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Birthday paradox
The birthday paradox refers to the fact that there is a probability of more than
50% that among a group of at least 23 randomly selected people at least two
have the same birthday. It follows from

365

365
· 365 − 1

365
· · · · · 365 − 22

365
≈ 0.49 < 0.5;

it is called a paradox because the 23 is felt to be unreasonably small compared
to 365. More in general, it follows from

∏

0≤i≤1.18
√

p

p − i

p
≈ 0.5

that it is not unreasonable to expect a duplicate after about
√

p elements have
been picked at random (and with replacement) from a set of cardinality p.

Continued fraction method
See Integer factoring.

Factor base
See relation collection in Integer factoring.

Factoring circuits
In [1] Daniel Bernstein proposed a new approach to the relation combination
step of the number field sieve (see Integer factoring), based on sorting in a
large mesh of small processors. A variant based on routing in a similar mesh was
later described in [2]. A hardware approach to relation collection based on more
traditional methods was also proposed in [1]; a more detailed hardware design
is described in [3]. The practical implications of these new hardware-based
approaches for the security of, for instance, 1024-bit RSA moduli remain to
be seen.
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An alternative way to measure the cost of integer factoring was presented
in [1] as well, namely as the product of the runtime and the cost of the hardware
required, as opposed to just the runtime (see also [4]). Refer to [1] and [2] for
a discussion of the effect this has on the parameter choices and asymptotic cost
of the Number field sieve.
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Integer factoring
Definition. Integer factoring is the following problem: given a positive com-
posite integer n, find positive integers v and w, both greater than 1, such that
n = v · w.
Relation to information security. Integer factoring is widely assumed to
be a hard problem. Obviously, it is not hard for all composites, but compos-
ites for which it is believed to be difficult can easily be generated. This belief
underlies the security of the RSA public key cryptosystem. To the present
day, no proof of the difficulty of factoring has been published. This is quite
unlike the Discrete logarithm problem, where the difficulty is provable for
a generic group [19, 27]. However, this result does not have much practical
relevance. In particular it does not say anything about the hardness of comput-
ing discrete logarithms in multiplicative groups of finite fields, a problem that is
widely regarded as being as hard (or as easy) as integer factoring. On a quantum
computer both problems are easy in the sense that they allow polynomial-time
solutions. Given the current state of the art in quantum computer manufac-
turing, this is not yet considered to be a threat affecting factoring or discrete
logarithm based cryptosystems. Quantum computer factoring is not discussed
here.
Methods for integer factorization. RSA cryptosystems are faster when
smaller composites are used, but believed to be more secure for larger ones.
Finding the right middle-ground between efficiency and security requirements
requires study of theoretical and practical aspects of integer factorization meth-
ods. Often, two types of integer factoring methods are distinguished: general
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purpose and special purpose methods. For general purpose methods the fac-
toring effort depends solely on the size of the composite n to be factored. For
special purpose methods properties of n (mostly but not always of one of the fac-
tors of n) come into play as well. RSA composites are generally chosen in such
a way that special purpose methods would be less efficient than general purpose
ones. Special purpose methods are therefore hardly relevant for RSA compos-
ites. For randomly selected composites, however, special purpose methods are
on average very effective. For example, almost 92% of all positive integers have
a factor < 1000; if such a factor exists it will be found very quickly using trial
division, the simplest of the special purpose methods (see below).

Here the following factoring methods are sketched:
special purpose: trial division; Pollard’s rho method; Pollard’s p − 1 method
and generalizations thereof; Elliptic curve method.
general purpose: Fermat’s method and congruence of squares; Dixon’s ran-
dom squares method; continued fraction method (CFRAC); linear sieve; Quadratic sieve;
Number field sieve.
For a more complete survey refer to [6] and the references therein.
Establishing compositeness. Fermat’s little theorem says that ap−1 ≡
1 mod p if p is prime and a is a positive integer < p. Thus, an a ∈ {1, 2, . . . , n−1}
for which an−1 6≡ 1 mod n would establish the compositeness of n at the cost of
a single exponentiation modulo n. The proof of compositeness does not provide
any information that may be useful to find a non-trivial factor of n. Also, this
type of compositeness proof does not work for all composites, because for some
composites an−1 ≡ 1 mod n for all a that are coprime to n. There are infinitely
many of such composites, the so-called Carmichael numbers [1].

Fermat’s little theorem allows an alternative formulation for which the con-
verse is always useful for compositeness testing. Let n − 1 = 2t · u for integers
t and u with u odd. If n > 2 were prime, then any integer a ∈ {2, 3, . . . , n − 1}
satisfies the condition that either au ≡ 1 mod n or a2iu ≡ −1 mod n for some
i ∈ {0, 1, . . . , t − 1}. An integer a ∈ {2, 3, . . . , n − 1} for which this condition
does not hold is called a ‘witness to the compositeness of n.’ For odd composite
n at least 75% of the numbers in {2, 3, . . . , n − 1} are witnesses to their com-
positeness [24]. Therefore, it can in general be expected that n’s compositeness
can be proved at the cost of at most a few exponentiations modulo n, simply be
trying elements of {2, 3, . . . , n − 1} at random until a witness has been found.
This probabilistic compositeness test is often referred to as the Rabin/Miller
primality test. If n itself is randomly selected too (as may happen during the
search for a prime number), it is usually faster to establish its compositeness
using trial division (see below).
Distinct factors. Let a be a witness to the compositeness of n, as above. If
gcd(an − a, n) = 1, then n is not a prime power. Consequently, n has at least

two distinct prime factors. Because (a2t−1u)2 = an−1, with t and u as above,
this fact can often be established at negligible additional cost.
Repeated factors. If n is an odd composite and not a prime power, it
may still be a proper power of a composite (i.e., n = mℓ for m, ℓ ∈ Z>1 with m
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composite) or it may properly contain a square (i.e., n = mℓ ·w for m, ℓ, w ∈ Z>1

with gcd(m, w) = 1). Proper powers can be recognized by approximating ℓ-th
roots of n for 1 ≤ ℓ ≤ [ log n

log 3 ] using a numerical method. At present there
is in general no better way to find out if n properly contains a square than
factoring n.
Trial division up to bound B is the process of checking for all primes ≤ B in
succession if they divide n, until the smallest prime factor p of n is found or
until it is shown that p > B. This takes time proportional to log n · min(p, B).
For randomly selected n trial division can be expected to be very effective. It
cannot be recommended to use B larger than, say, 106 (with the precise value
depending on the relative speeds of implementations) because larger p can be
found more efficiently using one of the methods described below.
Pollard’s rho method [21] is based on the Birthday paradox: if x0, x1, x2, . . .
is a random walk on Z/pZ, then for any p there is a fair probability that xi = xj

for some indices i 6= j up to about
√

p. Similarly, if x0, x1, x2, . . . is a random
walk on Z/nZ, then for any p < n there is a fair probability for a collision
xi ≡ xj mod p for i 6= j up to about

√
p; if p is an unknown divisor of n, such

a collision can be recognized because it implies that p divides gcd(n, xi − xj).
In Pollard’s rho method a walk on Z/nZ is defined by selecting x0 ∈ Z/nZ

at random and by defining xi+1 = x2
i + 1 mod n. There is no a priori reason

why this would define a random walk on Z/nZ, but if it does it may reveal
the smallest factor p of n after only about

√
p iterations. At the i-th iteration,

this would require i− 1 gcd-computations gcd(n, xi − xj) for j < i, making the
method slower than trial division. This problem is overcome by means of Floyd’s
cycle-finding method: at the i-th iteration compute just gcd(n, xi − x2i) (thus
requiring computation of not only xi but x2i as well). As a result, and under
the assumption that the walk is random, the expected time to find p becomes
proportional to (log n)2 · √p; this closely matches practical observations. The
name of the method is based on the shape of the Greek character rho (‘ρ’)
depicting a sequence that bites in its own tails. The method is related to
Pollard’s rho method for discrete logarithms.

In practice the gcd-computation per iteration is replaced by a single gcd-
computation of n and the product modulo n of, say, 100 consecutive (xi−x2i)’s.
In the unlikely event that the gcd turns out to be equal to n, one backs up and
computes the gcd’s more frequently. See also [16].
Pollard’s p − 1 method [20]. It follows from Fermat’s little theorem that
if a is coprime to a prime p and k is an integer multiple of p − 1, then ak ≡
1 mod p. Thus, if p is a prime factor of n, then p divides either gcd(a, n) or
gcd(ak − 1, n) where a is randomly selected from {2, 3, . . . , n − 2}. This means
that primes p dividing n for which p − 1 is B-smooth (Smoothness), may be
found by selecting an integer a ∈ {2, 3, . . . , n − 2} at random, checking that
gcd(a, n) = 1, and computing gcd(ak − 1, n) where k is the product of the
primes ≤ B and appropriately chosen small powers thereof. This takes time
proportional to (log n)2 · B. In a ‘second stage’ one may successively try k · q
as well for the primes q between B and B′, thereby finding p for which p− 1 is
the product of a B-smooth part and a single larger prime factor up to B′; the
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additional cost is proportional to B′ − B.
For n with unknown factorization, the best values B and B′ are unknown too

and in general too large to make the method practical. However, one may try
values B, B′ depending on the amount of computing time one finds reasonable
and turn out to be lucky; if not one gives up as far as Pollard’s p− 1 method is
concerned. Despite its low probability of success, the method is quite popular,
and has led to some surprising factorizations.
Generalizations of Pollard’s p− 1 method. Pollard’s p− 1 method is the
special case d = 1 of a more general method that finds a prime factor p of n
for which the order pd − 1 of the multiplicative group F∗

pd of Fpd is smooth.
Because

Xd − 1 =
∏

t dividing d

Φt(X)

where Φt(X) is the t-th cyclotomic polynomial (thus, Φ1(X) = X −1, Φ2(X) =
X2−1
X−1 = X + 1, Φ3(X) = X3−1

X−1 = X2 + X + 1, etc.), the order of F∗
pd is

smooth if and only if Φt(p) is smooth for all integers t dividing d. For each t
the smoothness test (possibly leading to a factorization of n) consists of an
exponentiation in a ring modulo n that contains the order Φt(p) subgroup of
the multiplicative group of the subfield Fpt of Fpd . For t = d = 2 the method
is known as Williams’ p + 1 method [31]; for general d it is due to Bach and
Shallit [3].
Usage of ‘strong primes’ in RSA. It is not uncommon, and even prescribed
in some standards, to use so-called strong primes as factors of RSA moduli.
These are primes for which both p− 1 and p + 1 have a very large prime factor,
rendering ineffective a p−1 or p+1 attack against the modulus. This approach
overlooks other Φt(p) attacks (which, for random moduli, have an even smaller
probability of success). More importantly it overlooks the fact that the resulting
RSA modulus is just as likely to be vulnerable to a single elliptic curve when
using the Elliptic curve factoring method. It follows that usage of strong
primes does in general not make RSA moduli more resistant against factoring
attacks. See also [26].
Cycling attacks against RSA. These attacks, also called ‘superencryption
attacks’ work by repeatedly re-encrypting an RSA ciphertext, in the hope that
after k re-encryptions (for some reasonable k) the original ciphertext appears.
They are used as an additional reason why strong primes should be used in
RSA. However, it is shown in [26] that a generalized and more efficient version
of cycling attacks can be regarded as a special purpose factoring method that
is successful only if all prime factors of p − 1 are contained in ek − 1 for one
of the primes p dividing n, where e is the RSA public exponent. The success
probability of this attack is therefore small, even when compared to the success
probability of Pollard’s p − 1 method.
Elliptic curve method [13]. The success of Pollard’s p − 1 method (or its
generalizations) depends on the smoothness of the order of one of the groups
F∗

p (or F∗
pd) with p ranging over the prime factors of n. Given n, the group

orders are fixed, so the method works efficiently for some n but for most n it
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would require too much computing time. In the elliptic curve method each fixed
group F∗

p of fixed order (given n) is replaced by the group Ep of points modulo p
of an elliptic curve modulo n. For randomly selected elliptic curves modulo n,
the order #Ep of Ep behaves as a random number close to p. If #Ep is smooth,
then p can efficiently be found using arithmetic in the group of points of the
elliptic curve modulo n. It is conjectured that the smoothness behavior of #Ep

is similar to that of ordinary integers of that size (Smoothness probability),
which implies that the method works efficiently for all n. It also implies that
the method can be expected to find smaller factors faster than larger ones. In
the worst case where n is the product of two primes of about the same size
the heuristic expected runtime is Ln[1/2, 1], with Ln as in L function; this
is subexponential in log(n). See Elliptic curve method for a more complete
description and more detailed expected runtimes.
Fermat’s method and congruence of squares. Fermat’s method attempts
to factor n by writing it as the difference of two integer squares. Let n = p · q
for odd p and q with p < q, so that q − p = 2y for an integer y. With x = p + y
it follows that n = (x − y)(x + y) = x2 − y2. Thus, if one tries x = [

√
n] + 1,

[
√

n]+2, [
√

n]+3, . . . in succession until x2−n is a perfect square, one ultimately
finds x2 −n = y2. This is efficient only if the resulting y, the difference between
the factors, is small; if it is large the method is inferior even to trial division.

Integers x and y that satisfy the similar but weaker condition

x2 ≡ y2 mod n

may also lead to a factorization of n: from the fact that n divides x2 − y2 =
(x − y)(x + y) it follows that

n = gcd(n, x − y) gcd(n, x + y).

If x and y are random solutions to x2 ≡ y2 mod n, then there is a probability of
at least 50% that this yields a non-trivial factorization of n. All general purpose
factoring methods described below work by finding ‘random’ solutions to this
equation.
The Morrison-Brillhart approach. To construct solutions to x2 ≡ y2 mod n
that may be assumed to be sufficiently random, Kräıtchik in the 1920s proposed
to piece together solutions to x2 ≡ a mod n. In the Morrison-Brillhart approach
this is achieved using the following two steps [18]:

Relation collection. Fix a set P of primes (often called the ‘factor base’), and
collect a set V of more than #P integers v such that

v2 ≡




∏

p∈P

pev,p



 mod n

with ev,p ∈ Z. These identities are often called ‘relations’ modulo n. If P
is the set of primes ≤ B, then v’s such that v2 mod n is B-smooth lead to
relations. For each v the exponents ev,p are regarded as a #P -dimensional
vector, denoted (ev,p)p∈P .
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Relation combination. Because #V > #P , the #P -dimensional vectors (ev,p)p∈P

are linearly dependent and there exist at least #V −#P linearly indepen-
dent subsets S of V such that

∑

v∈S

ev,p = 2(sp)p∈P with (sp)p∈P ∈ Z#P .

These subsets S with corresponding vectors (sp)p∈P give rise to at least
#V − #P independent solutions to x2 ≡ y2 mod n, namely

x =

(
∏

v∈S

v

)

mod n, y =




∏

p∈P

psp



 mod n,

and thereby at least #V − #P independent chances to factor n.

All current general purpose factoring methods are based on the Morrison-Brillhart
approach. They differ in the way the relations are collected, but they are all
based on, more or less, the same relation combination step.
Matrix step. Because S and (sp)p∈P as above can be found by looking
for linear dependencies modulo 2 among the rows of the (#V × #P )-matrix
(ev,p)v∈V,p∈P , the relation combination step is often referred to as the ‘matrix
step.’ With Gaussian elimination the matrix step can be done in (#P )3 steps
(since #V ≈ #P ). Faster methods, such as conjugate gradient, Lanczos, or
Wiedemann’s coordinate recurrence method, require O(w ·#P ) steps, where w
is the number of non-zero entries of the matrix (ev,p mod 2)v∈V,p∈P . See [5, 11,
17, 23, 29, 30] for details.

In the various runtime analyses below, #P is measured using the L function
and w turns out to be c ·#P for a c that disappears in the o(1) of the L function,
so that the runtime O(w · #P ) simplifies to (#P )2.
Dixon’s random squares method [8]. The simplest relation collection
method is to define P as the set of primes ≤ B for some bound B and to
select different v’s at random from Z/nZ until more than π(B) ones have been
found for which v2 mod n is B-smooth. The choice of B, and the resulting
expected runtime, depends on the way the values v2 mod n are tested for B-
smoothness. If smoothness is tested using trial division, then B = Ln[1/2, 1/2]
(with Ln as in L function). For each candidate v, the number v2 mod n is
assumed to behave as a random number ≤ n = Ln[1, 1], and therefore, ac-
cording to Smoothness probability, B-smooth with probability Ln[1/2,−1].
Testing each candidate for B-smoothness using trial division takes time #P =
π(B) = Ln[1/2, 1/2] (using the properties of Ln as set forth in L function), so
collecting somewhat more than #P relations can be expected to take time

number
of relations

to be collected
︷ ︸︸ ︷

Ln[1/2, 1/2] ·

trial
division

︷ ︸︸ ︷

Ln[1/2, 1/2] ·

inverse of
smoothness
probability

︷ ︸︸ ︷

(Ln[1/2,−1])−1 = Ln[1/2, 2].
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Gaussian elimination on the #V × #P matrix takes time

Ln[1/2, 1/2]3 = Ln[1/2, 3/2].

Because at most log2(n) entries are non-zero for each vector (ev,p)p∈P , the total
number of non-zero entries of the matrix is #V · log2(n) = Ln[1/2, 1/2] and the
matrix step can be done in

Ln[1/2, 1/2]2 = Ln[1/2, 1]

steps using Lanczos or Wiedemann algorithms. In either case the runtime is
dominated by relation collection and the total expected time required for Dixon’s
method with trial division is Ln[1/2, 2]. Unlike most methods described be-
low, the expected runtime of the trial division variant of Dixon’s method can
rigorously be proved, i.e., it does not depend on any heuristic arguments or
conjectures.

If B-smoothness is tested using the elliptic curve method, the time to test
each v2 mod n is reduced to Ln[1/2, 0]: the entire cost of the smoothness tests
disappears in the o(1). As a result the two stages can be seen to require time
Ln[1/2, 3/2] each when Gaussian elimination is used for the matrix step. In
this case, i.e., when using the elliptic curve method for smoothness testing, the
runtime can be further reduced by using Lanczos or Wiedemann methods and
a different value for B. Redefine B as Ln[1/2,

√

1/2] so that relation collection
takes time

Ln[1/2,
√

1/2] · Ln[1/2, 0] · (Ln[1/2,−
√

1/2])−1 = Ln[1/2,
√

2]

and the matrix step requires Ln[1/2,
√

1/2]2 = Ln[1/2,
√

2] steps. The overall
runtime of Dixon’s method becomes

Ln[1/2,
√

2] + Ln[1/2,
√

2] = Ln[1/2,
√

2] :

asymptotically relation collection and combination are equally expensive. As de-
scribed here, the expected runtime of this elliptic curve based variant of Dixon’s
method depends on the conjecture involved in the expected runtime of the el-
liptic curve method. It is shown in [22], however, that the expected runtime of
a variant of the elliptic curve smoothness test can rigorously be proved. That
leads to a rigorous Ln[1/2,

√
2] expected runtime for Dixon’s method.

Continued fraction method (CFRAC) [18]. The quadratic residues
v2 mod n in Dixon’s method provably behave with respect to smoothness prob-
abilities as random non-negative integers less than n. That allows the rigorous
proof of the expected runtime of Dixon’s method. However, this theoretical
advantage is not a practical concern. It would be preferable to generate smaller
quadratic residues, thereby improving the smoothness chances and thus speed-
ing up relation collection, even though it may no longer be possible to rigorously
prove the expected runtime of the resulting method. The earliest relation col-
lection method where quadratic residues were generated that are substantially
smaller than n was due to Morrison and Brillhart and is based on the use of
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continued fractions; actually, this method (dubbed ‘CFRAC’) predates Dixon’s
method.

If ai/bi is the ith continued fraction convergent to
√

n, then |a2
i −nb2

i | < 2
√

n.
Thus, if v is chosen as ai for i = 1, 2, . . . in succession, then v2 mod n = a2

i −
nb2

i is a quadratic residue modulo n that is < 2
√

n and thus much smaller
than n. In practice this leads to a substantially larger smoothness probability
than in Dixon’s method, despite the fact that if prime p divides v2 mod n,
then (ai/bi)

2 ≡ n mod p so that n is a quadratic residue modulo p. With
B = Ln[1/2, 1/2], P the set of primes p ≤ B with (n

p ) = 1, and elliptic curve

smoothness testing, the heuristic expected runtime becomes Ln[1/2, 1]. The
heuristic is based on the assumption that the residues v2 mod n behave, with
respect to smoothness properties, as ordinary random integers ≤ n and that
the set of primes p ≤ B for which (n

p ) 6= 1 does not behave unexpectedly. In
that case, when the L function is used to express smoothness probabilities, the
difference with truly random integers disappears in the o(1).

In [14] it is shown how this same expected runtime can be achieved rigor-
ously (by a method that is based on the use of class groups). If elliptic curve
smoothness testing is replaced by trial division, B = Ln[1/2,

√

1/8] is optimal

and the heuristic expected runtime becomes Ln[1/2,
√

2].
Note on the size of RSA moduli. In the mid 1970s CFRAC (with trial divi-
sion based smoothness testing) was the factoring method of choice. Strangely, at
that time, noone seemed to be aware of its (heuristic) subexponential expected
runtime Ln[1/2,

√
2]. Had this been known by the time the RSA challenge [9]

was posed, Ron Rivest may have based his runtime estimates on CFRAC in-
stead of Pollard’s rho (with its exponential expected runtime) [25], come up
with more realistic estimates for the difficulty of factoring a 129-digit modulus,
and could have decided that 129 digits were too close for comfort (as shown
in [2]). As a result, 512-bit RSA moduli may have become less popular.
Linear sieve. It was quickly realized that the practical performance of CFRAC
was marred by the trial division based smoothness test. In the late 1970s
Richard Schroeppel therefore developed a new way to generate relatively small
residues modulo n that can be tested for smoothness very quickly: look for small
integers i, j such that

f(i, j) = (i + [
√

n])(j + [
√

n]) − n ≈ (i + j)
√

n

is smooth. Compared to CFRAC the residues are somewhat bigger, namely
(i + j)

√
n as opposed to 2

√
n. But the advantage is that smoothness can be

tested for many i, j simultaneously using a sieve: if p divides f(i, j) then p
divides f(i + kp, j + ℓp) for any k, ℓ ∈ Z. This means that if f(i, j) is tested for
B-smoothness for 0 ≤ i < I and 0 ≤ j < J , the smoothness tests no longer take
time I · J · π(B) ≈ I · J · B/ log B, but

∑

p≤B

∑

0≤i<I

∑

0≤j<J

1

p
= O(I · J · log log(B)).

This leads to a heuristic expected runtime Ln[1/2, 1]. Inconveniently, (i +
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[
√

n])(j + [
√

n]) is not automatically a square, which means that for all val-
ues i + [

√
n] and j + [

√
n] that occur in smooth f(i, j)’s columns have to be

included in the matrix. The effect this has on the expected runtime disappears
in the o(1) in Ln.

This method, dubbed ‘linear sieve,’ was the first factoring method that was
heuristically shown (by Schroeppel) to have subexponential expected runtime.
(That the earlier CFRAC also had subexponential expected runtime was realized
only later; see also [10].) Its main historical significance is, however, that it led
to the Quadratic sieve, for many years the world’s most practical factoring
method.
Quadratic sieve. The first crude version of the quadratic sieve was due
to Carl Pomerance who realized that it may be profitable to take i = j in
Schroeppel’s linear sieve. Although smoothness could still be tested quickly
using a sieve and the heuristic expected runtime (with sieving) turned out to be
a low Ln[1/2, 1], in practice the method suffered from deteriorating smoothness
probabilities (due to the linear growth of the quadratic residue f(i, i)). This
problem was, however, quickly overcome by Jim Davis and Diane Holdridge
which led to the first factorization of a number of more than 70 decimal digits [7].
Since then the method has been embellished in various ways (most importantly
by Peter Montgomery’s multiple polynomial version, as described in [28]) to
make it even more practical. See Quadratic sieve for details. At this point the
largest factorization obtained using quadratic sieve is the 135-digit factorization
reported in [15].
Number field sieve. Until the late 1980s the best factoring methods, includ-
ing the most practical one (quadratic sieve), shared the same expected runtime
Ln[1/2, 1] despite the fact that the underlying mathematics varied considerably:
heuristically for quadratic and linear sieve, CFRAC, and the worst case of the
elliptic curve method, and rigorously for the class group method from [14]. This
remarkable coincidence fostered the hope among users of the RSA cryptosys-
tem that Ln[1/2, 1], halfway between linear time log n and exponential time n
(L function), is the ‘true’ complexity of factoring.

The situation changed, slowly, when in late 1988 John Pollard distributed a
letter to a handful of colleagues. In it he described a novel method, still based on
the Morrison-Brillhart approach, to factor integers close to a cube and expressed
his hope that, one day, the method may be used to factor the ninth Fermat
number F9 = 229

+ 1, back then the world’s ‘most wanted’ composite. It was
quickly established that for certain ‘nice’ n Pollard’s new method should work
in heuristic expected runtime Ln[1/3, (32

9 )1/3] ≈ Ln[1/3, 1.526]. This was the
first indication that, conceivably, the complexity of factoring would not be stuck
at Ln[1/2, . . .]. The initial work was soon followed by the factorization of several
large ‘nice’ integers, culminating in 1990 in the factorization of F9 [12]. Further
theoretical work removed the ‘niceness’ restriction and led to the method that is
now referred to as the ‘number field sieve:’ a general purpose factoring method
with heuristic expected runtime Ln[1/3, (64

9 )1/3] ≈ Ln[1/3, 1.923]. The method
as it applies to ‘nice’ numbers is now called the ‘special number field sieve.’ See
Number field sieve for details. The first time a 512-bit RSA modulus was
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factored, using the number field sieve, was in 1999 [4].
With hindsight the property that all Ln[1/2, 1] factoring methods have in

common is their dependence, in one way or another, on smoothness of numbers
of order nO(1). The number field sieve breaks through the nO(1) barrier and
depends on smoothness of numbers of order no(1).
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L function
For t, γ ∈ R with 0 ≤ t ≤ 1 the notation Lx[t, γ] is used for any function of x
that equals

e(γ+o(1))(log x)t(log log x)1−t

, for x → ∞,

where logarithms are natural. This function has the following properties:

• Lx[t, γ] + Lx[t, δ] = Lx[t, max(γ, δ)],

• Lx[t, γ]Lx[t, δ] = Lx[t, γ + δ],

• Lx[t, γ]Lx[s, δ] = Lx[t, γ] if t > s,

• for any fixed k:

– Lx[t, γ]k = Lx[t, kγ],

– if γ > 0 then (log x)kLx[t, γ] = Lx[t, γ].

• π(Lx[t, γ]) = Lx[t, γ] where π(y) is the number of primes ≤ y.

When used to indicate runtimes and for γ fixed, Lx[t, γ] for t ranging from 0
to 1 ranges from polynomial-time to exponential-time in log(x):

• runtime
Lx[0, γ] = e(γ+o(1)) log log x = (log x)γ+o(1)

is polynomial in log(x),

• runtimes Lx[t, γ] with 0 < t < 1 are examples of runtimes that are subex-
ponential in log(x), i.e., asymptotically greater than polynomial and less
than exponential,

• runtime
Lx[1, γ] = e(γ+o(1)) log x = xγ+o(1)

is exponential in log(x).
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Pollard’s p − 1 method
See Integer factoring.

Pollard’s rho method
See Integer factoring.

Random squares method
See Dixon’s random squares method in Integer factoring.

Smoothness
A integer is B-smooth if all its prime factors are at most B.

Smoothness probability
Let α, β, r, s ∈ R>0 with s < r ≤ 1. With Lx as in L function, it follows
from [1, 2] that a random positive integer ≤ Lx[r, α] is Lx[s, β]-smooth with
probability

Lx[r − s,−α(r − s)/β], for x → ∞.
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