
The History of the LLL-algorithm

Ionica Smeets

In collaboration with Arjen Lenstra, Hendrik Lenstra, László Lovász and Peter van
Emde Boas

1 Introduction

The 25th birthday of the LLL-algorithm was celebrated in Caen from June 29th to
July 1st 2007. The three day conference kicked off with a historical session of four
talks about the origins of the algorithm. The speakers were the three L’s and close
bystander Peter van Emde Boas.

Fig. 1 On both pictures you see from left to right Peter van Emde Boas, László Lovász, Hendrik
Lenstra and Arjen Lenstra. Alexander Schrijver took the first picture in Bonn on February 27th
1982. For the poster of the conference Van Emde Boas was digitally removed from this picture.
The second picture was taken by Ghica van Emde Boas at Le moulin de Bully on June 29th 2007.

Ionica Smeets
Mathematisch Instituut – Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands
e-mail: smeets@math.leidenuniv.nl

1

2 Ionica Smeets

These were the titles of their talks.

• A tale of two papers – Peter van Emde Boas.
• The early history of LLL – Hendrik Lenstra.
• The ellipsoid method and basis reduction – László Lovász.
• Polynomial factorization and lattices in the very early 1980s – Arjen Lenstra.

This chapter is based on those talks, conversations with these four historic charac-
ters, the notes that Peter van Emde Boas and Arjen Lenstra wrote for the prepro-
ceedings, and many artifacts from the phenomenal archive of Van Emde Boas.

2 Skinny Triangles and Lattice Reduction

One possible starting point for the LLL-algorithm is May 1980. At that time Peter
van Emde Boas was visiting Rome. While he was there he discussed the following
problem with Alberto Marchetti-Spaccamela.

Question 1 Given three points with rational coordinates in the plane; is it possible
to decide in polynomial time whether there exists a point with integral coefficients
lying within the triangle defined by these points?

This question seemed easy to answer: for big triangles the answer will be ‘yes’
and for small triangles there should be only a small number of integer points close
to it that need checking. But for extremely long and incredibly thin triangles this
does not work; see Figure 2.

A

B

C

Fig. 2 The problematic triangles almost look like a line: they are incredibly thin and very, very
long. This picture should give you an idea; in truly interesting cases the triangle is much thinner
and longer. In the lower left corner you see the standard basis for the integer lattice.

The History of the LLL-algorithm 3

It is easy to transform such a skinny triangle into a ‘rounder’ one, but this trans-
formation changes the lattice too; see Figure 3. Van Emde Boas and Marchetti-
Spaccamela did not know how to handle these skewed lattices. Back in Amsterdam,
Van Emde Boas went to Hendrik Lenstra with their question. Lenstra immediately
replied that this problem could be solved with lattice reduction as developed by
Gauss almost two hundred years ago. The method is briefly explained below.

A

B C

Fig. 3 The triangle from Figure 2 transformed into a right-angled isosceles triangle, the skewed
lattice and the transformed standard basis. Now the transformed basis looks thin and long.

Method for answering Question 1.
First apply a linear transformation that changes the triangle into a right-angled
isosceles triangle. This transforms the integer lattice into a lattice with some
given basis of two rational vectors.
Find a reduced basis (b1,b2) for this new lattice: b1 is a shortest non-zero
vector in the lattice and b2 is a shortest vector in the lattice that is linearly
independent of b1. Compute b∗2 = b2− 〈b1,b2〉

〈b1,b1〉
b1.

If the triangle is sufficiently large compared to ||b∗2||, then there is a lattice
point in the triangle.
Otherwise check if lines parallel to b1 (with successive distances ||b∗2||) con-
tain points in the triangle. Remember that in this case the size of the triangle
is small compared to ||b∗2||, so the number of lines to be checked is small.

Van Emde Boas wrote to Marchetti in the summer of 1980: “Solution: the an-
swer is yes.” In his letter he explained how the method worked. When Marchetti-
Spaccamela was visiting Amsterdam in October of the same year he paid Hendrik
Lenstra a visit to talk about the solution. Together with Van Emde Boas he went to

4 Ionica Smeets

A

B C

b1

b2
b∗2

Fig. 4 The skewed lattice, its reduced basis (b1,b2) and the orthogonal projection b∗2.

Lenstra’s office. Hendrik Lenstra vividly remembers his initial feelings about this
visit: “I felt a bit like a dentist. I had dealt with this problem before, so why were
they asking the same question again? I told them the solution and they apparently
understood it, but then they refused to walk out of my office. I had work to do and I
felt that they were imposing upon my time. I was too naive to realize that this was
my real work.”

Lenstra opened his mouth about to say “Go away”, but he phrased this in a
slightly more polite manner as: “Why is this question about the triangle interest-
ing in the first place?” His visitors answered that it was just a special case of integer
programming with a fixed number of variables. “And then I stared at it and asked,
can you not do that in the same way?”. Van Emde Boas recalls: “At this point I had
to leave the meeting to teach a class. When I came back three quarters of an hour
later, Hendrik had given the answer that it really works for any dimension.” This
resulted in Lenstra’s integer linear programming algorithm.

Linear programming, sometimes known as linear optimization, is the problem
of maximizing or minimizing a linear function over a convex polyhedron specified
by linear non-negativity constraints. Integer linear programming is a special case
of linear programming in which all variables are required to take on integer values
only.

3 Integer Programming

In the early eighties Hendrik Lenstra was not doing integer programming at all. He
was among other things working on primality testing and Euclidean number fields.
“I would probably not have found the integer linear programming algorithm if I had

The History of the LLL-algorithm 5

Fig. 5 Hendrik Lenstra using his hands to explain the algorithm to Alberto Marchetti-Spaccamela,
Amsterdam on October 21st 1980.

not been asked this question about a triangle in a integer lattice.” The generalized
question can be stated as follows.

Question 2 Let n and m be positive integers, A an m× n-matrix with integral en-
tries, and b ∈ Zm. Is there a vector x ∈ Zn satisfying the system of m inequalities
Ax ≤ b? So if K = {x ∈ Rn : Ax ≤ b}, then the question is whether Zn ∩K is non-
empty.

The integer linear programming algorithm essentially consists of three stages.

Integer linear programming.
We may assume the problem is reduced to the case 0 < vol K < ∞, thus K is
bounded and has positive volume.

1. Find a linear transformation τ such that τK is round. If we put

B(p,z) = {x ∈ Rn : |x− p| ≤ z} for p ∈ Rn, z ∈ R>0,

then the formal definition of round is that there are spheres B(p,r) and
B(p,R) with B(p,r) ⊂ τK ⊂ B(p,R) and R

r ≤ c1, where c1 is a constant
depending only on n.

6 Ionica Smeets

2. Find a reduced basis for τZn.
3. Either find a point in τZn∩τK or reduce the problem to a bounded number

of problems in n−1 dimensions.

There are three versions of this algorithm: the first preprint appeared in April
1981 [3], to be followed by an improved version in November of the same year [4].
The final version was published in 1983 in Mathematics of Operations Research [5],
the year after the LLL-algorithm appeared [8]. Lenstra: “The reason that there are
so many versions is that Lovász kept improving parts of the algorithm. He started
with the first step. I had a very naive and straightforward way of finding the needed
transformation, and this method was polynomial only for fixed n. Lovász found an
algorithm to do this in polynomial time even for varying n”. Lovász later improved
the second step, the basis reduction algorithm. In the introduction to the first preprint
of his paper Lenstra expressed some dissatisfaction with his complexity analysis of
this step.

It is not easy to bound the running time of this algorithm in a satisfactory way. We give
an argument which shows that it is polynomially bounded, for fixed n. But the degree of
this polynomial is an exponential function of n, and we feel that there is still room for
improvement.

At the time Lenstra believed this problem was caused by his analysis, not by the
algorithm. But Lovász improved the algorithm instead of the analysis.

Fig. 6 The beginning of the letter from Lovász in which he explains the basis reduction algorithm.

In a letter dated December 12th 1981 Lovász explains the basis reduction al-
gorithm. He defines two concepts that are at the core of the LLL-algorithm. Let
(b1, . . . ,bn) be an ordered basis for Rn. We say that it is straightened if for every
1≤ i < k ≤ n and

bk =
i

∑
j=1

λ
i
jkb j +b(i)

k , where bT
j b(i)

k = 0 for j = 1, . . . , i,

The History of the LLL-algorithm 7

one has ∣∣λ i
ik

∣∣≤ 1
2

(only the last coefficient!).

We say that (b1, . . . ,bn) is weakly greedy if

(b1∧b2∧·· ·∧bi∧bi+2)2 ≥ 3
4
(b1∧b2∧·· ·∧bi∧bi+1)2 (1)

holds for every 0≤ i≤ n−2, where

(b1∧·· ·∧bk)2 = det
(
(bT

i b j)k
i, j=1

)
.

Lovász wrote:

Thus the basis algorithm is the following: start with a basis of the lattice. Look for an i,
0 ≤ i ≤ n− 2 violating (1). If such an i exists, interchange bi+1 and bi+2, and look for
another i. If no such i exists, straighten out the basis and start all over again. Stop if no
exchange has been made after straightening.

Fig. 7 The postcard that Hendrik Lenstra sent to László Lovász on December 18th 1981. Notice
that the shortest vector problem he mentions is still open after 25 years.

8 Ionica Smeets

A few days after Lenstra got the letter from Lovász, he sent an excited postcard
to Hungary, see Figure 7: “Dear László, Congratulations with your beautiful algo-
rithm! [. . .] Your result may have implications (theoretical & practical) on polyno-
mial factorization (over Q). My younger brother (A.K.) is working on that.” More on
this polynomial factorization in Sect. 5. First Lovász explains why he was working
on lattice basis reduction.

4 The Ellipsoid Method

László Lovász started his talk in Caen by declaring that he was not really interested
in trying to improve Lenstra’s algorithm. In fact, he was interested in a tiny little
detail in the ellipsoid method. It all started around 1978 with the paper A polyno-
mial algorithm in linear programming from Leonid Khachiyan (sometimes spelled
Hačijan) [2]. Lovász: “The ellipsoid method was developed by Soviet scientists in
the second half of the seventies. Khachiyan noticed that this algorithm can be ap-
plied to solve linear programming in polynomial time, which was a big unsolved
problem. All of a sudden there was a big interest in these things.”

Peter van Emde Boas remembers how the ellipsoid method first arrived in the
west as a rumor and how “Khachiyan conquered the world and everyone became
crazy.” In those days there was no email or internet and the iron curtain made things
even more difficult.

Fig. 8 Hendrik Lenstra, László Lovász and their host Bernhard Korte in Bonn (February 1982).

The History of the LLL-algorithm 9

Lovász: “I was living in Hungary, but I had the possibility to travel every now and
then. In 1978–1979 I spent a year in Canada and in the summer I was in Stanford.
There I met Peter Gács and someone sent us Khachiyan’s paper. We read and un-
derstood it. On the way back to Hungary, I took the opportunity to visit Amsterdam
and Bonn. You tried to minimize the number of times you passed the iron curtain,
because that was somehow limited. In Amsterdam I met Lex Schrijver and in Bonn
Martin Grötschel. I told them both about the ellipsoid method and they became very
enthusiastic about it and we started working on it.”

Lovász and Gács wrote a report [7] about Khachiyan’s paper that explained the
ideas and convinced the operations research and computer science communities that
the algorithm was correct.

K

Ek

xk

H

y

Ek+1
xk+1

Fig. 9 An illustration of one step of the ellipsoid method.

The ellipsoid method (as described in [1]).
There is a simple geometric idea behind the ellipsoid method. We start with
a convex body K in Rn, included in a big ellipsoid E0, and a linear objective
function cT x. In the kth step there is an ellipsoid Ek, which includes the set Kk
of those points x of K for which cT x is at least as large as the best found so
far. We look at the center xk of Ek.

If xk is not an element of K, then we take a hyperplane through xk which
avoids K. This hyperplane H cuts Ek into two halves; we pick that one which
includes Kk and include it in a new ellipsoid Ek+1, which is essentially the
ellipsoid of least volume containing this half of Ek, except for an allowance
for rounding errors. The ellipsoid Ek+1 can be geometrically described as
follows. Let F = Ek∩H, and let y be the point where a hyperplane parallel to
H touches our half of Ek. Then the center of this smallest ellipsoid divides the
segment xky in ratio 1 : n, the ellipsoid intersects H in F , and touches Ek in y.
The ellipsoid Ek+1 then arises by blowing up and rounding; see Figure 9.

10 Ionica Smeets

If xk ∈ K, then we cut with the hyperplane cT x = cT xk similarly.

The volumes of the ellipsoids Ek will tend to 0 exponentially fast and
this guarantees that those centers xk which are in K will tend to an optimum
solution exponentially fast.

Consider the following problems for K, a non-empty convex compact set in Rn.

1. Strong optimization problem: given a vector c ∈ Rn, find a vector x in K which
maximizes cT x on K.

2. Strong separation problem: given a vector y∈Rn, decide if y∈K, and if not, find
a hyperplane which separates y from K; more exactly find a vector c ∈ Rn such
that cT y > max{cT x|x ∈ K}.

In 1980 Grötschel, Lovász and Schrijver proved the following theorem [1].

Theorem 1 Let K be a class of convex bodies. There is a polynomial algorithm
to solve the separation problem for the members of K , if and only if there is a
polynomial algorithm to solve the optimization problem for the members of K .

The proof uses the ellipsoid method. Lovász: “Other people also noticed that the
main interest of the ellipsoid method is not in practical applications for linear pro-
gramming, but in theoretical applications for combinatorial optimization problems.
We decided to write a book about this. For this book we wanted to make everything
as nice as possible, but there was one annoying little gap.”

K

Fig. 10 Some of the (non-consecutive) ellipsoids found in the ellipsoid method. The hyperplane
returned by the ellipsoid method approximates K.

In combinatorial applications K is typically given by a system of linear inequal-
ities, with rational coefficients, such that each defining inequality can be written
down using a polynomial number of digits. We want to know whether the ellipsoid

The History of the LLL-algorithm 11

method terminates. If the solution set K is full-dimensional, then vol(K) > 0 and
one can prove that log(1/vol(K)) is bounded by a polynomial in the dimension n
and the length of the rest of input for K. So the ellipsoid method terminates after a
polynomial number of steps in this case. If K is not full-dimensional (so vol(K) = 0)
the ellipsoid method may go on forever. In many interesting applications it is impos-
sible to tell from the input of K whether vol(K) = 0, but luckily we can determine
that this must be the case if the ellipsoids become smaller than the computable lower
bound for vol(K). In this case we can use diophantine rounding as follows.

If vol(K) = 0, then K lies in a hyperplane, and one would like to do the ellipsoid
algorithm in dimension n−1. For this, one needs to find a hyperplane containing K.
If we do the ellipsoid algorithm in dimension n, we get smaller and smaller ellip-
soids that may never have their center in K. After some steps we do find a hyperplane
that approximates K, see Figure 10. All vertices of K are close to this hyperplane
given by the equality

α1x1 + · · ·+αnxn = α0.

We want to round this to a hyperplane containing all the vertices of K

p1

q
x1 + · · ·+ pn

q
xn =

p0

q
.

To make this rounding work we need the following condition∣∣∣∣αi−
pi

q

∣∣∣∣≤ ε

q
,

for some ε that can be computed from the problem. This is classic simultaneous
Diophantine approximation. The question for Lovász was how to do this algorith-
mically. “I started to play around with 1,

√
2 and

√
3 on my TI59 calculator. It was

very easy to come up with ideas, it was clear that you wanted to subtract integer
multiples of these numbers from each other. Whatever rule I chose, things started
nicely but after some point the process slowed down. I played around for a fairly
long time until I found a way that did not slow down and seemed to make steady
progress. This was of course just experimentation.

I recalled that Diophantine approximation is discussed in the context of lattices
and I realized that the real issue is trying to find short vectors in lattices. I remem-
bered that when I was in Bonn six months earlier, Hendrik Lenstra gave a lecture
about integer programming in which he also talked about finding short vectors in
lattices. So this was really the way to go.”

It took Lovász quite some time to generalize his rule for 1,
√

2 and
√

3 to higher
dimensions.“It seemed that the less greedy you were, the better it worked. So I only
swapped neighboring vectors and only swapped when you really made progress by
a constant factor. And then I sent my letter to Hendrik.”

Hendrik Lenstra emphasized in his talk why these rules make LLL fast: “Con-
sider the sublattices L j spanned by the first j basisvectors, L j = Zb1 + · · ·+Zb j. It is
really through these sublattices that you see the progress that you are making in your
algorithm. In the LLL-algorithm you only swap neighbouring vectors bi and bi+1,

12 Ionica Smeets

so only Li changes and all L j with j 6= i remain the same. Throughout the entire
process none of the determinants d(L j) ever gets larger.

In my original algorithm I was too greedy. If there was at some stage a very short
vector at the end of the basis, I would immediately swap it up front. This makes L1
better, but all the intermediate L j with 1 < j < n may become worse and you lose
all control.”

5 Polynomial Factorization

Arjen Lenstra’s connection with the LLL-algorithm began while he still was a stu-
dent. He opened his talk in Caen with: “My perspective is more or less that of a
surprised bystander while all this violence was going on around me.” It started with
a report from Hendrik Lenstra on Euclidean number fields of large degree [6]. This
report from 1976 contained a large number of tables of irreducible monic polyno-
mials over the integers. The algebraic number fields generated by the roots of these
polynomials were not isomorphic. The question was if other polynomials generated
the same number fields as the polynomials in the table. In those days, to answer such
a question you had to factor polynomials over number fields. For the course Pro-
gramming Methods Arjen Lenstra and fellow students Henk Bos and Rudolf Mak
set out to study and implement methods to factor univariate polynomials over alge-
braic number fields. This was usually done using the Berlekamp-Hensel approach
suggested by Zassenhaus [10].

Fig. 11 In the tables of Arjen Lenstra’s copy of the report on Euclidean number fields [6] there
were polynomials pencilled in. The question was if these pencilled in polynomials generated the
same number fields as the ones above them.

Polynomial factorization for f ∈Q[X] with Berlekamp-Hensel.
We may assume that f is square-free, since it is easy to remove repeated fac-
tors of f .

1. Take a prime p such that f modulo p remains square-free and use
Berlekamp’s algorithm to factor f modulo p.

2. Apply the Hensel-lemma to lift these factors to factors modulo pk for a
sufficiently large k.

3. Try products of the modular factors to find the ‘true’ factorization.

The History of the LLL-algorithm 13

The big problem with this Berlekamp-Hensel approach was that the last step
could be exponential in the degree of f , since there are irreducible polynomials that
split into many factors modulo any prime. Arjen Lenstra: “No one tried to do any-
thing about this exponential step, all people tried to do was convince themselves that
it was indeed very, very much exponential. They were busy generating polynomials
that were extremely bad cases for this Berlekamp-Hensel approach.”

Generalizing this approach from the rationals to algebraic number fields, was
according to Arjen Lenstra: “sticking your head in the sand and hoping that it would
work.”

Polynomial factorization for f ∈ Q(α)[X] with the Zassenhaus approach
as described in [9].
Let g be a monic irreducible polynomial of degree d over the integers, let
g(α) = 0, and let f be a square-free polynomial to be factored over Q(α).

1. If there is a prime p such that g modulo p is irreducible and f modulo p is
square-free
a. Factor f over the finite field (Z/pZ)[X]/(g(X)); the resulting factoriza-

tion modulo g and p corresponds to the factorization of f over Q(α).
b. Follow the usual Berlekamp-Hensel method.

2. If there is no prime p such that g modulo p is irreducible, then take a
prime p with gcd(p,∆(f)) = 1 and gcd(p,∆(g)) = 1.
a. Factor f over several finite fields, one for each irreducible factor of g

modulo p.
b. Lift the factors of g modulo p to factors of g modulo pk for a sufficiently

large k.
c. Working modulo pk, lift the factors of f from step 2a to factors modulo

the lifted factors of g from step 2b.
d. Use Chinese remaindering to combine the resulting modular factoriza-

tions of f to factors of f modulo a high power of p.
e. Try combinations of these factors.

Notice that this algorithm is exponential in the product of the degrees of g and f .
The students got around halfway implementing this approach in their project. Peter
van Emde Boas was one of the supervisors of this project and when he later became
Arjen’s master thesis advisor, he decided that completing this project would be the
perfect task for Arjen.

There were many problems. One of them was that they had to use the fairly
newly developed programming language ALGOL68. Lenstra: “It was developed in
Amsterdam and if we did not use it, no-one would use it. It worked great, but it
had a rather impossible two-level grammar and a 7-pass compiler. The ALGOL68
punch-card jobs had very long turnaround times, rebooting took hours and we were
only allowed limited time on the computers.” Another obvious problem was that the
algorithms could be exponential, but in practice they often worked. Arjen Lenstra:

14 Ionica Smeets

Fig. 12 Arjen Lenstra defending his master thesis on December 10th 1980 – one year and two days
before Lóvász posted the letter with his basis reduction algorithm. The committee was formed by
Th. J. Dekker, Peter van Emde Boas and Hendrik Lenstra (behind the desk). Also visible is Pia
Pfluger from the Numerical Mathematics group.

“I managed to answer the isomorphism questions and thus to complete my master
thesis but it was a rather unsatisfactory method.

When I discussed this with Hendrik, he asked why we used this silly Chinese
remaindering and why we combined all those primes in the number field. He sug-
gested that it might be possible to replace the Chinese remaindering by a lattice
step.” To explain how this lattice step works we assume without loss of generality
that the minimum polynomial g has a monic linear factor hk modulo some power pk

of p. Furthermore, let c in Z[α] be a coefficient of a factor of f over Q(α). There is
an integer ` and a polynomial t of degree at most d−1 in Z[α] such that

c = ck + ` · pk + t ·hk, (2)

where ck is an integer value that will appear as one of the coefficients of the (com-
binations of) factors of f modulo hk and pk.

From (2) it follows that we should consider the d-dimensional lattice spanned by
the vectors

The History of the LLL-algorithm 15

(pk, 0, 0, . . . 0, 0),
(hk0, 1, 0, . . . 0, 0),
(0, hk0, 1, 0, . . . 0),

...
(0, 0, . . . 0, hk0, 1),

where hk = α + hk0. One may expect that for large enough k, the coefficient c will
be the unique shortest vector that is congruent to ck modulo the lattice as generated
above. If we reduce the lattice basis we find a fundamental domain and when k tends
to infinity this domain should spread in all directions to make sure c is contained in
it.

Arjen: “I used the lattice basis reduction from Hendrik’s paper on integer linear
programming [5]. This reduction algorithm did not run in polynomial time, but who
cares about such petty issues when dealing with an algorithm that runs in exponen-
tial time anyhow? So, the lattice approach was implemented, and it turned out to
work beautifully.”

The next goal was to prove that the lattice approach always works as expected,
including an estimate what value of k one should use to be able to derive valid
irreducibility results. Arjen Lenstra: “I started to think about this and I was not very
good at these things. My lack of understanding of the situation reached its zenith
when, in my confusion, I added an extra vector and used a d +1–dimensional lattice
instead of the normal d–dimensional one. I was trying to prove that every vector
in my lattice was very long, but this d + 1–dimensional lattice always contained
a short vector: g itself. This observation baffled me for a while, but then quickly
led to the desired result: apparently the property I needed was coprimality with g
over the integers, yet a factor hk in common with g modulo pk. This property I
could then indeed use to derive the lower bound proof — a very inelegant proof
that is now happily lost in oblivion. In any case, I now knew for sure that we could
factor polynomials over algebraic number fields faster than before. How much faster
precisely, no one seemed to care, since the overall algorithm was still exponential in
the degree of f .

The initially disturbing observation had an interesting side-result, namely that if
we do the entire method for a polynomial g that is not irreducible and use the d-
dimensional lattice, we find a factor of g. This implied that if one lifts far enough,
the combinatorial search in Berlekamp-Hensel can be avoided at the cost of shortest
vector computations in various lattices. Furthermore, by pushing k even further, the
shortest vector computations can be replaced by lattice basis reductions. Cute, but
useless, since neither the shortest vector nor lattice basis reduction methods ran in
polynomial time.”

When Lovász sent his letter that lattice basis reduction could be done in polyno-
mial time, Hendrik Lenstra started to look for an error in the proof that the factor-
ization algorithm ran in polynomial time. A few days after he mailed his postcard
to Lovász (see Figure 7) Hendrik Lenstra sent a much longer letter, starting: “Ever
since I got your letter I have been in a state of surprise, since it seems that your basis
reduction algorithm implies that there is a polynomial algorithm for factorization in

16 Ionica Smeets

Q[X]. For several days I have been looking for an error, and not having found one I
am writing for your opinion.” At that time factoring polynomials over the rationals
was so firmly established as something that could not be done in polynomial time,
that something else must be spoiling their factorization algorithm. For a moment
Hendrik Lenstra believed he found the wrongdoer in the prime p you needed to
maintain square-freeness. However, he proved that this p can be bounded in such
a way that Berlekamp runs in polynomial time, deterministically. And so, as Ar-
jen Lenstra put it: “We were suddenly looking at this weird result that polynomials
could be factored in polynomial time.”

6 The LLL-article

On May 12th 1982, after five months of polishing the algorithm, refining the analysis
and many letters to-and-fro, Hendrik Lenstra wrote to Lovász: “Perhaps we should
start thinking about where to send our paper. I am personally inclined to send it to
a pure mathematics journal rather than a computer science journal. This maximizes
the probability of getting sensible comments from the referee. [. . .] What do you
think of Mathematische Annalen?” Lenstra admitted in Caen that there was another
reason he wanted to send the article to a pure mathematics journal: “In those days
pure mathematicians were not used to doing complexity analyses of algorithms, it
was considered the domain of computer scientists. I felt this was a beautiful area
that —in this case— gave rise to fantastical problems in number theory and that
mathematicians should be more aware of this field. This seemed a good opportunity,
since we had a pretty amazing result that nobody had expected.”

The unexpected result of polynomial factorization became the title of the pa-
per. Peter van Emde Boas asked the audience in Caen what they thought of when
they heard LLL-algorithm: was it “basis reduction” or “factoring polynomials”? All
hands rose for “basis reduction”. So in hindsight maybe the title should have been
something like “A new basis reduction algorithm”.

On July 2nd 1982 Hendrik Lenstra submitted the article to Mathematische An-
nalen, see Figure 13 for the first page of this handwritten manuscript. The article
went rather swiftly through the refereeing process and appeared later that year [8].
The algorithm has made a great impact. In September 2007 the article has 486 cita-
tions on ISI Web of Knowlegde. As you can see in the rest of this book, research on
the LLL-algorithm and its applications are very much alive.

References

1. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2): 169–197, 1981.

2. L. G. Hačijan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR, 244(5):
1093–1096, 1979.

The History of the LLL-algorithm 17

3. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Report 81–03 (First
version), University of Amsterdam, April 1981.

4. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Report 81–03 (Second
version), University of Amsterdam, November 1981.

5. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4): 538–548, 1983.

6. H. W. Lenstra, Jr. Euclidean number fields of large degree. Report 76–09, University of Ams-
terdam, May 1976.

7. P. Gács, and L. Lovász. Khachiyan’s algorithm for linear programming. Math. Programming
Stud., 14: 61–68, 1981.

8. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261(4): 515–534, 1982.

9. P. J. Weinberger and L. P. Rothschild. Factoring polynomials over algebraic number fields.
ACM Trans. Math. Software, 2(4): 335–350, 1976.

10. H. Zassenhaus. On Hensel factorization. I. J. Number Theory, 1: 291–311, 1969.

18 Ionica Smeets

Fig. 13 The first page of the LLL-article, handwritten by Hendrik Lenstra.

The History of the LLL-algorithm 19

Fig. 14 The basis reduction algorithm as published in the LLL-article. The figure containing pseu-
docode for the algorithm was added after a suggestion by the referee.

