
Unbelievable Security

Matching AES security using public key

systems

Arjen K. Lenstra

Citibank, N.A. and Technische Universiteit Eindhoven
1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.

arjen.lenstra@citicorp.com

Abstract. The Advanced Encryption Standard (AES) provides three
levels of security: 128, 192, and 256 bits. Given a desired level of security
for the AES, this paper discusses matching public key sizes for RSA and
the ElGamal family of protocols. For the latter both traditional multi-
plicative groups of finite fields and elliptic curve groups are considered.
The practicality of the resulting systems is commented upon. Despite
the conclusions, this paper should not be interpreted as an endorsement
of any particular public key system in favor of any other.

1 Introduction

The forthcoming introduction [12] of AES-128, AES-192, and AES-256 creates an
interesting new problem. In theory, AES-128 provides a very high level of security
that is without doubt good enough for any type of commercial application. Levels
of security higher than AES-128, and certainly those higher than AES-192, are
beyond anything required by ordinary applications. Suppose, nevertheless, that
one is not satisfied with the level of security provided by AES-128 and insists
on using AES-192 or AES-256. This paper considers the question what key sizes
of corresponding security one should then be using for the following public key
cryptosystems:

– RSA and RSA multiprime (RSA-MP; the earliest reference is [14]).
– Diffie-Hellman and ElGamal-like systems [10, 15] based on the discrete log-

arithm problem in prime order subgroups of
• multiplicative groups of prime fields.
• multiplicative groups of extension fields: fields of fixed small character-

istic and compressed representation methods (LUC [17] and XTR [8]).
• groups of elliptic curves over prime fields (ECC, [1]).

These are the most popular systems and the only ones that are widely accepted.
Systems that have recently been introduced and that are still under scrutiny
are not included, with the exception of XTR – it is included because this paper
sheds new light on its alleged performance equivalence to ECC. Also discussed
are performance issues related to the usage of keys of the resulting sizes.

The introduction of the AES will soon bring along the introduction of crypto-
graphic hash functions of matching security levels [13], namely SHA-256, SHA-
384, and SHA-512. Because many common subgroup based cryptographic pro-
tocols use subgroup orders and hashes of the same sizes, the decision what sub-
group size to use with AES-` becomes easy: use subgroups of prime order q with
dlog2 qe = 2`. For ECC that settles the issue, from a practical point of view at
least. This is reflected in the revised standard FIPS 186-2 [11]. For the other sub-
group systems the finite field size remains to be decided upon. It may be assumed
that both for properly chosen finite fields and for ECC the resulting subgroup
operation is slower than a single application of the AES or SHA. It follows that,
with respect to the familiar exhaustive search, collision, and square-root attacks
against AES-`, SHA-2`, and properly chosen subgroups, respectively, the weakest
links will be the AES and the SHA, not the subgroup based system.

It may be argued that the question addressed in this paper is of academic
interest only. Indeed, it remains to be seen if the security obtained by actual
realization and application of ‘unbelievably secure’ systems such as AES-192,
AES-256, or matching public key systems, will live up to the intended theoretical
bounds. That issue is beyond the scope of this article. Even under the far-fetched
assumption that implementations are perfect, it is conceivable that the actual
security achieved by the AES is less than the intended one. Thus, even though
one may be happy with the (intended) security provided by AES-128, one may
cautiously decide to use AES-256 and match it with a public key system of ‘only’
128-bit security [21]. Therefore, and to give the theme of this paper somewhat
wider applicability, not only public key sizes matching AES-192 and AES-256
are presented, but also the possibly more realistic sizes matching DES, 2K3DES,
3K3DES, and AES-128. Here iK3DES refers to triple DES with i keys.

This paper is organized as follows. Issues concerning security levels of the
cryptosystems under consideration are discussed in Section 2. RSA moduli sizes
of security equivalent to the symmetric systems, now and in the not too distant
future, are presented in Section 3. The security of RSA-MP, i.e., the minimal fac-
tor size of (matching) RSA moduli, is discussed in Section 4. Section 5 discusses
matching finite field sizes for a variety of finite fields as applied in systems based
on subgroups of multiplicative groups (i.e., not ECC): prime fields, extension
fields with constant extension degree, and fields with constant (small) charac-
teristic. Section 6 discusses various performance related issues, such as total key
lengths and relative runtimes of cryptographic operations. A summary of the
findings is presented in Section 7.

2 Security levels

2.1 Breaking cryptosystems. Throughout this paper breaking a symmetric
cryptosystem means retrieving the symmetric key. Breaking RSA means factor-
ing the public modulus, and breaking a subgroup based public key system means
computing the discrete logarithm of a public subgroup element with respect to
a known generator. Attacks based on protocol specific properties or the size of

public or secret exponents are not considered. Thus, this paper lives in an ide-
alized world where only key search and number theoretic attacks count. For any
real life situation this is a gross oversimplification. But real life security cannot
be obtained without resistance against these basic attacks.

2.2 Equivalence of security. Under the above attack model, two cryptosys-
tems provide the same level of security if the expected effort to break either
system is the same. This way of comparing security levels sounds simpler than
it is, because ‘effort’ can be interpreted in several ways. In [7] two possible ways
are distinguished to compare security levels:

– Two cryptosystems are computationally equivalent if breaking them takes,
on average, the same computational effort.

– Two cryptosystems are cost equivalent if acquiring the hardware to break
them in the same expected amount of time costs the same.

Both types of equivalence have their pros and cons. The computational effort to
break a cryptosystem can, under certain assumptions, be estimated fairly accu-
rately. If the assumptions are acceptable, then the outcome should be acceptable
as well. Computational effort does not take into account that it may be possible
to attack one systems using much simpler and cheaper hardware than required
for the other. The notion of cost equivalence attempts to include this issue as
well. But it is an inherently much less precise measure, because cost of hardware
can impossibly be pinpointed.

2.3 Symmetric key security levels. A symmetric cryptosystem provides d-
bit security if breaking it requires on average 2d−1 applications of the cryptosys-
tem. Throughout this paper the following assumptions are made:

1. Single DES provides 56-bit security.
2. 2K3DES provides 95-bit security.
3. 3K3DES provides 112-bit security [15, page 360].
4. AES-` provides `-bit security, for ` = 128, 192, 256.

The single DES estimate is based on the effort spent by recent successful attacks
on single DES, such as described in [5]. The 2K3DES estimate is based on the
approximately 100-bit security estimate from [20] combined with the observation
that since 1990 the price of memory has come down relative to the price of
processors. It may thus be regarded as an estimate that is good only for cost
equivalence purposes. However, the computationally equivalent estimate may
not be much different. The commonly used 112-bit estimate for 3K3DES is of a
computational nature and ignores memory costs that far exceed processor costs.
The best realistic attack uses parallel collision search on a machine with about a
million terabytes of memory, and would lead to a security level of 116 bits1. This
is more conservative than the classic meet-in-the-middle attack, which would lead
to 128-bit (cost-equivalent) security. These comments on 2K3DES and 3K3DES
security levels are due to Mike Wiener [21].

1 Each 4-fold memory reduction doubles the runtime.

As far as the AES estimates are concerned, there is no a priori reason to
exclude the possibility of substantial cryptanalytic progress affecting the security
of the AES, in particular given how new the AES is. It is assumed, however, that
if the AES estimates turn out to be wrong, then the AES will either be patched
(cf. the replacement of SHA by SHA-1), or that it will be replaced by a new
version of the proper and intended security levels.

The security provided by a symmetric cryptosystem is not necessarily the
same as its key length. The above assumptions hold only if all keys are full-
length. Systems of intermediate strength can be obtained by fixing part of the
keys. This possibility is not further discussed in this paper (but see Figure 1).

It is assumed that symmetric keys are used for a limited amount of time and
a limited encryption volume. Issues related to the limited block length of the
DES and its variants are therefore of no concern in this paper.

2.4 Public key security levels. Security levels of public key systems are
determined by comparing them to symmetric key security levels. This means
that computational and cost equivalence have to be distinguished.

In [7] it is argued that computational and cost equivalence are equivalent
measures for the comparison of the security of symmetric systems and ECC. Not
explicitly mentioned in [7], and therefore worth mentioning here, is the related
fact that the amount of storage needed by the most efficient known attack on
ECC (parallelized Pollard rho) does not depend on the subgroup order, but
only on the relative cost of processors and storage [21]. In any case, if AES-128
and a certain variant of ECC are computationally equivalent, then they may be
considered to be cost equivalent as well.

For the other public key systems, however, there is a gap between compu-
tational and cost equivalence. For example, it follows from [7] that AES-128
and about 3200-bit RSA are currently computationally equivalent. With respect
to cost equivalence, AES-128 is currently more or less equivalent to 2650-bit
RSA. This last estimate depends on an assumption about hardware prices and
increases with cheaper hardware. See Section 3 for details. In Sections 3 to 5
both types of equivalence are used to determine public key parameters that pro-
vide security equivalent to the symmetric systems. The approach used is based
on [7], but entirely geared towards the current application. The results from [7]
have been criticized as being conservative [16] – prospective users of AES-192
or AES-256 may be even more conservative as far as security related choices are
concerned. The non-ECC entries of most tables consist of two numbers, referring
to the cost and computationally equivalent figures, respectively.

3 RSA modulus sizes of matching security

3.1 Current equivalence. Let

L[n] = e1.923(log n)1/3(log log n)2/3

be the approximate asymptotic growth rate of the expected time required for a
factoring attack against an RSA modulus n using the fastest currently known

factoring algorithm, the number field sieve (NFS). This runtime does not depend
on the size of the factors of n. It depends only on the size of the number n being
factored.

As in [7] actual factoring runtimes are extrapolated to obtain runtime esti-
mates for larger factoring problems. The basis for the extrapolation is the fact
that the computational effort required to factor a 512-bit RSA modulus is about
50 times smaller than required to break single DES. With the asymptotic run-
time given above it follows that a k-bit RSA modulus currently offers security
computationally equivalent to a symmetric cryptosystem of d-bit security and
speed comparable to single DES if

L[2k] ≈ 50 ∗ 2d−56 ∗ L[2512].

Furthermore, according to the estimates given in [7], a k′-bit RSA modulus
currently offers security cost equivalent to the same symmetric cryptosystem if

L[2k′

] ≈ 50 ∗ 2d−56 ∗ L[2512]

26 ∗ P
.

In the latter formula P indicates the (wholesale) price of a stripped down PC
of average performance and with reasonable memory. In [7] the default choice
P = 100 is made. Any other price within a reasonable range of the default choice
will have little effect on the sizes of the resulting RSA moduli. See [7, Section
3.2.5] for a more detailed discussion of this issue.

Unlike [7], the relatively speed of the different symmetric cryptosystems un-
der consideration is ignored. The differences observed – comparable implemen-
tations of 3DES may be three times slower than single DES, but the AES may
be three times faster – are so small that they have hardly any effect on the
sizes of the resulting RSA moduli. If desired the right hand sides of the formulas
above may be multiplied by v if the symmetric system under consideration is per
application v times slower than single DES (using comparable implementations).

3.2 Expected future equivalence. Improved hardware may be expected to
have the same effect on the security of symmetric and asymmetric cryptosystems.
It may therefore be assumed that over time the relative security of symmetric
cryptosystems and RSA is affected only by new cryptanalytic insights that affect
one system but not the other.

As far as cryptanalytic progress against symmetric cryptosystems is con-
cerned, it is assumed that they are patched or replaced if a major weakness is
found, cf. 2.3.

Progress in factoring, i.e., cryptanalytic progress against RSA, is common.
The past effects of improved factoring methods closely follow a Moore-type
law [7]. Extrapolation of this observed behavior implies the following. In year
y ≥ 2001 a k-bit RSA modulus may be expected to offer security computation-
ally equivalent to a symmetric cryptosystem of d-bit security if

L[2k] ≈ 50 ∗ 2d−56+2(y−2001)/3 ∗ L[2512].

Cost equivalence is achieved in year y for a k′-bit RSA modulus if

L[2k′

] ≈ 50 ∗ 2d−56+2(y−2001)/3 ∗ L[2512]

26 ∗ P
,

with P as in 3.1. As in 3.1 effects of the symmetric cryptosystem speed are ig-
nored, and P = 100 is a reasonable default choice. For y = 2001 the formulas are
the same as in 3.1, even though, compared to [7], two years of factoring progress
should have been taken into account. Such progress has not been reported in
the literature. If progress had been obtained according to Moore’s law, its effect
on RSA moduli sizes matching the AES would have been between one and two
percent, which is negligible.

3.3 Resulting RSA modulus sizes. The formulas from 3.1 and 3.2 with
P = 100 lead to the RSA modulus sizes in Table 1. The first (lower) num-
ber corresponds to the bit-length of a cost equivalent RSA modulus, the second
(higher) number is the more conservative bit length of a computationally equiva-
lent RSA modulus. Currently equivalent sizes are given in the row for year 2001,
and sizes that can be expected to be equivalent in the years 2010, 2020, and
2030, are given in the rows for those years. It is assumed that factoring progress
until 2030 behaves as it behaved since about 1970, i.e., that it follows a Moore-
type law. If new factoring progress is found to be unlikely, the numbers given
in the row for year 2001 should be used for all other years instead. If factoring
progress is expected, but at a slower rate than in the past, one may for instance
use the 2010 data for 2020. The data as presented in the table, however, and in
particular the computationally equivalent sizes, may be interpreted as ‘conser-
vative’. It should be understood that, even for the conservative choices, there is
no guarantee that surprises will not occur.

The numbers in Table 1 are not rounded or manipulated in any other way.
That is left to the user, cf. [7, Remark 4.1.1]. For the 416-bit RSA modulus cost
equivalent in 2001 to single DES, see also Table 2. As an example suppose an

Table 1. Matching RSA modulus sizes.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001 416 620 1333 1723 1941 2426 2644 3224 6897 7918 13840 15387

2010 518 747 1532 1955 2189 2709 2942 3560 7426 8493 14645 16246

2020 647 906 1773 2233 2487 3046 3296 3956 8042 9160 15574 17235

2030 793 1084 2035 2534 2807 3408 3675 4379 8689 9860 16538 18260

RSA modulus size has to be determined for an application that uses AES-192 and
that is supposed to be in operation until 2020. It follows from Table 1 that RSA
moduli should be used of eight to nine thousand bits long. Using RSA moduli of
only three to four thousand bits length would undermine the apparently desired
security level (namely, higher than AES-128). Five to seven thousand bit RSA
moduli would make the public system stronger than AES-128, as desired, but
would also make RSA the weakest link if AES-192 lives up to the expectations.

4 RSA factor sizes of matching security

Let
E[n, p] = (log2 n)2e

√
2 log p log log p

be the approximate asymptotic growth rate of the expected time required by
the elliptic curve method (ECM) to find a factor p of a composite number n
(assuming that such a factor exists). This runtime depends mostly on the size of
the factor p, and only polynomially on the size of the number n being factored.
It follows that smaller factors can be found faster. A regular RSA modulus n has
two prime factors of about (log2 n)/2 bits. In that case the ECM can in general
be expected to be slower than the NFS, so the ECM runtime does not have to
be taken into account in Section 3. In RSA-MP the RSA modulus has more than
two prime factors. This implies that the factors should be chosen in such a way
that they cannot be found faster using the ECM than using the NFS. In this
section it is analysed how many factors an RSA-MP modulus may have so that
the overall security is not affected. It is assumed that the modulus size is chosen
according to Table 1, so that the moduli offer security equivalent to the selected
symmetric cryptosystem with respect to NFS attacks. It is also assumed that all
factors have approximately the same size.

From the definitions of L[n] and E[n, p] it follows that, roughly, the factors
p of an RSA-MP modulus n should grow proportionally to

n(log n)−
1

3 .

The size log2 p should therefore grow as (log2 n)2/3, and an RSA-MP modulus n
may, asymptotically, have approximately O((log2 n)1/3) factors. Such asymptotic
results are, however, of hardly any interest for this paper.

Instead, given an RSA modulus (chosen according to Table 1) an explicit
bound is needed for the number of factors that may be allowed. To derive such a
bound the approach from [7] cited in 2.4 is used of extrapolating actual runtimes
to derive expected runtimes for larger problem instances. The basis for the ex-
trapolation is the observation that finding a 167-bit factor of a 768-bit number
can be expected to require an about 80 times smaller computational effort than
breaking single DES ([7, Section 5.9] and [22]). Let n′ be an RSA modulus that
offers security (computationally or cost) equivalent to a symmetric cryptosystem
of d-bit security and speed comparable to single DES (i.e., n′ is chosen accord-
ing to Table 1). An RSA-MP modulus n with smallest prime factor p and with
log n ≈ log n′ offers security equivalent to the same symmetric cryptosystem if

E[n, p] ≥ 80 ∗ 2d−56 ∗ E[2768, 2167].

Here it is assumed that it is reasonable not to expect substantial improvements
of the ECM, and that for application of the ECM itself computational and cost
equivalence are the same [16]. Given the least p satisfying the above formula,
the recommended number of factors of an RSA-MP modulus n equals m =
[log n/ log p]. The resulting numbers of factors are given in Table 2, along with

the bit lengths d(log2 n)/me of the factors, with the computationally equivalent
result below the cost equivalent one. Note that log2 p ≤ d(log2 n)/me. For single
DES and a cost equivalent RSA modulus in 2001 this approach would lead to a
single 416-bit factor, since factoring a composite 416-bit RSA modulus using the
ECM can be expected to be easier than breaking single DES. For that reason,
that entry is replaced by ‘two 217-bit factors’.

Table 2. Number of factors and factor size for matching RSA-MP moduli.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001
2 : 217
2 : 310

2 : 667
3 : 575

2 : 971
3 : 809

3 : 882
3 : 1075

4 : 1725
4 : 1980

4 : 3460
5 : 3078

2010
2 : 259
3 : 249

3 : 511
4 : 489

3 : 730
4 : 678

3 : 981
4 : 890

4 : 1857
5 : 1699

5 : 2929
5 : 3250

2020
3 : 216
4 : 227

3 : 591
4 : 559

3 : 829
4 : 762

4 : 824
4 : 989

4 : 2011
5 : 1832

5 : 3115
6 : 2873

2030
3 : 265
5 : 217

4 : 509
5 : 507

4 : 702
5 : 682

4 : 919
5 : 876

5 : 1738
5 : 1972

5 : 3308
6 : 3044

It can be seen that for a fixed symmetric cryptosystem the number of factors
allowed in RSA-MP increases over time. This is mostly due to the fact that the
growing moduli sizes ‘allow’ more primes of the same size, and to a much smaller
degree due to the fact that larger moduli make application of the ECM slower.

Almost the same numbers as in Table 2 are obtained if the factor 80 is
replaced by any other number in the range [80/5, 80 ∗ 5]. Uncertainty about the
precise expected behavior of the ECM is therefore not important, as long as the
estimate is in an acceptable range.

It may be argued that E[n, p] should include a factor log p. It would make
finding larger factors harder compared to the definition used above, and thus
would lead to more factors per RSA-MP modulus. For Table 2 it hardly matters.
Similarly, the factor (log2 n)2 in E[n, p] may be replaced by (log2 n)log2

3 (or
something even smaller) if faster multiplication techniques such as Karatsuba
(or an even faster method) are used. The effect of these changes on Table 2 is
small: for computational equivalence to 2K3DES in 2010 and for cost equivalence
to AES-128 in 2020 it would result in three instead of four factors.

4.1 Remark. Although strictly speaking besides the scope of this paper, Table 3
gives the number of factors that may be allowed in RSA-MP moduli of bit lengths
1024, 2048, 4096, and 8192 with the cost equivalent number followed by the
computationally equivalent one. It follows, for example, that in the conservative
computationally equivalent model one would currently allow three factors in a
1024-bit RSA-MP modulus. But, using less conservative cost equivalence one
would, more conservatively, allow only two factors in a 1024-bit modulus (see
also Figure 1). This is consistent with the fact that for cost equivalence 1024-bit
moduli are considered to be more secure than for computational equivalence:
currently just 74 bits for the latter but 85 bits for the former.

Table 3. Number of factors for RSA-MP popular modulus sizes.

Year 1024 2048 4096 8192

2001 2 3 3 3 3 4 4 4
2010 2 3 3 4 3 4 4 5
2020 3 4 3 4 4 4 4 5
2030 3 5 4 5 4 5 5 5

5 Finite field sizes of matching security

In this section subgroups refer to prime order subgroups of multiplicative groups
of finite fields. Public key systems based on the use of subgroups can either be
broken by directly attacking the subgroup or by attacking the finite field.

As mentioned in Section 1 the subgroup size will in practice be determined by
the hash size. The latter follows immediately from the symmetric cryptosystem
choice if the AES is used. Because the subgroup order is prime, the subgroup
offers security equivalent to the symmetric cryptosystem as far as direct subgroup
attacks are concerned. It remains to select the finite field in such a way that it
provides equivalent security as well. That is the subject of this section.

5.1 Fixed degree extension fields. Let p be a prime number and let k > 0 be
a fixed small integer. The approximate asymptotic growth rate of the expected
time to compute discrete logarithms in F∗

pk is L[pk], where L is as in 3.1. An RSA
modulus n and a finite field Fpk therefore offer about the same level of security
if n and pk are of the same order of magnitude (disregarding the possibility
of subgroup attacks in F∗

pk). It is generally accepted that for such n, p, and k
factoring n is somewhat easier than computing discrete logarithms in F∗

pk . For
the present purposes the distinction is negligible. Furthermore, it is reasonable
to assume the same rate of cryptanalytic progress for factoring and computing
discrete logarithms. It follows that Table 1 can be used to obtain matching fixed
degree extension field sizes: to find log2 p divide the numbers given in Table 1
by the fixed extension degree k.

5.2 Prime fields. It follows from 5.1 that if prime fields are used (i.e., k = 1),
then conservative field sizes (i.e., [log2 p]) are given by the numbers in Table 1.

As an example suppose a subgroup and prime field size have to be determined
for an application that uses AES-256 and that is supposed to be in operation
until 2010. Since SHA-512 will be used in combination with AES-256, the most
practical subgroup order is a 512-bit prime. Furthermore, it follows from Table 1
that the prime determining the prime field should be about fifteen thousand bits
long. Using eight thousand bits or less would undermine the apparently desired
security level (namely, higher than AES-192). A nine to fourteen thousand bit
prime would make the public system stronger than AES-192, as desired, but
would also make the prime field discrete logarithm the weakest link.

5.3 Extension fields of degrees 2 and 6. LUC and XTR reduce the repre-
sentation size of subgroup elements by using their trace over a certain subfield

so that the representation belongs to the subfield as well. This does not affect
the security and increases the computational efficiency [8, 17].
LUC. LUC uses a subgroup of F∗

p2 of order dividing p+1 and traces over Fp. It
follows from 5.1 that the size of the prime field Fp can be found by dividing the
numbers from Table 1 by k = 2. Table 4 contains the resulting values of [log2 p].
XTR. XTR uses a subgroup of F∗

p6 of order dividing p2 − p + 1 and traces
over Fp2 . The size of the underlying prime field Fp can be found by dividing the
numbers from Table 1 by k = 6, resulting in the [log2 p]-values in Table 5.

Table 4. [log
2
p] for matching LUC prime fields.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001 208 310 667 862 971 1213 1322 1612 3449 3959 6920 7694

2010 259 374 766 978 1095 1355 1471 1780 3713 4247 7323 8123

2020 324 453 887 1117 1244 1523 1648 1978 4021 4580 7787 8618

2030 397 542 1018 1267 1404 1704 1838 2190 4345 4930 8269 9130

Table 5. [log
2
p] for matching XTR prime fields.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001 70 104 223 288 324 405 441 538 1150 1320 2307 2565

2010 87 125 256 326 365 452 491 594 1238 1416 2441 2708

2020 108 151 296 373 415 508 550 660 1341 1527 2596 2873

2030 133 181 340 423 468 568 613 730 1449 1644 2757 3044

Table 6. [log
2
pk] for matching small characteristic fields.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001 455 732 1767 2357 2690 3440 3781 4695 10637 12318 22210 24823

2010 592 912 2066 2711 3073 3883 4249 5227 11508 13269 23570 26277

2020 770 1140 2432 3140 3535 4414 4809 5861 12524 14377 25139 27954

2030 977 1398 2835 3608 4037 4986 5412 6539 13594 15539 26771 29694

5.4 Remark. For many of the LUC and XTR key sizes in Tables 4 and 5 there
is an integer e > 1 such that (log2 p)/e ≥ log2 q. This implies that the fields Fp

in LUC and Fp2 in XTR can be replaced by Fp̄e (LUC) and Fp̄2e (XTR), where
log2 p̄e ≈ log2 p (see [8, Section 6]). Because as a result log2 p̄ ≥ log2 q, proper p̄
and q can still be found efficiently, in ways similar to the ones suggested in [8].
In XTR care must taken that q and p̄ are chosen so that q is a prime divisor of
φ6e(p̄), the 6e-th cyclotomic polynomial evaluated at p̄, which divides p̄2e−p̄e+1.
In LUC q must divide φ2e(p̄), a divisor of p̄e+1. With a proper choice of minimal
polynomial for the representation of the elements of Fp̄e (LUC) or Fp̄2e (XTR),
this leads to smaller public keys and potentially a substantial speedup (also of
the parameter selection). The numbers in Section 6 do not take this possibility
into account.

5.5 Small characteristic fields. Let p be a small fixed prime (such as 2), and
let k > 0 be an extension degree. The approximate asymptotic growth rate of
the time to compute discrete logarithms in F∗

pk for small fixed p is

ec(log pk)1/3(log log pk)2/3

for c oscillating in the interval [1.526, 1.588] (cf. [3]). Since the smallest c leads
to the more conservative field sizes, let

L′[pk] = e1.526(log pk)1/3(log log pk)2/3

.

This function is similar to L as defined in 3.1, but has a smaller constant in

60 80 100 120 140 160 180 200 220 240
0

5

0

5000

10000

15000

20000

25000

Symmetric key length

N
um

be
r

of
 b

its

 F
2

 n

RSA
RSA−MP

Fig. 1. The sizes from Tables 1 and 6 and the numbers of factors from Table 2 for the
year 2010. The shaded areas are bounded from above by the computationally equivalent
curves and step function and from below by the cost equivalent ones.

the exponent. This has serious implications for the choice of the field size pk

for small fixed p, compared to the case where k is fixed (as in 5.1). Computing
discrete logarithms in F2607 requires an about 25 times smaller computational
effort than breaking single DES [19]. It follows that a small fixed characteristic
field Fpk currently offers security computationally equivalent to a symmetric
cryptosystem of d-bit security and speed comparable to single DES if

L′[pk] ≈ 25 ∗ 2d−56 ∗ L′[2607].

With respect to cost equivalence and expected future equivalence the same ap-
proach as in 3.1 and 3.2 is used: divide the right hand side by 26 ∗ P for cost
equivalence, and multiply it by 22(y−2001)/3 for future equivalence. The resulting
values of [log2 pk] for small characteristic fields are given in Table 6 (for P = 100);
for p = 2 the numbers indicate the recommended value for k. Historically, sub-
groups of multiplicative groups of characteristic two finite fields were mostly of
interest because of their computational advantages. Comparing the numbers in
Table 1 and Table 6, however, it is questionable if the computational advantages
outweigh the disadvantage of the relatively large field size.

6 Performance issues

Assume that public key sizes are chosen according to Tables 1 to 6 to match a
symmetric cryptosystem of d-bit security. In this section the impact on public
key size overhead and computational requirements is discussed.

6.1 Public key sizes. In Table 7 public key sizes are given for three scenar-
ios. The regular public key refers to all bits contained in the public key. In an
ID-based set-up the public key is reconstructed based on the user’s identity and
an additional number of overhead bits. Refer to [6] for ID-based public key com-
pression for RSA. For subgroup based systems ID-based methods can trivially
be designed in almost any number of ways. In a shared public key environment
users share a large part of the public key data. In that case only the part that
is unique for each user has to be counted.

For subgroup based systems the public key consists of a description of the
subgroup, the generator g, its prime order q, and the public point h = gs (or its
trace), where s is the secret key. The generator itself can usually be derived at
the cost of an exponentiation of an element with a small representation, and is
not counted. In an ID-based system the description of the subgroup and q can be
reconstructed from the user’s identity and, say, 64 additional bits, which leads
to a total public key overhead of 64 bits plus the bits required to describe h. In
a shared environment all users use the same g and q, so h is the only part of the
public key that is unique for each user.

Fixed degree extension fields are not considered in Table 7, because in that
case one may as well use LUC or XTR. The choice of subgroups of multiplicative
groups of small characteristic fields is limited. Using such subgroups therefore
makes sense only in a context where the public key data, with the exception of
the public point h, are shared.

For LUC and XTR the public key sizes follow from [17] and [8]. For ECC
the description of the subgroup requires a finite field and an elliptic curve over
the field. With d as above, the field and curve take at most 2d and 4d bits,
respectively. About d and 2d + 1 bits are required for the subgroup order q and
the public point h. This leads to 9d + 1 bits for ordinary ECC, 3d + 65 bits for
ID-based ECC (since the information about q must be present), and 2d + 1 for
shared ECC. For ECC the sizes do not depend on the year. To illustrate the

Table 7. Number of bits required for public key data.

PKC regular ID-based shared

RSA, public exponent e
log

2
n from Table 1 log

2
e + log

2
n log(1

2
log

2
n) + 1

2
log

2
n n/a

2 log
2
p = log

2
n

RSA-MP, public exponent e
log

2
n from Table 1 log

2
e + log

2
n log log

2
p + m−1

m
log

2
n n/a

m, log
2
p from Table 2

Fp, log
2
p from Table 1 2 log

2
p 64 + log

2
p log

2
p

Fpk , small p, log
2
pk from Table 6 n/a n/a log

2
pk

LUC, log
2
p from Table 4 2d + 2 log

2
p 64 + log

2
p log

2
p

XTR, log
2
p from Table 5 2d + 3 log

2
p 64 + 2 log

2
p 2 log

2
p

ECC, log
2
p = 2d 9d + 1 3d + 65 2d + 1

public key size formulas, public key sizes for the year 2010 are given in Table 8,
rounded to two significant digits.

6.2 Communication overhead for subgroup based systems. Each mes-
sage in the Diffie-Hellman key agreement protocol consists of the representation
of a subgroup element. The communication overhead per message is given in the
last column of Table 7. ElGamal encryption has the same overhead (on top of
the length of the message itself). The communication overhead of ElGamal-based
message recovery signature schemes is equal to 2d.

6.3 Computational requirements. In this section the relative theoretical
computational requirements are estimated for the most common cryptographic
applications of the public key cryptosystems discussed above: encryption, de-
cryption, signature generation, and signature verification. No actual runtimes
are given. For software implementations the theoretical estimates should give a
reasonable prediction of the actual relative performance. For implementations
using dedicated hardware, such as special-purpose exponentiators, all predic-
tions concerning RSA and prime field subgroups are most likely too pessimistic.
However, as soon as special-purpose hardware is available for ECC, LUC, or
XTR, the relative performance numbers should again be closer to reality.

For subgroup based systems common ElGamal-like schemes are used where
decryption and signing each require a single subgroup exponentiation, encryp-
tion requires two separate subgroup exponentiations, and signature verification
requires the product of two subgroup exponentiations (a ‘double exponentia-
tion’). The Diffie-Hellman key agreement protocol has, per party, the same cost
as encryption, i.e., two separate subgroup exponentiations.

It is assumed that squaring and multiplication in the finite field Fp and the
ring Z/nZ of integers modulo n take the same amount of time if log2 p ≈ log2 n.
A squaring in Z/nZ is assumed to take 80% of the time of a multiplication
in Z/nZ. Basic exponentiation methods are used, i.e., no window tricks. This
hardly affects the relative performance. Precomputation of the value gt with

Table 8. Number of bits of public key data.

PKC DES 2K3DES 3K3DES AES-128 AES-192 AES-256

regular

RSA(-MP) 550 780 1600 2000 2200 2700 3000 3600 7500 8500 15000 16000

Fp 1000 1500 3100 3900 4400 5400 5900 7100 15000 17000 29000 32000

LUC 630 860 1700 2100 2400 2900 3200 3800 7800 8900 15000 17000

XTR 370 490 960 1200 1300 1600 1700 2000 4100 4600 7800 8600

ECC 510 860 1000 1200 1700 2300

ID-based

RSA 270 380 770 990 1100 1400 1500 1800 3700 4300 7300 8100

RSA-MP 270 500 1000 1500 1500 2000 2000 2700 5600 6800 12000 13000

Fp 580 810 1600 2000 2300 2800 3000 3600 7500 8600 15000 16000

LUC 320 440 830 1000 1200 1400 1500 1800 3800 4300 7400 8200

XTR 240 310 580 720 790 970 1000 1300 2500 2900 4900 5500

ECC 230 350 400 450 640 830

shared

Fp 520 750 1500 2000 2200 2700 2900 3600 7400 8500 15000 16000

Fpk , small p 590 910 2100 2700 3100 3900 4200 5200 12000 13000 24000 26000

LUC 260 370 770 980 1100 1400 1500 1800 3700 4200 7300 8100

XTR 170 250 510 650 730 900 980 1200 2500 2800 4900 5400

ECC 110 190 230 260 390 510

log2 t ≈ (log2 q)/2 combined with double exponentiation is used for subgroup
based signature generation. For XTR the methods from [18] are used. The LUC
and ECC estimates follow from [18, Section 7]. For ECC the time to recover the
y-coordinates of subgroup elements is not counted.

The resulting runtime expressions for the four basic cryptographic functions
are given in Table 9. Small characteristic fields are not included because the
relative speed of F2k and Fp arithmetic is too platform dependent. Despite po-
tential advantages of hardware F2k -arithmetic, the large value that is required
for k may make these fields unattractive for very high security non-ECC cryp-
tographic applications.

As an illustration of the data in Table 9, the relative performance of the
cryptographic operations is given in Table 10 for the year 2010, rounded to two
significant digits. For Table 10 the time M(L) for modular multiplication of
L-bit integers is proportional to L2. This corresponds to regular hardware im-
plementations. The unit of time is the time required for a single multiplication
in Z/nZ for a 1024-bit integer n. This arbitrary choice has no influence on the
relative performance. For RSA and RSA-MP the sequential (‘S’) and parallel
(‘P’) performance is given, with the number of parallel processors and the rel-
ative parallel runtime separated by a semicolon. RSA encryption and signature
verification for e = 3 or e = 217 +1 goes about 20 or 3 times faster, respectively,
than for a random 32-bit public exponent as in Table 10.

For higher security public key systems other than ECC the finite field and
ring sizes get so large that implementation using Karatsuba-like multiplication

Table 9. Number of multiplications in Fp (unless noted otherwise).

PKC matching symmetric encryption signature decryption signature
system of d-bit security verification generation

RSA, public exponent e sequential: 2.6 log
2
p

log
2
n from Table 1 1.3 log

2
e in Z/nZ

2 log
2
p = log

2
n 2 in parallel: 1.3 log

2
p

RSA-MP, public exponent e sequential: 1.3m log
2
p

log
2
n from Table 1 1.3 log

2
e in Z/nZ

m, log
2
p from Table 2 m in parallel: 1.3 log

2
p

Fp, log
2
p from Table 1 5.2d 3.1d 2.6d 1.6d

LUC, log
2
p from Table 4 6.4d 3.5d 3.2d 1.8d

XTR, log
2
p from Table 5 21d 12d 10d 6d

ECC, log
2
p = 2d 36d 20d 18d 10d

techniques should be worthwhile. In software implementations this can easily be
realized. In Table 11 the relative performance for the year 2010 is given using
Karatsuba-like modular multiplication. This implies that M(L) is proportional
to Llog

2
3, as opposed to L2 as in Table 10. The unit of time in Table 11 is the

time required for a single Karatsuba-like multiplication in Z/nZ for a 1024-bit
integer n. Since this may be different from the time required for a regular 1024-
bit modular multiplication (as in Table 10), the numbers in Tables 10 and 11
are not comparable.

As an example of an application of Tables 10 and 11, suppose AES-192 is used
in 2010 along with a cost equivalent public key system. With regular (quadratic
growth) modular arithmetic, ECC encryption takes time equivalent to about 970
regular multiplications modulo a 1024-bit modulus. This can be expected to be
about twice faster than RSA encryption (with a 32-bit public exponent), and
about six times faster than XTR encryption. But with Karatsuba-like arithmetic,
RSA encryption takes time equivalent to about 960 Karatsuba multiplications
modulo a 1024-bit modulus (but using a 7400-bit modulus). This can be expected
to be about 1.5 times faster than ECC encryption, and about six times faster
than XTR. For decryption, however, RSA is substantially slower than both ECC
and XTR for either type of arithmetic, even if RSA-MP is used on four parallel
processors.

6.4 Parameter selection. For all public key systems except ECC, parameter
selection is dominated by the generation of the primes defining the moduli, finite
fields, and subgroup orders. For each L-bit prime to be generated, the generation
time is proportional to M(L)L2. A more precise runtime function depends on a
wide variety of implementation choices that are not discussed here. Obviously,
parameter selection for high security RSA, prime field, or LUC based systems
will be slow compared to RSA-MP and, in particular, XTR.

For systems based on a subgroup of Fpk for fixed small p public key data
are usually shared (except for the public point h). For such systems the speed
of parameter selection is therefore not an important issue.

Table 10. Relative performance using regular arithmetic for the year 2010.

PKC DES 2K3DES 3K3DES AES-128 AES-192 AES-256

log
2
n

RSA(-MP) 520 750 1500 2000 2200 2700 2900 3600 7400 8500 15000 16000

log
2
p

Fp 520 750 1500 2000 2200 2700 2900 3600 7400 8500 15000 16000

LUC 260 370 770 980 1100 1400 1500 1800 3700 4200 7300 8100

XTR 90 130 260 330 370 450 490 590 1200 1400 2400 2700

ECC 112 190 224 256 384 512

encryption (with log
2
e = 32 for RSA and RSA-MP)

RSA(-MP) 11 22 93 150 190 290 340 500 2200 2900 8500 10000

Fp 75 160 1100 1800 2700 4100 5500 8000 53000 69000 270000 340000

LUC 23 48 340 550 820 1300 1700 2500 16000 21000 84000 100000

XTR 8 17 120 200 290 450 610 890 5800 7600 30000 37000

ECC 24 120 190 290 970 2300

decryption

RSA (S) 43 130 1100 2300 3300 6200 7900 14000 130000 190000 970000 1300000

RSA (P)
{

2 : 22
2 : 65

{

2 : 560
2 : 1200

{

2 : 1600
2 : 3100

{

2 : 3900
2 : 7000

{

2 : 63000
2 : 95000

{

2 : 490000
2 : 660000

RSA-MP (S) 43 57 500 580 1400 1500 3500 3500 32000 30000 160000 210000

RSA-MP (P)
{

2 : 22
3 : 19

{

3 : 170
4 : 150

{

3 : 480
4 : 390

{

3 : 1200
4 : 870

{

4 : 7900
5 : 6100

{

5 : 31000
5 : 43000

Fp 37 77 550 900 1300 2000 2700 4000 26000 34000 140000 170000

LUC 11 24 170 280 410 630 840 1200 8100 11000 42000 51000

XTR 4 9 61 99 150 230 300 450 2900 3800 15000 18000

ECC 12 59 96 140 490 1100

signature generation

RSA (S) 43 130 1100 2300 3300 6200 7900 14000 130000 190000 970000 1300000

RSA (P)
{

2 : 22
2 : 65

{

2 : 560
2 : 1200

{

2 : 1600
2 : 3100

{

2 : 3900
2 : 7000

{

2 : 63000
2 : 95000

{

2 : 490000
2 : 660000

RSA-MP (S) 43 57 500 580 1400 1500 3500 3500 32000 30000 160000 210000

RSA-MP (P)
{

2 : 22
3 : 19

{

3 : 170
4 : 150

{

3 : 480
4 : 390

{

3 : 1200
4 : 870

{

4 : 7900
5 : 6100

{

5 : 31000
5 : 43000

Fp 23 48 340 550 820 1300 1700 2500 16000 21000 84000 100000

LUC 6 13 93 150 230 340 460 680 4400 5800 23000 28000

XTR 2 5 36 58 85 130 180 260 1700 2200 8700 11000

ECC 7 32 53 79 270 630

signature verification (with log
2
e = 32 for RSA and RSA-MP)

RSA(-MP) 11 22 93 150 190 290 340 500 2200 2900 8500 10000

Fp 44 92 660 1100 1600 2400 3300 4800 31000 41000 160000 200000

LUC 13 26 190 300 450 690 930 1400 8900 12000 46000 57000

XTR 5 10 71 120 170 260 350 520 3400 4400 17000 21000

ECC 13 65 110 160 530 1300

Table 11. Relative performance using Karatsuba arithmetic for the year 2010.

PKC DES 2K3DES 3K3DES AES-128 AES-192 AES-256

log
2
n

RSA(-MP) 520 750 1500 2000 2200 2700 2900 3600 7400 8500 15000 16000

log
2
p

Fp 520 750 1500 2000 2200 2700 2900 3600 7400 8500 15000 16000

LUC 260 370 770 980 1100 1400 1500 1800 3700 4200 7300 8100

XTR 90 130 260 330 370 450 490 590 1200 1400 2400 2700

ECC 112 190 224 256 384 512

encryption (with log
2
e = 32 for RSA and RSA-MP)

RSA(-MP) 14 25 79 120 140 190 220 300 960 1200 2800 3300

Fp 99 180 940 1400 1900 2700 3500 4800 23000 29000 90000 110000

LUC 40 72 380 560 800 1100 1500 2000 9400 12000 37000 44000

XTR 23 41 220 320 450 630 820 1100 5400 6600 21000 25000

ECC 60 240 360 510 1500 3100

decryption

RSA (S) 76 200 1300 2400 3200 5500 6800 11000 74000 110000 430000 560000

RSA (P)
{

2 : 38
2 : 99

{

2 : 630
2 : 1200

{

2 : 1600
2 : 2700

{

2 : 3400
2 : 5600

{

2 : 37000
2 : 53000

{

2 : 220000
2 : 280000

RSA-MP (S) 76 100 660 790 1700 1800 3600 3700 25000 25000 100000 130000

RSA-MP (P)
{

2 : 38
3 : 34

{

3 : 220
4 : 200

{

3 : 560
4 : 460

{

3 : 1200
4 : 930

{

4 : 6200
5 : 4900

{

5 : 20000
5 : 26000

Fp 49 88 470 690 970 1400 1800 2400 12000 14000 45000 53000

LUC 20 36 190 280 400 560 730 980 4700 5800 18000 22000

XTR 12 21 110 160 230 320 410 560 2700 3300 10000 12000

ECC 30 120 180 260 730 1500

signature generation

RSA (S) 76 200 1300 2400 3200 5500 6800 11000 74000 110000 430000 560000

RSA (P)
{

2 : 38
2 : 99

{

2 : 630
2 : 1200

{

2 : 1600
2 : 2700

{

2 : 3400
2 : 5600

{

2 : 37000
2 : 53000

{

2 : 220000
2 : 280000

RSA-MP (S) 76 100 660 790 1700 1800 3600 3700 25000 25000 100000 130000

RSA-MP (P)
{

2 : 38
3 : 34

{

3 : 220
4 : 200

{

3 : 560
4 : 460

{

3 : 1200
4 : 930

{

4 : 6200
5 : 4900

{

5 : 20000
5 : 26000

Fp 30 54 290 420 600 840 1100 1500 7100 8800 28000 33000

LUC 11 20 110 160 220 310 400 540 2600 3200 10000 12000

XTR 7 12 63 93 130 180 240 320 1600 1900 6100 7200

ECC 17 65 100 140 400 840

signature verification (with log
2
e = 32 for RSA and RSA-MP)

RSA(-MP) 14 25 79 120 140 190 220 300 960 1200 2800 3300

Fp 59 110 560 820 1200 1600 2100 2900 14000 17000 54000 63000

LUC 22 40 210 310 440 610 800 1100 5200 6400 20000 24000

XTR 13 24 130 190 260 370 480 650 3100 3900 12000 14000

ECC 33 130 200 280 800 1700

ECC parameters can be found in expected polynomial time. Nevertheless,
even for security equivalent to 2K3DES the solution is not yet considered to
be sufficiently practical for systems with non-shared keys. The slow growth of
the parameter sizes implies, however, that if a satisfactory solution is found for
current (relatively low) security levels, then the solution will most likely also work
fast enough for very high security levels. For ECC over fields of characteristic
two this goal is close to being achieved [4].

7 Summary of findings

Matching AES-192 or AES-256 security levels with public key systems requires
public key sizes far beyond anything in regular use today. For instance, to match
the security of AES-192 with RSA, it would be prudent to use moduli of about
7000 bits. But given current resources, the overall practicality of RSA with such
moduli is questionable. Encryption and signature verification are faster than for
any other system if the public exponent is small, but the modulus itself may be
prohibitively large. RSA-MP fares a little better. But even if fully parallelized it is
still relatively unattractive. An interesting observation is that computationally
equivalent RSA-MP moduli often allow more factors than the (smaller) cost
equivalent ones, and may thus attain greater decryption and signature generation
speed (at the cost of a higher level of parallelism).

The unattractive sizes of RSA moduli of high security levels is entirely due
to the number field sieve. If it had not been invented, and the asymptotically
slower quadratic sieve factoring algorithm would still be the fastest factoring
algorithm, then at least until 2030 RSA moduli of 2048, 4096, and 8192 bits
would be good matches for AES-128, AES-192, and AES-256, respectively. But,
it could have been worse too: if the special number field sieve would apply to
RSA moduli, then RSA moduli would have to be chosen according to Table 6
instead of Table 1, i.e., considerably larger.

Compared to RSA and RSA-MP, subgroups of prime fields have the same
size problem. They are much slower for encryption and signature verification.
Decryption and signature generation is competitive only in environments where
RSA and RSA-MP cannot be parallelized. Furthermore, subgroups of prime
fields are consistently outperformed by LUC and XTR. So, unless second and
sixth degree extension fields turn out to be less secure than currently believed,
subgroups of prime fields are not competitive.

Similarly, LUC is consistently outperformed by XTR2. Unless a dramatic
breakthrough occurs in the fixed degree extension field discrete logarithm prob-
lem, XTR is a good choice if one insists on using a non-ECC subgroup public key
system. It has the additional advantages that parameter selection is easy and
that current special purpose RSA modular multipliers (that can handle public
moduli up to, say, 1024 bits) may be used even for very high security applications
(possibly using Remark 5.4). The latter is also possible for LUC (if Remark 5.4

2 However, for LUC it is in general faster to test if a value is correctly formatted, i.e.,
if it is the trace of a proper subgroup element. Refer to [9] for details.

is used), may be possible for RSA-MP, but is out of the question for RSA or
prime field subgroups.

Overall, ECC suffers the smallest performance degradation when moving to
very high security levels. Generation of ECC public keys in a non-shared set-up
remains problematic, for all security levels. If that is not a concern, and barring
cryptanalytic progress affecting the elliptic curve discrete logarithm problem,
the choice is obvious.

For current security levels, i.e., comparable to 1024-bit RSA, the choice is
between RSA, RSA-MP, XTR, and ECC and will mostly depend on the ap-
plication. For current higher security levels, comparable to 2048-bit RSA, the
theoretical performance gap between ECC and the other public key systems al-
ready becomes noticeable, with only XTR still within range of ECC. However,
hardware accelerators are currently available for 2048-bit RSA and RSA-MP,
but not for other security equivalent public key systems. So, for the next few
years RSA and RSA-MP will still be the methods of choice in many practical
circumstances where security equivalent to 2048-bit RSA is required. This may
change radically if new types of hardware accelerators are developed. And even
if that does not happen, it will change eventually, i.e., for higher security levels,
because special purpose hardware cannot beat the asymptotics.

Disclaimer. The contents of this paper are the sole responsibility of the author
and not of his employer. The author does not accept any responsibility for the
use of the material presented in this paper. Despite his academic involvement
with XTR, the author does not have any financial or other material interests in
any of the cryptosystems discussed in this paper.

Acknowledgments. The author thanks Eric Verheul and Mike Wiener for
their many insightful comments on earlier versions of this paper and Martijn
Stam for his assistance with Figure 1.

References

1. I. Blake, G. Seroussi, N. Smart, Elliptic curves in cryptography, Cambridge Uni-
versity Press, 1999.

2. H. Cohen, A. Miyaji, T. Ono, Efficient elliptic curve exponentiation using mixed

coordinates, Proceedings Asiacrypt’98, LNCS 1514, Springer-Verlag 1998, 51-65.
3. D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE

Trans. Inform. Theory 30 (1984) 587-594.
4. R. Harley, Rump session presentations at Eurocrypt 2001 and Crypto 2001; data

available from argote.ch/Research.html.
5. P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 4, no 2 (1999),

1-5; also at www.rsasecurity.com/rsalabs/pubs/cryptobytes.
6. A.K. Lenstra, Generating RSA moduli with a predetermined portion, Proceedings

Asiacrypt’98, LNCS 1514, Springer-Verlag 1998, 1-10.
7. A.K. Lenstra, E.R. Verheul, Selecting cryptographic key sizes, to appear in the

Journal of Cryptology; available from www.cryptosavvy.com.
8. A.K. Lenstra, E.R. Verheul, The XTR public key system, Proceedings of Crypto

2000, LNCS 1880, Springer-Verlag 2000, 1-19; available from www.ecstr.com.

9. A.K. Lenstra, E.R. Verheul, Fast irreducibility and subgroup membership testing in

XTR, Proceedings PKC 2001, LNCS 1992, Springer-Verlag 2001, 73-86; available
from www.ecstr.com.

10. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of applied cryptography,
CRC Press, 1997.

11. National institute of standards and technology, Digital signature standard, FIPS
Publication 186-2, February 2000.

12. National institute of standards and technology, //csrc.nist.gov/encryption/aes/.
13. National institute of standards and technology, //csrc.nist.gov/cryptval/shs.html.
14. R.L. Rivest, A. Shamir, L.M. Adleman, Cryptographic communications system and

method, U.S. Patent 4,405,829, 1983.
15. B. Schneier, Applied cryptography, second edition, Wiley, New York, 1996.
16. R.D. Silverman, A cost-based security analysis of symmetric and asymmetric key

lengths, RSA Laboratories Bulletin 13, April 2000.
17. P. Smith, C. Skinner, A public-key cryptosystem and a digital signature system

based on the Lucas function analogue to discrete logarithms, Proceedings of Asi-
acrypt ’94, LNCS 917, Springer-Verlag 1995, 357-364.

18. M. Stam, A.K. Lenstra, Speeding up XTR, Proceedings Asiacrypt 2001, Springer-
Verlag 2001, this volume; available from www.ecstr.com.

19. E. Thome, Computation of discrete logarithms in F2607 , Proceedings Asiacrypt
2001, Springer-Verlag 2001, this volume.

20. P.C. van Oorschot, M.J. Wiener, A known-plaintext attack on two-key triple en-

cryption, Proceedings Eurocrypt’90, LNCS 473, Springer-Verlag 1991, 318-325.
21. M.J. Wiener, personal communication, August 2001.
22. P. Zimmermann, personal communication, 1999.

