
322 Int. J. Applied Cryptography, Vol. 2, No. 4, 2012

Copyright © 2012 Inderscience Enterprises Ltd.

Chosen-prefix collisions for MD5 and applications

Marc Stevens*
Cryptology Group, CWI,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: marc@marc-stevens.nl
*Corresponding author

Arjen K. Lenstra
Laboratory for Cryptologic Algorithms,
École Polytechnique Fédérale de Lausanne,
Station 14, CH-1015 Lausanne, Switzerland

Benne de Weger
EiPSI, Faculty of Mathematics and Computer Science,
TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: b.m.m.d.weger@tue.nl

Abstract: We present a novel, automated way to find differential paths for MD5. Its main
application is in the construction of chosen-prefix collisions. We have shown how, at an
approximate expected cost of 239 calls to the MD5 compression function, for any two chosen
message prefixes P and P', suffixes S and S' can be constructed such that the concatenated values
P║S and P'║S' collide under MD5. The practical attack potential of this construction of chosen-
prefix collisions is of greater concern than the MD5-collisions that were published before. This is
illustrated by a pair of MD5-based X.509 certificates one of which was signed by a commercial
Certification Authority (CA) as a legitimate website certificate, while the other one is a certificate
for a rogue CA that is entirely under our control (cf. http://www.win.tue.nl/hashclash/rogue-ca/).
Other examples, such as MD5-colliding executables, are presented as well. More details can be
found on http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

Keywords: MD5; chosen-prefix collision attack; differential analysis; certification authority;
playstation 3

Reference to this paper should be made as follows: Stevens, M., Lenstra, A.K. and de Weger, B.
(2012) ‘Chosen-prefix collisions for MD5 and applications’, Int. J. Applied Cryptography,
Vol. 2, No. 4, pp.322–359.

Biographical notes: Marc Stevens received his Master of Science degree from the Eindhoven
University of Technology, the Netherlands, in 2007. Currently, he is a PhD student at the
Mathematical Institute of Leiden University and the Cryptology group at CWI. He aims to defend
his PhD thesis early 2012. His areas of interest include hash functions, cryptanalysis and efficient
implementation of collision attacks.

Arjen K. Lenstra worked in the USA from 1984 until 2006: until 1989 he was a Visiting
Professor at the Computer Science Department of The University of Chicago; until 1996 he was a
Senior Scientist at the Mathematics and Cryptology Research Group of Bell Communications
Research (Bellcore) in Morristown, NJ; until 2004 he was the Vice-president of Emerging
Technologies of Citigroup in New York City, first at the corporate technology office, then from
2002 at Citigroups corporate information security office; until 2006 he was a distinguished
member of technical staff at the Computing Sciences Centre of Alcatel-Lucent Bell Laboratories
in Murray Hill, NJ. From 2000 to 2006, he was a Part-time Professor of Cryptology at the
Technical University Eindhoven. In January 2006, he became a Full Professor at the School of
Computer and Communication Sciences of EPFL, Lausanne, Switzerland, where he heads the
Laboratory for Cryptologic Algorithms and works on computational and implementation aspects
and design of cryptologic methods.

Chosen-prefix collisions for MD5 and applications 323

Benne de Weger received his PhD in computational number theory in 1988 from the University
of Leiden. He worked at the universities of Twente and Rotterdam as an Assistant Professor
of Mathematics; in the industry as a Cryptographic Software Engineer and Information
Security Consultant, and currently he is an Assistant Professor at the Eindhoven University
of Technology. His research interests include hash functions, public key cryptosystems, and
computational number theory.

1 Introduction

1.1 Cryptographic hash functions

Modern information security methods heavily rely on
cryptographic hash functions, functions that map bitstrings
of arbitrary length to fixed-length bitstrings called
hash values. Cryptographic hash functions are designed
in such a way that a number of security related
conditions are satisfied: collision resistance, second
pre-image resistance and pre-image resistance. Commonly
used cryptographic hash functions are MD5 (Rivest, 1992),
SHA-1, and SHA-256 (NIST, 2008), mapping their inputs
to fixed-lengths outputs of 128, 160, and 256 bits,
respectively. We refer to Menezes et al. (1996) for a
description of the iterated design principle of these hash
functions and the above security properties. The focus
of this article is MD5’s collision resistance: it should be
practically infeasible to find two different inputs that have
the same MD5 hash value.

1.2 Previous results on collision attacks for MD5

In August 2004 at the rump session of the annual CRYPTO
conference in Santa Barbara, Xiaoyun Wang (Wang et
al., 2004) presented a pair of two-block messages that
collide under MD5. The details of their attack construction
were presented by Wang and Yu (2005). It describes a
manually found differential path for MD5 and introduces
the concept of near-collision blocks: a pair of input blocks
that results in specifically targeted output-differences. It
allows computation of a new collision in a few hours
of CPU time. Improved versions of these attacks are
commented on at the end of this section.

1.3 Impact of previous results

Although Wang et al.’s random looking collisions for
MD5 by themselves do not pose any danger, it was
shown in Kaminsky (2004) and Mikle (2004) how those
original collisions can be used to mislead integrity checking
software and replace benign files with malicious versions
without detection. Furthermore, it was immediately clear
that any value can be used for the IHV (in this paper the
chaining variable will be denoted by IHV, for Intermediate
Hash Value) at the beginning of the two-block collision
search, not just MD5’s initial value as in their example
collision. This freedom to choose the IHV allowed several
authors to use this attack construction for slightly more
ulterior purposes, e.g. by inserting both collision blocks

in different Postscript documents that collide under MD5
(Daum and Lucks, 2005).

None of these developments in the collision attacks for
MD5 spoke in favor of continued usage of MD5, but the
potential for abuse of these types of collisions was limited.
Initially, serious misuse was believed to be prevented by
the lack of control over the contents of the collision
blocks. In Lenstra and de Weger (2005), it was shown,
however, that for any pair of meaningless data (M,M ′) a
suffix T can easily be found such that both concatenations
M∥T and M ′∥T are fully meaningful. This allows the
following attack construction. First, for any meaningful
common prefix P , collision blocks (M,M ′) may be
constructed using Wang and Yu’s approach such that P∥M
and P∥M ′ collide under MD5. Even though P∥M and
P∥M ′ can be expected to be partially meaningless, an
appendage T can subsequently be calculated such that both
P∥M∥T and P∥M ′∥T are fully meaningful. Furthermore,
due to the iterative structure of MD5, they also still
collide under MD5. This shows that the argument that
MD5-collisions of this form are mostly harmless because
of their lack of structure is in principle invalid. The
above attack construction allowed the realisation of two
different X.509 certificates with identical Distinguished
Names and identical MD5-based signatures but different
public keys (Lenstra and de Weger, 2005). Such pairs
of certificates theoretically violate the security of the
X.509 Public Key Infrastructure, however the limitation
to identical Distinguished Names does not allow abuse in
practice.

Scenarios causing more serious threats did not emerge
due to a severe limitation of this collision attack, namely
that both colliding messages must have identical IHVs at
the beginning of the collision blocks. This requirement
is most naturally fulfilled by making the documents
identical up to that point. Therefore, we call such collisions
identical-prefix collisions. In the above example, P would
be the identical prefix.

1.4 New contributions

The most important contribution of this paper is the removal
of the identical prefix condition leading to chosen-prefix
collisions, a result that we originally presented at
EUROCRYPT 2007 (Stevens et al., 2007), and of which
a considerably improved version was first presented at
CRYPTO 2009 (Stevens et al., 2009). Here we present
a full description of our improved chosen-prefix collision
attack. We show how any pair of IHVs can be made
to collide under MD5 by appending properly chosen

324 Stevens et al.

collision blocks. More precisely, we show how, for any
two chosen message prefixes P and P ′, suffixes S and
S′ can be constructed such that the concatenated values
P∥S and P ′∥S′ collide under MD5. Such collisions will
be called chosen-prefix collisions (though different-prefix
collisions would have been appropriate as well). Our attack
construction is based on a “birthday” search combined with
a novel, automated way to find differential paths for MD5.
It has an approximate expected cost of 239 calls to the MD5
compression function. In practical terms, this translates to
about a day on a standard quad-core PC per chosen-prefix
collision. This notable improvement over the 6 months
on thousands of PCs for a single chosen-prefix collision
that we reported earlier in the EUROCRYPT 2007 paper
(Stevens et al., 2007), was triggered by the application
presented in the CRYPTO 2009 paper (Stevens et al., 2009).

1.5 Significance and impact of the new contributions

Chosen-prefix collisions have a greater threat potential
than identical-prefix ones. Using the diamond construction
from Kelsey and Kohno (2006) along with chosen-prefix
collisions, any number of documents of one’s choice can be
made to collide after extending them with relatively short
and innocuously looking appendages that can easily remain
hidden to the unsuspicious reader when popular document
formats (such as PDF, Postscript, or MS Word) are used.
We illustrate this in Section 5.3 with a Nostradamus attack
to predict the winner of the 2008 US Presidential elections.
Implementing a herding attack we constructed 12 different
but MD5-colliding PDF files, each predicting a different
winner. Their common hash serves as commitment to our
prediction of the outcome. Our prediction was correct.

Similarly, chosen-prefix collisions can be used to
mislead, for instance, download integrity verification of
code signing schemes, by appending collision blocks to
executables. Details, and how it improves upon previous
such constructions, can be found in Section 5.4.

The most convincing application of MD5-collisions,
however, would target the core of the Public Key
Infrastructure (PKI) and truly undermine its security by
affecting authenticity of users (Section 4.1 of Stevens et al.,
2007). The most obvious way to realise this would be by
constructing colliding certificates, i.e., certificates for which
the to-be-signed parts have the same cryptographic hash
and therefore the same digital signature. This is undesirable,
because the signature of one of the to-be-signed parts, as
provided by a Certification Authority (CA), is also a valid
signature for the other to-be-signed part. Thus, this gives
rise to a pair of certificates, one of which is legitimate, but
the other one is a rogue certificate.

Constructing colliding certificates that affect authenticity
seemed to be out of reach, however. As mentioned in
the EUROCRYPT 2007 paper (Stevens et al., 2007)
that introduced chosen-prefix collisions, these collisions
allow us to construct two X.509 certificates with different
Distinguished Names and different public keys, but
identical MD5-based signatures. This improves upon the

construction from Lenstra and de Weger (2005) mentioned
above, but is hardly more threatening due to two problems.
In the first place, we need full control over the prefixes of
the certificates’ to-be-signed parts, to be able to calculate
the collision blocks. When using a ‘real life’ CA, however,
that CA has final control over the contents of one of the
to-be-signed parts: in particular, it inserts a serial number
and a validity period. Furthermore, our construction as in
Stevens et al. (2007) results in 8192-bit RSA moduli, which
is quite a bit longer than the 2048-bit upper bound that is
enforced by some CAs.

It was pointed out to us by three of our co-authors
on the CRYPTO 2009 follow-up paper (Stevens et al.,
2009), that there are circumstances where, with sufficiently
high probability, the first of the above two problems
can be circumvented. Naively, one would expect that a
somewhat more extensive search would suffice to address
the remaining problem of reducing the length of the RSA
moduli to a generally acceptable 2048 bits. Substantially
more extensive improvements to all stages of the original
chosen-prefix construction from the EUROCRYPT 2007
paper (Stevens et al., 2007) were required, though. This
is a nice illustration of scientific progress being driven
by practical applications. Furthermore, more computational
power had to be brought to bear to deal with the timing
restrictions of reliably predicting the CA’s contribution.
Ultimately this led to the rogue CA certificate mentioned
in the abstract, generated in about a day on a cluster of
215 PlayStation 3 game consoles. With the private key
of a CA under one’s control, one can create ‘trusted’
certificates at will. This effectively allows one to perform
a man-in-the-middle attack for all secure websites against
users whose means of electronic communications have
been subverted. We purposely crippled our rogue CA
certificate to prevent such misuse. From the heartwarming
industry reception of our rogue CA construction, which is
further described in Section 5.2, it must be concluded that
we finally managed to present a sufficiently convincing
argument to discontinue usage of MD5 for digital signature
applications. Furthermore, we would like to note that
browser vendors such as Microsoft, Mozilla and Google and
other software companies, can revoke the trust in any CA
certificate in their products if deemed necessary.

1.6 Very brief summary of new techniques

The possibility of chosen-prefix collisions was
mentioned already in Gauravaram et al. (2006,
Section 4.2 case 1) and, in the context of SHA-1,
in de Cannière and Rechberger (2006) and on
http://www.iaik.tugraz.at/content/research/krypto/sha1/.
This paper is an updated version of the EUROCRYPT
2007 paper (Stevens et al., 2007), incorporating the
improvements mentioned above and as described in Stevens
(2007) and in the CRYPTO 2009 paper (Stevens et al.,
2009). The new applications mentioned above have been
realised using the following main improvements. In the
first place we introduce an extended family of differential

Chosen-prefix collisions for MD5 and applications 325

paths compared to Stevens et al. (2007). Secondly, we
use a more powerful birthday search procedure which
reduces the overall complexity from 250 to 239 MD5
compression function calls. This procedure also introduces
a time-memory trade-off and more flexibility in the birthday
search complexity to allow for variability in the expected
number of near-collision blocks. Finally, we have a much
improved implementation exploiting the wide variety of
features of a cluster of PlayStation 3 game consoles.

1.7 Outline of article

MD5 and the Merkle-Damg̊ard construction on which it
is based are described in detail in Section 2. Section 3
gives a high level overview of our method to construct
chosen-prefix collisions. Section 4 presents the method in
full detail. The three proof of concept applications are
presented in Section 5.

1.8 Other improvements of Wang et al.’s original
collision finding method

Another application of our automated differential path
finding method is a speedup of the identical-prefix collision
attack by Wang et al. In combination with the idea
of tunnels from Klima (2006) collisions can be found
in 225 MD5 compression function calls, see Stevens
(2007). Source and binary code for this improvement
is available on http://www.win.tue.nl/hashclash/). Note
that Xie et al. (2008) used a different method for
identical-prefix collisions, reaching a complexity of 221

MD5 compression function calls, and that in the meantime
identical-prefix collisions for MD5 can be found in 216

MD5 compression function calls (Stevens et al., 2009).

This new identical-prefix collision attack is used in
Section 4.8 to construct very short chosen-prefix collisions
with complexity of about 253.2 MD5 compressions, where
the collision-causing suffixes are only 596 bits long instead
of several thousands of bits.

1.9 Summary of old and new results

In Table 1 we present a historical overview of the decline
in complexity of MD5 and SHA-1 collision finding. For
historical interest we include claims that were presented
but that have never been published (indicated by “u: ...” in
Table 1) and a claim that has been withdrawn (indicated
by “w: ...” in Table 1). It clearly illustrates that attacks
against MD5 keep getting better, and that the situation
around SHA-1 is unclear. Not reflected in the table is
the fact that already in 1993 it was known that there
was serious trouble with MD5, based on collisions in
its compression function (den Boer and Bosselaers, 1994;
Dobbertin, 1996). We leave any speculation about the future
of SHA-1 cryptanalysis to the knowledgeable reader.

2 Merkle-Damg̊ard and MD5

In this section we describe the Merkle-Damg̊ard
construction in Section 2.1, then we fix some notation in
Section 2.2 and give a description of MD5 in Section 2.3.

2.1 Merkle-Damgård

The well known Merkle-Damg̊ard construction describes
exactly how to construct a hash function based on a
compression function with fixed-size inputs in an iterative

Table 1 Collision complexities – historical overview

Year MD5
Identical-prefix Chosen-prefix

pre-2004 264 (Trivial) 264 (Trivial)
2004 240 (Wang et al., 2004), (Wang and Yu, 2005)
2005 237 (Klima, 2005)
2006 232 (Klima, 2006), (Stevens, 2006) 249 (Stevens et al., 2007)
2007 225 (Stevens, 2007) 242

2008 221 (Xie et al., 2008)
2009 216 (Stevens et al., 2009) 239 (Stevens et al., 2009)

Year SHA-1
Identical-prefix Chosen-prefix

pre-2004 280 (Trivial) 280 (Trivial)
2005 269 (Wang et al., 2005b)

(u: 263) (Wang et al., 2005a)
2006 (u: 280−ϵ) (Rechberger, 2006)
2007 (u: 261) (Mendel et al., 2007)
2008
2009 (w: 252) (McDonald et al., 2009)
2012 265 (Stevens, 2012) 277 (Stevens, 2012)

Notes: Claims preceded by ‘u:’ remain unpublished and ‘w:’ indicates that the paper was withdrawn. Complexity is given as the
number of calls to the relevant compression function (cf. Section 2). The figures are optimised for speed, i.e., for collisions
using any number of near-collision blocks. For other collision lengths the complexities may differ.

326 Stevens et al.

structure as is depicted in Figure 1. Since it has been proven
that the hash function is collision resistant if the underlying
compression function is collision resistant, the majority of
all the currently used hash functions are based on this
Merkle-Damg̊ard construction. The construction builds a
hash function based on a compression function that takes
two fixed-size inputs, namely a chaining value denoted by
IHV and a message block, and outputs a new IHV. For
instance, MD5’s compression function operates on an IHV
of bit length 128 and a message block consisting of 512
bits. An input message is first padded with a single 1 bit
followed by a number X of 0 bits and lastly the original
message length encoded in 64 bits. The number X of 0 bits
to be added is defined as the lowest possible number so that
the entire padded message bit length is an integer multiple
of 512. The padded message is now split into N blocks of
size exactly 512 bits. The hash function starts with a fixed
public value for IHV0 called the IV (Initial Value). For
each subsequent message block Mi it calls the compression
function with the current IHVi and the message block Mi

and stores the output as the new IHVi+1. After all blocks
are processed it outputs the last IHVN after an optional
finalisation transform.

2.2 Preliminaries

MD5 operates on 32-bit words (v31v30 . . . v0) with vi ∈
{0, 1}, that are identified with elements v =

∑31
i=0 vi2

i of
Z/232Z (the ring of integers modulo 232, represented by the
set of least non-negative residues {0, 1, . . . , 232 − 1}) and
referred to as 32-bit integers. In this paper we switch freely
between these representations.

A binary signed digit representation (BSDR) for a 32-bit
word X is defined as (ki)31i=0, where

X =
31∑
i=0

2iki, ki ∈ {−1, 0,+1}.

Many different BSDRs exist for any non-zero X . The
weight of a BSDR is the number of non-zero ki’s. A
particularly useful BSDR is the Non-Adjacent Form (NAF),
where no two non-zero ki’s are adjacent. The NAF is
not unique since we work modulo 232 (making k31 = +1

equivalent to k31 = −1), but uniqueness of the NAF can
be enforced by choosing k31 ∈ {0,+1}. Among the BSDRs
of an integer, the NAF has minimal weight (Clark and
Liang, 1973). It can easily be computed as NAF(n) =
(ai − bi)

31
i=0 where ai, bi ∈ {0, 1} such that

∑31
i=0 ai2

i =

n+ ⌊n
2 ⌋ mod 232 and

∑31
i=0 bi2

i = ⌊n
2 ⌋ .

Integers are denoted in hexadecimal as, for instance,
1E16 and in binary as 000111102. For bitstrings X and Y
we use the following notation:

• X ∧ Y is the bitwise AND of X and Y ;

• X ∨ Y is the bitwise OR of X and Y ;

• X ⊕ Y is the bitwise XOR of X and Y ;

• X is the bitwise complement of X;
for X,Y ∈ Z/232Z:

• X[i] is the i-th bit of the regular binary representation
of X;

• X + Y resp. X − Y is the addition resp. subtraction
modulo 232;

• RL(X,n) (resp. RR(X,n)) is the cyclic left
(resp. right) rotation of X by n bit positions:

RL(10100100 . . . 000000012, 5)

= 100 . . . 00000001101002;

and for a 32-digit BSDR X:

• X[[i]] is the i-th signed bit of X;

• RL(X,n) (resp. RR(X,n)) is the cyclic left

(resp. right) rotation of X by n positions.

• w(X) is the weight of X .

For chosen message prefixes P and P ′ we seek suffixes
S and S′ such that the messages P∥S and P ′∥S′ collide
under MD5. In this paper any variable X related to
the message P∥S or its MD5 calculation, may have a
corresponding variable X ′ related to the message P ′∥S′

or its MD5 calculation. Furthermore, for such a ‘matched’
variable X ∈ Z/232Z we define δX = X ′ −X and ∆X =
(X ′[i]−X[i])31i=0, which is a BSDR of δX . For a matched

Figure 1 Merkle-Damg̊ard construction

Chosen-prefix collisions for MD5 and applications 327

variable Z that consist of tuples of 32-bit integers, say Z =
(z1, z2, . . .), we define δZ as (δz1, δz2, . . .).

2.3 Description of MD5

2.3.1 MD5 overview

MD5 follows the Merkle-Damg̊ard construction and works
as follows, (Rivest, 1992):

1 Padding. Pad the message: first a ‘1’-bit, next the least
number of ‘0’ bits to make the bitlength equal to
448 mod 512, and finally the bitlength of the original
unpadded message as a 64-bit little-endian integer. As a
result the total bitlength of the padded message is 512N
for a positive integer N .

2 Partitioning. Partition the padded message into N
consecutive 512-bit blocks M1, M2, . . . ,MN .

3 Processing. To hash a message consisting of N blocks,
MD5 goes through N + 1 states IHVi, for 0 ≤ i ≤ N ,
called the intermediate hash values. Each intermediate
hash value IHVi consists of four 32-bit words
ai, bi, ci, di. For i = 0 these are fixed public values:

(a0, b0, c0, d0) = (6745230116, EFCDAB8916,

98BADCFE16, 1032547616).

For i = 1, 2, . . . , N intermediate hash value IHVi is
computed using the MD5 compression function
described in detail below:

IHVi = MD5Compress(IHVi−1,Mi).

4 Output. The resulting hash value is the last intermediate
hash value IHVN , expressed as the concatenation of the
hexadecimal byte strings of the four words
aN , bN , cN , dN , converted back from their little-endian
representation.

2.3.2 MD5 compression function

The input for the compression function
MD5Compress(IHV, B) consists of an intermediate hash
value IHV = (a, b, c, d) and a 512-bit message block B.
The compression function consists of 64 steps (numbered 0
to 63), split into four consecutive rounds of 16 steps each.
Each step t uses modular additions, a left rotation, and a
non-linear function ft, and involves an Addition Constant
ACt and a Rotation Constant RCt. These are defined as
follows (see also Appendix A):

ACt =
⌊
232 |sin(t+ 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3)

=


(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(x, y, z) =
F (x, y, z) = (x ∧ y)⊕ (x ∧ z) for 0 ≤ t < 16,

G(x, y, z) = (z ∧ x)⊕ (z ∧ y) for 16 ≤ t < 32,

H(x, y, z) = x⊕ y ⊕ z for 32 ≤ t < 48,

I(x, y, z) = y ⊕ (x ∨ z) for 48 ≤ t < 64.

(1)

The message block B is partitioned into sixteen consecutive
32-bit words m0, m1, . . ., m15 (with little-endian byte
ordering), and expanded to 64 words Wt, for 0 ≤ t < 64,
of 32 bits each (see also Appendix A):

Wt =


mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression
function from Hawkes et al. (2004) because its ‘unrolling’
of the cyclic state facilitates the analysis. For each
step t the compression function algorithm maintains a
working register with 4 state words Qt, Qt−1, Qt−2

and Qt−3 and calculates a new state word Qt+1. With
(Q0, Q−1, Q−2, Q−3) = (b, c, d, a), for t = 0, 1, . . . , 63 in
succession Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2),

Tt = Ft +Qt−3 +ACt +Wt,

Rt = RL(Tt, RCt),

Qt+1 = Qt +Rt.

(2)

After all steps are computed, the resulting state words are
added to the intermediate hash value and returned as output:

MD5Compress(IHV, B)

= (a+Q61, b+Q64, c+Q63, d+Q62). (3)

3 An overview of chosen-prefix collisions for MD5

Given two arbitrary chosen messages, our purpose is to find
appendages such that the extended messages collide under
MD5. In this section we give a summary of our method.

Given the two arbitrary messages, we first apply
padding to the shorter of the two, if any, to make
their lengths equal. This ensures that the Merkle-Damg̊ard
strengthening – which is applied after the last bits of the
message and involves the message’s bitlength – is identical
for the two messages resulting from this construction.
We impose the additional requirement that both resulting
messages are a specific number of bits (such as 64 or 96)
short of a whole number of blocks. In principle this can
be avoided, but it leads to an efficient method that allows
relatively easy presentation. All these requirements can
easily be met, also in applications with stringent formatting
restrictions.

328 Stevens et al.

Figure 2 Chosen-prefix collision overview

Given this message pair, we modify a suggestion by
Xiaoyun Wang (private communication) by finding a pair
of k-bit values that, when appended to the last incomplete
message blocks, results in a specific form of difference
vector between the IHVs after application of the MD5
compression function to the extended message pair. Finding
the k-bit appendages can be done using a birthday search
procedure.

The specific form of difference vector between the IHVs
that is aimed for during the birthday search is such that
the difference pattern can relatively easily be removed
compared to the more or less random difference pattern one
may expect given two arbitrarily chosen prefixes. Removing
the difference pattern is done by further appending to the
messages a sequence of near-collision blocks. Each pair
of near-collision blocks targets a specific subpattern of the
remaining differences. For each such subpattern we use an
automated, improved version of Wang and Yu’s original
approach to construct a new differential path, as described
in detail in Section 4 below, and subsequently use the
differential path to construct a pair of near-collision blocks.
Appending those blocks to the two messages results in a
new difference vector between the new IHVs from which
the targeted subpattern has been eliminated compared to the
previous difference vector. The construction continues as
long as differences exist. The above process is depicted in
Figure 2.

How the various steps involved in this construction are
carried out and how their parameters are tuned depends on
what needs to be optimised. Extensive birthday searching
can be used to create difference patterns that require a small
number of pairs of near-collision blocks. When combined
with a properly chosen large family of differential paths,
a single pair of near-collison blocks suffices to complete
the collision right away. However, it may make the
actual near-collision block construction quite challenging,
which leads to the intuitively expected result that finding
very short chosen-prefix collision-causing appendages is

relatively costly. On the other side of the spectrum, fast
birthday searching combined with a smaller family of
differential paths leads to the need for many successive
pairs of near-collision blocks, each of which can quickly
be found: if one is willing to accept long chosen-prefix
collision-causing appendages, the overall construction can
be done quite fast. Between the two extremes almost
everything can be varied: number of near-collision blocks,
their construction time given the differential path, time to
find the full differential path, birthday search time and
space requirements, etc., leading to a very wide variety of
‘optimal’ choices.

The next section contains the details of the various steps
in this process, and how the steps are best glued together
depending on the circumstances. Application scenarios that
impose different restrictions on the chosen-prefix collisions
are then presented in Section 5.

4 Chosen-prefix collision construction for MD5,
details

In Section 4.1 an outline of the chosen-prefix collision
construction is given; this includes a short description of
the birthday search referred to in Section 3, the further
details of which can be found in Section 4.2. Differential
paths are introduced in Section 4.3 and Sections 4.4.1
through 4.4.6 describe how to construct partial and full
differential paths. Collision finding — the search for actual
near-collision blocks that satisfy a given differential path
— is treated in Section 4.5 and an optional differential
path preprocessing step to improve collision finding is
presented in Section 4.5.3. Section 4.6 gives some details
of our implementations and the complexity analysis is
treated in Section 4.7. Finally, we present a practical
chosen-prefix collision attack using a single near-collision
block in Section 4.8.

Chosen-prefix collisions for MD5 and applications 329

Table 2 Family of partial differential paths using δm11 = ±2p−10 mod 32, where s0, . . . , sw′ ∈ {−1, 0,+1} and w′ = min(w, 31− p)
for a fixed w ≥ 0

t δQt δFt δWt δTt δRt RCt

31 ∓2p−10 mod 32

32 0

33 0
34 0 0 ±2p−10 mod 32 0 0 16

35− 60 0 0 0 0 0 ·

61 0 0 ±2p−10 mod 32 ±2p−10 mod 32 ±2p 10
62 ±2p 0 0 0 0 15
63 ±2p 0 0 0 0 21
64 ±2p

+
∑w′

λ=0 sλ2
p+21+λ mod 32

Note: Interesting values for the parameter w are between 2 and 5.

4.1 Outline of the collision construction

A chosen-prefix collision for MD5 is a pair of messages
M and M ′ that consist of arbitrarily chosen prefixes P
and P ′ (not necessarily of the same length), together with
constructed suffixes S and S′, such that M = P∥S, M ′ =
P ′∥S′, and MD5(M) = MD5(M ′). The suffixes consist of
three parts: padding bitstrings Sr, S′

r , followed by ‘birthday’
bitstrings Sb, S

′
b both of bitlength 64 + k, where 0 ≤ k ≤

32 is a parameter, followed by bitstrings Sc, S
′
c each

consisting of a sequence of near-collision blocks. The
padding bitstrings are chosen such that the bitlengths of
P∥Sr and P ′∥S′

r are both equal to 512n− 64− k for
a positive integer n. The birthday bitstrings Sb, S

′
b are

determined in such a way that application of the MD5
compression function to P∥Sr∥Sb and P ′∥S′

r∥S′
b results in

IHVn and IHV′
n, respectively and in the notation from

Section 2.3.1, for which δIHVn has a certain desirable
property that is explained below.

The idea is to eliminate the difference δIHVn

in r consecutive steps, for some r, by writing Sc =
Sc,1∥Sc,2∥ . . . ∥Sc,r and S′

c = S′
c,1∥S′

c,2∥ . . . ∥S′
c,r for r pairs

of near-collision blocks (Sc,j , S
′
c,j) for 1 ≤ j ≤ r. For

each pair of near-collision blocks (Sc,j , S
′
c,j) we need to

construct a differential path (see Section 4.3 for an informal
definition of this term) such that the difference vector
δIHVn+j has lower weight than δIHVn+j−1, until after r
pairs we have reached δIHVn+r = (0, 0, 0, 0).

Fix some j and let Sc,j consist of 32-bit words mi,
for 0 ≤ i < 16. We fix fifteen of the δmi as 0 and allow
only δm11 to be ±2p−10 mod 32 with as yet unspecified p
with 0 ≤ p < 32 (note the slight abuse of notation, since
we define message block differences without specifying
the message blocks themselves). This was suggested by
Xiaoyun Wang because with this type of message difference
the number of bitconditions over the final two and a half
rounds can be kept low, which turns out to be helpful while
constructing collisions. For steps t = 34 up to t = 61 the
differential path is fully determined by δm11 as illustrated
in Table 2. The greater variability for the steps not specified
in Table 2 does not need to be fixed at this point. In the
last two steps there is a greater degree of freedom specified
by the integer w ≥ 0 that determines which and how many

IHV differences can be eliminated per pair of near-collision
blocks. A larger w allows more eliminations by means
of additional differential paths. The latter have, however,
a smaller chance to be satisfied because they depend on
more (and thus less likely) carry propagations in ∆Q62 and
∆Q63. This effect contributes to the complexity of finding
the near-collision blocks satisfying the differential paths.
Varying w therefore leads to a trade-off between fewer
near-collision blocks and increased complexity to find them.

This entire construction of the pair of near-collision
blocks (Sc,j , S

′
c,j) will be done in a fully automated way

based on the choice of w and the values of IHVn+j−1 and
IHV′

n+j−1 as specified. It follows from equation (3) and
the rows for t ≥ 61 in Table 2 that a differential path with
δm11 = ±2p−10 mod 32 would add a tuple

±

0, 2p +

w′∑
λ=0

sλ2
p+21+λ mod 32, 2p, 2p


to δIHVn+j−1, with notation as in Table 2. This is set
forth in more detail below. A sequence of such tuples
is too restrictive to eliminate arbitrary δIHVn: although
differences in the b component can be handled using
a number of near-collision block pairs, only identical
differences can be removed from the c and d components
and the a-component differences are not affected at all. We
therefore make sure that δIHVn has the desirable property,
as referred to above, that it can be eliminated using these
tuples. This is done in the birthday search step where
birthday bitstrings Sb and S′

b are determined such that
δIHVn = (0, δb, δc, δc) for some δb and δc. A δIHVn of
this form corresponds to a collision (a, c− d) = (a′, c′ −
d′) between IHVn = (a, b, c, d) and IHV′

n = (a′, b′, c′, d′).
With a search space of only 64 bits, such a collision can
easily be found. Since the number of near-collision block
pairs and the effort required to find them depends in part
on the number of bit differences between δb and δc, it may
pay off to lower that number at the cost of extending the
birthday search space. For instance, for any k with 0 ≤ k ≤
32, a collision (a, c− d, c− b mod 2k) = (a′, c′ − d′, c′ −
b′ mod 2k) with a (64 + k)-bit search space results in δc−
δb ≡ 0 mod 2k and thus, on average, just (32− k)/3 bit
differences between δb and δc. Determining such Sb and S′

b

330 Stevens et al.

can be expected to require on the order of
√

2π
2 2

64+k =
√
π232+(k/2) calls to the MD5 compression function. More

on the birthday search in Section 4.2.
In the conference version (Stevens et al., 2007) of this
paper we used only the differential paths with δQ64 = ±2p.
This forced us to use the harder to satisfy constraint
δIHVn = (0, δc, δc, δc) with a search space consisting of 96
bits and an expected birthda search cost of

√
π248 MD5

compression function calls, which is the same as choosing
k = 32 above. The top part of Figure 3 visualises the
corresponding construction of near-collision blocks for our
colliding certificate example from Stevens et al. (2007).
The horizontal lines represent the NAFs of δIHVi for
i = 0, 1, . . . , 21. In this example P∥Sr∥Sb consists of 4
blocks (i.e., n = 4), so that three identical groups of bit
differences are left at i = 4. As shown in Figure 3 each of
these groups consists of 8 bits. The bits in each group of
eight are eliminated simultaneously with the corresponding
bits in the other groups of eight by 8 pairs of near-collision
blocks, so that at i = 12 a full collision is reached. The
blocks after that are identical for the two messages, so that
the collision is retained.

The lower part of Figure 3 visualises the improved
construction as used for the example from Section 5.2. In
that example P∥Sr∥Sb consists of 8 blocks (i.e., n = 8)
and results in a difference vector δIHVn of the form
(0, δb, δc, δc). For any reasonable w, e.g., w = 2, we then
select a sequence of differential paths from the family given
in Table 2 to eliminate δIHVn. For this example, 3 pairs
of near-collision blocks sufficed to reach a collision. In the
next paragraphs we show how this can be done for general
δIHVn of the form (0, δb, δc, δc).

Figure 3 (a) δIHVs for the colliding certificates with
different distinguished names (b) δIHVs for the
colliding website certificate and the rogue CA
certificate (see online version for colours)

(a)

(b)

Let, for any such difference vector, δc =
∑

i ki2
i and δb−

δc =
∑

i li2
i, where (ki)

31
i=0 and (li)

31
i=0 are NAFs. If δc ̸=

0, let i be such that ki ̸= 0. Using a differential path from
Table 2 with δm11 = −ki2

i−10 mod 32 we can eliminate the
difference ki2

i in δc and δd and simultaneously change δb
by

ki2
i +

i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2
λ,

where w′ = min(w, 31− i). Here one needs to be
careful that each non-zero lλ is eliminated only once in

the case when multiple i’s allow the elimination of lλ.
Doing this for all non-zero ki’s in the NAF of δc will
result in a difference vector (0, δb̂, 0, 0) where δb̂ may be
different from δb, and where the weight w(NAF(δb̂)) may
be smaller or larger than w(NAF(δb)). More precisely,
δb̂ =

∑31
λ=0 eλlλ2

λ, where eλ = 0 if there exist indices i
and j with 0 ≤ j ≤ min(w, 31− i) such that ki = ±1 and
λ = 21 + i+ j mod 32 and eλ = 1 otherwise.

The bits in δb̂ can be eliminated as follows. Let
(l̂i)

31
i=0 = NAF(δb̂) and let j be such that l̂j = ±1 and

j − 21 mod 32 is minimal. Then the difference
∑j+w′

i=j l̂i2
i

with w′ = min(w, 31− (j − 21 mod 32)) can be eliminated
from δb̂ using δm11 = 2j−31 mod 32, which introduces a
new difference 2j−21 mod 32 in δb, δc and δd. This
latter difference is eliminated using δm11 = −2j−31 mod 32,
which then leads to a new difference vector (0, δb, 0, 0)

with w(NAF(δb)) < w(NAF(δb̂)). The process is repeated
until all differences have been eliminated.

Algorithm 1 summarises the construction of pairs of
near-collision blocks set forth above. The details of the
construction are described in the sections below.

4.2 Birthday search

A birthday search on a search space V is generally
performed as in (van Oorschot and Wiener, 1999)
by iterating a properly chosen deterministic function
f : V → V and by assuming that the points of V thus
visited form a ‘random walk’, also called a trail. After
approximately

√
π|V |/2 iterations one may expect to have

encountered a collision, i.e., different points x and y such
that f(x) = f(y). As the entire trail can in practice not
be stored and to take advantage of parallelism, different
pseudo-random walks are generated, of which only the
startpoints, lengths, and endpoints are kept. The endpoints
are ‘distinguished points’, points with an easily recognisable
bitpattern depending on |V |, available storage and other
characteristics. The average length of a walk is inversely
proportional to the fraction of distinguished points in
V . Since intersecting walks share their endpoints, they
can easily be detected. The collision point can then
be recomputed given the startpoints and lengths of the
two colliding walks. The expected cost (i.e., number of
evaluations of f) to generate the walks is denoted by Ctr
and the expected cost of the recomputation to determine
collision points is denoted by Ccoll.

In our case the search space V and iteration function
f depend on an integer parameter k ∈ {0, 1, 2, . . . , 32} as
explained in Section 4.1. The birthday collision that we
try to find, however, needs to satisfy several additional
conditions that cannot be captured by V , f , or k:
the prefixes associated with x and y in a birthday
collision f(x) = f(y) must be different, and the required
number of pairs of near-collision blocks may be at most
r when allowing differential paths with parameter w.
The probability that a collision satisfies all requirements
depends not only on the choice of r and w, but also on the

Chosen-prefix collisions for MD5 and applications 331

value for k, and is denoted by pr,k,w. As a consequence, on
average 1/pr,k,w birthday collisions have to be found.

Assuming that M bytes of memory are available and
that a single trail requires 28 bytes of storage (namely 96
bits for the start- and endpoint each, and 32 for the length),
this leads to the following expressions for the birthday
search costs:

Ctr(r, k, w) =

√
π · |V |
2pr,k,w

,

Ccoll(r, k, w,M) =
2.5 · 28 · Ctr(r, k, w)

pr,k,w ·M
,

where |V | = 264+k, and the factor 2.5 is explained in
Section 3 of van Oorschot and Wiener (1999).

For M = 70/pr,k,w as given in the last column of
Table 3 and in the more extensive tables in Appendix C,
the two costs are equal, and the overall expected birthday
costs becomes 2Ctr(r, k, w). However, if the cost at run
time of finding the trails exceeds the expected cost by a
factor λ, then the cost to determine the resulting birthday
collisions can be expected to increase by a factor λ2. Hence,
in practice it is advisable to choose M considerably larger.
For ϵ ≤ 1, using M = 70/(pr,k,w · ϵ) bytes of memory
will result in Ccoll ≈ ϵ · Ctr and the expected overall
birthday search cost will be about (1 + ϵ) · Ctr(r, k, w)
MD5 compressions.

4.3 Differential paths and bitconditions

In step (e) of Algorithm 1, MD5Compress is applied to
the respective intermediate hash values IHV and IHV′

and message blocks B and B′. Here, IHV and IHV′

were constructed in such a way that δIHV has a specific
structure, as set forth above. Furthermore, the blocks B
and B′ were constructed such that δB has a pre-specified
low-weight value (cf. step (b) of Algorithm 1) and such that
throughout the 64 steps of both calls to MD5Compress the
propagation of differences between corresponding variables
follows a specific precise description, as determined in
step (c) of Algorithm 1. In this section we describe how
this description, which is called a differential path for
MD5Compress, is determined based on IHV, IHV′ and δB.
According to equations (2),

δFt = ft(Q
′
t, Q

′
t−1, Q

′
t−2)− ft(Qt, Qt−1, Qt−2),

δTt = δFt + δQt−3 + δWt,

δRt = RL(T ′
t , RCt)−RL(Tt, RCt), and

δQt+1 = δQt + δRt.

(4)

Algorithm 1 Construction of pairs of near-collision blocks

Given n-block P∥Sr∥Sb and P ′∥S′
r∥S′

b, the corresponding resulting IHVn and IHV′
n, and a value for w, a pair of bitstrings Sc, S′

c
is constructed consisting of sequences of near-collision blocks such that M = P∥Sr∥Sb∥Sc and M ′ = P ′∥S′

r∥S′
b∥S

′
c

satisfy MD5(M) = MD5(M ′). This is done by performing in succession steps 1, 2 and 3 below.
1. Let j = 0 and let Sc and S′

c be two bitstrings of length zero.
2. Let δIHVn+j = (0, δb, δc, δc). If δc = 0 then proceed to step 3. Let (ki)31i=0 = NAF(δc) and (li)

31
i=0 = NAF(δb− δc).

Choose any i for which ki ̸= 0 and let w′ = min(w, 31− i). Perform steps (a) through (f):
(a) Increase j by 1.
(b) Let δSc,j = (δm0, δm1, . . . , δm15) with δm11 = −ki2

i−10 mod 32 and δmt = 0 for 0 ≤ t < 16 and t ̸= 11.
(c) Given δIHVn+j−1 = IHV′

n+j−1 − IHVn+j−1 and δSc,j , construct a few differential paths based on Table 2 with

δQ61 = 0, δQ64 = −ki2
i −

i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2
λ, δQ63 = δQ62 = −ki2

i.

How this is done is described in Sections 4.3 and 4.4.
(d) Find message blocks Sc,j and S′

c,j = Sc,j + δSc,j that satisfy one of the constructed differential paths. How this is
done is described in Section 4.5. If proper message blocks cannot be found, back up to step (c) to find more differential paths.

(e) Compute IHVn+j = MD5Compress(IHVn+j−1, Sc,j),
IHV′

n+j = MD5Compress(IHV′
n+j−1, S

′
c,j), and append Sc,j and S′

c,j to Sc and S′
c, respectively.

(f) Repeat step 2

3. Let δIHVn+j = (0, δb̂, 0, 0). If δb̂ = 0 then terminate. Let (li)31i=0 = NAF(δb̂). Choose i such that li ̸= 0 and i− 21 mod 32 is minimal
and let w′ = min(w, 31− (i− 21 mod 32)). Perform steps (a) through (e) as above with δm11 = 2i−31 mod 32 as opposed to
δm11 = −ki2

i−10 mod 32 in step (b) and in steps (c) and (d) with

δQ61 = 0, δQ64 = 2i−21 mod 32 −
i+w′ mod 32∑

λ=i

lλ2
λ, δQ63 = δQ62 = 2i−21 mod 32.

Perform steps (a) through (e) again with δm11 = −2i−31 mod 32 in step (b) and
δQ61 = 0, δQ64 = δQ63 = δQ62 = −2i−21 mod 32

in steps (c) and (d). Repeat step 3.

332 Stevens et al.

Table 3 Expected birthday costs for k = 0

k = 0 w = 0 w = 1 w = 2 w = 3

r p Ctr M p Ctr M p Ctr M p Ctr M

16 5.9 35.27 1MB 1.75 33.2 1MB 1.01 32.83 1MB 1. 32.83 1MB
15 7.2 35.92 1MB 2.39 33.52 1MB 1.06 32.86 1MB 1. 32.83 1MB
14 8.71 36.68 1MB 3.37 34.01 1MB 1.27 32.96 1MB 1.04 32.84 1MB
13 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
12 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
11 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
10 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
9 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
8 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
7 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
6 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
5 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 34. 49.33 2TB 30.19 47.42 81GB

Notes: The columns p, Ctr and M denote the values of − log2(pr,k,w), log2(Ctr(r, k, w)) and the minimum required
memory M such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w), respectively. The values for pr,k,w were estimated from
Algorithm 1. See Appendix C for more extensive tables.

It follows that neither δFt nor δRt is uniquely determined
given the input differences (δQt, δQt−1, δQt−2) and
δTt, respectively. Therefore a more flexible tool
is required to describe in a succinct way a valid
propagation of differences, starting from IHV =
(Q−3, Q0, Q−1, Q−2), IHV′ = (Q′

−3, Q
′
0, Q

′
−1, Q

′
−2) and

δB and, in our case, resulting in the desired final
differences (δQ61, δQ62, δQ63, δQ64) as defined in Table 2
and as targeted by step (c) of Algorithm 1.

4.3.1 Bitconditions

Differential paths are described using bitconditions qt =
(qt[i])

31
i=0 on (Qt, Q

′
t), where each bitcondition qt[i]

specifies a restriction on the bits Qt[i] and Q′
t[i] possibly

including values of other bits Ql[i]. As we will show in
this section, we can specify the values of δQt, δFt for
all t using bitconditions on (Qt, Q

′
t), which also determine

δTt and δRt = δQt+1 − δQt according to the difference
equations (4). Thus, a differential path can be seen as a
68× 32 matrix (qt)

64
t=−3 of bitconditions. In general, the

first four rows (qt)0t=−3 are fully determined by the values
of IHV and IHV′. Furthermore, in our specific case where
δB consists of just δm11 = ±2d, the final 34 rows (qt)64t=31

correspond to Table 2 and one of the choices made in
step (c) of Algorithm 1.

Table 4 Differential bitconditions, δQt =
∑31

i=0 2
iki and

∆Qt = (ki)

qt[i] Condition on (Qt[i], Q′
t[i]) ki

. Qt[i] = Q′
t[i] 0

+ Qt[i] = 0, Q′
t[i] = 1 +1

- Qt[i] = 1, Q′
t[i] = 0 −1

Bitconditions are denoted using symbols such as
0, 1, +, -, ^, . . ., as defined in Tables 4 and 5, to facilitate the
representation of a differential path. A direct bitcondition
qt[i] does not involve any other indices than t and i,

whereas an indirect bitcondition involves one of the row
indices t± 1 or t± 2 as well. Table 4 lists differential
bitconditions qt[i], which are direct bitconditions that
specify the value ki = Q′

t[i]−Qt[i]. A full row of
differential bitconditions qt = (ki)

31
i=0 fixes a BSDR

of δQt =
∑31

i=0 2
iki. Table 5 lists boolean function

bitconditions, which are direct or indirect. They are used to
resolve a possible ambiguity in

∆Ft[[i]]

= ft(Q
′
t[i], Q

′
t−1[i], Q

′
t−2[i])

−ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0,+1}

that may be caused by different possible values for
Qj [i], Q

′
j [i] given differential bitconditions qj [i]. As an

example, for t = 0 and (qt[i], qt−1[i], qt−2[i]) = (., +, -)
(cf. Table 4) there is an ambiguity:

if Qt[i] = Q′
t[i] = 0 then ft(0, 1, 0)− ft(0, 0, 1) = −1,

if Qt[i] = Q′
t[i] = 1 then ft(1, 1, 0)− ft(1, 0, 1) = +1.

To resolve this ambiguity the triple of bitconditions (.,+,-)
can be replaced by (0,+,-) or (1,+,-) for the two cases given
above, respectively.

All boolean function bitconditions include the
constant bitcondition Qt[i] = Q′

t[i], so boolean function
bitconditions do not affect δQt. Furthermore, the indirect
boolean function bitconditions never involve bitconditions
+ or -, since those bitconditions can always be replaced
by one of the direct ones ., 0 or 1. For the indirect
bitconditions we distinguish between ‘forward’ and
‘backward’ ones, because that makes it easier to resolve
an ambiguity later on in our step-wise approach. In a valid
(partial) differential path one can easily convert forward
bitconditions into backward bitconditions and vice versa.

Chosen-prefix collisions for MD5 and applications 333

Table 5 Boolean function bitconditions

qt[i] Condition on (Qt[i], Q′
t[i]) Direct/indirect Direction

0 Qt[i] = Q′
t[i] = 0 Direct

1 Qt[i] = Q′
t[i] = 1 Direct

^ Qt[i] = Q′
t[i] = Qt−1[i] Indirect Backward

v Qt[i] = Q′
t[i] = Qt+1[i] Indirect Forward

! Qt[i] = Q′
t[i] = Qt−1[i] Indirect Backward

y Qt[i] = Q′
t[i] = Qt+1[i] Indirect Forward

m Qt[i] = Q′
t[i] = Qt−2[i] Indirect Backward

w Qt[i] = Q′
t[i] = Qt+2[i] Indirect Forward

Qt[i] = Q′
t[i] = Qt−2[i] Indirect Backward

h Qt[i] = Q′
t[i] = Qt+2[i] Indirect Forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) Indirect Backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) Indirect Forward

When all δQt and δFt have been determined by
bitconditions then also δTt and δRt = δQt+1 − δQt can be
determined, which together describe the bitwise rotation of
δTt in each step. This does, however, not imply that the left
rotate of δTt over RCt positions is equal to δRt or with
what probability that happens. See also Section 4.4.4.

The differential paths we constructed for
several of our examples can be found at
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

4.4 Differential path construction

The basic idea to construct a differential path is to
construct a partial lower differential path over steps t =
0, 1, . . . , 11 and a partial upper differential path over steps
t = 63, 62, . . . , 16, so that the Qi involved in the partial
paths meet but do not overlap. Given the two partial paths,
we try to connect them over the remaining 4 steps into one
full differential path which hopefully succeeds with some
non-negligible probability. Using many lower and upper
differential paths and trying to connect each combination of
a lower and an upper differential path will eventually result
in full differential paths. Constructing the partial lower path
can be done by starting with bitconditions q−3, q−2, q−1,
q0 that are equivalent to the values of IHV, IHV′ and then
extend this step by step. Similarly the partial upper path
can be constructed by extending the partial paths in Table 2
step by step. In both constructions the transitions between
the steps must be compatible with the targeted message
difference δB. To summarise, step (c) of Algorithm 1 in
Section 4.1 consists of the following substeps:

c.1 Given IHV and IHV′, determine the corresponding
bitconditions (qi)0i=−3.

c.2 Generate partial lower differential paths by extending
(qi)

0
i=−3 forward up to step t = 11. This is explained

in Sections 4.4.1 to 4.4.4.

c.3 Generate partial upper differential paths by extending
the path specified by Table 2 backward from t = 31
down to t = 16. This is explained in Section 4.4.5.

c.4 Try to connect all pairs of lower and upper differential

paths over t = 12, 13, 14, 15 to generate as many full
differential paths as possible given the outcome of the
two previous steps. This is explained in Section 4.4.6.

4.4.1 Extending differential paths forward

In general, when constructing a differential path one must
first fix the message block differences δm0, . . . , δm15. In
our particular case this is achieved by the choice of δSc,j
in step (b) of Algorithm 1. Suppose we have a partial
differential path consisting of at least bitconditions qt−1

and qt−2 and that the differences δQt and δQt−3 are
known. In step c.2 of Algorithm 1, we want to extend
this partial differential path forward with step t resulting
in the difference δQt+1, bitconditions qt, and additional
bitconditions qt−1, qt−2 (cf. Section 4.4).

We assume that all indirect bitconditions in qt−1 and
qt−2 are forward and involve only bits of Qt−1. If we
already have qt as opposed to just the value δQt (e.g. q0
resulting from given values IHV, IHV′), then we can skip
Section 4.4.2 and continue at Section 4.4.3.

4.4.2 Carry propagation

First we select bitconditions qt based on the value δQt.
Since we want to construct differential paths with as few
bitconditions as possible, but also want to be able to
randomise the process, any low weight BSDR (such as the
NAF) of δQt may be chosen, which then translates into
a possible choice for qt as in Table 4. For instance, with
δQt = 28, we may choose qt[8] = ‘+’, or qt[8] = ‘-’ and
qt[9] = ‘+’ (with in either case all other qt[i] = ‘.’).

4.4.3 Boolean function

For some i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i]) be
any triple of bitconditions such that all indirect
bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i].
For any such triple (a, b, c) let Uabc denote
the set of tuples of values (x, x′, y, y′, z, z′) =

334 Stevens et al.

(Qt[i], Q
′
t[i], Qt−1[i], Q

′
t−1[i], Qt−2[i], Q

′
t−2[i]) satisfying

it:

Uabc =
{
(x, x′, y, y′, z, z′) ∈ {0, 1}6

satisfies bitconditions (a, b, c)
}
.

The cardinality of Uabc indicates the amount of freedom left
by (a, b, c). Triples (a, b, c) for which Uabc = ∅ cannot be
part of a valid differential path and are thus of no interest.
The set of all triples (a, b, c) as above and with Uabc ̸= ∅ is
denoted by Ft.

Each (a, b, c) ∈ Ft induces a set Vabc of possible
boolean function differences ∆Ft[[i]] = ft(x

′, y′, z′)−
ft(x, y, z):

Vabc

= {ft(x′, y′, z′)− ft(x, y, z) | (x, x′, y, y′, z, z′)

∈ Uabc} ⊂ {−1, 0,+1}.

A triple (d, e, f) ∈ Ft with |Vdef | = 1 leaves no ambiguity
in ∆Ft[[i]] and is therefore called a solution. Let St ⊂ Ft

be the set of solutions.
For arbitrary (a, b, c) ∈ Ft and for each g ∈ Vabc, we

define Wabc,g as the subset of St consisting of all solutions
that are compatible with (a, b, c) and that have g as boolean
function difference:

Wabc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vdef = {g}} .

For each g ∈ Vabc there is always a triple (d, e, f) ∈ Wabc,g

consisting of direct bitconditions 01+- that suffices, i.e.,
fixes a certain tuple in Uabc. This implies that Wabc,g ̸=
∅. Despite this fact, we are specifically interested in
bitconditions (d, e, f) ∈ Wabc,g that maximise |Udef | as
such bitconditions maximise the amount of freedom in the
bits of Qt, Qt−1, Qt−2 while fully determining ∆Ft[[i]].

The direct and forward (resp. backward) boolean
function bitconditions were chosen such that for all t, i
and (a, b, c) ∈ Ft and for all g ∈ Vabc there exists a triple
(d, e, f) ∈ Wabc,g consisting only of direct and forward
(resp. backward) bitconditions such that{

(x, x′, y, y′, z, z′) ∈ Uabc∣∣ ft(x
′, y′, z′)− ft(x, y, z) = g

}
= Udef .

These boolean function bitconditions allow one to resolve
an ambiguity in an optimal way in the sense that they are
sufficient and necessary.

If the triple (d, e, f) is not unique, then for simplicity we
prefer direct over indirect bitconditions and short indirect
bitconditions (vy^!) over long indirect ones (whqm#?). For
given t, bitconditions (a, b, c), and g ∈ Vabc we define
FC(t, abc, g) = (d, e, f) as the preferred triple (d, e, f)
consisting of direct and forward bitconditions. Similarly,
we define BC(t, abc, g) as the preferred triple consisting
of direct and backward bitconditions. These functions are
easily determined and should be precomputed. They have
been tabulated in Appendix B in Tables B-1, B-2, B-3 and
B-4 grouped according to the four different round functions

F,G,H, I , and per table for all 27 possible triples (a, b, c)
of differential bitconditions.

To determine the differences δFt =
∑31

i=0 2
igi we

proceed as follows. For i = 0, 1, 2, . . . , 31 we assume
that we have valid bitconditions (a, b, c) = (qt[i], qt−1[i],
qt−2[i]) where only c may be indirect. If it is, it must
involve Qt−1[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1,
then there is no ambiguity and {gi} = Vabc. Otherwise, if
|Vabc| > 1, then we choose gi arbitrarily from Vabc and we
resolve the ambiguity by replacing bitconditions (a, b, c)
by FC(t, abc, gi). Once all gi and thus δFt have been
determined, δTt is determined as δFt + δQt−3 + δWt.

Note that in the next step t+ 1 our assumptions hold
again, since a is a direct bitcondition and if b is indirect
then it is forward and involves a. Bitconditions a and b may
be new compared to the previous step, namely if the triple
(a, b, c) was replaced by FC(t, abc, gi).

4.4.4 Bitwise rotation

The integer δTt as just determined does not uniquely
determine δRt = RL(T ′

t , n)−RL(Tt, n), where n = RCt

(cf. difference equations (4)). In this section we show how
to find the most likely δRt that corresponds to a given
δTt, i.e., the v for which |{X ∈ Z/232Z | v = RL(X +
δTt, n)−RL(X,n)}| is maximised

Any BSDR (k31, . . . , k32−n, k31−n, . . . , k0) of δTt

gives rise to a candidate δRt given by the BSDR
RL((ki), n) = (k31−n, . . . , k0, k31, . . . , k32−n). Two
BSDRs (ki) and (li) of δTt result in the same δRt if

31−n∑
i=0

2iki =

31−n∑
i=0

2ili and
31∑

i=32−n

2iki =

31∑
i=32−n

2ili.

This suggests the following approach. We define a
partition as a pair (α, β) of integers such that α+ β =
δTt mod 232, |α| < 232−n, |β| < 232 and 232−n|β. For any
partition (α, β), values ki ∈ {0,±1} for 0 ≤ i < 32 can be
found such that

α =

31−n∑
i=0

2iki and β =

31∑
i=32−n

2iki. (5)

With α+ β = δTt mod 232 it follows that (ki) is a BSDR
of δTt. Conversely, with (5) any BSDR (ki) of δTt defines
a partition, which we denote (ki) ≡ (α, β).

The rotation of a partition (α, β) is defined as

RL((α, β), n) = (2nα+ 2n−32β mod 232).

If (ki) ≡ (α, β), this matches RL((ki), n). The latter, as
seen above, is a candidate δRt, and we find that different
partitions give rise to different δRt candidates. Thus, to find
the most likely δRt, we define

p(α,β) = Pr[RL((α, β), n)

= RL(X + δTt, n)−RL(X,n)]

where X ranges over the 32-bit words, and show how
p(α,β) can be calculated.

Chosen-prefix collisions for MD5 and applications 335

Let x = δTt mod 232−n and y = (δTt − x) mod 232

with 0 ≤ x < 232−n and 0 ≤ y < 232. This gives rise to at
most 4 partitions:

• (α, β) = (x, y);

• (α, β) = (x, y − 232), if y ̸= 0;

• (α, β) = (x− 232−n, y + 232−n mod 232), if x ̸= 0;

• (α, β) = (x− 232−n, (y + 232−n mod 232)− 232),
if x ̸= 0 ∧ y + 232−n ̸= 232.

These are all possible partitions, so we find that δTt leads
to at most 4 different possibilities for δRt. It remains
to determine p(α,β) for the above partitions. For each of
the 4 possibilities this is done by counting the number
of 32-bit words X such that the BSDR defined by ki =
(X + δTt)[i]−X[i] satisfies (ki) ≡ (α, β). Considering the
(32− n) low-order bits, the probability that a given α

satisfies α =
∑31−n

i=0 ki follows from the number r of Y ’s
with 0 ≤ Y < 232−n such that 0 ≤ α+ Y < 232−n: if α <
0 then r = 232−n + α and if α ≥ 0 then r = 232−n − α.
Hence r = 232−n − |α| out of 232−n Y’s. Now assuming
α =

∑31−n
i=0 ki, there is no carry to the high-order bits and

the same argument can be used for β/232−n. Hence, we
conclude

p(α,β) =
232−n − |α|

232−n
· 2

n − |β|2n−32

2n
.

Note that these probabilities, corresponding to the at most 4
partitions above, indeed add up to 1. An equivalent result
was previously stated in Magnus Daum’s PhD thesis
(Daum, 2005; Section 4.1.3), although we provide a new
derivation.

In conclusion, all δRt that are compatible with a given
δTt can easily be determined, including the probabilities
that they occur. In Algorithm 1 we choose a partition (α, β)
for which p(α,β) is maximal and take δRt = RL((α, β), n).

A more straightforward approach (as previously used in
practice) would be to use δRt = RL(NAF(δTt), n). This
is in many cases the most likely choice, and matches
our desire to minimise the number of differences in δQt

and therefore also in δTt and δRt. Given δRt, we finally
determine δQt+1 as δQt + δRt.

4.4.5 Extending differential paths backward

Having dealt with the forward extension of step c.2 of
Algorithm 1 in Sections 4.4.2, 4.4.3 and 4.4.4, we now
consider the backward extension of step c.3 of Algorithm 1
(cf. Section 4.4). The backward construction follows the
same approach as the forward one. Our description relies
on the notation introduced in Section 4.4.3.

Suppose we have a partial differential path consisting of
at least bitconditions qt and qt−1 and that the differences
δQt+1 and δQt−2 are known. In step c.3 of Algorithm 1
we want to extend this partial differential path backward
with step t resulting in the difference δQt−3, bitconditions
qt−2, and additional bitconditions qt, qt−1. We assume that
all indirect bitconditions in qt and qt−1 are backward and
only involve bits of Qt−1.

We choose a low weight BSDR (such as the NAF) of
δQt−2, which then translates into a possible choice for qt−2

as in Table 4.
As in the last two paragraphs of Section 4.4.3, the

differences δFt =
∑31

i=0 2
igi are determined by assuming

for i = 0, 1, . . . , 31 that we have valid bitconditions
(a, b, c) = (qt[i], qt−1[i], qt−2[i]) where only a may be
indirect. If it is, it must involve Qt−1[i]. Therefore
(a, b, c) ∈ Ft. If |Vabc| = 1, then there is no ambiguity
and {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose
gi arbitrarily from Vabc and we resolve the ambiguity by
replacing bitconditions (a, b, c) by BC(t, abc, gi).

Algorithm 2 Construction of Ui+1 from Ui

Suppose Ui is given as {(δQ12, δQ13, δF12, δF13, δF14, δF15)} if i = 0 or if i > 0 constructed inductively based on Ui−1

by means of this algorithm.For each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui do the following:
1. Let Ui+1 = ∅ and (a, b, e, f) = (q15[i], q14[i], q11[i], q10[i])

2. For each bitcondition d = q12[i] ∈
{
{.} if q1[i] = 0
{-, +} if q1[i] = 1

do

3. Let q′1 = 0,−1 or +1 depending on whether d = ‘.’, ‘-’ or ‘+’, respectively
4. For each different f ′

1 ∈ {−f1[i],+f1[i]} ∩ Vdef do
5. Let (d′, e′, f ′) = FC(12, def, f ′

1)

6. For each bitcondition c = q13[i] ∈
{
{.} if q2[i] = 0
{-, +} if q2[i] = 1

do

7. Let q′2 = 0,−1 or +1 depending on whether c = ‘.’, ‘-’ or ‘+’, respectively
8. For each different f ′

2 ∈ {−f2[i],+f2[i]} ∩ Vcd′e′ do
9. Let (c′, d′′, e′′) = FC(13, cd′e′, f ′

2)

10. For each different f ′
3 ∈ {−f3[i],+f3[i]} ∩ Vbc′d′′ do

11. Let (b′, c′′, d′′′) = FC(14, bc′d′′, f ′
3)

12. For each different f ′
4 ∈ {−f4[i],+f4[i]} ∩ Vab′c′′ do

13. Let (a′, b′′, c′′′) = FC(15, ab′c′′, f ′
4)

14. If (q1 − 2iq′1, q2 − 2iq′2, f1 − 2if ′
1, f2 − 2if ′

2, f3 − 2if ′
3, f4 − 2if ′

4) is not in Ui+1 yet, insert it in Ui+1

336 Stevens et al.

To rotate δRt = δQt+1 − δQt over n = 32−RCt bits, we
may follow the framework as set forth in Section 4.4.4
with the roles of δRt and δTt reversed: choose a partition
(α, β) (of δRt as opposed to δTt) with maximal probability
and determine δTt = RL((α, β), n). Finally, we determine
δQt−3 = δTt − δFt − δWt to extend our partial differential
path backward with step t. Note that here also (i.e., as in the
last paragraph of Section 4.4.3) in the next step t− 1 our
assumptions hold again, since c is a direct bitcondition and
if b is indirect then it is backward and involves c (where b
and c are new if (a, b, c) was replaced by BC(t, abc, gi)).

4.4.6 Constructing full differential paths

Construction of a full differential path can be done as
follows. Assume that for some δQ−3 and bitconditions
q−2, q−1, q0 the forward construction as described in
Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4 has been carried
out up to step t = 11 (cf. step c.2 in Section 4.4).
Furthermore, assume that for some δQ64 and bitconditions
q63, q62, q61 the backward construction as described in
Section 4.4.5 has been carried out down to step t = 16 (cf.
step c.3 in Section 4.4). For each combination of forward
and backward partial differential paths thus found, this
leads to bitconditions q−2, q−1, . . . , q11, q14, q15, . . . , q63
and differences δQ−3, δQ12, δQ13, δQ64.

It remains to try and glue together each of these
combinations by finishing steps t = 12, 13, 14, 15 (cf. step
c.4 in Section 4.4) until a full differential path is found.
First, as in the backward extension in Section 4.4.5, for
t = 12, 13, 14, 15 we set δRt = δQt+1 − δQt, choose the
resulting δTt by left-rotating δRt over n−RCt bits, and
determine δFt = δTt − δWt − δQt−3.

We aim to complete the differential path by finding new
bitconditions q10, q11, . . ., q15 that are compatible with the
original bitconditions and that result in the required δQ12,
δQ13, δF12, δF13, δF14, δF15.

An efficient way to find the missing bitconditions is to
first test if they exist, and if so to backtrack to actually
construct them. For i = 0, 1, . . . , 32 we attempt to construct
a set Ui consisting of all tuples (q1, q2, f1, f2, f3, f4) of
32-bit integers with qj ≡ fk ≡ 0 mod 2i for j = 1, 2 and
k = 1, 2, 3, 4 such that for all ℓ = 0, 1, . . . , i− 1 there

exist compatible bitconditions q10[ℓ], q11[ℓ], . . . , q15[ℓ] that
determine ∆Q11+j [[ℓ]] and ∆F11+k[[ℓ]] below, and such that

δQ11+j = qj +

i−1∑
ℓ=0

2ℓ∆Q11+j [[ℓ]], j = 1, 2,

δF11+k = fk +

i−1∑
ℓ=0

2ℓ∆F11+k[[ℓ]], k = 1, 2, 3, 4.

(6)

From these conditions it follows that U0 must be
chosen as {(δQ12, δQ13, δF12, δF13, δF14, δF15)}. For
i = 1, 2, . . . , 32, we attempt to construct Ui based on Ui−1

using Algorithm 2. Per j there are at most two qj’s and
per k there are at most two fk’s that can satisfy the above
relations. Thsi implies that |Ui| ≤ 26 for each i, 0 ≤ i ≤
32. On the other hand, for each tuple in Ui there may in
principle be many different compatible sets of bitconditions.

As soon as we encounter an i for which Ui = ∅, we
know that the desired bitconditions do not exist, and that we
should try another combination of forward and backward
partial differential paths. If, however, we find U32 ̸= ∅
then it must be the case that U32 = {(0, 0, 0, 0, 0, 0)}.
Furthermore, in that case, every set of bitconditions that
leads to this non-empty U32 gives rise to a full differential
path, since equations (6) hold with i = 32. Thus, if U32 ̸= ∅,
there exists at least one valid path u0, u1, . . . , u32 with
ui ∈ Ui. For each valid path, the desired new bitconditions
(q15[i], q14[i], . . . , q10[i]) are (a′, b′′, c′′′, d′′′, e′′, f ′), which
can be found at step 13 of Algorithm 2.

4.5 Collision finding

Collision finding is the process of finding an actual message
block pair Sc,j , S

′
c,j that satisfies a given δSc,j and a

differential path based on a given IHVn+j−1, IHV′
n+j−1,

cf. step (d) of Algorithm 1. The differential paths as
originally considered by Wang and Yu (2005) consisted
of only 28 bitconditions. In that case, collision finding
can now be done in the equivalent of a mere 224.8

expected MD5 compression function calls, for arbitrary
IHV (Stevens, 2007). For chosen-prefix collisions, however,
the number of bitconditions is substantially larger, thereby

Table 6 Collision finding tunnels for MD5

Tunnel Change Affected Extra bitconditions⋆

T1 Q4[b] m3..m5,m7, Q21..Q64 Q5[b] = 1, Q6[b] = 1
T2 Q5[b] m4,m5,m7,m8, Q21..Q64 Q6[b] = 0

T3 Q14[b] m13..m15,m6, Q3,m2..m5, Q21..Q64 Q15[b] = Q16[b], Q3[b] free†
T4 Q9[b] m8..m10,m12, Q22..Q64 Q10[b] = 1, Q11[b] = 1
T5 Q10[b] m9,m10,m12,m13, Q22..Q64 Q11[b] = 0

T6 Q8[b] m7..m9, Q12,m12..m15, Q23..Q64 Q10[b] = 1, RR(Q12, 22)[b] free‡
T7 Q4[b] m3,m4,m7, Q24..Q64 Q5[b] = 0, Q6[b] = 1
T8 Q9[b] m8,m9,m12, Q25..Q64 Q10[b] = 0, Q11[b] = 1

Notes: ⋆ The extra bitconditions refer only to Qt[b] and not to Q′
t[b], so e.g. Q6[b] = 0 is met by both q6[b] = ‘0’ and q6[b] = ‘+’.

† Bitcondition q3[b] = ‘.’ and no other indirect bitconditions may involve Q3[b]. Set Q3[b] = Q14[b] to avoid carries in Q3.
‡ Bitcondition q12[b− 22 mod 32] = ‘.’ and no other indirect bitconditions may involve Q12[b− 22 mod 32].
Set Q12[b− 22 mod 32] = Q8[b] to avoid carries in Q12.

Chosen-prefix collisions for MD5 and applications 337

complicating collision finding. For instance, in one of our
earliest chosen-prefix collision constructions the differential
path has 71 bitconditions on Q20 up to Q63.

4.5.1 Tunnels

To find collisions for these more difficult differential paths,
we make extensive use of so-called tunnels (Klima, 2006).
A tunnel allows one to make small changes in a certain first
round Qt, in specific bits of Qt that are determined by the
full differential path q−3, q−2, . . . , q64 under consideration,
while causing changes in the second round only after some
step l that depends on the tunnel. However, each tunnel
implies that additional first-round bitconditions have to be
taken into account in the differential path, while leaving
freedom of choice for some of the bits in Qt that may be
changed. A tunnel’s strength is the number of independent
bits that can be changed in this first round Qt. Thus, a
tunnel of strength k allows us to generate 2k different
message blocks that all satisfy the differential path up to
and including step l in the second round.

The tunnels used in our collision finding algorithm are
shown in Table 6. For example, the first tunnel (T1) allows
changes in bits of Q4, in such a way that if Q4[b] is changed
for some bit position b with 0 ≤ b < 32, this causes extra
bitconditions Q5[b] = 1 and Q6[b] = 1, which have to be
incorporated in the differential path. Furthermore, because
tunnel T1 affects after the first round only Q21 through Q64

we have that l = 20, and T1 can be used to change message
blocks m3,m4,m5, and m7. To determine the strength of
a tunnel one first needs to incorporate the tunnel’s extra
bitconditions in the full differential path, and then count
the remaining amount of freedom in the first round Qt

that is changed by the tunnel. Given its dependence on
the differential path, a tunnel’s strength can thus not be
tabulated.

The most effective tunnel is T8. As indicated in the
table, it affects after the first round only Q25, . . . , Q64.
Over these rounds, Wang and Yu’s original differential
paths have 20 bitconditions whereas the chosen-prefix
collision differential paths that we manage to construct
have approximately 27 bitconditions. It follows that, given
enough tunnel strength, especially for T7 and T8, collision
finding can be done efficiently.

4.5.2 Algorithm

In our construction we performed the collision finding
using Algorithm 2. The conditions on the differential
path imposed by Algorithm 3 can easily be met because,
as mentioned in Section 4.3.1, forward and backward
bitconditions in the differential path are interchangeable.
Steps 10 through 15 of Algorithm 3 are its most
computationally intensive part, in particular for the toughest
differential paths in a chosen-prefix collision, so they
should be optimised. Greater tunnel strength significantly
reduces the time spent there, because after step 15 all
tunnels are used.

In practice, in step c.4 of Algorithm 1 (cf. Section 4.4)
we keep only those full differential paths for which tunnels
T1, T2, T4 and T5 satisfy a certain lower bound on their
strength. Furthermore, of the full differential paths kept,
we select those with the best properties such as high
tunnel strength and a low number of bitconditions on
Q18, . . . , Q63.

4.5.3 Rotation bitconditions

As mentioned below Algorithm 3, it is assumed there
that all rotations in the first round will be correct with
probability very close to 1. In Algorithm 3, Q1, . . . , Q16

are chosen in a non-sequential order and also changed at
various steps in the algorithm. Ensuring correct rotations in
the first round would be cumbersome and it would hardly
avoid wasting time in a state where one or more rotations
in the first round would fail due to the various tunnels.
However, as shown in Stevens (2006), if we use additional
bitconditions qt[i] we can (almost) ensure correct rotations
in the first round, thereby (almost) eliminating both the
effort to verify rotations and the wasted computing time.
This is explained below.

We use the notation introduced in Section 4.4.4. Given
δTt and δRt it is easy to determine which partition (α, β)
satisfies RL((α, β), RCt) = δRt. The probability that this
correct rotation holds is not necessarily p(α,β) because
it may be assumed that bitconditions qt and qt+1 hold
and these directly affect Rt = Qt+1 −Qt and thus Tt =
RR(Rt, RCt). Hence, using bitconditions qt and qt+1 we
can try and increase the probability of a correct rotation in
step t to (almost) 1 in the following way.

The other three partitions (of the four listed in
Section 4.4.4) correspond to the incorrect rotations. Those
partitions are of the form

(α̂, β̂) = (α− λ02
32−RCt , β + λ02

32−RCt + λRCt2
32),

λ0, λRCt ∈ {−1, 0,+1}

where either λ0 ̸= 0 or λRCt ̸= 0. They result in incorrect
δ̂Rt of the form

δ̂Rt = RL((α̂, β̂), RCt) = δRt + λ02
0 + λRCt

2RCt .

They are caused by a carry when adding δTt to Tt that does
or does not propagate: from bit position 32−RCt − 1 to
32−RCt for λ0 ̸= 0 and from bit position 31 to 32 for
λRCt

̸= 0. Since we chose the partition (α, β) with highest
probability, this usually means that we have to prevent
instead of ensure those propagations in order to decrease
the probability that λ0 ̸= 0 or λRCt ̸= 0.

To almost guarantee proper rotations in each step of
Algorithm 3, additional bitconditions can be determined by
hand, as shown in Stevens (2006). It was seen that adding
bitconditions on Qt, Qt+1 around bit positions 31−RCt +
i and lower helps preventing λi ̸= 0. This can be automated
using a limited brute-force search, separately handling the
cases λ0 ̸= 0 and λRCt ̸= 0.

338 Stevens et al.

Algorithm 3 Collision finding algorithm

Given a full differential path q−3, . . . , q64 consisting of only direct and backward bitconditions and the set T1, . . . , T8 of tunnels
from Table 6, perform the following steps:
1. Determine for all tunnels for which bits b the extra bitconditions as shown in Table 6 can be met. For each possible case, apply

compatible bitconditions to enforce the extra bitconditions and change the bitconditions qt[b] of the changed or affected Qt[b] in the
first round from ‘.’ to ‘0’.

2. Perform the steps below until a collision block has been found.
3. Select Q1, Q2, Q13, . . . , Q16 such that q1, q2, q13, . . . , q16 hold.
4. Compute m1, Q17.
5. If q17 holds and the rotation for t = 16 is successful, then proceed.
6. Store the set Z of all pairs (Q1, Q2) meeting q1, q2 that do not change m1 and bits of Q2 involved in q3.
7. For all Q3, . . . , Q7 meeting q3, . . . , q7 do:
8. Compute m6, Q18.
9. If q18 holds and the rotation for t = 17 is successful, then proceed.
10. For all Q8, . . . , Q12 meeting q8, . . . , q12 do:
11. Compute m11, Q19.
12. If q19 holds and the rotation for t = 18 is successful, then proceed.
13. For all (Q1, Q2) in Z do:
14. Compute m0, Q20.
15. If q20 holds and the rotation for t = 19 is successful, then proceed.
16. For all values of the bits of tunnels T1, T2, T3 do:
17. Set the bits to those values and compute m5, Q21.
18. If q21 holds and the rotation for t = 20 is successful, then proceed.
19. For all values of the bits of tunnels T4, T5 do:
20. Set the bits to those values and compute m10, Q22.
21. If q22 holds and the rotation for t = 21 is successful, then proceed.
22. For all values of the bits of tunnel T6 do:
23. Set the bits to those values and compute m15, Q23.
24. If q23 holds and the rotation for t = 22 is successful, then proceed.
25. For all values of the bits of tunnel T7 do:
26. Set the bits to those values and compute m4, Q24.
27. If q24 holds and the rotation for t = 23 is successful, then proceed.
28. For all values of the bits of tunnel T8 do:
29. Set the bits to those values and compute m9, Q25.
30. If q25 holds and the rotation for t = 24 is successful, then proceed.
31. Compute m0, . . . ,m15, Q26, . . . , Q64 and Q′

1, . . . , Q
′
64.

32. If δ̂Qt = Q′
t −Qt agrees with qt for t = 61, 62, 63, 64, return M,M ′.

Computation of mi and Qi is performed at t = i and t = i− 1, respectively.
We assume that the rotations in the first round have probability very close to 1 to be correct, and therefore do not verify them.
This is further explained in Section 4.5.3.

Let i ∈ {0, RCt}. Given bitconditions qt, qt+1, we estimate
Pr[λi ̸= 0|qt, qt+1] by sampling a small set of Q̂t, Q̂t+1

satisfying qt, qt+1, e.g. of size 211, and determining the
fraction where λi = NAF(δ̂Rt − δRt)[[i]] ̸= 0 using

δ̂Rt = RL(RR(Q̂t+1 − Q̂t, RCt) + δTt, RCt).

Using this approach, we estimate the probability that λi =
0 by selecting a small search bound B and exhaustively
trying all combinations of additional bitconditions on
Qt[b], Qt+1[b] for b = 31−RCt + i−B, . . . , 31−RCt +
i. Finally, if there are any bitconditions (q′t, q

′
t+1) for

which Pr[λi ̸= 0|q′t, q′t+1] is negligible, we select the
pair (q′t, q

′
t+1) that leads to the smallest number of

additional bitconditions and for which Pr[λ0 = λRCt =

0|qt−1, q
′
t] and Pr[λ0 = λRCt = 0|q′t+1, qt+2] do not

decrease significantly for step t− 1 and t+ 1, respectively.

4.6 Implementation remarks

Our software to construct chosen-prefix collisions consists
of five main components that perform the following tasks:

1 the birthday search (with a special implementation for
Sony’s PlayStation 3)

2 forward extension of a given set of partial lower
differential paths by a given step t, saving only the paths
with the fewest bitconditions

Chosen-prefix collisions for MD5 and applications 339

3 backward extension of a given set of partial upper
differential paths by a given step t, saving only the paths
with the fewest bitconditions

4 attempt to connect all combinations of given lower and
upper differential paths

5 coordinate the four earlier tasks by preparing the
required inputfiles, collect the outputs, and search for
near-collision blocks.

These tasks are carried out as described in the earlier
sections. A few remarks are in order. The first task
is the most computationally expensive one and consists
mostly of simple applications of the MD5 compression
function. It turns out that the Cell processor, contained in
the PlayStation 3 game console, can be made to perform
this task about 30 times faster than a regular 32-bit PC
core. More details on the peculiarities of the PlayStation 3
implementation are described in Section 5.2.2.

For the second and third task we exhaustively try all
limited weight BSDRs of δQt, all possible δFt’s, and
we use the highest-probability rotation. We keep at most
a preset number of paths with the lowest number of
bitconditions that have a preset minimum total strength over
tunnels T1, T2, T4, and T5. Each of the programs is designed
to execute several separate but parallel threads.

4.7 Complexity analysis

The overall complexity of the chosen-prefix collision attack
depends on the parameters used for the birthday search
and the construction of pairs of near-collision blocks. This
involves various trade-offs and is described in this section.

The birthday search complexity depends on the
parameter w (defining the family of differential paths), the
upper bound on the number r of pairs of near-collision
blocks, the size 264+k of the search space, and the
amount of available memory M . For various parameter
choices of r, k and w we have tabulated the heuristically
determined expected birthday search complexities and
memory requirements in Appendix C (in practice it is
advisable to use a small factor more memory than required
to achieve Ccoll ≪ Ctr). Given r, w and M , the optimal
value for k and the resulting birthday complexity can thus
easily be looked up. When r is left free, one can balance
the birthday complexity and the complexity of constructing
r pairs of near-collision blocks.

Each pair of near-collision blocks requires construction
of a set of full differential paths followed by the actual
construction of the pair of near-collision blocks. The
complexity of the former construction depends on several
parameter choices, such as the size of the sets of lower
and upper differential paths, and the restraints used when
selecting BSDRs for a δQt. Naturally, a higher overall
quality of the resulting complete differential paths, i.e.,
a low number of overall bitconditions and a high total
tunnel strength, generally results when more effort is put
into the construction. For practical purposes we have found
parameters sufficient for almost all cases (as applicable to

the chosen-prefix collision attack) that have an average total
complexity equivalent to roughly 235 MD5 compressions.

The complexity of the collision finding, i.e., the
construction of a pair of near-collision blocks, depends on
the parameter w, the total tunnel strength and the number
of bitconditions in the last 2.5 rounds. For small w = 0, 1, 2
and paths based on Table 2, the construction requires on
average roughly the equivalent of 234 MD5 compressions.
Combined with the construction of the differential paths,
this leads to the rough overall estimate of about 235.6 MD5
compressions to find a single pair of near-collision blocks
for a chosen-prefix collision attack.

With w = 2 and optimising for overall complexity this
leads to the optimal parameter choices r = 9 and k = 0.
For these choices, the birthday search cost is about 237

MD5 compressions and constructing the r = 9 pairs of
near-collision blocks costs about 238.8 MD5 compressions.
The overall complexity is thus estimated at roughly 239.1

MD5 compressions, which takes about 35 hours on a
single PC-core. For this parameter choice the memory
requirements for the birthday search are very low, even
negligible compared to the several hundreds of MBs
required for the construction of the differential paths.

With more specific demands, such as a small number
r of near-collision blocks possibly in combination with
a relatively low M , the overall complexity will increase.
As an example, our rogue CA construction required at
most r = 3 near-collision blocks, and using M = 5TB
this results in an overall complexity of about 249 MD5
compressions.

4.8 Single-block chosen-prefix collision

Using a different approach it is even possible to construct
a chosen-prefix collision using only a single pair of
near-collision blocks. Together with 84 birthday bits,
the chosen-prefix collision-causing appendages are only
84 + 512 = 596 bits long. This approach is based on
an even richer family of differential paths that allows
elimination using a single pair of near-collision blocks of
a set of δIHVs that is bounded enough so that finding the
near-collision blocks is still feasible, but large enough that
such a δIHV can be found efficiently by a birthday search.
Instead of using the family of differential paths based on
δm11 = ±2i, we use the fastest known collision attack for
MD5 and vary the last few steps to find a large family of
differential paths.

We first present a new collision attack for MD5
with complexity of approximately 216 MD5 compressions
improving upon the 220.96 MD5 compressions required in
Xie et al. (2008). Our starting point is the partial differential
path for MD5 given in Table 7. It is based on message
differences δm2 = 28, δm4 = δm14 = 231 and δm11 = 215

which is very similar to those used by Wang and Yu (2005)
for the first collision attack against MD5. This partial
differential path can be used for a near-collision attack with
complexity of approximately 214.8 MD5 compressions.

340 Stevens et al.

Table 7 Partial differential path for fast near-collision attack

t δQt δFt δWt δTt δRt RCt

26 −28

27 0

28 0
29 0 0 28 0 0 9

30− 33 0 0 0 0 0 ·

34 0 0 215 215 231 16
35 231 231 231 0 0 23
36 231 0 0 0 0 4

37 231 231 231 0 0 11

38− 46 231 231 0 0 0 ·

47 231 231 28 28 231 23

48 0 0 0 0 0 6
49 0 0 0 0 0 10
50 0 0 231 0 0 15

51− 59 0 0 0 0 0 ·

60 0 0 231 231 −25 6
61 −25 0 215 215 225 10
62 −25 + 225 0 28 28 223 15

63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21
64 −25 + 225 + 223 + 226 − 214

Notes: Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 = δm14 = 231, δm11 = 215.
The probability that it is satisfied is approximately 2−14.5.

This leads in the usual fashion to an identical-prefix
collision attack for MD5 that requires approximately 216

MD5 compressions, since one has to do it twice: first to
add differences to δIHV and then to eliminate them again.
It should be noted that usually bitconditions are required
on the IHV and IHV′ between the two collision blocks
which imply an extra factor in complexity. In the present
case, however, we can construct a large set of differential
paths for the second near-collision block that will cover all
bitconditions that are likely to occur, thereby avoiding the
extra complexity.

By properly tuning the birthday search, the same partial
differential path leads to the construction of a single
near-collision block chosen-prefix collision for MD5. By
varying the last steps of the differential path and by
allowing the collision finding complexity to grow by a
factor of about 226, we have found a set S of about 223.3
different δIHV = (δa, δb, δc, δd) of the form δa = −25,
δd = −25 + 225, δc = −25 mod 220 that can be eliminated.
Such δIHVs can be found using an 84-bit birthday search
with step function f : {0, 1}84 → {0, 1}84 of the form

f(x) ={
ϕ(MD5compress(IHV, B∥x) + δÎHV) if σ(x) = 0

ϕ(MD5compress(IHV′, B′∥x)) if σ(x) = 1,

where δÎHV is of the required form, σ : x 7→ {0, 1} is a
balanced selector function and ϕ(a, b, c, d) 7→ a∥d∥(c mod
220). There are 2128−84 = 244 possible δIHVs of this form,
of which only about 223.3 are in the allowed set S.
It follows that a birthday collision has probability p =
223.3/(244 · 2) = 2−21.7 to be useful, where the additional

factor 2 stems from the fact that different prefixes are
required.

A useful birthday collision can be expected after√
π284/(2p) ≈ 253.2 MD5 compressions, requires 400MB

of storage and takes about 3 days on 215 PS3s. The
expected complexity of finding the actual near-collision
blocks is bounded by about 214.8+26 = 240.8 MD5
compressions.

Table 8 Example single-block chosen-prefix collision.

Message 1
4F 64 65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F
64 65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F 64
65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F 64 65
64 20 47 6F D8 05 0D 00 19 BB 93 18 92 4C AA 96
DC E3 5C B8 35 B3 49 E1 44 E9 8C 50 C2 2C F4 61
24 4A 40 64 BF 1A FA EC C5 82 0D 42 8A D3 8D 6B
EC 89 A5 AD 51 E2 90 63 DD 79 B1 6C F6 7C 12 97
86 47 F5 AF 12 3D E3 AC F8 44 08 5C D0 25 B9 56

Message 2
4E 65 61 6C 20 4B 6F 62 6C 69 74 7A 0A 4E 65 61
6C 20 4B 6F 62 6C 69 74 7A 0A 4E 65 61 6C 20 4B
6F 62 6C 69 74 7A 0A 4E 65 61 6C 20 4B 6F 62 6C
69 74 7A 0A 75 B8 0E 00 35 F3 D2 C9 09 AF 1B AD
DC E3 5C B8 35 B3 49 E1 44 E8 8C 50 C2 2C F4 61
24 4A 40 E4 BF 1A FA EC C5 82 0D 42 8A D3 8D 6B
EC 89 A5 AD 51 E2 90 63 DD 79 B1 6C F6 FC 11 97
86 47 F5 AF 12 3D E3 AC F8 44 08 DC D0 25 B9 56

In Table 8 two 128-byte messages are given both consisting
of a 52-byte chosen prefix and a 76-byte single-block
chosen-prefix collision suffix and with colliding MD5 hash
value D320B6433D8EBC1AC65711705721C2E1.

Chosen-prefix collisions for MD5 and applications 341

5 Applications of chosen-prefix collisions

When exploiting collisions in real world applications two
major obstacles must be overcome.

• The problem of meaningful collisions. Given current
methods, collisions require appendages consisting of
unpredictable and mostly uncontrollable bitstrings.
These must be hidden in the usually heavily formatted
application data structure without raising suspicion.

• The problem of realistic attack scenarios. As we
do not have effective attacks against MD5’s (second)
preimage resistance but only collision attacks,
we cannot target existing MD5-values. In particular, the
colliding data structures must be generated
simultaneously, along with their shared hash, by the
adversary.

In Section 5.1 several chosen-prefix collision applications
are surveyed where these problems are addressed with
varying degrees of success. Sections 5.2, 5.3, and 5.4
describe the three most prominent applications in more
detail.

5.1 A survey of potential applications

We mention some potential applications of chosen-prefix
collisions.

5.1.1 Digital certificates

Given how heavily they rely on cryptographic hash
functions, digital certificates are the first place to look
for applications of chosen-prefix collisions. Two X.509
certificates are said to collide if their to-be-signed
parts have the same hash and consequently their digital
signatures, as provided by the CA, are identical. In earlier
work (Lenstra and de Weger, 2005), we have shown
how identical-prefix collisions can be used to construct
colliding X.509 certificates with different RSA moduli
but identical Distinguished Names. Here the RSA moduli
absorbed the random-looking near-collision blocks, thus
inconspicuously and elegantly solving the meaningfulness
problem. Allowing different Distinguished Names required
chosen-prefix collisions, as shown in Stevens et al. (2007).
The certificates resulting from both constructions do not
contain spurious bits, so superficial inspection at bit level
of either of the certificates will not reveal the existence
of a sibling certificate that collides with it signature-wise.
Nevertheless, for these constructions to work the entire
to-be-signed parts, and thus the signing CA, must be fully
under our own control, thereby limiting the practical attack
potential.

A related but in detail rather different construction
was carried out in collaboration with Alexander Sotirov,
Jacob Appelbaum, David Molnar, and Dag Arne Osvik,
as reported on http://www.win.tue.nl/hashclash/rogue-ca/
and in Stevens et al. (2009). Although in practice a

certificate’s to-be-signed part cannot be for 100% under
control of the party that submits the certification request,
for some commercial CAs (that still used MD5 for their
digital signature generation) the entire to-be-signed part
could be predicted reliably enough to make the following
guess-and-check approach practically feasible: prepare the
prefix of the to-be-signed part of a legitimate certification
request including a guess for the part that will be included
by the CA upon certification, prepare a rogue to-be-signed
prefix, determine different collision-causing and identical
collision-maintaining appendages to complete two colliding
to-be-signed parts, and submit the legitimate one for
certification. If upon receipt of the legitimate certificate
the guess turns out to have been correct, then the rogue
certificate can be completed by pasting the CA’s signature
of the legitimate data onto the rogue data: because the
data collide, the signature will be equally valid for both.
Otherwise, if the guess is incorrect, another attempt is
made. Using this approach we managed (upon the 4th
attempt) to trick a commercial CA into providing a
signature valid for a rogue CA certificate. For the intricate
details of the construction we refer to Section 5.2.

A few additional remarks about this construction are
in order here. We created not just a rogue certificate, but
a rogue CA certificate, containing identifying information
and public key material for a rogue CA. The private key
of this rogue CA is under our control. As the commercial
CA’s signature is valid for the rogue CA certificate, all
certificates issued by the rogue CA are trusted by anybody
trusting the commercial CA. As the commercial CA’s root
certificate is present in all major browsers, this gives us
in principle the possibility to impersonate any certificate
owner. This is certainly a realistic attack scenario. The price
that we have to pay is that the meaningfulness problem
is only adequately – and most certainly not elegantly
– solved: as further explained in the next paragraph,
one of the certificates contains a considerable number
of suspicious-looking bits. It must be noted here that
browser vendors such as Microsoft, Mozilla and Google and
other software companies, can revoke the trust in any CA
certificate in their products if deemed necessary.

To indicate that a certificate is a CA certificate, a
certain bit has to be set in the certificate’s to-be-signed-part.
According to the X.509v3 standard (Cooper et al., 2008),
this bit comes after the public key field. It is unlikely
that a commercial CA will accept a certification request
where the CA bit is set. Therefore, the bit must not
be set in the legitimate request. For our rogue CA
certificate construction, the fact that the two to-be-signed
parts must contain a different bit after the public key
field causes an incompatibility with our ‘usual’ colliding
certificate construction as in Lenstra and de Weger
(2005) and Stevens et al. (2007). In that construction the
collision-causing appendages correspond to the high order
bits of RSA moduli, and they are followed by identical
collision-maintaining appendages that transform the two
appendages into valid RSA moduli. Anything following
after the moduli must remain identical lest the collision
property goes lost. As a consequence, the appendages on

342 Stevens et al.

the rogue side can no longer be hidden in the public key
field and some other field must be found for them. Such
a field may be specially defined for this purpose, or an
existing (proprietary) extension may be used. The Netscape
Comment extension is a good example of the latter, as we
found that it is ignored by the major certificate processing
software. The upshot is, however, that as the appendages
have non-negligible length, it will be hard to define a field
that will not look suspicious to someone who looks at the
rogue certificate at bit level.

5.1.2 Colliding documents

In Daum and Lucks (2005) (see also Gebhardt et al.,
2005), it was shown how to construct a pair of PostScript
files that collide under MD5, but that display different
messages when viewed or printed. These constructions use
identical-prefix collisions, and therefore they have to rely
on the presence of both messages in each of the colliding
files and on macro-functionalities of the document format
used. Obviously, this raises suspicion upon inspection at
bit level. With chosen-prefix collisions, one message per
colliding document suffices and macro-functionalities are
no longer required. For example, using a document format
that allows insertion of color images (such as Microsoft
Word or Adobe PDF), inserting one message per document,
two documents can be made to collide by appending
carefully crafted color images after the messages. A short
one pixel wide line will do – for instance hidden inside
a layout element, a company logo, or a nicely colored
barcode – and preferably scaled down to hardly visible size
(or completely hidden from view, as possible in PDF). An
extension of this construction is presented in the paragraphs
below and set forth in detail in Section 5.3.

5.1.3 Hash based commitments

Kelsey and Kohno (2006) presented a method to first
commit to a hash value, and next to construct faster than by
a trivial pre-image attack a document with the committed
hash value, and with any message of one’s choice as a
prefix. The method applies to any Merkle-Damg̊ard hash
function, such as MD5, that given an IHV and a suffix
produces some IHV. Omitting details involving message
lengths and Merkle-Damg̊ard strengthening, the idea is to
commit to a hash value based on an IHV at the root of
a tree, either that IHV itself or calculated as the hash
of that IHV and some suffix at the root. The tree is a
complete binary tree and is calculated from its leaves up
to the root, so the IHV at the root will be one of the last
values calculated. This is done in such a way that each
node of the tree is associated with an IHV along with a
suffix that together hash to the IHV associated with the
node’s parent. Thus, two siblings have IHVs and suffixes
that collide under the hash function. The IHVs at the leaves
may be arbitrarily chosen but are, preferably, all different.
Given a prefix of one’s choice one performs a brute-force
search for a suffix that, when appended to the prefix and

along with the standard IHV, results in the IHV at one of
the leaves (or nodes) of the tree. Appending the suffixes
one encounters on one’s way from that leave or node to the
root, results in a final message with the desired prefix and
committed hash value.

Originally based on a birthday search, the construction
of the tree can be done more efficiently by using
chosen-prefix collisions to construct sibling node suffixes
based on their IHVs. For MD5, however, it remains
far from feasible to carry out the entire construction in
practice. In a variant that is feasible, one commits to a
prediction by publishing its hash value. In due time one
reveals the correct prediction, chosen from among a large
enough preconstructed collection of documents that, due to
tree-structured chosen-prefix collision appendages, all share
the same published hash value. In section 5.3 we present an
example involving 12 documents.

5.1.4 Software integrity checking

In Kaminsky (2004) and Mikle (2004), it was
shown how any existing MD5 collision, such as the
ones originally presented by Xiaoyun Wang at the
CRYPTO 2004 rump session, can be abused to mislead
integrity checking software that uses MD5. A similar
application, using freshly made collisions, was given
on http://www.mathstat.dal.ca/ selinger/md5collision/.
See also Gauravaram et al. (2006). As shown on
http://blog.didierstevens.com/2009/01/17/ this can even be
done within the framework of Microsoft’s Authenticode
code signing program. All these results use identical-prefix
collisions and, similar to the colliding PostScript application
mentioned earlier, differences in the colliding inputs are
used to construct deviating execution flows.

Chosen-prefix collisions allow a more elegant approach,
since common operating systems ignore bitstrings that
are appended to executables: the programs will run
unaltered. Thus, using tree-structured chosen-prefix
collision appendages as above, any number of executables
can be made to have the same MD5 hash value or
MD5-based digital signature. See Section 5.4 for an
example.

One can imagine two executables: a ‘good’ one (say
Word.exe) and a bad one (the attacker’s Worse.exe). A
chosen-prefix collision for those executables is computed,
and the collision-causing bitstrings are appended to
both executables. The resulting altered file Word.exe,
functionally equivalent to the original Word.exe, can be
offered to a code signing program such as Microsoft’s
Authenticode and receive an ‘official’ MD5-based digital
signature. This signature will then be equally valid for the
attacker’s Worse.exe, and the attacker might be able to
replace Word.exe by his Worse.exe (renamed to Word.exe)
on the appropriate download site. This construction affects
a common functionality of MD5 hashing and may pose
a practical threat. It also allows people to get many
executables signed at once and for free by getting a
single executable signed, bypassing verification of any

Chosen-prefix collisions for MD5 and applications 343

kind (e.g. authenticity, quality, compatibility, non-spyware,
non-malware) by the signing party.

5.1.5 Computer forensics

In computer forensics so-called hash sets are used to
quickly identify known files. For example, when a hard disk
is seised by law enforcement officers, they may compute
the hashes of all files on the disk, and compare those hashes
to hashes in existing hash sets: a whitelist (for known
harmless files such as operating system and other common
software files) and a blacklist (for previously identified
harmful files). Only files whose hashes do not occur in
either hash set have to be inspected further. A useful feature
of this method of recognising files is that the file name itself
is irrelevant, since only the content of the file is hashed.

MD5 is a popular hash function for this application.
Examples are NIST’s National Software Reference Library
Reference Data Set (http://www.nsrl.nist.gov/) and the
US Department of Justice’s Hashkeeper application
(http://www.usdoj.gov/ndic/domex/hashkeeper.htm).

A conceivable, and rather obvious, attack on this
application of hashes is to produce a harmless file (e.g.
an innocent picture) and a harmful one (e.g. an illegal
picture), and insert collision blocks that will not be noticed
by common application software or human viewers. In a
learning phase the harmless file might be submitted to the
hash set and thus the common hash may end up on the
whitelist. The harmful file will be overlooked from then on.

5.1.6 Peer to peer software

Hash sets are also used in peer to peer software. A site
offering content may maintain a list of pairs (file name,
hash). The file name is local only, and the peer to peer
software uniquely identifies the file’s content by means
of its hash. Depending on how the hash is computed
such systems may be vulnerable to a chosen-prefix attack.
Software such as eDonkey and eMule use MD4 to hash
the content in a two stage manner: the identifier of the
content c1∥c2∥ . . . ∥cn is MD4(MD4(c1)∥ . . . ∥MD4(cn)),
where the chunks ci are about 9 MB each. One-chunk
files, i.e., files not larger than 9 MB, are most likely
vulnerable; whether multi-chunk files are vulnerable is open
for research. We have not worked out the details of a
chosen-prefix collision attack against MD4, but this seems
very well doable by adapting our methods and should result
in an attack that is considerably faster than our present one
against MD5.

5.1.7 Content addressed storage

In recent years content addressed storage is gaining
popularity as a means of storing fixed content at a physical
location of which the address is directly derived from the
content itself. For example, a hash of the content may be
used as the file name. See Primmer and DH́alluin (2005)
for an example. Clearly, chosen-prefix collisions can be

used by an attacker to fool such storage systems, e.g. by
first preparing colliding pairs of files, by then storing the
harmless-looking first one, and later overwriting it with the
harmful second one.

Further investigations are required to assess the impact
of chosen-prefix collisions. We leave it to others to study to
what extent commonly used protocols and message formats
such as TLS, S/MIME (CMS), IPSec and XML Signatures
(see Bellovin and Rescorla, 2006; Hoffman and Schneier,
2005) allow insertion of random looking data that may
be overlooked by some or all implementations. The threat
posed by identical-prefix collisions is not well understood
either: their application may be more limited, but for MD5
they can be generated almost instantaneously and thus
allow real-time attacks on the execution of cryptographic
protocols, and, more importantly, for SHA-1 they may soon
be feasible.

5.2 Creating a rogue Certification Authority certificate

This section contains an in-depth discussion of the practical
dangers posed by rogue Certification Authority certificates,
followed by a detailed description of how we managed to
construct such a certificate.

The work reported here was carried out in close
collaboration with Alexander Sotirov and Dag Arne Osvik,
and was triggered by email exchanges with Alexander
Sotirov, Jacob Appelbaum and David Molnar.

5.2.1 Attack potential of rogue CA certificates

In the conference version (Stevens et al., 2007; Section 4.1)
of this paper we daydreamed:

“Ideally, a realistic attack targets the core of PKI:
provide a relying party with trust, beyond reasonable
cryptographic doubt, that the person indicated by the
Distinguished Name field has exclusive control over
the private key corresponding to the public key in the
certificate. The attack should also enable the attacker to
cover his trails.”

Our dream scenario has been, mostly, realised with the
construction of a rogue CA certificate. With the private key
of a CA under our control, and the public key appearing
in a certificate with a valid signature of a commercial CA
that is trusted by all major browsers, we can create ‘trusted’
certificates at will. When scrutinised at bit level, however,
our rogue CA certificate may look suspicious which may,
ultimately, expose us. Bit level inspection is not something
many users will engage in – if they know the difference
between https and http to begin with – and, obviously,
the software that is supposed to inspect a certificate’s
bits is expertly guided around the suspicious ones. So, it
may be argued that our construction has a non-negligible
attack potential. Below we discuss some possibilities in this
direction. Upfront, however, we like to point out that our
rogue CA is nothing more than a proof of concept that
is incapable of doing much harm, because it expired, on
purpose, in September of 2004, i.e., more than 4 years
before it was created.

344 Stevens et al.

Any website secured using TLS can be impersonated
using a rogue certificate issued by a rogue CA. This
is irrespective of which CA issued the website’s true
certificate and of any property of that certificate (such as
the hash function it is based upon – SHA-256 is not any
better in this context than MD4). Combined with redirection
attacks where http requests are redirected to rogue web
servers, this leads to virtually undetectable phishing attacks.

But any application involving a Certification Authority
that provides MD5-based certificates with sufficiently
predictable serial number and validity period may be
vulnerable. In contexts different from TLS this may include
signing or encryption of e-mail or software, non-repudiation
services, etc.

As pointed out earlier, bit-level inspection of our rogue
CA certificate will reveal a relatively large number of bits
that may look suspicious – and that are suspicious. This
could have been avoided if we had chosen to create a
rogue certificate for a regular website, as opposed to a
rogue CA certificate, because in that case we could have
hidden all collision causing bits inside the public keys.
Nevertheless, even if each resulting certificate by itself
looks unsuspicious, as soon as a dispute arises, the rogue
certificate’s legitimate sibling can be located with the help
of the CA, and the fraud becomes apparent by putting the
certificates alongside, thus exposing the party responsible
for the fraud.

Our attack relies on our ability to predict the content of
the certificate fields inserted by the CA upon certification:
if our prediction is correct with non-negligible probability,
a rogue certificate can be generated with the same
non-negligible probability. Irrespective of the weaknesses,
known or unknown, of the cryptographic hash function
used for digital signature generation, our type of attack
becomes effectively impossible if the CA adds a sufficient
amount of fresh randomness to the certificate fields before
the public key fields. Relying parties, however, cannot
verify this randomness and also the trustworthiness of
certificates should not crucially depend on such secondary
and circumstantial aspects. We would be in favor of a more
fundamental solution – along with a strong cryptographic
hash function – possibly along the lines as proposed in
Halevi and Krawczyk (2006). Generally speaking, it is
advisable not to sign data that is completely determined by
some other party. Put differently, a signer should always
make a few trivial and unpredictable modifications before
digitally signing a document provided by someone else.

Based on our previous work (Stevens et al., 2007), the
issue in the previous paragraph was recognised and the
possibility of the attack presented in this paper anticipated
in the catalogue (BSI, 2007) of algorithms suitable for the
German Signature Law (‘Signaturgesetz’). This catalogue
includes conditions and time frames for cryptographic hash
algorithms to be used in legally binding digital signatures
in Germany. One of the changes introduced in the 2008
version of the catalog is an explicit condition on the usage
of SHA-1: only until 2010, and only for so-called “qualified
certificates” that contain at least 20 bits of entropy in their
serial numbers. We are grateful to Prof. Werner Schindler of

the BSI for bringing this to our attention and for confirming
that this change was introduced to thwart exactly the type
of rogue certificates that we present here for MD5.

We stress that our attack on MD5 is not a preimage
or second preimage attack. We cannot create a rogue
certificate having a signature in common with a certificate
that was not especially crafted using our chosen-prefix
collision. In particular, we cannot target any existing,
independently created certificate and forge a rogue
certificate that shares its digital signature with the digital
signature of the targeted certificate. However, given any
certificate with an MD5-based digital signature, a relying
party cannot easily recognise if it is trustworthy or,
on the contrary, crafted by our method. Therefore we
repeat our urgent recommendation not to use MD5 for
new X.509 certificates. How existing MD5 certificates
should be handled is a subject of further research. We
also urgently recommend to reconsider usage of MD5
in other applications. Proper alternatives are available;
but compatibility with existing applications is obviously
another matter. Given potential developments related to
SHA-1 (see de Cannière and Rechberger, 2006) and
http://www.iaik.tugraz.at/content/research/krypto/sha1/) we
feel that usage of SHA-1 in certificate generation should be
reassessed as well.

5.2.2 Certificate construction

Our first colliding X.509 certificate construction was
based on an identical-prefix collision, and resulted in
two certificates with different public keys, but identical
Distinguished Name fields (Lenstra and de Weger, 2005).
As a first application of chosen-prefix collisions we showed
how the Distinguished Name fields could be chosen
differently as well (Stevens et al., 2007). In this section we
describe the details of a colliding certificate construction
that goes one step further by also allowing different
“basic constraints” fields. This allows us to construct one
of the certificates as an ordinary website certificate, but
the other one as a CA certificate. As already pointed
out in Section 5.1, this additional difference required a
radical departure from our traditional construction method
from Lenstra and de Weger (2005) and Stevens et
al. (2007). Furthermore, unlike our previous colliding
certificate constructions where the CA was under our
control, a commercial CA provided the digital signature
for the (legitimate) website certificate. This required us to
sufficiently accurately predict its serial number and validity
period well before the certification request was submitted
to the signing CA.

We exploited the following weaknesses of the
commercial CA that carried out the legitimate certification
request:

• Its usage of the cryptographic hash function MD5 to
generate digital signatures for new certificates.

Chosen-prefix collisions for MD5 and applications 345

• Its fully automated way to process online certification
requests that fails to recognise anomalous behavior of
requesting parties.

• Its usage of sequential serial numbers and its usage
of validity periods that are determined entirely by the
date and time in seconds at which the certification
request is processed.

• Its failure to enforce, by means of the “basic
constraints” field in its own certificate, a limit on the
length of the chain of certificates that it can sign.

The first three points are further discussed below. The
last point, if properly handled, could have crippled our
rogue CA certificate but does not affect its construction.
A certificate contains a “basic constraints” field where a
bit is set to indicate if the certificate is a CA certificate.
With the bit set, a “path length constraint” subfield may
be present, specifying an integer that indicates how many
CAs may occur in the chain between the CA certificate
in question and end-user certificates. The commercial CA
that we interacted with failed to use this option in its
own certificate, implying that any number of intermediate
CAs is permitted. If the “path length constraint” would
have been present and set at 0 (zero), then our rogue CA
certificate could still have been constructed. But whether
or not the rogue CA certificate or certificates signed by
it can then also be used depends on (browser-)software
actually checking the “path length constraint” subfields in
chains of certificates. Thus a secondary “defense in depth”
mechanism was present that could have foiled our attack,
but failed to do so simply because it was not used.

Before describing the construction of the colliding
certificates, we briefly discuss the parameter choices
used for the chosen-prefix collision search. The 2048-bit
upper bound on the length of RSA moduli, as enforced
by some CAs, combined with other limitations of our
certificate construction, implied we could allow for at
most 3 near-collision blocks. Opting for the least difficult
possibility (namely, 3 near-collision blocks), we had to
decide on values for k and the aimed for value for w,
determining the costs of the birthday search and the
near-collision block constructions (cf. Sections 4.2 and 4.1),
respectively. Obviously, our choices were influenced by
our computational resources, namely a cluster of 215
PlayStation 3 (PS3) game consoles. When running Linux on
a PS3, applications have access to 6 Synergistic Processing
Units (SPUs), a general purpose CPU, and about 150MB
of RAM per PS3. For the birthday search, the 6× 215
SPUs are computationally equivalent to approximately 8600
regular 32-bit cores, due to each SPU’s 4× 32-bit wide
SIMD architecture. The other parts of the chosen-prefix
collision construction are not suitable for the SPUs, but we
were able to use the 215 PS3 CPUs for the construction of
the actual near-collision blocks. With these resources, the
choice w = 5 still turned out to be acceptable despite the
1000-fold increase in the cost of the actual near-collision
block construction. This is the case even for the hard
cases with many differences between IHV and IHV′:

as a consequence the differential paths contain many
bitconditions, which leaves little space for the tunnels,
thereby complicating the near-collision block construction.

For the targeted 3 near-collision blocks, the entries
for w = 5 in the first table in Appendix C show the
time-memory tradeoff when the birthday search space is
varied with k. With 150MB at our disposal per PS3,
for a total of about 30GB, we decided to use k = 8
as this optimises the overall birthday complexity for the
plausible case that the birthday search takes

√
2 times

longer than expected. The resulting overall chosen-prefix
collision construction takes on average less than a day on
the PS3-cluster. In theory we could have used 1TB (or
more) of hard drive space, in which case it would have been
optimal to use k = 0 for a birthday search of about 20 PS3
days.

We summarise the construction of the colliding
certificates in the sequence of steps below, and then
describe each step in more detail.

1 Construction of templates for the two to-be-signed parts,
as outlined in Figure 4. Note that we distinguish
between a ‘legitimate’ to-be-signed part on the left hand
side, and a ‘rogue’ to-be-signed part on other side.

2 Prediction of serial number and validity period for the
legitimate part, thereby completing the chosen prefixes
of both to-be-signed parts.

3 Computation of the two different collision-causing
appendages.

4 Computation of a single collision-maintaining
appendage that will be appended to both sides, thereby
completing both to-be-signed parts.

5 Preparation of the certification request for the legitimate
to-be-signed part.

6 Submission of the certification request and receipt of the
new certificate.

7 If serial number and validity period of the newly
received certificate are as predicted, then the rogue
certificate can be completed. Otherwise return to Step 2.

Figure 4 The to-be-signed parts of the colliding certificates

serial number

validity period
commercial CA name

domain name

2048 bit RSA public key

serial number

validity period
commercial CA name

rogue CA name
1024 bit RSA public key

legitimate website
certificate rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions
“CA = FALSE”

346 Stevens et al.

5.2.2.1 Step 1. Templates for the to-be-signed parts

In this step all bits are set in the two to-be-signed parts,
except for bits that will be determined in later steps. For
the latter bits space will be reserved here. On the legitimate
side the parts to be filled in later are the predictions for
the serial number and validity period, and most bits of the
public key. On the rogue side the largest part of the content
of an extension field of the type “Netscape Comment” is
for the moment left undetermined. The following roughly
describes the sequence of steps.

• On the legitimate side, the chosen prefix contains space
for serial number and validity period, along with the
exact Distinguished Name of the commercial CA where
the certification request will be submitted. This is
followed by a subject Distinguished Name that contains
a legitimate website domain name (owned by one of
us) consisting of as many characters as allowed by the
commercial CA (in our case 64), and concluded by the
first 208 bits of an RSA modulus, the latter all chosen
at random after the leading ‘1’-bit. These sizes were
chosen in order to have as many corresponding bits
as possible on the rogue side, while fixing as few bits
as possible of the RSA modulus on the legitimate side
(see Step 4 for the reason why).

• The corresponding bits on the rogue side contain an
arbitrarily chosen serial number, the same commercial
CA’s Distinguished Name, an arbitrarily chosen validity
period (actually chosen as indicating “August 2004”,
to avoid abuse of the rogue certificate), a short rogue
CA name, a 1024-bit RSA public key generated using
standard software, and the beginning of the X.509v3
extension fields. One of these fields is the “basic
constraints” field, a bit that we set to indicate that the
rogue certificate will be a CA certificate (in Figure 4
this bit is denoted by “CA=TRUE”).

• At this point the entire chosen prefix is known on the
rogue side, but on the legitimate side predictions for the
serial number and validity period still need to be
inserted. That will be done in Step 2.

• The various field sizes were selected so that on both
sides the chosen prefixes are now 96 bits short of the
same MD5 block boundary. On both sides these 96 bit
positions are reserved for the birthday bits. As only
64 + k = 72 birthday search bits per side will be
needed (and appended in Step 3) the first 24 bits at this
point are set to 0. On the legitimate side these 96 bits
are part of the RSA modulus, on the rogue side they are
part of an extension field of the type ‘Netscape
Comment’, denoted as ‘tumor’ in Figure 4.

• From here on forward, everything that goes to the
rogue side is part of the ‘Netscape Comment’ field, as
it is not meaningful for the rogue CA certificate but
only appended to cause and maintain a collision with
bits added to the legitimate side. On the legitimate side
we first make space for 3 near-collision blocks of 512

bits each (calculated in Step 3) and for 208 bits used to
complete a 2048-bit RSA modulus (determined in
Step 4), and then set the RSA public exponent (for
which we took the common choice 65537) and the
X.509v3 extensions including the bit indicating that
the legitimate certificate will be an end-user certificate
(in Figure 4 denoted by “CA=FALSE”).

5.2.2.2 Step 2. Prediction of serial number and validity
period

Based on repeated certification requests submitted to the
targeted commercial CA, it turned out that the validity
period can very reliably be predicted as the period of
precisely one year plus one day, starting exactly six seconds
after a request is submitted. So, to control that field, all we
need to do is select a validity period of the right length,
and submit the legitimate certification request precisely six
seconds before it starts. Though occasional accidents may
happen in the form of one-second shifts, this was the easy
part.

Predicting the serial number is harder but not
impossible. In the first place, it was found that the targeted
commercial CA uses sequential serial numbers. Being
able to predict the next serial number, however, is not
enough: the construction of the collision can be expected
to take at least a day, before which the serial number
and validity period have to be fixed, and only after which
the to-be-signed part of the certificate will be entirely
known. As a consequence, there will have been a substantial
and uncertain increment in the serial number by the time
the collision construction is finished. So, another essential
ingredient of our construction was the fact that the CA’s
weekend workload is quite stable: it was observed during
several weekends that the increment in serial number over
a weekend does not vary a lot. This allowed us to pretty
reliably predict Monday morning’s serial numbers on the
Friday afternoon before. Thus, on Friday afternoon we
selected a number at the high end of the predicted range for
the next Monday morning, and inserted it in the legitimate
to-be-signed part along with a validity period starting that
same Monday morning at the time corresponding to our
serial number prediction. See Step 6 how we then managed,
after the weekend, to target precisely the selected serial
number and validity period.

5.2.2.3 Step 3. Computation of the collision

At this point both chosen prefixes have been fully
determined so the chosen-prefix collision can be computed:
first the 72 birthday bits per side, calculated in parallel on
the 1290 SPUs of a cluster of 215 PS3s, followed by the
calculation of 3 pairs of 512-bit near-collision blocks on
the 215 PS3 CPUs. The entire calculation takes on average
about a day.

Given that we had a weekend available, and that
the calculation can be expected to take just a day, we
sequentially processed a number of chosen-prefixes, each

Chosen-prefix collisions for MD5 and applications 347

corresponding to different serial numbers and validity
periods (targeting both Monday and Tuesday mornings).
So, a near-collision block calculation on the CPUs would
always run simultaneously with a birthday search on the
SPUs for the ‘next’ attempt.

5.2.2.4 Step 4. Finishing the to-be-signed parts

At this point the legitimate and rogue sides collide under
MD5, so that from here on only identical bits may be
appended to both sides.

With 208 + 24 + 72 + 3 ∗ 512 = 1840 bits set, the
remaining 2048− 1840 = 208 bits need to be set for the
2048-bit RSA modulus on the legitimate side. Since in the
next step the RSA private exponent corresponding to the
RSA public exponent is needed, the full factorisation of the
RSA modulus needs to be known, and the factors must be
compatible with the choice of the RSA public exponent.
Common CAs (including our targeted commercial CA) do
not check for compositeness of RSA moduli in certification
requests, implying that we could simply have added 208
bits to make the RSA modulus a prime. We found that
approach unsatisfactory, and opted for the rather crude but
trivial to program method sketched below that results in a
224-bit prime factor with a prime 1824-bit cofactor. Given
that at the time this work was done the largest factor found
using the elliptic curve integer factorisation method was 222
bits long, a 224-bit smallest prime factor keeps the resulting
modulus out of reach of common factoring efforts. We
could have used a relatively advanced lattice-based method
to try and squeeze in a 312-bit prime factor along with a
prime 1736-bit cofactor. Given only 208 bits of freedom to
select a 2048-bit RSA modulus, it is unlikely that a more
balanced solution can efficiently be found. Thus the reason
why as few bits as possible should be fixed in Step 1, is
that it allows us to construct a slightly less unbalanced RSA
modulus.

Let N be the 2048-bit integer consisting of the
1840 already determined bits of the RSA modulus-to-be,
followed by 208 one bits. We select a 224-bit integer p at
random until N mod p is less than 2208, and keep doing this
until both p and q = ⌊N/p⌋ are prime and the RSA public
exponent is coprime to (p− 1)(q − 1). Once such primes p
and q have been found, the number pq will be the legitimate
side’s RSA modulus, the leading 1840 bits of which are
already present in the legitimate side’s to-be-signed part,
and the 208 least significant bits of which are inserted in
both to-be-signed parts.

To analyse the required effort somewhat more in
general, 2k−208 integers of k bits (with k > 208)
need to be selected on average for pq to have the
desired 1840 leading bits. Since an ℓ-bit integer is
prime with probability approximately 1/ log(2ℓ), a total
of k(2048− k)2k−208(log 2)2 attempts may be expected
before a suitable RSA modulus is found. The coprimality
requirement is a lower order effect that we disregard.
Note that for k(k − 2048)(log 2)2 of the attempts the k-bit
number p has to be tested for primality, and that for
(2048− k) log 2 of those q needs to be tested as well (on

average, obviously). For k = 224 this turned out to be
doable in a few minutes on a standard PC.

This completes the to-be-signed parts on both sides.
Now it remains to be hoped that the legitimate part that
actually will be signed corresponds, bit for bit, with the
legitimate to-be-signed part that we concocted.

5.2.2.5 Step 5. Preparing the certification request

Using the relevant information from the legitimate side’s
template, i.e., the subject Distinguished Name and the
public key, a PKCS#10 Certificate Signing Request is
prepared. The CA requires proof of possession of the
private key corresponding to the public key in the request.
This is done by signing the request using the private key
– this is the sole reason that we need the RSA private
exponent.

5.2.2.6 Step 6. Submission of the certification request

The targeted legitimate to-be-signed part contains a very
specific validity period that leaves no choice for the
moment at which the certification request needs to be
submitted to the CA. Just hoping that at that time the serial
number would have precisely the predicted value is unlikely
to work, so a somewhat more elaborate approach is used.
About half an hour before the targeted submission moment,
the same request is submitted, and the serial number in the
resulting certificate is inspected. If it is already too high,
the entire attempt is abandoned. Otherwise, the request
is repeatedly submitted, with a frequency depending on
the gap that may still exist between the serial number
received and the targeted one, and taking into account
possible certification requests by others. In this way the
serial number is slowly nudged toward the right value at the
right time. Although there is nothing illegal about repeated
certification requests, it should be possible for a CA
to recognise the somewhat anomalous behavior sketched
above and to take appropriate countermeasures (such as
random delays or jumps in serial numbers) if it occurs.

Various types of accidents may happen, of course, and
we experienced some of them, such as another CA customer
‘stealing’ our targeted serial number just a few moments
before our attempt to get it, thereby wasting that weekend’s
calculations. But, after the fourth weekend it worked as
planned, and we managed to get an actually signed part that
exactly matched our predicted legitimate to-be-signed part.

5.2.2.7 Step 7. Creation of the rogue certificate

Given the perfect match between the actually signed part
and the hoped for one, and the MD5 collision between the
latter and the rogue side’s to-be-signed part, the MD5-based
digital signature present in the legitimate certificate as
provided by the commercial CA is equally valid for the
rogue side. To finish the rogue CA certificate it suffices to
copy the digital signature to the right spot in the rogue CA
certificate.

348 Stevens et al.

The full details of the above construction,
including both certificates, can be found on
http://www.win.tue.nl/hashclash/rogue-ca/.

5.3 Nostradamus attack

In the original Nostradamus attack from Kelsey and Kohno
(2006) one first commits to a certain hash value, and
afterwards for any message constructs a document that
not only contains that message but also has under MD5
the committed hash value. So far, this attack is, in its
full generality, infeasible for MD5 because space and time
requirements are beyond what can be handled at his point.
It is easily doable, though, if a limited size message space
has been defined upfront.

Suppose there are messages m1,m2, . . . ,mr, then using
r − 1 chosen-prefix collisions we can construct r suffixes
s1, s2, . . . , sr such that the r documents di = mi∥si all
have the same hash. After committing to the common
hash, afterwards any of the r documents d1, d2, . . . , dr can
be shown, possibly to achieve some malicious goal. The
other documents will remain hidden and their contents,
i.e., the mi-parts, cannot be derived – with overwhelming
probability – from the single published document or from
the common hash value.

To show the practicality of this variant, we have made
an example consisting of 12 different PDF documents with
a common MD5-hash, where each document predicts a
different outcome of the 2008 US presidential elections.
The PDF format is convenient for this purpose because
it allows insertion of extra image objects that are
unreferenced in the resulting document and thus invisible
in any common PDF reader. See the next section for
more on the PDF related details of the construction and
http://www.win.tue.nl/hashclash/Nostradamus/ for the actual
documents, one of which correctly predicted the outcome
one year before the elections took place. For each of the
11 collisions required for this example we used a 64-bit
birthday search (on a single PS3) aiming for about 11
near-collision blocks (constructed on a quad-core PC). It
took less than 2 days per chosen-prefix collision. Since we
performed those computations our methods have improved
as described in this paper, so this attack would now run
much faster.

5.3.1 PDF construction

Given the structure of PDF documents it is not entirely
straightforward how to insert different chosen-prefix

collision blocks, while keeping the parts following those
blocks identical in order to maintain the collision. The
relevant details of both the PDF structure and our
construction are covered here.

A PDF document is built up from the following four
consecutive parts: a fixed header, a part consisting of an
arbitrary number of numbered objects, an object lookup
table and, finally, a trailer. The trailer specifies the number
of objects, which of the objects is the unique root object
(containing the document content) and which is the info
object (containing the document’s meta information such as
authors and title etc.), and contains a filepointer to the start
of the object lookup table.

Given a file containing a PDF document, additional
numbered objects can be inserted, as long as they are added
to the object lookup table and the corresponding changes
are made to the number of objects and the filepointer in
the trailer. A template for an image object is given in
Table 9. With the exception of the binary image, the format
is entirely text based. The binary image is put between
single line-feed characters (ASCII code 10) and the result
is encapsulated by the keywords stream and endstream.
The keyword /Length must specify the byte length of
the image. As the image is uncompressed and each pixel
requires three bytes (‘RGB’), the image byte length must be
three times the product of the specified width and height.
The object number (42 in the example object header) must
be set to the next available object number.

When constructing colliding PDF files they must be
equal after the collision-causing data (cf. the “suffix” in
Figure 2). The object lookup tables and trailers for all files
must therefore be the same. This was achieved as follows:

• As all documents must have the same number of
objects, dummy objects are inserted where necessary.

• Since all root objects must have the same object
number, they can be copied if necessary to objects with
the next available object number.

• The info objects are treated in the same way as the root
objects.

• To make sure that all object lookup tables and
filepointers are identical, the objects can be sorted by
object number and if necessary padded with spaces after
their obj keyword to make sure that all objects with the
same object number have the same file position and
byte length in all files.

Table 9 A numbered image object in the PDF format

Part Contents
object header 42 0 obj
image header << /ColorSpace /DeviceRGB /Subtype /Image
image size /Length 9216 /Width 64 /Height 48 /BitsPerComponent 8
image contents >> stream...endstream
object footer endobj

Chosen-prefix collisions for MD5 and applications 349

• Finally, the object lookup tables and trailers need to be
adapted to reflect the new situation – as a result they
should be identical for all files.

Although this procedure works for basic PDF files (such as
PDF version 1.4 as we produced using pdflatex), it should
be noted that the PDF document format allows additional
features that may cause obstructions, the details of which
are irrelevant for this article.

Given r LATEX files with the desired subtle differences
(such as names of r different candidates), r different PDF
files are produced using a version of LATEX that is suitable
for our purposes (cf. above). In all these files a hidden
image object with a fixed object number is then inserted,
and the approach sketched above is followed to make
the lookup tables and trailers for all files identical. To
ensure that the files are identical after the hidden image
contents, their corresponding objects were made the last
objects in the files. This then leads to r chosen prefixes
consisting of the leading parts of the PDF files up to
and including the keyword stream and the first line-feed
character. After determining r − 1 chosen-prefix collisions
resulting in r collision-causing appendages, the appendages
are put in the proper binary image parts, after which all
files are completed with a line-feed character, the keywords
endstream and endobj, and the identical lookup tables
and trailers.

Note that the Length etc. fields have to be set before
collision finding, and that the value of Length will grow
logarithmically with r and linearly in the number of
near-collision blocks one is aiming for.

5.4 Colliding executables

Using the same set-up as used for the Nostradamus attack
reported in Section 5.3, i.e., 64-bit birthday searching on a
PS3 followed by the construction of about 12 near-collision
blocks on a quad-core PC, it took us less than 2 days
to create two different Windows executables with the
same MD5 hash. Initially both 40960 bytes large, 13× 64
bytes had to be appended to each executable, for a
resulting size of just 41792 bytes each, to let the files
collide under MD5 without changing their functionality.
See http://www.win.tue.nl/hashclash/SoftIntCodeSign/
for details. As noted above, it has been shown on
http://blog.didierstevens.com/2009/01/17/ that this attack
can be elevated to one on a code signing scheme.

As usual, the following remarks apply:

• An existing executable with a known and published
hash value not resulting from this construction cannot
be targeted by this attack (Gauravaram et al., 2006): our
attack is not a preimage or second preimage attack. In
order to attack a software integrity protection or code
signing scheme using this approach, the attacker must
be able to manipulate the files before they are hashed
(and, possibly, signed). Given the level of access

required to realise the attack an attacker can probably
do more harm in other simpler and more traditional
ways.

• On the other hand, there is no guarantee that a
downloaded file with the proper hash or correct
signature is not the evil sibling of the intended file.
Especially when software integrity verification takes
place under the hood, users may be lured into installing
– and trusting – malware. Until a tool is available
that would also be able to distinguish potentially
malicious MD5-based certificates, all a relying party
can do is resorting to bit-level inspection of each
executable; the latter requires more expertise than most
users can be expected to have, in particular if the
collision blocks are hidden at a less conspicious place
than at the very end of the executable.

• Any number r of executables can be made to
collide, at the cost of r − 1 chosen-prefix collisions
and an O(log r)-byte appendage to each of the r
original executables.

A countermeasure thwarting our attack would be the
inclusion of a self-checking component in software, i.e.,
where the software would check the integrity of its own
executable as the first step of the execution. It is better,
however, not to rely on cryptographic primitives such as
MD5 that fail to meet their design criteria.

Acknowledgements

This work benefited greatly from suggestions by Xiaoyun
Wang. We are grateful for comments and assistance
received from the anonymous reviewers of EUROCRYPT
2007 and CRYPTO 2009 and other anonymous reviewers,
and from Jacob Appelbaum, Joppe Bos, Stuart Haber, Paul
Hoffman, Pascal Junod, Vlastimil Klima, David Molnar,
Dag Arne Osvik, Bart Preneel, NBV, Werner Schindler,
Gido Schmitz, Alexander Sotirov, Eric Verheul, and Yiqun
Lisa Yin. The second author gratefully acknowledges
Alcatel-Lucent Bell Laboratories.

This work has been supported in part by the
Swiss National Science Foundation under grant number
206021-117409, by EPFL DIT, and by the European
Commission through the EU ICT program ECRYPT II.

References

Bellovin, S.M. and Rescorla, E.K. (2006) ‘Deploying a new
hash algorithm’, Proceedings of the Network and Distributed
System Security Symposium, NDSS 2006, San Diego,
California, USA, The Internet Society, available at
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/
deploying new hash algorithm.pdf (accessed on 8 February 2012).

den Boer, B. and Bosselaers, A. (1994) ‘Collisions for the
compression function of MD5’, in EUROCRYPT ’93, Lecture
Notes in Computer Science, Vol. 765, pp.293–304.

350 Stevens et al.

Bundesnetzagentur für Elektriziẗat, Gas, Telekommunikation,
Post und Eisenbahnen (2007) ‘Bekanntmachung zur
elektronischen Signatur nach dem Signaturgesetz und
der Signaturverordnung (Übersicht über geeignete
Algorithmen)’, Bundesanzeiger, No. 19, p.376, available at
http://www.bundesnetzagentur.de/cln 1931/DE/Sachgebiete/QES/
Veroeffentlichungen/Algorithmen/algorithmen node.html
(accessed on 8 February 2012).

de Cannìere, C. and Rechberger, C. (2006) ‘Finding SHA-1
characteristics: general results and applications’, in AsiaCrypt
2006, Lecture Notes in Computer Science, Vol. 4284, pp.1–20.

Clark, W. and Liang, J. (1973) ‘On arithmetic weight for a
general radix representation of integers’, IEEE Transactions on
Information Theory, Vol. 19, No. 6, pp.823–826.

Cooper, D. Santesson, S., Farrell, S., Boeyen, S., Housley, R.
and Polk, W. (2008) ‘Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile’, Internet
Engineering Task Force, Request For Comments, RFC 5280,
May, available at http://www.ietf.org/rfc/rfc5280.txt (accessed
on 8 February 2012).

Daum, M. (2005) ‘Cryptanalysis of hash functions of the
MD4-Family’, PhD thesis.

Daum, M. and Lucks, S. (2005) ‘Attacking hash
functions by poisoned messages, ‘The story
of Alice and her boss’, June, available at
http://th.informatik.uni-mannheim.de/People/lucks/HashCollisions/
(accessed on 8 February 2012).

Dobbertin, H. (1996) ‘Cryptanalysis of MD5 compress’,
EUROCRYPT’96 Rump Session, May, available at
http://www-cse.ucsd.edu/ bsy/dobbertin.ps (accessed on
8 February 2012).

Gauravaram, P., McCullagh, A. and Dawson, E. (2006)
‘Collision attacks on MD5 and SHA-1: is this the
‘sword of Damocles’ for electronic commerce?’,
AusCERT 2006 R&D Stream, May, available at
http://www2.mat.dtu.dk/people/P.Gauravaram/AusCert-6.pdf
(accessed on 8 February 2012).

Gebhardt, M., Illies, G. and Schindler, W. (2005) ‘A
note on practical value of single hash collisions
for special file formats’, NIST First Cryptographic
Hash Workshop, October/November, available at
http://csrc.nist.gov/groups/ST/hash/documents/Illies NIST 05.pdf
(accessed on 8 February 2012).

Halevi, S. and Krawczyk, H. (2006) ‘Strengthening digital signatures
via randomized hashing’, in CRYPTO 2006, Lecture Notes in
Computer Science, Vol. 4117, pp.41–59.

Hawkes, P., Paddon, M. and Rose, G. (2004) ‘Musings on the
Wang et al. MD5 collision’, Cryptology ePrint Archive, Report
2004/264, available at http://eprint.iacr.org/2004/264 (accessed
on 8 February 2012).

Hoffman, P. and Schneier, B. (2005) ‘Attacks on cryptographic
hashes in internet protocols’, Internet Engineering Task Force,
Request For Comments, RFC 4270, November, available
at http://www.ietf.org/rfc/rfc4270.txt (accessed on 8 February
2012).

Kaminsky, D. (2004) ‘MD5 to be considered harmful someday’,
December, available at http://dankaminsky.com/2004/12/06/46/
(accessed on 8 February 2012).

Kelsey, J. and Kohno, T. (2006) ‘Herding hash functions and the
Nostradamus attack’, in EUROCRYPT 2006, Lecture Notes in
Computer Science, Vol. 4004, pp.183–200.

Klima, V. (2005) ‘Finding MD5 collisions on a notebook PC
using multi-message modifications’, Cryptology ePrint Archive,
Report 2005/102, available at http://eprint.iacr.org/2005/102
(accessed on 8 February 2012).

Klima, V. (2006) ‘Tunnels in hash functions: MD5 collisions within a
minute’, Cryptology ePrint Archive, Report 2006/105, available
at http://eprint.iacr.org/2006/105 (accessed on 8 February 2012).

Lenstra, A.K. and de Weger, B.M.M. (2005) ‘On the possibility
of constructing meaningful hash collisions for public
keys’, in ACISP 2005, Lecture Notes in Computer
Science, Vol. 3574, pp.267–279. Full version available at
http://www.win.tue.nl/ bdeweger/CollidingCertificates/ddl-full.pdf
(accessed on 8 February 2012).

McDonald, C., Hawkes, P. and Pieprzyk, J. (2009)
‘SHA-1 collisions now 252’, EUROCRYPT 2009 Rump
session, available at http://eurocrypt2009rump.cr.yp.to/
837a0a8086fa6ca714249409ddfae43d.pdf (accessed on
8 February 2012).

Mendel, F., Rechberger, C. and Rijmen, V. (2007) ‘Update
on SHA-1’, CRYPTO 2007 Rump session, available at
http://rump2007.cr.yp.to/09-rechberger.pdf (accessed on
8 February 2012).

Menezes, A., van Oorschot, P.C. and Vanstone, S.A. (1996)
Handbook of Applied Cryptography, CRC Press.

Mikle, O. (2004) ‘Practical attacks on digital signatures using
MD5 nessage digest’, Cryptology ePrint Archive, Report
2004/356, available at http://eprint.iacr.org/2004/356 (accessed
on 8 February 2012).

National Institute of Standards and Technology NIST (2008) FIPS
PUB 180-3: Secure Hash Standard.

van Oorschot, P.C. and Wiener, M.J. (1999) ’Parallel collision search
with cryptanalytic applications’, Journal of Cryptology, Vol. 12,
No. 1, pp.1–28.

Primmer, R. and D’Halluin, C. (2005) ‘Collision and
preimage resistance of the centera content address’,
Technical report, EMC Corporation, available at
http://www.robertprimmer.com/home/Tech Papers files/
CenteraCollisionProbs.pdf (accessed on 8 February 2012).

Rechberger, C. (2006) unpublished result.
Rivest, R. (1992) ‘The MD5 Message-Digest Algorithm’, Internet

Engineering Task Force, Request For Comments, RFC 1321,
April, available at http://www.ietf.org/rfc/rfc1321.txt (accessed
on 8 February 2012).

Stevens, M. (2006) ‘Fast collision attack on MD5’,
Cryptology ePrint Archive, Report 2006/104, available at
http://eprint.iacr.org/2006/104 (accessed on 8 February 2012).

Stevens, M. (2007) ‘On collisions for MD5’, TU
Eindhoven MSc thesis, June. available at
http://www.win.tue.nl/hashclash/On%20Collisions%20for
%20MD5%20-%20M.M.J.%20Stevens.pdf (accessed on
8 February 2012).

Stevens, M., Lenstra, A.K. and de Weger, B.M.M. (2007)
‘Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities’, in EUROCRYPT 2007,
Lecture Notes in Computer Science, Vol. 4515, pp.1–22.

Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar,
D., Osvik, D.A. and de Weger, B.M.M. (2009) ‘Short
chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate’, in CRYPTO 2009, Lecture Notes in Computer
Science, Vol. 5677.

Chosen-prefix collisions for MD5 and applications 351

Stevens, M. (2012) ‘Attacks on hash functions and applications’,
Universiteit Leiden PhD thesis, to appear, available at
http://marc-stevens.nl/research (accessed on 8 February 2012).

Wang, X., Feng, D., Lai, X. and Yu, H. (2004) ‘Collisions
for hash functions MD4, MD5, HAVAL-128 and RIPEMD’,
Cryptology ePrint Archive, Report 2004/199, available at
http://eprint.iacr.org/2004/199 (accessed on 8 February 2012).

Wang, X., Yao, A. and Yao, F. (2005a) ‘New collision search
for SHA-1’, CRYPTO 2005 Rump session, available at
http://www.iacr.org/conferences/crypto2005/r/2.pdf (accessed on
8 February 2012).

Wang, X., Yin, Y.L. and Yu, H. (2005b) ‘Finding collisions in the full
SHA-1’, in CRYPTO 2005, Lecture Notes in Computer Science,
Vol. 3621, pp.17–36.

Wang, X. and Yu, H. (2005) ‘How to break MD5 and other hash
functions’, in EUROCRYPT 2005, Lecture Notes in Computer
Science, Vol. 3494, pp.19–35.

Xie, T., Liu, F. and Feng, D. (2008) ‘Could the 1-MSB
input difference be the fastest collision attack for MD5?’,
Cryptology ePrint Archive, Report 2008/391, available at
http://eprint.iacr.org/2008/391 (accessed on 8 February 2012).

Appendix A

Table A1 MD5 compression function constants
t ACt RCt Wt

0 d76aa47816 7 m0

1 e8c7b75616 12 m1

2 242070db16 17 m2

3 c1bdceee16 22 m3

4 f57c0faf16 7 m4

5 4787c62a16 12 m5

6 a830461316 17 m6

7 fd46950116 22 m7

8 698098d816 7 m8

9 8b44f7af16 12 m9

10 ffff5bb116 17 m10

11 895cd7be16 22 m11

12 6b90112216 7 m12

13 fd98719316 12 m13

14 a679438e16 17 m14

15 49b4082116 22 m15

16 f61e256216 5 m1

17 c040b34016 9 m6

18 265e5a5116 14 m11

19 e9b6c7aa16 20 m0

20 d62f105d16 5 m5

21 0244145316 9 m10

22 d8a1e68116 14 m15

23 e7d3fbc816 20 m4

24 21e1cde616 5 m9

25 c33707d616 9 m14

26 f4d50d8716 14 m3

27 455a14ed16 20 m8

28 a9e3e90516 5 m13

29 fcefa3f816 9 m2

30 676f02d916 14 m7

Table A1 MD5 compression function constants (continued)
t ACt RCt Wt

31 8d2a4c8a16 20 m12

32 fffa394216 4 m5

33 8771f68116 11 m8

34 6d9d612216 16 m11

35 fde5380c16 23 m14

36 a4beea4416 4 m1

37 4bdecfa916 11 m4

38 f6bb4b6016 16 m7

39 bebfbc7016 23 m10

40 289b7ec616 4 m13

41 eaa127fa16 11 m0

42 d4ef308516 16 m3

43 04881d0516 23 m6

44 d9d4d03916 4 m9

45 e6db99e516 11 m12

46 1fa27cf816 16 m15

47 c4ac566516 23 m2

48 f429224416 6 m0

49 432aff9716 10 m7

50 ab9423a716 15 m14

51 fc93a03916 21 m5

52 655b59c316 6 m12

53 8f0ccc9216 10 m3

54 ffeff47d16 15 m10

55 85845dd116 21 m1

56 6fa87e4f16 6 m8

57 fe2ce6e016 10 m15

58 a301431416 15 m6

59 4e0811a116 21 m13

60 f7537e8216 6 m4

61 bd3af23516 10 m11

62 2ad7d2bb16 15 m2

63 eb86d39116 21 m9

Appendix B

Boolean function bitconditions

The 4 tables in this appendix correspond to rounds
1 through 4, respectively, i.e., 0 ≤ t < 16, 16 ≤ t < 32,
32 ≤ t < 48 and 48 ≤ t < 64. The ‘abc’ in each of the
first columns denotes the three differential bitconditions
(qt[i], qt−1[i], qt−2[i]) for the relevant t and 0 ≤ i ≤ 31,
with each table containing all 27 possible triples. Columns
2, 3, 4 contain forward bitconditions FC(t, abc, g) for
g = 0,+1,−1, respectively, and columns 5, 6, 7 contain
backward bitconditions BC(t, abc, g) for those same g’s,
respectively. The parenthesised number next to a triple def
is |Udef |, the amount of freedom left. An entry is left empty
if g /∈ Vabc. See Section 4.4.3 for more details.

352 Stevens et al.

B.1 Bitconditions applied to boolean function F

Table B1 Round 1 (0 ≤ t < 16) bitconditions applied to
boolean function F :

F (X,Y, Z) = (X ∧ Y)⊕ (X ∧ Z)

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 0.+ (2) 1.+ (2) 0.+ (2)

..- (4) 1.- (2) 0.- (2) 1.- (2) 0.- (2)

.+. (4) 0+. (2) 1+. (2) 0+. (2) 1+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) 0-. (2) 1-. (2) 0-. (2) 1-. (2)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) .-- (2) .-- (2)
+.. (4) +.V (2) +10 (1) +01 (1) +^. (2) +10 (1) +01 (1)
+.+ (2) +0+ (1) +1+ (1) +0+ (1) +1+ (1)

+.- (2) +1- (1) +0- (1) +1- (1) +0- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)

+-. (2) +-0 (1) +-1 (1) +-0 (1) +-1 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.V (2) -01 (1) -10 (1) -^. (2) -01 (1) -10 (1)

-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -0- (1) -1- (1) -0- (1) -1- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)

-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)

--- (1) --- (1) --- (1)

B.2 Bitconditions applied to boolean function G

Table B2 Round 2 (16 ≤ t < 32) bitconditions applied to
boolean function G:

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y)

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .V+ (2) 10+ (1) 01+ (1) ^.+ (2) 10+ (1) 01+ (1)

..- (4) .V- (2) 01- (1) 10- (1) ^.- (2) 01- (1) 10- (1)

.+. (4) .+1 (2) .+0 (2) .+1 (2) .+0 (2)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) .-1 (2) .-0 (2) .-1 (2) .-0 (2)

.-+ (2) 1-+ (1) 0-+ (1) 1-+ (1) 0-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +.1 (2) +.0 (2) +.1 (2)
+.+ (2) +1+ (1) +0+ (1) +1+ (1) +0+ (1)

+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)

+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -.1 (2) -.0 (2) -.1 (2)

-.+ (2) -0+ (1) -1+ (1) -0+ (1) -1+ (1)
-.- (2) -1- (1) -0- (1) -1- (1) -0- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)

-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)

--- (1) --- (1) --- (1)

Chosen-prefix collisions for MD5 and applications 353

B.3 Bitconditions applied to boolean function H

Table B3 Round 3 (32 ≤ t < 48) bitconditions applied to
boolean function H:

H(X,Y, Z) = X ⊕ Y ⊕ Z

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .V+ (2) .Y+ (2) ^.+ (2) !.+ (2)

..- (4) .Y- (2) .V- (2) !.- (2) ^.- (2)

.+. (4) .+W (2) .+H (2) m+. (2) #+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) .+- (2) .+- (2)

.-. (4) .-H (2) .-W (2) #-. (2) m-. (2)

.-+ (2) .-+ (2) .-+ (2)

.-- (2) .-- (2) .-- (2)
+.. (4) +.V (2) +.Y (2) +^. (2) +!. (2)
+.+ (2) +.+ (2) +.+ (2)

+.- (2) +.- (2) +.- (2)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)

+-. (2) +-. (2) +-. (2)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.Y (2) -.V (2) -!. (2) -^. (2)

-.+ (2) -.+ (2) -.+ (2)
-.- (2) -.- (2) -.- (2)
-+. (2) -+. (2) -+. (2)

-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)

--- (1) --- (1) --- (1)

B.4 Bitconditions applied to boolean function I

Table B4 Round 4 (48 ≤ t < 64) bitconditions applied to
boolean function I:

I(X,Y, Z) = Y ⊕ (X ∨ Z)

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 01+ (1) 00+ (1) 1.+ (2) 01+ (1) 00+ (1)

..- (4) 1.- (2) 00- (1) 01- (1) 1.- (2) 00- (1) 01- (1)

.+. (4) 0+1 (1) .+Q (3) 0+1 (1) ?+. (3)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 0+- (1) 1+- (1) 0+- (1) 1+- (1)

.-. (4) .-Q (3) 0-1 (1) ?-. (3) 0-1 (1)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +01 (1) +11 (1) +.0 (2) +01 (1) +11 (1)
+.+ (2) +.+ (2) +.+ (2)

+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)

+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -11 (1) -01 (1) -.0 (2) -11 (1) -01 (1)

-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -.- (2) -.- (2)
-+. (2) -+1 (1) -+0 (1) -+1 (1) -+0 (1)

-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)

--- (1) --- (1) --- (1)

354 Stevens et al.

Appendix C

C.1 Birthday cost

In this appendix notation and variables are as in
Section 4.2. The columns p, Ctr and M denote the
values − log2(pr,k,w), log2(Ctr(r, k, w)) and the minimum
required memory such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w),
respectively.

r = 3 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0
4 34.01 51.33 2TB
8 33.42 53.03 748GB 31.31 51.98 174GB
12 34.01 55.33 2TB 32.42 54.53 374GB 30.55 53.6 103GB 28.24 52.44 21GB
16 31. 55.83 141GB 29.65 55.15 55GB 27.36 54.01 12GB 25.6 53.13 4GB
20 27.51 56.08 13GB 26.18 55.42 5GB 24.53 54.59 2GB 23.26 53.96 673MB
24 24.33 56.49 2GB 23.35 56. 714MB 22.17 55.41 315MB 21.19 54.92 160MB
28 21.11 56.88 152MB 20.56 56.6 103MB 19.98 56.32 70MB 19.57 56.11 52MB
32 17.88 57.26 17MB 17.88 57.27 17MB 17.89 57.27 17MB 17.88 57.27 17MB
r = 3 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.68 48.17 225GB 30.25 47.45 84GB 28.01 46.33 18GB
4 32.2 50.43 323GB 29.92 49.29 67GB 28.06 48.36 19GB 26.2 47.43 6GB
8 28.83 50.74 32GB 27.33 49.99 11GB 25.88 49.26 5GB 24.47 48.56 2GB
12 26.63 51.64 7GB 25.14 50.9 3GB 23.96 50.3 2GB 22.94 49.8 537MB
16 24.31 52.48 2GB 23.27 51.96 675MB 22.49 51.57 394MB 21.86 51.26 255MB
20 22.28 53.46 340MB 21.62 53.13 215MB 21.14 52.9 155MB 20.73 52.69 117MB
24 20.53 54.59 102MB 20.01 54.33 71MB 19.65 54.15 55MB 19.38 54.01 46MB
28 19.25 55.95 42MB 19.02 55.83 36MB 18.82 55.74 31MB 18.65 55.65 28MB
32 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB

r = 4 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 34. 49.33 2TB 30.19 47.42 81GB
4 33.42 51.04 749GB 30.36 49.51 90GB 27.59 48.12 14GB
8 35. 53.83 3TB 30.3 51.48 87GB 27.21 49.93 11GB 24.87 48.76 2GB
12 29.58 53.12 53GB 27.53 52.09 13GB 24.59 50.62 2GB 22.47 49.56 388MB
16 26.26 53.45 6GB 24.36 52.51 2GB 22.06 51.36 292MB 20.38 50.51 91MB
20 23.16 53.91 628MB 21.5 53.08 199MB 19.72 52.19 58MB 18.54 51.6 26MB
24 20.25 54.45 84MB 19.09 53.87 38MB 17.8 53.23 16MB 16.86 52.76 8MB
28 17.26 54.95 11MB 16.63 54.64 7MB 16.02 54.34 5MB 15.6 54.13 4MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB
r = 4 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.98 45.81 9GB 24.45 44.55 2GB 22.14 43.4 310MB 20.33 42.49 88MB
4 24.95 46.8 3GB 22.82 45.73 493MB 21.04 44.84 144MB 19.55 44.1 52MB
8 22.63 47.64 432MB 20.92 46.79 133MB 19.58 46.12 53MB 18.56 45.61 26MB
12 20.67 48.66 112MB 19.41 48.03 47MB 18.45 47.55 24MB 17.71 47.18 15MB
16 19.08 49.86 37MB 18.19 49.42 21MB 17.56 49.1 13MB 17.08 48.86 10MB
20 17.66 51.16 14MB 17.09 50.87 10MB 16.7 50.67 8MB 16.39 50.52 6MB
24 16.25 52.45 6MB 15.82 52.24 4MB 15.54 52.09 4MB 15.33 51.99 3MB
28 15.31 53.98 3MB 15.09 53.87 3MB 14.93 53.79 3MB 14.78 53.72 2MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB

Chosen-prefix collisions for MD5 and applications 355

r = 5 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 33.42 51.04 749GB 28.47 48.56 25GB 24.63 46.64 2GB 21.58 45.12 210MB
8 28.61 50.63 27GB 25.61 49.13 4GB 22. 47.33 280MB 19.39 46.02 46MB
12 25.43 51.04 3GB 22.74 49.7 468MB 19.66 48.15 56MB 17.53 47.09 13MB
16 22.36 51.51 360MB 20.02 50.34 72MB 17.59 49.12 14MB 15.95 48.3 5MB
20 19.38 52.01 46MB 17.48 51.07 13MB 15.67 50.16 4MB 14.55 49.6 2MB
24 16.68 52.66 7MB 15.35 52. 3MB 14.06 51.36 2MB 13.17 50.91 1MB
28 13.92 53.29 2MB 13.22 52.93 1MB 12.61 52.63 1MB 12.21 52.43 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB
r = 5 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.53 42.59 102MB 18.03 41.34 18MB 16.17 40.41 5MB 14.92 39.79 3MB
4 18.94 43.79 34MB 17. 42.82 9MB 15.57 42.11 4MB 14.53 41.59 2MB
8 17.27 44.96 11MB 15.79 44.22 4MB 14.75 43.7 2MB 14.01 43.33 2MB
12 15.92 46.28 5MB 14.84 45.75 2MB 14.09 45.37 2MB 13.56 45.11 1MB
16 14.8 47.73 2MB 14.06 47.35 2MB 13.55 47.1 1MB 13.18 46.92 1MB
20 13.79 49.22 1MB 13.31 48.98 1MB 12.99 48.82 1MB 12.76 48.7 1MB
24 12.64 50.64 1MB 12.29 50.47 1MB 12.07 50.36 1MB 11.91 50.28 1MB
28 11.95 52.3 1MB 11.76 52.2 1MB 11.62 52.14 1MB 11.5 52.07 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB

r = 6 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
4 28.18 48.42 20GB 23.89 46.27 2GB 19.56 44.11 52MB 16.46 42.55 6MB
8 24.66 48.66 2GB 21.17 46.91 158MB 17.37 45.01 12MB 14.79 43.72 2MB
12 21.67 49.16 224MB 18.6 47.62 27MB 15.43 46.04 3MB 13.4 45.03 1MB
16 18.82 49.74 31MB 16.21 48.43 6MB 13.74 47.2 1MB 12.23 46.44 1MB
20 16.03 50.34 5MB 13.97 49.31 2MB 12.2 48.43 1MB 11.18 47.92 1MB
24 13.54 51.1 1MB 12.11 50.38 1MB 10.86 49.75 1MB 10.04 49.35 1MB
28 11.03 51.84 1MB 10.28 51.47 1MB 9.69 51.17 1MB 9.33 50.99 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB
r = 6 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 15.12 39.88 3MB 13.05 38.85 1MB 11.73 38.19 1MB 10.91 37.78 1MB
4 14.05 41.35 2MB 12.44 40.55 1MB 11.39 40.02 1MB 10.7 39.68 1MB
8 12.92 42.79 1MB 11.73 42.19 1MB 10.95 41.8 1MB 10.44 41.54 1MB
12 12.01 44.33 1MB 11.14 43.9 1MB 10.57 43.61 1MB 10.2 43.42 1MB
16 11.25 45.95 1MB 10.64 45.64 1MB 10.24 45.45 1MB 9.98 45.32 1MB
20 10.53 47.59 1MB 10.14 47.39 1MB 9.89 47.27 1MB 9.72 47.19 1MB
24 9.59 49.12 1MB 9.31 48.98 1MB 9.14 48.9 1MB 9.04 48.85 1MB
28 9.09 50.87 1MB 8.93 50.79 1MB 8.82 50.74 1MB 8.73 50.69 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB

356 Stevens et al.

r = 7 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
4 24.02 46.34 2GB 19.68 44.16 56MB 15.16 41.9 3MB 12.18 40.41 1MB
8 21.1 46.88 151MB 17.23 44.94 11MB 13.37 43.01 1MB 10.97 41.81 1MB
12 18.32 47.49 22MB 14.96 45.8 3MB 11.82 44.24 1MB 9.98 43.31 1MB
16 15.67 48.16 4MB 12.87 46.76 1MB 10.48 45.56 1MB 9.13 44.89 1MB
20 13.1 48.88 1MB 10.93 47.79 1MB 9.26 46.95 1MB 8.35 46.5 1MB
24 10.82 49.74 1MB 9.32 48.99 1MB 8.15 48.4 1MB 7.43 48.04 1MB
28 8.56 50.6 1MB 7.78 50.22 1MB 7.23 49.94 1MB 6.91 49.78 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB
r = 7 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.8 37.73 1MB 9.25 36.95 1MB 8.35 36.5 1MB 7.84 36.25 1MB
4 10.13 39.39 1MB 8.9 38.78 1MB 8.17 38.41 1MB 7.74 38.19 1MB
8 9.42 41.03 1MB 8.5 40.57 1MB 7.94 40.3 1MB 7.61 40.13 1MB
12 8.82 42.74 1MB 8.15 42.4 1MB 7.74 42.19 1MB 7.48 42.07 1MB
16 8.31 44.48 1MB 7.84 44.24 1MB 7.55 44.1 1MB 7.37 44.01 1MB
20 7.82 46.23 1MB 7.51 46.08 1MB 7.32 45.99 1MB 7.21 45.93 1MB
24 7.06 47.86 1MB 6.84 47.75 1MB 6.72 47.69 1MB 6.66 47.65 1MB
28 6.71 49.68 1MB 6.58 49.62 1MB 6.5 49.58 1MB 6.43 49.54 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB

r = 8 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
4 20.57 44.61 105MB 15.94 42.29 5MB 11.39 40.02 1MB 8.69 38.67 1MB
8 17.91 45.28 17MB 13.77 43.21 1MB 9.99 41.32 1MB 7.86 40.26 1MB
12 15.35 46. 3MB 11.78 44.22 1MB 8.79 42.72 1MB 7.17 41.91 1MB
16 12.91 46.78 1MB 10. 45.32 1MB 7.75 44.2 1MB 6.59 43.62 1MB
20 10.56 47.61 1MB 8.35 46.5 1MB 6.81 45.73 1MB 6.03 45.34 1MB
24 8.49 48.57 1MB 6.97 47.81 1MB 5.91 47.28 1MB 5.29 46.97 1MB
28 6.48 49.56 1MB 5.71 49.18 1MB 5.21 48.93 1MB 4.93 48.79 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB
r = 8 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 7.45 36.05 1MB 6.37 35.51 1MB 5.8 35.23 1MB 5.5 35.08 1MB
4 7.06 37.85 1MB 6.18 37.42 1MB 5.71 37.18 1MB 5.45 37.05 1MB
8 6.63 39.64 1MB 5.96 39.31 1MB 5.6 39.12 1MB 5.39 39.02 1MB
12 6.26 41.46 1MB 5.77 41.21 1MB 5.49 41.07 1MB 5.34 40.99 1MB
16 5.94 43.29 1MB 5.59 43.12 1MB 5.39 43.02 1MB 5.28 42.97 1MB
20 5.61 45.13 1MB 5.38 45.01 1MB 5.25 44.95 1MB 5.18 44.92 1MB
24 5.01 46.83 1MB 4.85 46.75 1MB 4.77 46.71 1MB 4.73 46.69 1MB
28 4.78 48.71 1MB 4.68 48.67 1MB 4.62 48.64 1MB 4.58 48.62 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB

Chosen-prefix collisions for MD5 and applications 357

r = 9 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
4 17.56 43.1 13MB 12.63 40.64 1MB 8.26 38.45 1MB 5.93 37.29 1MB
8 15.09 43.87 3MB 10.75 41.7 1MB 7.2 39.92 1MB 5.41 39.03 1MB
12 12.73 44.69 1MB 9.06 42.86 1MB 6.3 41.47 1MB 4.96 40.81 1MB
16 10.51 45.58 1MB 7.57 44.11 1MB 5.53 43.09 1MB 4.57 42.61 1MB
20 8.39 46.52 1MB 6.2 45.43 1MB 4.83 44.74 1MB 4.2 44.42 1MB
24 6.53 47.59 1MB 5.05 46.85 1MB 4.12 46.39 1MB 3.63 46.14 1MB
28 4.77 48.71 1MB 4.05 48.35 1MB 3.61 48.13 1MB 3.4 48.02 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB
r = 9 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 4.95 34.8 1MB 4.25 34.45 1MB 3.92 34.28 1MB 3.76 34.21 1MB
4 4.73 36.69 1MB 4.15 36.4 1MB 3.87 36.26 1MB 3.74 36.2 1MB
8 4.49 38.57 1MB 4.04 38.35 1MB 3.82 38.24 1MB 3.72 38.18 1MB
12 4.28 40.47 1MB 3.94 40.3 1MB 3.78 40.21 1MB 3.69 40.17 1MB
16 4.09 42.37 1MB 3.85 42.25 1MB 3.73 42.19 1MB 3.67 42.16 1MB
20 3.88 44.27 1MB 3.72 44.19 1MB 3.64 44.15 1MB 3.6 44.13 1MB
24 3.42 46.04 1MB 3.32 45.99 1MB 3.27 45.96 1MB 3.25 45.95 1MB
28 3.28 47.97 1MB 3.21 47.93 1MB 3.18 47.92 1MB 3.16 47.9 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB

r = 10 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
4 14.87 41.76 3MB 9.77 39.21 1MB 5.73 37.19 1MB 3.87 36.26 1MB
8 12.6 42.63 1MB 8.18 40.42 1MB 4.97 38.81 1MB 3.56 38.11 1MB
12 10.45 43.55 1MB 6.79 41.72 1MB 4.34 40.49 1MB 3.3 39.97 1MB
16 8.45 44.55 1MB 5.57 43.11 1MB 3.8 42.22 1MB 3.06 41.86 1MB
20 6.56 45.61 1MB 4.48 44.56 1MB 3.31 43.98 1MB 2.83 43.74 1MB
24 4.92 46.79 1MB 3.53 46.09 1MB 2.78 45.71 1MB 2.42 45.53 1MB
28 3.44 48.04 1MB 2.78 47.72 1MB 2.44 47.54 1MB 2.28 47.47 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB
r = 10 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 3.17 33.91 1MB 2.77 33.71 1MB 2.6 33.62 1MB 2.53 33.59 1MB
4 3.06 35.85 1MB 2.72 35.69 1MB 2.58 35.62 1MB 2.52 35.59 1MB
8 2.94 37.8 1MB 2.68 37.66 1MB 2.56 37.61 1MB 2.51 37.58 1MB
12 2.83 39.74 1MB 2.63 39.64 1MB 2.54 39.6 1MB 2.5 39.58 1MB
16 2.73 41.69 1MB 2.59 41.62 1MB 2.52 41.59 1MB 2.49 41.57 1MB
20 2.61 43.63 1MB 2.51 43.58 1MB 2.47 43.56 1MB 2.45 43.55 1MB
24 2.28 45.47 1MB 2.22 45.44 1MB 2.2 45.42 1MB 2.19 45.42 1MB
28 2.2 47.43 1MB 2.16 47.41 1MB 2.15 47.4 1MB 2.14 47.39 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB

358 Stevens et al.

r = 11 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
4 12.5 40.58 1MB 7.36 38. 1MB 3.8 36.23 1MB 2.45 35.55 1MB
8 10.43 41.54 1MB 6.06 39.36 1MB 3.3 37.98 1MB 2.29 37.47 1MB
12 8.49 42.57 1MB 4.94 40.8 1MB 2.89 39.77 1MB 2.15 39.4 1MB
16 6.7 43.68 1MB 3.98 42.32 1MB 2.54 41.59 1MB 2.02 41.34 1MB
20 5.06 44.86 1MB 3.15 43.9 1MB 2.22 43.44 1MB 1.89 43.27 1MB
24 3.64 46.15 1MB 2.42 45.54 1MB 1.86 45.25 1MB 1.63 45.14 1MB
28 2.44 47.54 1MB 1.91 47.28 1MB 1.66 47.16 1MB 1.56 47.11 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB
r = 11 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 2.02 33.33 1MB 1.82 33.24 1MB 1.75 33.2 1MB 1.73 33.19 1MB
4 1.97 35.31 1MB 1.81 35.23 1MB 1.75 35.2 1MB 1.72 35.19 1MB
8 1.92 37.29 1MB 1.79 37.22 1MB 1.74 37.2 1MB 1.72 37.19 1MB
12 1.87 39.26 1MB 1.77 39.21 1MB 1.73 39.19 1MB 1.72 39.19 1MB
16 1.83 41.24 1MB 1.75 41.2 1MB 1.73 41.19 1MB 1.72 41.18 1MB
20 1.76 43.21 1MB 1.71 43.18 1MB 1.7 43.17 1MB 1.69 43.17 1MB
24 1.55 45.1 1MB 1.52 45.09 1MB 1.52 45.08 1MB 1.51 45.08 1MB
28 1.52 47.09 1MB 1.5 47.08 1MB 1.49 47.07 1MB 1.49 47.07 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB

r = 12 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
4 10.43 39.54 1MB 5.39 37.02 1MB 2.45 35.55 1MB 1.59 35.12 1MB
8 8.55 40.6 1MB 4.37 38.51 1MB 2.15 37.4 1MB 1.52 37.09 1MB
12 6.81 41.73 1MB 3.51 40.08 1MB 1.91 39.28 1MB 1.46 39.06 1MB
16 5.24 42.95 1MB 2.8 41.72 1MB 1.71 41.18 1MB 1.41 41.03 1MB
20 3.85 44.25 1MB 2.2 43.43 1MB 1.54 43.09 1MB 1.35 43. 1MB
24 2.66 45.66 1MB 1.69 45.17 1MB 1.32 44.98 1MB 1.2 44.93 1MB
28 1.75 47.2 1MB 1.37 47.01 1MB 1.23 46.94 1MB 1.18 46.92 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB
r = 12 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.38 33.02 1MB 1.3 32.98 1MB 1.28 32.97 1MB 1.28 32.96 1MB
4 1.36 35.01 1MB 1.3 34.98 1MB 1.28 34.97 1MB 1.28 34.96 1MB
8 1.35 37. 1MB 1.3 36.97 1MB 1.28 36.97 1MB 1.28 36.96 1MB
12 1.33 38.99 1MB 1.29 38.97 1MB 1.28 38.96 1MB 1.27 38.96 1MB
16 1.31 40.98 1MB 1.29 40.97 1MB 1.28 40.96 1MB 1.27 40.96 1MB
20 1.29 42.97 1MB 1.27 42.96 1MB 1.26 42.96 1MB 1.26 42.95 1MB
24 1.17 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB
28 1.16 46.91 1MB 1.16 46.9 1MB 1.15 46.9 1MB 1.15 46.9 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB

Chosen-prefix collisions for MD5 and applications 359

r = 13 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
4 8.62 38.64 1MB 3.86 36.26 1MB 1.62 35.13 1MB 1.18 34.91 1MB
8 6.93 39.79 1MB 3.09 37.87 1MB 1.47 37.06 1MB 1.15 36.9 1MB
12 5.41 41.03 1MB 2.47 39.56 1MB 1.35 39. 1MB 1.13 38.89 1MB
16 4.06 42.35 1MB 1.98 41.31 1MB 1.26 40.95 1MB 1.12 40.88 1MB
20 2.91 43.78 1MB 1.59 43.12 1MB 1.18 42.92 1MB 1.1 42.87 1MB
24 1.96 45.31 1MB 1.27 44.96 1MB 1.08 44.87 1MB 1.04 44.85 1MB
28 1.33 46.99 1MB 1.11 46.88 1MB 1.05 46.85 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB
r = 13 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.1 32.88 1MB 1.08 32.87 1MB 1.08 32.86 1MB 1.08 32.86 1MB
4 1.1 34.87 1MB 1.08 34.87 1MB 1.08 34.86 1MB 1.08 34.86 1MB
8 1.09 36.87 1MB 1.08 36.87 1MB 1.08 36.86 1MB 1.08 36.86 1MB
12 1.09 38.87 1MB 1.08 38.87 1MB 1.08 38.86 1MB 1.08 38.86 1MB
16 1.09 40.87 1MB 1.08 40.86 1MB 1.08 40.86 1MB 1.08 40.86 1MB
20 1.08 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB
24 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB
28 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB

