
Polynomial factorization and lattices in the very

early 1980s
Perspectives of an early user of lattice basis reduction

Arjen K. Lenstra

EPFL IC LACAL and Bell Laboratories
INJ 330, Station 14, 1015-Lausanne, Switzerland

In this brief note I describe some polynomial factorization and lattice basis re-
duction developments that I was closely involved with. It all started with a list of
irreducible monic polynomials over the integers and the question if the algebraic
number fields generated by their roots were isomorphic (cf. [1]). Although sym-
bolic algebra packages that deal with such problems were in principle available,
they were not available to us. With Henk Bos and my fellow numerical analysis
student Rudolf Mak, we set out to study and implement methods to factor uni-
variate polynomials over algebraic number fields. It turned out to be a bit more
challenging than anticipated, not just because our Algol68 punch-cards jobs had
annoyingly long turn-around times (often just to add a missing semi-colon), but
also because of all the new literature that we had to familiarize ourselves with.

Our implementation got about halfway Berlekamp-Hensel to factor univariate
polynomials over the rationals. But we had gained a much better understanding
of the complexity involved in extending our work to polynomials over algebraic
number fields. And, it had wetted my appetite for the subject: I much preferred
toying around with integers to the messier type of error analysis that was ex-
pected from students in the numerical analysis group. Therefore, my master’s
thesis project was to complete the earlier, unfinished project and to produce a
working program to factor univariate polynomials over algebraic number fields.
That program would then be able to answer the isomorphism questions.

Unfortunately – though with hindsight it was most definitely fortunate for
me – simply generalizing Berlekamp-Hensel from univariates over the rationals
to univariates over algebraic number fields runs into a snag that is quite a bit
more worrisome than the related snag that Berlekamp-Hensel has to deal with
anyhow. This more serious snag is essential to this story. To appreciate it, we first
need to understand its first incarnation in Berlekamp-Hensel over the rationals.

First, unlike integers it seems, repeated factors of polynomials are easily cast
out by computing the greatest common divisor with the polynomial’s derivative.
Polynomials are therefore assumed to be square-free. To factor a square-free
polynomial f ∈ Q[X ], one selects a prime p such that f remains square-free
when taken modulo p, uses Berlekamp’s algorithm to find the factorization of
f modulo p followed by Hensel’s lemma to ‘lift’ the factorization to an appro-
priately high power of p (using Mignotte’s bound to decide how far to go), and
then derives the ‘true’ rational factorization by searching among combinations
formed by products of the modular factors.



What is the snag? It is easy to find irreducible polynomials that split, modulo
any prime, into lots of factors. At the time generating such polynomials was an
entire cottage industry, also to test and compare competing implementations
of Berlekamp-Hensel. As a consequence, due to the search in the last step, the
worst-case runtime of Berlekamp-Hensel is hopelessly exponential in the degree of
the polynomial to be factored. Because of this unavoidable bottleneck in the last
step, no one even bothered to analyse the precise behavior of the other steps: the
size of the smallest prime that maintains square-freeness, the resulting runtime
of Berlekamp’s algorithm (probabilistic polynomial time, but linear in p when
its deterministic version is used), or the lifting to the proper bound (though the
Mignotte-bound itself was obviously polynomial).

When generalizing Berlekamp-Hensel from the rationals to algebraic number
fields, one can certainly not expect the runtime to become any better – i.e., it is
clearly not realistic to expect that it gets better than exponential in the degree
of the polynomial to be factored. On the other hand, one may hope that it does
not deteriorate either. But, as a matter of fact, it did deteriorate quite badly.
Here is how.

Let g be a monic irreducible polynomial of degree d over the integers, let
g(α) = 0, and let f be a square-free polynomial to be factored over Q(α). To
be able to use Berlekamp-Hensel, one would like to define a finite field that
properly corresponds to Q(α), factor f over the finite field, lift its factorization,
and then search for factors. The obvious choice that would make everything
work smoothly, is to take a prime p such that g remains irreducible modulo p. In
that case (Z/pZ)[X ]/(g(X)) is a finite field of cardinality pd over which f can
be factored using Berlekamp’s algorithm. The resulting factorization modulo g
and p then indeed corresponds to the factorization of f over Q(α). Assuming that
square-freeness is maintained, this factorization can be lifted to a factorization
modulo g and a sufficiently high power of p and the factorization over Q(α) can
be completed, as usual, by a search among combinations of the lifted factors. It
would be exponential in the degree of f , but that is the best one can hope for
anyhow.

As should be obvious now, the above convenient choice of prime is in gen-
eral not possible, and Berlekamp-Hensel over algebraic number fields does not
always run as smoothly as described above. Instead of just a single finite field
(Z/pZ)[X ]/(g(X)), one gets a finite field for each irreducible factor of g mod-
ulo p. The polynomial f must be factored over each of these finite fields and then
lifted (after also lifting the factors of g modulo p to factors modulo the same high
enough power of p). The resulting modular factorizations of f modulo the lifted
factors of g must then first be combined using Chinese remaindering to factors
of f modulo g and the power of p, after which the search among combinations
consisting of products can be done. Since there is no a priori way to tell which
factors must be combined using Chinese remaindering, also the first combination
step involves a combinatorial search, and the overall algorithm is exponential in
the product of the degrees of g and f . In practice it often worked – I managed
to answer the isomorphism questions and thus to complete my master’s thesis

2



– but it was a rather unsatisfactory method. This Chinese remaindering based
approach was described in [3]. Another approach suggested in [2] suffered from
a similarly poor worst-case performance.

When discussing this issue with Hendrik, he suggested it may be possible to
replace the Chinese remaindering by a lattice step in the following way. Without
loss of generality, let c in Z[α] be a coefficient of a factor of f over Q(α), and
assume that the minimum polynomial g has a monic linear factor hk modulo
some power pk of p. When c is taken modulo hk and pk (regarding hk as a
polynomial in Z[α]), it results in an integer value ck that also will appear as one
of the coefficients of the (combinations of) factors of f modulo hk and pk: for
each c there is an integer ℓ and a polynomial t of degree at most d − 1 in Z[α]
such that c = ck + ℓ ·pk + t ·hk. Phrased differently, c and ck are congruent mod-
ulo the d-dimensional integer lattice generated by the vectors (pk, 0, 0, . . . , 0),
(hk0, 1, 0, 0, . . . , 0), (0, hk0, 1, 0, 0, . . .0), ... (0, 0, . . . 0, hk0, 1), where hk = α+hk0.
Because c is fixed but ck and hk0 may be expected to grow with k, one may ex-
pect that for large enough k, the coefficient c will be the unique shortest vector
that is congruent to ck modulo the lattice as generated above. And if that is
indeed the case, then one can construct the c corresponding to a given ck (and
hk) by finding a reduced lattice basis for which the fundamental domain contains
a sphere around the origin that is large enough to contain c, and by reducing ck

modulo that reduced basis.

Lattice basis reduction we knew how to do from Hendrik’s ILP paper. It
did not run in polynomial time, but it had to be done just once and, moreover,
who cares about such petty issues when dealing with an algorithm that runs
in exponential time anyhow? So, the lattice approach was implemented, and it
turned out to work beautifully. One of its fun features was the possibility to hunt
for a linear factor of g modulo p, which meant that all polynomial factorizations
could be done in prime fields as opposed to more cumbersome extension fields,
and that more complicated ‘polynomial’ coefficients only had to be dealt with
during the trial division steps for the combined factors.

In the experiments, all values (ck and hk0) grew as hoped for and c was consis-
tently located as the unique shortest vector congruent to ck modulo the reduced
basis for the lattice generated by pk and hk. What more was needed? What
was needed was a proof that the approach indeed always works as expected,
including an estimate what value of k one should use to be able to derive valid
irreducibility results.

It sufficed to prove that in the lattice generated by pk and hk, the lengths
of the non-zero vectors grew with k, because then also the reduced basis vectors
would grow. Based on the provable upper bound on their orthogonality defect,
the required lower bound for the radius of the embedded sphere could then be
established. I could not immediately get a handle on this problem, unsure what
properties of the lattice vectors should or could be used to prove a lower bound
on their lengths. My lack of understanding of the situation reached its zenith
when, in my confusion, I mistakenly allowed a polynomial t of degree at most d
in c = ck + ℓ · pk + t · hk, as opposed to d − 1 as above. This leads to a (d + 1)-

3



dimensional lattice, as opposed to the correct d-dimensional one, a lattice that,
rather disturbingly, always contains a non-zero vector of short, fixed length,
namely g itself. This observation baffled me for a while, but then quickly led to
the desired result: apparently the property I needed was coprimality with g over
the integers, yet a factor hk in common with g modulo pk. This property I could
then indeed use to derive the lower bound proof – a very inelegant proof that is
now happily lost in oblivion. In any case, I now knew for sure that my sphere
would never collapse, and thus that I could factor polynomials over algebraic
number fields faster than before. How much faster precisely, no one seemed to
care, since the overall algorithm was still exponential in the degree of f .

The initially disturbing observation had an interesting side-result, namely
that for sufficiently large k, the irreducible polynomial g can be found as a
shortest non-zero vector in a lattice defined by any of its irreducible modular
factors – or by an irreducible factor modulo pk of a polynomial one wants to fac-
tor of which g is an unknown factor. This implied that if one lifts far enough, the
combinatorial search in Berlekamp-Hensel can be avoided at the cost of shortest
vector computations in various lattices. Furthermore, by pushing k even further,
the shortest vector computations can be replaced by lattice basis reductions.
Cute, but useless, since neither the shortest vector nor lattice basis reduction
methods I used ran in polynomial time. So, as was the case for the traditional
Berlekamp-Hensel approach, I did not even attempt to analyse the two different
new lattice-based methods to factor polynomials over the rationals.

Initially, this disinterested attitude hardly changed when Hendrik got a letter
from Laci that lattice basis reduction could be done in polynomial time. After all,
at that time factoring polynomials over the rationals was so firmly established
as something non-polynomial time, that it was hard to believe that the shortest
vector trick would change anything – most certainly some other step would spoil
the game. As it turned out, it didn’t, as Hendrik suddenly realized that the
smallest prime maintaining square-freeness can always be bounded in such a
way that Berlekamp runs in polynomial time, deterministically.

And is the rest history? Not at all, unless one is just interested in polynomials
over the rationals. We still do not have an unconditional deterministic polynomial
time algorithm to factor polynomials over prime fields. And, more importantly,
factoring reducible polynomials over the integers is still widely open, with the
degree zero case the embarrassing inspiration for a popular cryptographic appli-
cation, and no true progress since the late 1980s. I sincerely hope that we will
see the rest in the not too distant future.

References

1. H.W. Lenstra, Jr., Euclidean number fields of large degree, University of Amster-
dam, Report 76-09, May 1976.

2. P.S. Wang, Factoring polynomials over algebraic number fields, Math. Comp. 30

(1976), 324–336.
3. P.J. Weinberger, L.P. Rothschild, Factoring polynomials over algebraic number

fields, ACM Transactions on Mathematical Software 2 (1976), 335–350.

4


