000164545 001__ 164545
000164545 005__ 20190316235051.0
000164545 0247_ $$2doi$$a10.1002/cnm.1457
000164545 02470 $$2ISI$$a000297461200010
000164545 037__ $$aARTICLE
000164545 041__ $$aeng
000164545 245__ $$aAlgorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows
000164545 269__ $$a2011
000164545 260__ $$bInternational Journal for Numerical Methods in Biomedical Engineering$$c2011
000164545 300__ $$a23
000164545 336__ $$aJournal Articles
000164545 520__ $$aThe main goal of this work is to devise robust iterative strategies to partition the solution of the Navier-Stokes equations in a three-dimensional (3D) domain, into non overlapping 3D subdomains, which communicate through the exchange of averaged/integrated quantities across the interfaces. The novel aspect of the present approach is that at coupling boundaries the conservation of flow rates and of the associated dual variables is implicitly imposed, entailing a weak physical coupling. For the solution of the non-linear interface problem two strategies are compared: relaxed fixed point and Newton iterations. The algorithm is tested in several configurations for problems ranging from academic ones to some related to the computational hemodynamics field, which involve more than two components at each coupling interface. In some cases it is shown that relaxed fixed point methods are not convergent, whereas the Newton method leads in all tested cases to convergent schemes. One of the appealing aspects of the strategy proposed here is the flexibility in the setting of boundary conditions at the interfaces, where no hierarchy is established a priori (unlike Gauss-Seidel methods). The usefulness of this methodology is also discussed in the context of dimensionally-heterogeneous coupling and preconditioning for domain decomposition methods.
000164545 6531_ $$aDomain decomposition
000164545 6531_ $$aParallel algorithms
000164545 6531_ $$aNavier–Stokes equations
000164545 6531_ $$aGeometrical multiscale
000164545 6531_ $$aNewton method
000164545 6531_ $$aHemodynamics
000164545 700__ $$0242880$$aMalossi, Adelmo Cristiano Innocenza$$g190300
000164545 700__ $$aBlanco, Pablo Javier
000164545 700__ $$0241667$$aDeparis, Simone$$g121157
000164545 700__ $$0240286$$aQuarteroni, Alfio$$g118377
000164545 773__ $$j27$$k12$$q2035-2057$$tInternational Journal for Numerical Methods in Biomedical Engineering
000164545 8564_ $$s933734$$uhttps://infoscience.epfl.ch/record/164545/files/MalossiBlancoDeparisQuarteroni_MultiscaleCouplingAlgorithms.pdf$$yPublisher's version$$zPublisher's version
000164545 909C0 $$0252102$$pCMCS$$xU10797
000164545 909CO $$ooai:infoscience.tind.io:164545$$pSB$$particle$$qGLOBAL_SET
000164545 917Z8 $$x190300
000164545 917Z8 $$x190300
000164545 917Z8 $$x190300
000164545 917Z8 $$x190300
000164545 937__ $$aEPFL-ARTICLE-164545
000164545 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000164545 980__ $$aARTICLE