM—CR U Candidate
Conf < Conf \ Candidate

until Conf =0

=
2 Slot selected 3 4
Score =w"x | Score=wx in 1ststage | Score=w’x | Score=w'x
i Current 5
Slot T Siot selected
Score = wx (Selected in Score = wx Score = whx in 1st stage
15t H.w’
Score = X =
v *{ v Slot selected v
Scoo=wlx | SO | seorgmuly | G Faaga | Seore=wix

Fig. 3. Example of the propagation technique.

each configuration is computed as a combination of two terms
as follows.

a) Communication, i.e., the amount of traffic on the global
network generated by the cores in the configuration.

b) Reuse degree, i.e., the number of already-mapped appli-
cations that use the configuration in its original location.

The algorithm then considers one configuration at a time
according to its criticality, and finds the best target slot
according to the communication requirements between the
current configuration and the already-mapped ones, if any. The
target slot is computed using a technique called propagation,
which is shown in Fig. 3. For each slot that has already been
assigned, the communication between the cores in that slot and
the ones in the current configuration is computed according to
the CG. The resulting value is then propagated to all the other
slots, but the value is reduced by a factor w < 1 for each hop.
Each occupied slot propagates its own value over the mesh
grid, and all the values are summed; at the end, the slot with
the highest value is close to all the already-allocated slots that
frequently communicate with the configuration being mapped.

Finally, the score computed using the propagation technique
is corrected to keep the number of reconfigurations into
account. The algorithm computes two values as follows:

a) the reuse degree, which is the number of applications
that use the configuration in its original location;

b) the reconfiguration metric, defined in Section V-B2,
which counts the number of times the slot is reconfig-
ured while switching from an application to another.

A normalized value of the reuse degree is added to the score
associated with the original slot of the current configuration to
avoid relocation when a configuration is frequently configured
in its original location. Also, the normalized value of the
reconfiguration metric is added to the score of all the unused

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

slots, in order to avoid the reconfiguration of a slot that is
rarely overwritten. The slot with the highest score is the best
option in terms of communication and reconfiguration issues,
thus it is selected to map the current configuration.

B. SAT-Based Selection for Configuration Reuse

As the score-based selection may not find a combination
of configurations that includes all the cores of the new appli-
cation, we now propose an alternative selection method that
finds a feasible solution every time it exists. For this purpose,
we formulate RTM-CR as a SAT problem, and we consider a
class of solvers, known as complete solvers, which guarantee
that a satisfying assignment will be found if and only if it
exists, otherwise the formula is declared as unsatisfiable [29].
We can convert the RTM-CR problem into a single Boolean
formula by introducing two kinds of variables.
1) Core variables, which represent an instance of a core
in a configuration. Given a configuration j, we define
a Boolean variable x;; for each core i used by the
incoming application and included in the configuration.
The variable is true if the instance of core i used in the
final solution is the one belonging to configuration j.

2) Configuration variables, which are associated with each
configuration. For each configuration j in the system,
we introduce a variable z;, which takes the true value if
j is selected to be part of the solution.

The variables are then constrained to guarantee the coher-
ence of the model. In particular, we introduce two sets of
clauses as follows.

1) Instance constraints, which guarantee that each core
is mapped in the solution. For each core i required
by the incoming application, a new clause is added to
the Boolean formula to ensure that, given the set of
configurations j that include core i, at least one variable
X;j 1S true.

2) Inclusion constraints, which bind core instances to slot
configurations. Given a configuration j, a set of clauses
including z; and all the corresponding x;; variables is
added, in order to say that if configuration j is selected
(i.e., z; is true), then each core i included in j may or
may not be selected. Conversely, if j is not selected,
then no variable x;; can be true.

The Boolean formula is then processed by PrecoSAT [30],
one of the fastest SAT solvers available. If a solution exists,
PrecoSAT will find it and it will return a satisfying assignment,
which is then used to build the solution; each configuration
variable z; assigned to true represents a configuration that is
part of the solution, and each core variable x;; that is true
means that core i is used in configuration j. The Boolean
formula allows a core to appear in multiple configurations,
therefore a post-processing of the results may be necessary to
select the best instance in terms of communication overhead;
this can be performed using an exhaustive search, which is
feasible in this situation because of the small solution space.

If bitstream relocation is not supported, the selection of
two configurations of the same slot should be forbidden. This
requires the introduction of a third set of constraints known
as mutual exclusion constraints; given a set of configurations

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

Algorithm 3 RTM: General case

// 1) Configuration Reuse
Cores < New application cores
Conf < Sprm 3 SrtmM—G < ¥
repeat
Scores < Compute _Scores(Conf, Cores)
Candidate <— Get _Higher _Score(Scores)
if Evaluate(Candidate) < Threshold then
Exit_Condition < True
else
SrTM—G < SrTM—c U Candidate
Conf <« Conf \ Candidate
Cores < Cores \ Cores _In(Candidate)
Exit _Condition < False
end if
until Exit _Condition = true
// 2) Sorting
Unmapped < Sort(Cores, SRTM—G)
// 3) Mapping
repeat
Candidate <— Get _Critical _Element(Unmapped)
for all i € Sgry—¢ do
Comm < Compute _Communitation(Core, i)
Scores < Propagate Communitation(Comm, i)
end for
Scores < Correct _Scores(Scores, Sprm)
Target <— Get _Highestscore(Scores)
SrTM—G < SrRTM—G U Map(Candidate, Target)
Unmapped < Unmapped \ Candidate

until Unmapped = ¢

represented by variables z; and referring to the same slot, the
clauses make the formula true when at most one z; is true.

C. RTM in the General Case

We now define a general-case run-time mapper (RTM-G),
which is used when at least one unknown core is introduced by
the new application, or when a solution cannot be found with
the configuration reuse approach, or when such solution is not
satisfying in terms of communication or number of reconfig-
urations. A bitstream generation phase is always required in
this scenario, therefore the number of new bitstreams becomes
a critical metric as it affects the deployment time.

We tackle the RTM-G problem by means of a multistage,
polynomial-time heuristic technique we initially introduced in
[8], which is extended to include bitstream relocation, and
whose computational steps are summarized in Algorithm 3.

1) Configuration Reuse: The first stage of the algorithm
exploits configuration reuse to build part of the solution, which
does not need the generation of any new bitstream. However,
a high number of reused configurations may in the worst
case prevent the algorithm from finding a solution in later
stages, because they may contain cores that are not used by
the incoming application, thus leading to a waste of area.
A termination condition is then required to stop the reuse
procedure before it can affect the feasibility or the quality
of the solution. At the end of this stage, the configurations
belonging to the base mapping are considered as fixed and
are not relocated, as discussed in Section VI-A2.

Intuitively, the termination condition is related to the amount
of area left on the device and to the size the cores that are
still unmapped; when the unmapped cores may not fit on the
device, the reusing procedure is stopped. We formalize this
idea by computing a threshold that is related to two elements.

1219

The first one is the ratio between the area required to map the
remaining cores and the available area; a high value means that
it will be difficult to map the remaining cores if the candidate
configuration is selected. The second one is the number of
iterations; the reuse of a configuration in the early iterations
is not likely to affect the feasibility of the final solution, while
the algorithm should be more careful in later iterations. Thus,
the candidate configuration i is selected at iteration j if

Required Area J
- = + . (11
Availabe _Area # of Slots

The length of the first stage can be tuned by modifying the
value of parameter u, whose typical values range from O to
10. The higher is the value (e.g., 8 or more), the lower is the
number of bitstreams that are reused.

2) Sorting: As discussed in Section VI-A2 for the reused
configurations, the impact of each core on the final solution
is not uniform. The algorithm detects the most critical cores
by considering both area and communication aspects. In
particular, larger cores should be mapped first, because they
cannot easily fit into partially occupied slots. Further, the cores
that generate a large bandwidth are considered early, because
they can be assigned to slots that are close to the already-
mapped cores that frequently communicate with them.

Since bitstream relocation is supported in the proposed
algorithm, and only the configurations of the base mapping are
considered as fixed after the first stage, the remaining reused
configurations should be sorted along with the unmapped
cores. However, the total amount of area inside a configuration
is going to dominate the area of a single core, thus the average
size of the cores inside a configuration is used to compute the
sorting metric, along with the overall traffic sent by the cores
in the configuration toward the global network.

3) Mapping: The third stage maps the remaining cores
using the propagation technique discussed in Section VI-A2,
though in this case single cores are considered along with
complete configurations.

Score; > - (

VII. REAL-WORLD CASE STUDY

We propose a real-world case study related to multimedia
(audio/video) compression and decompression, in order to
motivate the proposed approach and to show its benefits. We
consider a set of video coders and decoders, which share
a set of cores to perform some common signal processing
operations. In particular, we include two legacy standards,
MPEG-2 [31], [32] and H.263 [33], and the more recent
MPEG-4 [34], [35] format. The codecs are supposed to be
configured on an FPGA device (in this example, we opted
for a Xilinx XC4VLX60) to encode or decode a video stream
with one of the supported formats, but they cannot fit on the
device at the same time because of area and power-related
issues. Therefore, the required standard can be loaded at run-
time by exploiting dynamic reconfiguration, and by taking
advantage of the similarities between the codecs to reduce
the deployment time.

The reduction of the deployment time is critical in certain
scenarios, e.g., when the user is searching for an interesting
stream. In this situation, the user typically switches from

1220

Complete reconfiguration
il o M M i e S
(© e A L
Partial reconfiguration
Fig. 4.
of 3s.

Impact of (c) partial and (b) complete reconfiguration on a (a) stream

one source to another very quickly, as it takes him just 3—
4s to determine whether the current stream is interesting or
not. Fig. 4(a) shows the amount of information that the user
perceives when the audio part of the stream is played for 3s. A
complete reconfiguration of the target device requires 1488 ms,
introducing a significant delay before the stream is played
(Fig. 4(b)), which can be greatly reduced by exploiting the
potential of a partial reconfiguration.

We identify two scenarios to validate the proposed approach.
In the first one, all the codecs are known when the system is
synthesized, and we apply our design-time mapper over all the
coders and encoders. In the second one, only the two oldest
cores, namely, MPEG-2 and H.263, are all known at design
time, while the new MPEG-4 format is added at run-time, and
its cores are handled by the proposed run-time mapper. This
scenario simulates a common real-world situation, as standards
are continuously created or updated, and it is important for a
multimedia platform to remain up-to-date.

A. Case Study Overview

We generated the CGs of the selected codecs according to
the standard specifications and the related works we found
in literature. The starting point to build a CG is a modular
description of the codec, which is generally provided as a
data flow diagram. Then, some general-purpose units—i.e., a
reconfigurable instruction-set processor and a memory unit—
are included to perform data acquisition and other general-
purpose operations. We show the resulting CGs of the encoders
(the corresponding decoders are very similar and are omitted
here) in Fig. 5. Some cores are shared among different codecs,
such as the discrete cosine transform (DCT), the quantizer
(Q), their inverse operations (IDCT and 1Q), or the Huffiman
coder. The weights of the edges in the CGs have been assigned
according to the criticality of the communication. In Fig. 5,
critical edges are represented by solid lines, whereas the non-
critical ones are depicted using dashed lines. The solution
should map the cores involved in a critical communication
close to each others to maximize the throughput of the system.

We estimate the area requirements of the cores in order to
determine the number of slots, and the slot size. In Fig. 5, we
provide a visual idea of the relative size of each core, which
is proportional to the dimension of the corresponding node
in the graph. We can divide the target FPGA into six slots of
approximately 4400 slices each, so that the slot is large enough
to contain a compact version of the motion compensation
block, which is the largest core in the system.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

B. Design-Time Mapping

In the first scenario, we consider the entire set of codecs and
we map them using the design-time mapper. The output of the
execution is presented in Fig. 6, where the slots delimited by a
double stroke represent a configuration belonging to the base
mapping, the ones delimited by a single stroke are specific
configurations. A transition between two applications requires
1.53 reconfigurations on average (corresponding to a delay
of 380ms), with respect to the six reconfigurations required
to modify the whole FPGA area. Therefore, the proposed
approach provides a 74.5% improvement with respect to a
complete reconfiguration (which requires 1488 ms), and it
reduces the transition time to an acceptable level, as shown in
Fig. 4(c). It is important to notice that the mapper achieved this
result by isolating cores that are used more frequently (such as
the CPU, the storage memory, the motion compensation), so
that they are never overwritten, and by focusing the dynamic
reconfiguration over only two slots.

The distribution of the communication is also coherent with
the expected behavior of the mapper. For instance, the average
number of hops that are necessary to deliver all the critical
communications is equal to 0.8 for the MPEG-4 encoder,
which is the most complex application in the system. The
value is very competitive, because in the proposed architecture
a message may require as many as three hops to reach its
destination. Conversely, the average number of hops for non-
critical communications is 1.4, which again shows the ability
of the proposed approach to keep communication into account.

C. Run-Time Mapping

In the second scenario, only the two legacy codecs (i.e.,
MPEG-2 and H.263) are mapped at design time, whereas the
MPEG-4 applications are added later. As the MPEG-4 codec
introduces new cores with respect to the previous ones, the
solution cannot be found using configuration reuse only, so
the general-case run-time mapper must be used. For sake of
simplicity, we show the mapping of the MPEG-4 encoder only.

Fig. 7(a) shows the base mapping generated for the MPEG-2
and H.263 encoders and decoders. The two decoders are fully
deployed in slots 1, 3, 4, 5, and 6 of the base mapping, there-
fore no reconfiguration is required to switch between them.
Conversely, each of the two encoders needs to reconfigure slot
6 to map the quantizer, the DCT block, and, for the MPEG-2
only, the rate control core.

The MPEG-4 encoder introduces four new cores, which do
not fit into a single slot, so at least two new bitstreams have
to be generated. As shown in Fig. 7(b), the run-time mapper
reuses four configurations belonging to the base mapping,
namely, slots 1, 2, 3, and 5, and to generate two specific
configurations. In the process, the mapper decides not to
reuse the configuration of slot 4, though the IQ and the
IDCT cores are required by the encoder, because otherwise
it cannot map the remaining cores on slot 6 only. As a
result, the MPEG-4 encoder is deployed by reconfiguring only
two slots, which takes approximately 496 ms with respect to
the 1488 ms required by a complete reconfiguration of the
device, corresponding to a 66.7% improvement. Furthermore,
only two new partial bitstreams have to be generated, thus

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

1221

I
Metion
Estmaticn

O = Large core } =Small core ———— = Critical communication

Fig. 5. Communication graphs for the encoder applications. (a) MPEG-2. (b) H.263. (¢) MPEG-4.

-- = Non-critical communication

Slot 1 rﬂ Slot 2 Slot 1 H’\ Slot 2 Slot 1 Slot 2 Slot 1 r{\' Slot2 Slot 1 rﬂ Slot 2 Slot 1 \ﬂ Slot 2
Storage Motion Storage Motion Storage Mation Storage Mation Storage Motion Storage Motion
Memory Compens, Memory Compens. Mermory Compens. Mermory Compens. Memory Compens. Memory Compens,
Slot3s ||3|f Slota siots |3(Slota siot3 |3 slota Slots |Q|f Slota Slot3s ||@|f Slota siot3 |3(f Slota
Meation Est. (|= CPU IDCT = CPU Mation Est. ||= CPU oCT = CPU Mation Est, (|= CPU IDCT = CPU
E] = E F] Color Trans. (|5 =
© © < © © ©
@ @ 8 [0} 5] 8 @ @
Slots Slot6 Slot§ Slot6 ot 5 Slot6 Slots Sloté Slot5 Slot6 Slot§ Slot6
K2 Q IDCT Coder Decoder Q Coder Decoder 2 @ IDCT Coder DCT Decoder
Rate ocT DCT bcT Q ZigZag Bitstream Q
Control Rescale “ Rescale Regulator Pack, ZigZag)
(a) (b) (c) (d) (e) ()
[s sl [sl
;m = Configuration belonging to the base mapping ‘;"' = Specific configuration 2L Unused slot
.
Fig. 6. DTM of the multimedia applications. (a), (b) MPEG-2 encoder and decoder. (c), (d) H.263 encoder and decoder. (e), (f) MPEG-4 encoder and
decoder.
q =) = *{Y o grained dynamic reconfiguration and bitstream relocation [24].
Moation Maticn Est Mezion Maticn Est.
Compers. || | Coder || || Compers. || || Coder The estimated reconfiguration time for each slot is 64 ms.
sars sars s ol sera- The benchmark applications are larger than the ones of
E xr g o<y the case study discussed in the previous section, as they
Siots Siots Siots Siots contain from 25 to 35 cores of different size and they model
Storage Decoder Storage 12 Reguiat
= f e a set of highly parallel applications. Each application picks
(a) (b) approximately 75% of its cores (unless otherwise specified)
Fig. 7. RTM of the (b) MPEG-4 encoder application, and corresponding from a shared set of cores; this percentage is a conservative

(a) base mapping.

the synthesis phase is heavily simplified with respect to a
design for the whole device. As expected, the reuse of existing
configurations constrains the run-time mapper in terms of
communication overhead, and the average number of hops
for critical communication is 1.2 (non-critical communication
is also delivered in 1.2 hops). As a conclusion, the results
achieved by the design-time mapper over all the applications
is 33.3% better in terms of communication, though the run-
time algorithm performs well in terms of number of reconfig-
urations and computes the solution in a much shorter time, as
we will show in the next section on a wide set of benchmarks.

VII. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed mapping flow on
a large set of synthetic benchmarks. The goal is to provide a
more detailed profiling of its performance, and to show how
it scales on larger and more complex applications.

A. Experimental Setup

The experimental results presented in this section, unless
otherwise specified, are performed on a hardware architecture
divided into 16 slots, which are interconnected using a NoC
backbone with a mesh topology. The target FPGA is a Xilinx
XC4VLX40, which provides 18432 slices and supports fine-

approximation of the real amount of shared cores presented in
the case study. A set of six to eight applications is assumed to
be known at design time and, during the evaluation of the run-
time mappers, an additional application is added at run-time.

B. Execution Time

We first evaluate the execution times of the different com-
ponents of our flow, which are illustrated in Fig. 8, and
which have been measured on an Intel Core 2 Duo processor
running at 2.8 GHz. An execution of the design-time approach
is almost 40 times slower than any component of the run-
time mapper, and in general its execution should be iterated
multiple times (in practice, tens of times) to get a high-quality
solution. Any component of the run-time mapper takes a
few tens of milliseconds to complete, and in particular the
general-case mapper with relocation support, which is the
most complex one, requires 32 ms. Therefore, it is possible
to execute multiple algorithms sequentially (e.g., to explore
the feasibility of a solution based on configuration reuse with
both the score-based and the SAT-based approaches and, if a
solution is not found, to build a mapping using the general-
case algorithm) in less than a hundred of milliseconds.

C. Evaluation of the Design-Time Mapper

The proposed design-time mapper can be tuned to achieve
different tradeoffs between average number of reconfigurations

1222

Execution Time

Design-Time

RTM-CR [SAT-Based)

i 1
| |
| |
 F | RTM-CR {Score-Based) |
| 5 10 15 20 5 0 5 !
1 |

J

Run-Time Mappers: Execution Time {ms)

el
aa
o

Execution time of design-time and run-time mappers.

Assessment of Reconfiguration Latency at Design-Time
+ 4 *+ =
+
450 ++ ++

+, + +
+ + F+ o+ 7
350 L o + +

oo o o o o]
%o

+

Reconfiguration Latency (ms)
E
+*

o]
o] 0o Qo 00,0
o o OO o

250
[L] 12 15 18 21 24 27 0 32

Number of Slots
+ co ion-oriented approach [6]

Fig. 9. Performance of the design-time mapper.

O Proposed Approach

and communication overhead. The tuning can be achieved by
modifying some of the parameters that affect the selection and
the partitioning phases, namely, o and 8. Their impact on the
algorithm performance has been investigated in [6]. A high
value of o«—such as 0.4 or higher—Ileads to a good solution in
terms of communication overhead, while a high value of g—
such as 0.7 or higher—forces more cores in the base mapping,
thus the number of reconfigurations decreases.

We compare the design-time mapper with a communication-
oriented approach that maps the cores on the nodes of a NoC to
optimize the communication overhead, but does not explicitly
consider the reconfiguration costs [6]. A comparison with
respect to the few state-of-the-art approaches that consider
dynamic reconfiguration [14] is not possible, mainly because
they focus on a single application, but also because they rely
on a hardware architecture that is not comparable to the one
we introduced as a contribution of our work. As shown in
Fig. 9, the average reconfiguration latency to switch from an
application to another is reduced by 15.9% to 43.2% (29.1%
in the average), and it is generally acceptable for most of
the application scenarios. This reduction is due to the ability
to detect similarities among the applications, and the gap is
wider when the number of slots of the system is small, as the
proposed approach takes advantage from the packing of shared
cores in the same slot. For instance, the proposed approach
reduces the reconfiguration latency from 482.2 ms to 302.2 ms
(37.3% of reduction) in a 16-slots system, where a complete
reconfiguration requires more than 1s.

D. Evaluation of the Run-Time Mapper

The proposed run-time mapper bases its efficiency on the
reuse—either complete or partial—of existing configurations,
which heavily reduces the deployment time of the new ap-
plication, but may also affect the quality and the feasibility
of the solution. The effects of the reuse policy on the final
solution have been discussed in [8]; a high number or reused

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

slots has been proved to increase the communication overhead,
whereas the average number of reconfigurations is reduced. As
discussed in Section VI-C, the length of the reuse phase can
be tuned by modifying the value of w in (11). In this paper,
we focus on a balanced tuning (i.e., u equal to 5) to achieve
a good tradeoff between the metrics [8].

We first evaluate the proposed run-time flow when all the
cores in the new application were known at design-time, so
the approaches based on configuration reuse can be included in
the comparison. We use the design-time mapper as a reference
because the few related works [16]-[18] tackle completely
different aspects of run-time addition of new applications; they
focus on geometric issues (such as area fragmentation [18])
to maximize the number of applications that can fit on the
FPGA at the same time. We run our reference over the set of
applications known at design-time plus the incoming one; this
approach should exploit similarities in a more efficient way,
and it is expected to improve the quality of the solution.

Fig. 10 shows a comparison between the run-time and
the design-time mappers in terms of average number of
reconfigurations and communication overhead. The general-
case algorithm (RTM-G) outperforms the approaches based
on configuration reuse (with either a score-based or a SAT-
based selection technique) in both the metrics, though the
deployment time of the new application is higher, as it requires
the generation of 3.5 new bitstreams on average (2.5 new
bitstreams are required by the design-time mapper, instead).
The results also show that the RTM-G algorithm excels in
terms of average number of reconfigurations, because of the
reuse of some frequently configured cores combined with the
generation of a low number of new configurations.

As expected, the static mapper outperforms all the run-
time mappers in terms of overall communication overhead
and average number of reconfigurations. However, the design-
time approach aims at finding the optimum for a set of
applications as a whole, which may not correspond to the best
mapping for each single application. Conversely, the run-time
algorithm only focuses on the single application and looks
for a local optimum, which in turn does not guarantee that
a global optimum is achieved over the entire application set.
Fig. 10 shows that the RTM-G algorithm can even find a better
solution for the incoming application only and in a shorter
time, which proves that the proposed run-time algorithm is
best suited for incremental addition of new applications.

The decision to include bitstream relocation in the proposed
flow has produced two complementary effects. On the one
hand, the communication overhead is reduced both in the
general-case and in the configuration reuse algorithms, because
existing configurations can be assigned to different target
slots according to communication needs. On the other hand,
bitstream relocation leads to a higher number of reconfigu-
rations, due to the misplacement of the relocated bitstreams.
Experimental results show that a general-case run-time mapper
without relocation support reduces the average reconfiguration
latency by approximately 30 ms, whereas the communication
overhead increases by 13.4% on average. Thus, according
to the system requirements, the designer may decide not to
support relocation to further reduce the reconfiguration latency.

BERETTA et al.: A MAPPING FLOW FOR DYNAMICALLY RECONFIGURABLE MULTI-CORE SYSTEM-ON-CHIP DESIGN

Performance Analysis

Design-Time

RTM-CR (SAT)
RTM-CR (Score-Based)

81 84 87 20 a3 26

Communication
Overhead

Design-Time

RTM-CR (SAT)

RTM-CR (Score-Based)

Communication Overhead

(New Application only)

L] 9 12 15 18

Design-Time
ATM-G

RTM-CR (SAT)
RTM-CR (Score-Based)

6.2 64 66 68 7 72 74 76 78 8 8.2

Average Number of
Reconfi gurations

Fig. 10. Performance of the run-time mapper.

E. Effects of Application Similarities

As the general-case run-time algorithm can handle applica-
tions that introduce new cores, we show how the similarity
between the new application and the existing ones can impact
the final solution. In particular, Fig. 11 shows how commu-
nication overhead and average number of reconfigurations are
affected by the percentage of cores that the new application
shares with the existing ones, and the design-time mapper is
again used as a reference. The design-time mapper improves
its performance if the incoming application is similar (more
than 60% of shared cores) to the ones mapped at design-time,
because it can enforce core reuse more efficiently. Still, the
general-case algorithm proves to be very competitive both in
terms of communication (with an average gap of just 4.7%),
and reconfiguration (the average gap is lower than 7%), since
it exploits configurations that are likely to be configured on the
device, and adds a minimum amount of specific configurations.
Fig. 11 also shows the results of the approaches based on
configuration reuse when all the cores of the new application
were known at design-time (100% of shared cores), reinforcing
the idea that these techniques provide a worse solution, though
the application is immediately available.

F. Evaluation of the SAT-Based Approach

We introduced the SAT-based selection as a different tech-
nique to identify a set of configurations that maps the entire
new application using existing configurations only. We eval-
uated the benefits of this approach with respect to the score-
based approach, which aims at finding a good-quality solution,
over a set of 300 benchmarks that do not introduce any core
that was unknown at design-time. The general-case mapper
has not been compared, as it can stop the reuse policy and it
always finds a feasible solution.

The SAT-based approach increases the number of solutions
that are found by the algorithm by nearly 6% and, since it
is a complete solver, the number of feasible solutions found
by the SAT-based algorithm is actually the number of feasible
solutions over the set of benchmarks. On the contrary, the
results show that the score-based approach can still identify

1223
A nent of Appli Similarity

108
i ATM-CA (SAT-Based) 4
higed ATM-CR (Score-Based) 4
100
%
- RTM-G
-3
w2
80 , P -
& 3 " Design-Tima
8
B

w0 2 a0 a0 50 & kL 8 0 100

% of Shared Cores in the New Application

RTM-CA {SAT-Basad)

y N
ATM-CR (Score-Based) 4

85 b Design-Tiene

10 2 4 © 50 &0 kL £ %0 100
%% of Shared Cores in the New Application

Fig. 11. Results of the run-time mapper with respect to the percentage of
shared cores.

approximately 94% of the feasible solutions, which is remark-
able considering its greedy nature.

Finally, the support of relocation we included in our flow
positively affects the number of solutions found by the algo-
rithms. According to the results of the SAT-based approach,
only 74% of the solutions of the previous experiment are still
feasible if relocation is not supported. In this scenario, the
score-based approach without relocation can identify 86% of
those feasible solutions, as it may commit wrong decisions in
the selection of different configurations of the same slot.

IX. CONCLUSION

In this paper, we have presented a novel mapping flow
for multi-core applications, tailored for dynamically reconfig-
urable devices. Unlike the existing approaches, the proposed
flow aims at optimizing both reconfiguration-related metrics
and on-chip performance, either at design-time or at run-time.

We have applied the proposed flow to a real-world multi-
media case study, achieving a 74.5% improvement (66.7% at
run-time) in terms of reconfiguration latency, while satisfying
the communication requirements among the cores. Additional
results have shown that the design-time mapper can effectively
handle both communication and reconfiguration-related met-
rics (with an improvement of 37.3% over a communication-
oriented algorithm [6]). Furthermore, we have shown that the
proposed run-time mapper can find a good-quality solution in a
very short time (40 times faster than a design-time approach),
while keeping the number of new bitstreams low.

REFERENCES

[1] R. Porto, M. Porto, S. Bampi, and L. Agostini, “High throughput
architecture for forward transforms module of H.264/AVC video coding
standard,” in Proc. Electron., Circuits Syst., 2007, pp. 150-153.

[2] D. Pham, “Key considerations given to the design of a next generation
multi-core communications platform,” in Proc. ICICDT, 2008, pp. 253—
256.

[3] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Comput., vol. 35, no. 1, pp. 70-78, Jan. 2002.

[4] E. Flamand, “Strategic directions towards multicore application specific
computing,” in Proc. DATE, 2009, p. 1266.

[5] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in Proc. DATE, 2004, pp. 896-901.

[6] V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and D.
Sciuto, “Minimization of the reconfiguration latency for the mapping of
applications on FPGA-based systems,” in Proc. CODES-ISSS, 2009, pp.
120-130.

Average Number of Reconfigurations Average Number of Reconfigurations

1224

(7]

(8]

[91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]

[35]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 8, AUGUST 2011

I. Beretta, V. Rana, D. Atienza, M. D. Santambrogio, and D. Sciuto,
“Run-time mapping for dynamically-added applications in reconfig-
urable embedded systems,” in Proc. ICM, 2009, pp. 157-160.

I. Beretta, V. Rana, D. Atienza, and D. Sciuto, “Run-time mapping of
applications on FPGA-based reconfigurable systems,” in Proc. ISCAS,
2010, pp. 3329-3332.

S. Corbetta, M. Morandi, M. Novati, M. Santambrogio, and D. Sciuto,
“Two novel approaches to online partial bitstream relocation in a dyna-
mically reconfigurable system,” in Proc. ISVLSI, 2007, pp. 457-458.
X. Huang and T. Wolf, “Evaluating dynamic task mapping in net-
work processor runtime systems,” [EEE Trans. Parallel Distribut. Syst.,
vol. 19, no. 8, pp. 1086-1098, Aug. 2008.

T. Wolf and N. Weng, “Runtime support for multicore packet processing
systems,” IEEE Netw., vol. 21, no. 4, pp. 29-37, Jul. 2007.

S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
“A methodology for mapping multiple use-cases onto networks on
chips,” in Proc. DATE, Mar. 2006, pp. 1-6.

A. Hansson, K. Goossens, and A. Radulescu, “A unified approach to
mapping and routing on a network-on-chip for both best-effort and
guaranteed service traffic,” Very Large Scale Integr. Des., vol. 2007,
no. 68432, p. 16, 2007.

S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh, “An optimal algorithm
for minimizing run-time reconfiguration delay,” ACM Trans. Embedded
Comput. Syst., vol. 3, no. 2, pp. 237-256, May 2004.

K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping
applications to a self-reconfiguring platform,” in Proc. DATE, 2009, pp.
964-969.

C.-L. Chou, U. Y. Ogras, and R. Marculescu, “Energy- and performance-
aware incremental mapping for networks on chip with multiple voltage
levels,” IEEE Trans. Comput.-Aided Des., vol. 27, no. 10, pp. 1866—
1879, Oct. 2008.

C.-L. Chou and R. Marculescu, “Run-time task allocation considering
user behavior in embedded multiprocessor networks-on-chip,” IEEE
Trans. Comput.-Aided Des., vol. 29, no. 1, pp. 78-91, Jan. 2010.

Y. Lu, T. Marconi, G. Gaydadjiev, K. Bertels, and R. Meeuws, “A self-
adaptive on-line task placement algorithm for partially reconfigurable
systems,” in Proc. IPDPS, Apr. 2008, pp. 1-8.

J. M. P. Cardoso, “On combining temporal partitioning and sharing of
functional units in compilation for reconfigurable architectures,” IEEE
Trans. Comput., vol. 52, no. 10, pp. 1362-1375, Oct. 2003.

Early Access Partial Reconfiguration User Guide, Xilinx, Inc., San Jose,
CA, Mar. 2006.

V. Rana, D. Atienza, M. D. Santambrogio, D. Sciuto, and G. De
Micheli, “A reconfigurable network-on-chip architecture for optimal
multi-processor SoC communication,” in Proc. VLSI-SOC, vol. 1. 2009,
pp. 1-20.

V. Rana, M. D. Santambrogio, and A. Meroni, “Design methodologies
and mapping algorithms for reconfigurable NoC-based systems,” in Dy-
namic Reconfigurable Network-on-Chip Design: Innovations for Com-
putational Processing and Communication. Hershey, PA: IGI Global,
2010, pp. 110-134.

D. Cozzi, C. Fare, A. Meroni, V. Rana, M. D. Santambrogio, and
D. Sciuto, “Reconfigurable NoC design flow for multiple applications
run-time mapping on FPGA devices,” in Proc. GLSVLSI, 2009, pp.
421-424.

S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto,
and P. Spoletini, “Internal and external bitstream relocation for partial
dynamic reconfiguration,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 17, no. 11, pp. 1650-1654, Nov. 2009.

J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC
architectures under performance constraints,” in Proc. ASP-DAC, Jan.
2003, pp. 233-239.

R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations. New York: Plenum Press, 1972, pp.
85-103.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proc.
STOC, 1971, pp. 151-158.

B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in Proc. SC, 1995, p. 28.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. DAC, 2001, pp.
530-535.

M. Jarvisalo, A. Biere, and M. Heule, “Blocked clause elimination,” in
Proc. TACAS, 2010, pp. 129-144.

K. Kim and J.-S. Koh, “An area efficient DCT architecture for MPEG-2
video encoder,” IEEE Trans. Consumer Electron., vol. 45, no. 1, pp.
62-67, Feb. 1999.

M. Verderber, A. Zemva, and A. Trost, “HW/SW codesign of the MPEG-
2 video decoder,” in Proc. PIPDPS, 2003, p. 7.

M. J. Garrido, C. Sanz, M. Jimenez, and J. M. Menesses, “An FPGA
implementation of a flexible architecture for H.263 video coding,” IEEE
Trans. Consumer Electron., vol. 48, no. 4, pp. 10561066, Nov. 2002.
E. B. V. D. Tol and E. G. T. Jaspers, “Mapping of MPEG-4 decoding
on a flexible architecture platform,” Proc. SPIE: Media Process., vol.
4674, pp. 1-13, Jan. 2002.

F. Casalino, G. di Cagno, and R. Luca, “MPEG-4 video decoder
optimization,” in Proc. ICMCS, Jul. 1999, pp. 363-368.

Ivan Beretta received the M.S. degree in computer
science from the University of Illinois at Chicago,
Chicago, in 2008, and the Laurea degree in computer
engineering from the Politecnico di Milano, Milan,
Italy, in 2009. He is currently a Ph.D. student
with the Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

His current research interests include computer-
aided design methodologies for high-performance
embedded systems, and runtime adaptability in re-
configurable hardware and wireless sensor networks.

Vincenzo Rana received the Laurea degree in com-
puter engineering in 2006 and the Ph.D. degree
in information engineering in 2010, both from the
Politecnico di Milano, Milan, Italy.

He is currently a Research Associate with the Em-
bedded Systems Laboratory of the Ecole Polytech-
nique Fédérale de Lausanne, Lausanne, Switzerland,
and the Dipartimento di Elettronica e Informazione
of Politecnico di Milano. His current research inter-
ests include embedded systems design methodolo-
gies and architectures, reconfigurable and quantum
computing, and networks-on-chip and biological neural networks.

David Atienza (M’05) received the M.S. and Ph.D.
degrees in computer science and engineering from
the Complutense University of Madrid (UCM),
Madrid, Spain, and the Inter-University Microelec-
tronics Center, Leuven, Belgium, in 2001 and 2005,
respectively.

He is currently a Professor with the Department
of Electrical Engineering and the Director of the
- Embedded Systems Laboratory at Ecole Polytech-
% nique Fédérale de Lausanne, Lausanne, Switzerland,

i and an Adjunct Professor with the Department of
Computer Architecture, UCM. His current research interests include system-
level design methodologies for high-performance multiprocessor system-on-
chip and embedded systems, including new 2-D/3-D thermal-aware design,
wireless sensor networks, HW/SW reconfigurable systems, dynamic memory
optimizations, and network-on-chip design. In these fields, he is a co-author
of more than 150 publications in peer-reviewed international journals and
conferences, one book, several book chapters, and two U.S. patents.

Prof. Atienza was the recipient of the Best Paper Award at the VLSI-
SoC Conference in 2009, two Best Paper Award Nominations at the ICCAD
2006 and the DAC 2004 conferences. He is an Associate Editor of IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS,
IEEE EMBEDDED SYSTEMS LETTERS, and Integration (New York: Elsevier).
He has been an Executive Committee Member of the IEEE Council on EDA
since 2008, and a member of the Board of Governors of the IEEE Circuits
and Systems Society since 2010.

Donatella Sciuto (F’10) received the Laurea degree
in electronic engineering from the Politecnico di Mi-
lano, Milan, Italy, and the Ph.D. degree in electrical
and computer engineering from the University of
Colorado, Boulder.

She is currently a Full Professor with the Diparti-
mento di Elettronica e Informazione of the Politec-
nico di Milano, and the Vice Rector for International
Research. She is a member of the IFIP 10.5 and
European Design and Automation Association. She
is or has been a member of different program com-
mittees of ACM and IEEE Electronic Design Automation (EDA) conferences
and workshops. Her current research interests include methodologies for the
design of embedded systems and multicore systems, from the specification
level down to the implementation of both the hardware and software compo-
nents, including reconfigurable and adaptive systems. She has published over
200 papers.

Dr. Sciuto was an Associate Editor of the IEEE TRANSACTIONS ON
COMPUTERS, and is currently an Associate Editor of the IEEE EMBEDDED
SYSTEMS LETTERS for the design methodologies topic area. She is also an
Associate Editor of the Journal of Design Automation of Embedded Systems.
She is the President Elect of the IEEE Council of EDA. She was the Executive
Committee Member of DATE for the past ten years. She was also the
Technical Program Chair in 2006 and the General Chair in 2008. She was the
General Co-Chair for ESWEEK in 2009 and 2010.

