
Partitioned real-time scheduling on heterogeneous
shared-memory multiprocessors

Martin Niemeier
École Polytechnique Fédérale de Lausanne

Discrete Optimization Group
Lausanne, Switzerland

martin.niemeier@epfl.ch

Andreas Wiese
Technische Universität Berlin

Institut für Mathematik
Berlin, Germany

wiese@math.tu-berlin.de

Sanjoy Baruah
University of North Carolina

Department of Computer Science
Chapel Hill, US

baruah@cs.unc.edu

Abstract—We consider several real-time scheduling problems
on heterogeneous multiprocessor platforms, in which the dif-
ferent processors share a common memory pool. These include
(i) scheduling a collection of implicit-deadline sporadic tasks with
the objective of meeting all deadlines; and (ii) scheduling a col-
lection of independent jobs with the objective of minimizing the
makespan of the schedule. Both these problems are intractable
(NP-hard). For each, we derive polynomial-time algorithms for
solving them approximately, and show that these algorithms have
bounded deviation from optimal behavior. We also consider the
problem of determining how much common memory a platform
needs in order to be able to accommodate a specified real-time
workload.

Index Terms—Unrelated multiprocessors; memory-constrained
scheduling; partitioned scheduling; approximation algorithms;
bicriteria approximation.

I. INTRODUCTION

Embedded real-time systems are often implemented upon
heterogeneous hardware, consisting of several distinct pro-
cessors each with its own instruction set. This trend to-
wards platform heterogeneity is becoming more pronounced
as real-time systems increasingly come to be implemented
upon multicore platforms containing specialized hardware
components that accelerate certain computations — examples
include multicore CPUs with specialized graphics processing
cores, signal-processing cores, floating-point units, customiz-
able FPGAs etc. Such heterogeneous multiprocessor platforms
may be modeled by the scheduling model called the unrelated
multiprocessor machine model. In the unrelated multiprocessor
machine model, each schedulable entity (job or task) is charac-
terized by a different execution rate for each of the processors
that comprise the platform.

The heterogeneous multiprocessor platforms upon which
embedded real-time systems are implemented often possess a
shared pool of memory in addition to the computing cores [2].
For instance, a modern multicore CPU typically contains some
on-chip cache memory that is shared among the different
processing cores of the CPU. In order to make best use of
the capabilities of the multicore CPU, this common memory
must be taken into consideration, along with the processing
cores, during scheduling and resource allocation. In this paper,
we consider the problem of scheduling real-time workloads
upon unrelated multiprocessor platforms that contain several

processing cores of different kinds as well as a shared pool
of on-board memory, which is to be shared amongst all
the processing cores. On such unrelated multiprocessors, we
consider the following two problems:

1) Partitioning a given collection of preemptive implicit-
deadline sporadic tasks, when each task needs exclusive
access to a specified amount of the shared memory. The
amount of memory needed by a task depends upon the
processor to which the task gets assigned.

2) Partitioning a given collection of independent preemp-
tive jobs that share a common release time and a
common deadline, when each job only needs access to a
share of the common memory pool while it is executing
on its assigned processor. (An alternative model, which
we also consider, has each job retaining the memory
throughout the interval between the instants it begins
and completes execution.)

We formally define each of these problems, demonstrate that
they are intractable, and provide polynomial-time algorithms
for solving them approximately with provably bounded devia-
tion from optimality. To our knowledge, our efforts represent
the first rigorous look at this problem of real-time scheduling
on unrelated multiprocessors with memory issues also taken
into consideration. Hence, in addition to the results we have
obtained here, we consider the techniques we have developed
to be important and interesting; we believe that they may be
applicable to other scheduling problems on unrelated multi-
processors.

The remainder of this paper is organized as follows. In
Section II, we formally define the two problems, provide
some justification for why we believe they are worth studying,
and summarize our results. We also describe some prior
work in the scheduling literature, that we will be building
upon. In Sections III and IV, we describe our findings with
respect to the first and the second problem, respectively. In
Section V we consider memory-aware scheduling problems
from a different perspective: how much common memory
must be made available in order to be able to guarantee the
timeliness of the real-time workload that is to be implemented
upon the platform? In Section VI we discuss the applicability
of our techniques to some other real-time scheduling problems

upon heterogeneous multiprocessors.

II. MODELS

Throughout this paper, let m denote the number of proces-
sors in the unrelated multiprocessor platform, and M the total
size of the common pool of memory to be shared amongst
these processors. Let n denote the number of jobs/tasks to be
partitioned among these m processors.

A. Problem 1: Memory-constrained recurrent tasks
In this problem, we are given the specifications of n

preemptable implicit-deadline tasks, and seek to determine a
partitioning of these tasks among the m processors. The i’th
task (1 ≤ i ≤ n) is characterized by a period Ti; m worst-
case execution time (WCET) parameters Ci,1, Ci,2, . . . , Ci,m;
and m memory requirement parameters mi,1,mi,2, . . . ,mi,m.
Such a task generates an unbounded number of jobs during
run-time, with successive jobs being released at least Ti time-
units apart and with each having a deadline Ti time units after
its release time. The interpretation of the WCET and memory
requirement parameters is that if the i’th task is assigned to
the j’th processor (1 ≤ j ≤ m), then each of its jobs may
need to execute for up to Ci,j time units, and an amount mi,j

of the common memory pool must be reserved for the use of
this task. Let ui,j denote the ratio Ci,j/Ti; we will refer to this
ratio as the utilization of the i’th task on the j’th processor.

For this problem, a partitioning of the tasks to the processors
is a function σ : {1, 2, . . . , n} −→ {1, 2, . . . ,m} with
σ(i) = j meaning that the i’th task is assigned to the j’th
processor. We will assume that each individual processor is
scheduled during run-time using the preemptive uniprocessor
Earliest Deadline First (EDF) scheduling algorithm [1], [6]. It
hence follows from results in [6] that a necessary and sufficient
condition for an assignment of the tasks to the processors to
be correct is that

(i) ∀j : 1 ≤ j ≤ m :
∑

(i::σ(i)=j)

ui,j ≤ 1;

and (ii)
n∑
i=1

mi,σ(i) ≤M.

B. Problem 2: Memory-constrained jobs
In this problem, we are given the specifications of n

preemptable jobs and and seek to determine a schedule for
these jobs on the m processors — as in the problem above,
these jobs have both execution and memory requirements. The
difference between this problem and the one above is that
the memory requirements are not persistent; instead, a job
only needs to be assigned the memory while it is executing.
The i’th job (1 ≤ i ≤ n) is characterized by m WCET
parameters Ci,1, Ci,2, . . . , Ci,m; and m memory requirement
parameters mi,1,mi,2, . . . ,mi,m. All m jobs are assumed to
be released at time-instant zero. The interpretation of the
WCET parameters is that if the i’th job is assigned to the
j’th processor (1 ≤ j ≤ m), then it may need to execute
for up to Ci,j time units. The interpretation of the memory
requirement parameters is that if the i’th job is assigned to

the j’th processor (1 ≤ j ≤ m), then an amount mi,j of
the common memory pool is used by the i’th job while it is
executing. Hence in a correct schedule at all time-instants t,
the sum of the memory requirements of jobs that are executing
at time t must not exceed M . The objective is to minimize the
makespan of the schedule, where the makespan is defined to be
the time-instant at which the last job completes its execution.
(In another version of the problem, there is also a common
deadline D specified for all the jobs, and the makespan of the
schedule is required to be ≤ D.)
Motivation for this problem. Our eventual interest is in
the scheduling of collections of recurrent tasks of the kind
addressed in Problem 1 (Section II-A), each of which can
generate an infinite number of jobs with each job only needing
memory during the times that it is executing. (An alternative
possibility would have each job of each task require the mem-
ory between the instants it begins and completes execution,
with the task releasing the memory between the completion
of a job and the beginning of the execution of the subsequent
job of the same task.) However, scheduling such recurrent task
systems turns out to be an extremely difficult problem; hence,
we have focused here on the simpler problem of scheduling
non-recurring jobs — as will be seen in Section IV, we needed
to develop fairly sophisticated analysis to analyze even this
simpler problem. Our results may be considered as a first step
towards a more comprehensive analysis of systems of recurrent
tasks. In addition, these results have immediate applicability
for the scheduling of certain kinds of frame-based recurrent
real-time systems, in which the recurrent nature of the behavior
is expressed as the infinite repetition of a finite collection of
jobs of the kind considered here.

C. Some prior results

Let us give the name basic scheduling problem to the fol-
lowing classical problem for scheduling on unrelated multipro-
cessors. Given n jobs {1, . . . , n} and m machines {1, . . . ,m},
assign the jobs to the machines. When a job i is assigned to
a machine j, it requires a processing time of pi,j — these
pi,j parameters are provided as part of the specification of the
problem instance. The objective is to assign the jobs in such
a way that the makespan is minimized.

Several results are known if the pi,j values have some
structure. If for each job i all values pi,j are equal (identical
machines) the problem is already NP-hard, see Hochbaum and
Shmoys [3]. These authors also considered the approximation
version of this problem: an algorithm for solving this problem
is said to be a k-approximation algorithm (k ≥ 1) if it guar-
antees to find a schedule with makespan no more than k times
the optimum and runs in polynomial time. In particular, they
present a polynomial-time (1 + ε)-approximation algorithm,
for each ε > 0. This result was later generalized to the setting
of related (“uniform”) machines [4], where each job i has a
processing demand pi and each machine j has a speed sj .
The processing time of a job i on a machine j is then given
by pi/sj .

For the general problem (without assuming any specific
structure on the pi,j values) Lenstra, Shmoys, and Tardos [5]
have provided a 2-approximation algorithm, and have shown
that it is NP-hard to obtain a k-approximation algorithm for
any k < 3/2.

Shmoys and Tardos [7] subsequently studied a general-
ization of the basic scheduling problem, which we call the
scheduling problem with costs. Suppose that there is a
specified cost ci,j associated with assigning the i’th job on
the j’th processor, and the objective is to obtain a schedule
of minimum makespan that has the minimum total cost.
Since the basic scheduling problem is NP-hard, so is this
generalization. However, Shmoys and Tardos were able to
obtain an algorithm with polynomial running time that makes
the following performance guarantee:

Theorem II.1 ([7]). Consider an instance of the scheduling
problem with costs for which there is a machine assignment
with makespan at most T and total cost C. Let

τ := max
i,j : pi,j≤T

{pi,j}

denote the largest processing time of any job on any processor.
Given the instance and the value of T as input, the polynomial
time algorithm in [7] computes a machine assignment of
makespan at most T + τ and cost at most C.

We now introduce some notation. A call to
the algorithm of Theorem II.1 will be denoted
ST({pi,j}(n×m), {ci,j}(n×m),T). That is, the algoritm
accepts as input the specification of an instance of the
scheduling problem with costs as the pi,j and ci,j values, and
an upper bound T on the makespan of a schedule for this
instance. If there is indeed a schedule for this instance with
makespan ≤ T , then ST ({pi,j}(n×m), {ci,j}(n×m), T) returns
an assignment of jobs to processors such that scheduling
according to this assignment results in a makespan at most
(T + τ) and cost equal to the cost of the minimum-cost
optimal schedule with makespan T .

D. Our results

We obtain a polynomial time algorithm for the memory-
constrained recurrent tasks problem (Section II-A) that makes
the following guarantee. If there is a partitioning of the task
system upon the given platform in which no task has a
utilization more than U on the processor to which it was
assigned, then our algorithm can partition the system upon
a platform in which the capacity of each processor is inflated
by a factor (1 + U). (Alternatively, if our algorithm fails to
partition the system upon the given platform, then there is
no partitioning of the system upon a platform in which each
processor has (1 − U) times as much capacity, and in which
no task has a utilization greater than U upon the processor to
which it has been assigned.) This implies the approximation
result that our algorithm is able to schedule any system for
which there exists an optimal schedule in which no processor
is utilized for more than half its capacity.

With regards to the memory-constrained jobs problem (Sec-
tion II-B), our main result is a polynomial time algorithm
that makes the following guarantee. If an optimal schedule
of makespan T exists for the system, then our algorithm can
generate a schedule of makespan ρ·T , for ρ defined as follows:

ρ :=
1

1−min(µM , 1
2)

+
(

1 +
τ

T

)
,

where µ := maxi,j{mij} is the largest memory requirement,
and τ := maxi,j{Cij} is the largest WCET. This implies the
approximation result that our algorithm is able to schedule any
system with a makespan no more than four times the optimal
(a 4-approximation algorithm).

We also study bicriteria approximations for the memory-
constrained jobs problem. Suppose that there is an optimal
schedule with a makespan T when the platform has M units
a memory. What if we could make more memory available?
We present a polynomial-time algorithm which, if given access
to αM units of memory for α ≥ 1, determines a schedule with
a smaller makespan than ρT — Corollary IV.9 quantifies the
tradeoff between the obtained makespan and the value of α.
This tradeoff motivates our study of Pareto optimal pairs. A
pair (T,M) is called Pareto optimal for a given instance of
the scheduling problem if there is a schedule of makespan T
on M units of memory, but decreasing either the makespan
or the amount of available memory requires that the other
parameter increases. Ideally, one would like to present the
system designer the set of Pareto optimal pairs among which
they can choose the pair that suits them best. Unfortunately,
we show in Section V there are instances where the number
of such pairs is exponential in the size of the instance. Hence
it is computationally very costly to compute them all.

III. THE MEMORY-CONSTRAINED RECURRENT TASKS
PROBLEM

The relationship between this problem and the scheduling
problem with costs as studied by Shmoys and Tardos [7] is
based on the following two observations. First, assigning jobs
to processors to minimize makespan is equivalent to assigning
implicit-deadline tasks to processors to minimize the cumula-
tive utilization of the tasks that are assigned to each processor.
Second, if we consider the amount of memory needed by a
task when assigned to a processor to be the “cost” of that
assignment, then the problem of determining whether the task
system can be partitioned is equivalent to determining whether
there is a partitioning in which the cumulative utilization
assigned to each processor does not exceed one (since each
processor is scheduled during runtime using preemptive EDF),
and the minimum cost of the assignment is at most the amount
of available memory.

We now describe the equivalence between these two prob-
lems more precisely. Recall that an instance of the problem of
partitioning implicit-deadline tasks is given by the tasks i with
their respective periods Ti, WCET values Ci,j , and memory
requirements mi,j , and the total amount of memory M .

Let `1, `2, . . . denote the distinct ui,j values which are
≤ 1

2 in decreasing order (i.e., `k > `k+1 for each k).
For notational convenience, let us set `o ← 0.5. Recall
that ST ({pi,j}(n×m), {ci,j}(n×m), T) denotes a call to an
implementation of the procedure of Theorem II.1. Algorithm 1
describes an algorithm for attempting, in polynomial time, to
partition the n tasks upon the m processors. The algorithm

Algorithm 1 Scheduling memory-constrained recurrent task
systems
k ← 0
loop
∀i∀j

(
if (ui,j ≤ `k) pij ← uij ; else pij ←∞

)
σ ← ST ({pi,j}(n×m), {mi,j}(n×m), 1− `k)
if σ is an assignment of cost ≤M return σ
if `k is the smallest utilization return failure
k ← k + 1

end loop

makes repeated calls to ST ({pi,j}(n×m), {mi,j}(n×m), T),
the implementation of the procedure of Theorem II.1.

We will first show that Algorithm 1 runs in poly-
nomial time. As stated in Theorem II.1, each call to
ST ({pi,j}(n×m), {mi,j}(n×m), T) takes polynomial time.
Since this call may be made no more than once for each
distinct utilization value in the specification of the implicit-
deadline partitioning problem instance, it is called no more
than n ·m times, thereby yielding an overall polynomial time
bound.

First we argue that Algorithm 1 is correct: if it returns
an assignment σ, then assigning the tasks to the processors
according to this assignment yields a feasible solution to the
implicit-deadline task partitioning problem. This is because the
makespan of the partitioning computed by the Shmoys-Tardos
algorithm is bounded by T + τ , as stated in Theorem II.1.
Here by construction we have T = 1 − `k and τ ≤ `k for
some `k, which implies that the cumulative utilization of the
tasks assigned to each processor is bounded by 1.

Next, we show that Algorithm 1 is effective, in the sense
that it makes the following guarantee:

Theorem III.1. If Algorithm 1 fails to partition an instance
of the memory-constrained recurrent tasks problem, then for
all U ≥ 0 there is no partitioning of the tasks upon a platform
in which each processor has (1−U) times as much capacity,
and in which no task has a utilization greater than U upon
the processor to which it has been assigned.

Proof: Let us suppose that the theorem is false. That is,
Algorithm 1 fails to partition some instance but there is a
U ′ such that (i) the system can be partitioned using only a
fraction (1−U ′) of each processor’s capacity, and (ii) in this
partitioning, no task has a utilization greater than U ′ upon
the processor to which it has been assigned. Without loss
of generality, we can assume that U ′ = `k′ for some k′, as
otherwise we can round down U ′ to the next `k value.

Consider the iteration of the loop in Algorithm 1 when k
has the value k′ such that `k′ = U ′ (since we assume that
Algorithm 1 fails, it will have iterated through every distinct
utilization value for `k prior to declaring failure, and hence
this value as well). We have assumed that the system can be
partitioned using only a fraction (1−U ′) of each processor’s
capacity, with no task having a utilization on its assigned
processor greater than U ′. Therefore, setting pij ← uij for
all uij ≤ U ′ and cij ← mij yields an instance of the
scheduling problem with costs which can be partitioned on
capacity (1−U ′)-processors with total cost ≤M . According
to Theorem II.1, ST ({pi,j}(n×m), {ci,j}(n×m), (1−`k)) with
these pij and cij values yields a partitioning of cost ≤ M ,
in which no processor is used for more than a fraction
(1− U ′) + maxi,j{pij} which is ≤ 1.

Now suppose that a task system can be partitioned upon
a platform with total memory M , in which each processor
has capacity equal to 1/2. According to Theorem II.1, the
first iteration of the loop in Algorithm 1 would yield a valid
partitioning. We therefore conclude the following corollary.

Corollary III.2. If Algorithm 1 fails to partition a given
instance upon a particular platform, then the instance cannot
be partitioned upon a platform in which the capacity of each
processor is halved.

Assume now that there exists a feasible solution for the
given instance. If we divide each utilization ui,j of each job i
on each processor j by two before executing the algorithm,
the first loop will return a feasible schedule on a platform in
which each processor has twice the capacity. This implies the
following corollary.

Corollary III.3. Consider an instance of the memory-
constrained recurrent tasks problem can be partitioned upon a
particular heterogeneous multiprocessor platform. Then with
Algorithm 1 we can compute in polynomial time a valid
partitioning for a platform with the same amount of common
memory, in which each processor has twice the capacity.

IV. THE MEMORY-CONSTRAINED JOBS PROBLEM

Recall that in an instance of this problem the i’th job
(1 ≤ i ≤ n) is characterized by m WCET parameters
Ci,1, Ci,2, . . . , Ci,m, and m memory requirement parameters
mi,1,mi,2, . . . ,mi,m. In addition, a deadline D for all the
jobs may be specified. Since all the jobs will have the same
deadline D if this is specified, scheduling to meet this deadline
is equivalent to obtaining a schedule that has makespan ≤ D.
Therefore for ease of presentation, henceforth for the most part
we will ignore the deadline D even if specified, and instead
consider the problem as one of makespan minimization.

For the problem considered in Section III above, it is suffi-
cient to define a solution to the problem as the assignment σ
of tasks to processors. Since the tasks require that memory is
allocated for their exclusive use throughout the duration of the
system execution, the precise manner in which the different
processors are scheduled over time is not relevant, and run-

time dispatching decisions on each processor can be made
independently.

For the problem we consider in this section, this is different.
Recall that jobs only require memory while they are executing;
hence the platform-wide requirement is that at any time t
during run-time, the sum of memory requirements of the jobs
executing at time t may not exceed M . We therefore need a
more detailed notion of a schedule, for which we introduce
the following additional notation. A schedule S is a mapping
from jobs to processor-time ordered pairs

S : {1, 2, , n} −→ {1, 2, ,m} × R≥0

The interpretation is that if S(i) = (j, t), then the i’th job will
execute on the j’th processor, starting at time t and occupying
the processor for the time interval [t, t + Cij).1 We say that
the finishing time of job i is t + Cij . We call a job active
at time t, if it is currently processed at that time, i.e. it was
started at time t′ and t ∈ [t′, t′ + Cij).

We now present an approximation algorithm for computing
a schedule for an input instance of the memory-constrained
jobs scheduling problem. The algorithm operates in two
phases. In the first phase, an assignment σ of jobs to pro-
cessors is determined; in the second, the actual schedule S
is constructed. For simplicity we assume that the processing
times are integer, i.e. Ci,j ∈ N for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

A. Phase 1

To compute an assignment of jobs to processors, we will
once again use the result of Shmoys and Tardos [7] presented
in Theorem II.1 above, by mapping our problem to the
problem of scheduling with costs. Recall that in the problem
of scheduling with costs, there is a processing time pi,j and a
cost ci,j specified for each job-processor pair i, j. In mapping
an instance of our problem of scheduling memory-constrained
jobs to an instance of the problem of scheduling with costs,
the parameters for the problem of scheduling with costs are
obtained as follows: For each i, j,
• pi,j ← Ci,j (i.e., the processing times are the specified

WCETs), and
• ci,j ← mi,j · Ci,j (i.e., the costs are the product of the

corresponding memory requirement and the WCET).
Informally speaking, the rationale for defining the costs in
this manner is as follows. If the i’th job is assigned to the
j’th processor, then it needs mi,j amount of memory for a
total duration of Ci,j time units: the memory-time product, or
memory consumption, for this particular assignment decision
is equal to mi,j ·Ci,j . Now since the total amount of memory
available is M , a lower bound on the makespan T of the
schedule is given by C/M , where C denotes the sum of
the memory consumptions of all the job-processor pairs i, j
such that the i’th job is assigned to the j’th processor. In
order to obtain a small makespan we would therefore like to

1Note that we are thus restricting ourselves to nonpreemptive scheduling
only, even if the model allows for preemption. However, we will show that
we do not pay too significant a price for this restriction, by comparing our
non-preemptive algorithm to an optimal one that may be preemptive.

minimize the sum of the memory consumptions of all the job-
processor pairs that comprise the partitioning. This, in essence,
is why we have defined the cost parameters ci,j to equal the
memory consumptions — we seek to limit the total memory
consumption in order to be able to compute a good schedule
in the second phase. We can also reverse the argument from
above: If there is a schedule for the job partitioning problem
of makespan T , then its total memory consumption is at most
M · T . We conclude:

Lemma IV.1. If there is a schedule of makespan T for the
memory-constrained job partitioning problem, then there is a
solution to the scheduling problem with costs of makespan T
and cost ≤M · T.

Combining this lemma with Theorem II.1, we get:

Corollary IV.2. If there is a schedule of makespan T for
the memory-constrained job partitioning problem, the Shmoys-
Tardos algorithm determines a partitioning of the jobs on the
processors with makespan at most (T + maxi,j{Ci,j}) and
total cost at most M · T .

Let us suppose for now that we know an upper bound,
denoted T , on the makespan of a schedule for the jobs in
the memory-constrained jobs scheduling problem. Let σ ←
ST ({pi,j}(n×m), {ci,j}(n×m), T) denote the job to processor
assignment obtained according to Corollary IV.2, of total cost
≤MT and makespan at most (T + maxi,j{Ci,j}); here σ(i)
denotes the processor upon which the i’th job is assigned for
all i, 1 ≤ i ≤ n.

Binary search to determine makespan. Above, we had
assumed that the upper bound T on the makespan is known.
We now describe how this is determined. We use a bi-
nary search to determine the smallest value T such that
ST ({pi,j}(n×m), {ci,j}(n×m), T) finds an assignment. If the
common deadline D is specified then since a makespan greater
than D would not yield a feasible schedule, D is an obvious
upper bound on the value of the T parameter we are interested
in. If D is not specified, then an upper bound on the makespan
is given by

∑n
i=1 minj{Ci,j} (this being the makespan if only

one job is executed at a time, upon the processor on which
it executes the fastest). By standard binary search we can
therefore obtain, in a polynomial number of calls, a bound on
the makespan that is exponentially close to the optimal value.
(We can in fact terminate the binary search procedure once the
difference between the values of T used in successive calls is
≤ mini,j Ci,j ; under reasonable assumptions on the values
of the Ci,j’s, it can be shown that this will happen within
polynomially many calls.)

B. Phase 2

We now describe how to generate a schedule from the job
to processor assignment σ. To simplify notation, we define
processing times and memory requirements for each job as
implied by the job to processor assignment σ determined in

Phase 1:

pi := Ci,σ(i) mi := mi,σ(i) ∀i, 1 ≤ i ≤ n.

The schedule is generated using a greedy list scheduling
approach. We sort the jobs non-increasing by their memory
requirement mi and create an ordered list

L = (j1, j2, . . . , jn) (1)

of all the jobs with the property that for any two jobs ja, jb
with a < b we have mja ≥ mjb . The list defines job
priorities for our phase-two algorithm, with the leftmost entry
(i.e. the one with the highest memory requirement) having
greatest priority and the rightmost entry having least priority.
The list scheduler always assigns the job i with the greatest
priority that is available at given time t, where availability is
determined by the following three conditions:

1) The processor σ(i) that the job is assigned to is not
processing any other job at time t.

2) Its memory requirement mi does not exceed the free
memory, i.e. the memory unoccupied by other active
jobs.

3) The job i has to be ready. We call a job ready at time t,
if every job i′ with σ(i) = σ(i′) and mi′ > mi has
finished at time t.

The full algorithm is presented in Listing 2.

Algorithm 2 Scheduling memory-constrained jobs
{Phase 1: partition the jobs, assuming minimum makespan
T is known}
σ ← ST ({Ci,j}(n×m), {mi,j × Ci,j}(n×m), T)
{Phase 2: generate the schedule}
L ← (j1, j2, . . . , jn) {as defined in (1)}
t← 0
while L has unscheduled jobs do

for ` = 1 to n do
if j` is unscheduled and available at time t then

Schedule job j` on processor σ(j`) at time t:
S(j`)← (σ(j`), t)

end if
end for
t← next finishing time of a job.

end while

C. Algorithm 2: properties

We first show that Algorithm 2 runs in polynomial time.
As listed, Phase 1 assumes that the value of T is known and
makes only one call to the procedure of Theorem II.1. But as
we had shown above, binary search for the appropriate value
may require polynomially many calls to this polynomial-time
procedure of Theorem II.1. For the second phase, the while
loop is executed at most once for each job completion, and
hence n times; during each iteration, the inner for loop can
clearly be implemented to execute in polynomial time.

It is obvious that Algorithm 2 is correct: since a job is
deemed available only if there is sufficient memory for it
to execute, the schedule generated by Algorithm 2 respects
memory constraints and is therefore a correct schedule.

Finally, we will show that Algorithm 1 is effective. Specif-
ically we will prove that the schedule S generated by Al-
gorithm 2 is a 4-approximation with regards to makespan:
the makespan of S is no more than 4 times the minimum
makespan of any feasible schedule for the problem instance.
We start with a basic observation regarding the structure of
this schedule:

Lemma IV.3. If at any time t a job i has not yet completed
execution in the schedule S generated by Algorithm 2, then
some job of memory requirement at least mi is active.

Proof: For simplicity of presentation we assume that all
processing times pi are integer, which can be achieved by
scaling all processing times with a suitable common factor
(the least common denominator). Then it suffices to show the
statement for integer t and we prove it by induction on t ∈ N0.

For the base case of t = 0, observe that our scheduling
algorithm at time t = 0 always picks the first item from the
list L and schedules it, i.e. this job becomes active at time 0. As
the first item is the job with the biggest memory requirement,
the statement of the lemma is therefore true for t = 0.

Now assume that the statement holds for time t, and we
want to prove it for time t + 1. Consider a job i that is
unfinished at time t+ 1. We can assume that job i is ready at
time t + 1, as otherwise there would be a job i′ assigned to
the same machine with mi′ ≥ mi that is ready at time t+ 1.
Observe that it is then sufficient to show that the statement
holds for i′.

Hence i is ready at time t + 1. We distinguish two cases.
The first case is that no job of memory requirement at least mi

finishes at time t + 1. Then the statement is trivially true for
t+ 1 as all jobs with bigger memory requirement that where
active at time t are also active at time t + 1. The second
case is that a job i′ with mi′ ≥ mi finishes at time t + 1.
Because i is ready, the scheduler will pick i or a job with
higher memory requirement to start processing at time t+ 1,
which will become active. Hence the statement is true.

Recall that µ = maxi,j{mij} and τ = maxi,j{Cij}
denote the largest memory requirement and the largest WCET
respectively. Let µ̄ denote the largest memory requirement,
upper bounded by M

2 , i.e. µ̄ := min{µ, M2 }. The following
lemma reveals an important structural property of the gen-
erated schedule. Once the total memory requirement of the
schedule drops below M − µ̄, it will never rise above this
threshold again.

Lemma IV.4. Consider the schedule generated by the algo-
rithm. Let

t̂ := min

t :
∑
i∈J (t)

mi < M − µ̄

 . (2)

Then
∑
i∈J (t)mi < M − µ̄ for all t ≥ t′.

Proof: For each time t, define J (t) as the set of jobs that
are active at time t and P(t) as the set of processors that are
executing some job at time t. Let t′ be a time with t′ > t̂.
We show that the memory requirement at that time is less
than M − µ̄.

First consider the case that P(t′) ⊆ P(t̂). In this case for
each job i′ ∈ J (t′) there is a distinct job i ∈ J (t̂) satisfying
σ(i) = σ(i′). Moreover due to the precedence constraints
we enforced among jobs assigned to the same machine, for
two jobs processed on the same machine the one with the
higher memory requirement is always scheduled before the
other. Hence we have mi′ ≤ mi. This implies that∑

i∈J (t′)

mi ≤
∑
i∈J (t̂)

mi < M − µ̄.

Now assume that P(t′) 6⊆ P(t̂). Hence there is a processor
j ∈ P(t′) that is idle at time t̂ but processing a job at time t′.
This implies that a job i with σ(i) = j was ready at time
t̂ but has not been scheduled due to memory restrictions. As
at least a µ̄ portion of the memory was free at time t̂, this
implies mi ≥ µ̄. By definition of µ̄ this implies mi ≥ M

2
and µ̄ = M

2 . On the other hand, as job i is is not finished at
time t̂, Lemma IV.3 states that there is a job i′ active at time
t̂ with mi′ ≥ mi ≥ M

2 . Hence the memory load at time t̂ is
at least mi′ ≥ M

2 = M − µ̄ in contradiction to the definition
of t̂. This finishes the proof.

Lemma IV.5. Let t̂ be as defined by Equation 2 of Lemma IV.4.
Then for any t ≥ t̂ a processor is idle only if all the jobs that
were assigned to it have completed execution.

Proof: We first prove that all jobs with memory require-
ment of more than M

2 are finished at time t̂. This is due to the
fact that if there is a job i with mi >

M
2 , then µ̄ = 1

2 . Thus
whenever i is active, the memory load is at least M2 = M− µ̄.
Thus the claim follows with Lemma IV.4.

Now let t ≥ t̂ and consider a processor j that is idle at time
t but has a ready job i. As seen above, we have mi ≤ M

2 .
Hence mi ≤ µ̄. Lemma IV.4 states that at least µ̄ memory is
free at time t. Hence the algorithm would have scheduled j.
A contradiction.

We are now ready to prove the main theorem.

Theorem IV.6. Algorithm 2 is a ρ-approximation with regards
to makespan, where

ρ :=
1

1−min(µM , 1
2)

+
(

1 +
τ

T

)
Proof: As described above, assume T to be the minimum

value such that ST ({Ci,j}(n×m), {mi,j × Ci,j}(n×m), T) re-
turns a partitioning (with total cost ≤ MT). Let t̂ be as in
Lemma IV.4. The lemma states that for each t = 0, . . . , t̂− 1,
the memory consumption is at least M−µ̄. On the other hand,
we have seen in Lemma IV.1 that the total memory consump-
tion of all tasks is at most M ·T . Hence t̂ · (M − µ̄) ≤M ·T

holds which implies

t̂ ≤ 1
1− µ̄

M

T.

After time t̂, Lemma IV.5 shows that the memory constraints
are not a limitation anymore. Hence, an upper bound for the
makespan of the schedule starting at time t̂ is given by the
makespan of the Shmoys-Tardos schedule which is T + τ .
Therefore, the total makespan of our schedule is no more than
(t̂+ T + τ), or(

1
1−min(µM , 1

2)
+
(

1 +
τ

T

))
· T

which shows the claim.
As trivially we have τ ≤ T and min(µM , 1

2) ≥ 1
2 , we get

the following corollary.

Corollary IV.7. The algorithm is a 4-approximation with
regards to makespan.

Under the (admittedly not always valid) “speedup assump-
tion” that the WCET of any job is scaled down by a factor s
on processors that are faster by a factor s, the implication
of Theorem IV.6 and Corollary IV.7 is that any instance that
is feasible on a given unrelated multiprocessor platform is
successfully scheduled in polynomial time by our Algorithm 2
on a platform with the same amount of memory and in which
each processor is ρ times as fast; furthermore, ρ ≤ 4.
Preemption: The schedule generated by Algorithm 2 does not
have any preemptions even if the workload model allows for
preemption. However, observe that in an optimal partitioned
schedule of independent jobs (ignoring memory constraints),
no preemption is needed to minimize makespan — simply ex-
ecute the jobs assigned to each processor in a work-conserving
fashion on that processor. As a consequence, preemptive
optimal schedules will not have a smaller makespan than the
non-preemptive optimal schedules assumed in the derivation
of Theorem IV.6 and Corollary IV.7. We conclude that the
approximation factors of Theorem IV.6 and Corollary IV.7 are
valid with respect to optimal preemptive schedules as well.

A different memory model. Thus far, we have assumed that
each job needs memory only when it is executing. As stated
in Sections I and II, an alternative model would have each job
retain access to the memory throughout the interval between
the instants it begins and completes execution. (This latter
model may be the more realistic one if, for instance, the shared
memory is a cache and we seek to minimize cache overhead by
letting a job hold on to its share of the cache even upon being
preempted, until it completes execution.) Although these two
models are different, we note that this difference is not relevant
to non-preemptive schedules since a job executes continually
between the instants it begins and completes execution in such
a schedule. Hence, the results we have obtained above are
equally valid for this memory model as well – in particular,
the approximation factors of Theorem IV.6 and Corollary IV.7
remain valid.

D. Bicriteria approximation

The analysis in Section IV-C above had obtained an upper
bound on the multiplicative factor by which the makespan of
the schedule generated by Algorithm 2 on a given platform
may exceed the makespan of the schedule generated by an
optimal algorithm on the same platform, for any problem
instance.

In a bicriteria generalization of this optimization problem,
we may seek to determine what the smallest makespan is
that can be generated in polynomial time, if the polynomial-
time algorithm were to have access to more memory than is
available to the optimal algorithm. That is, let us consider an
instance of the memory-constrained jobs problem for which
the optimal makespan is equal to T , using the available
amount of memory M . Suppose that the amount of memory
available to the polynomial-time algorithm is αM , for some
constant α ≥ 1. We will modify Algorithm 2 to obtain
an algorithm that uses this available memory and obtains a
schedule of makespan ≤ βT , where β is defined by

β =
{

1 + τ
T + 2

α , if 1 ≤ α < 2
1 + τ

T + 1
α−1 , if α ≥ 2.

Using binary search, we first determine the smallest value T
such that ST ({Ci,j}(n×m), {mi,j × Ci,j}(n×m), T) returns
a solution. As mentioned above, the computed assignment
of jobs to processors has a makespan of at most T +
maxi,j{Ci,j}. Then we run Phase 2 as described in Sec-
tion IV-B but with an available memory of αM rather than M .
Having more memory available results in a different schedule
than with only a memory of size M . In the following theorem
we bound the makespan of the schedule computed by this
algorithm which we denote by Algorithm 3.

Theorem IV.8. If for an instance there is a schedule with
makespan T using an available amount of memory M then
Algorithm 3 computes a schedule with a makespan of at most(

1
α−min

{
µ
M , α2

} +
(

1 +
τ

T

))
· T

which uses αM units of memory.

Proof: In the analysis of Algorithm 2 the value µ̄ was
defined by µ̄ := min{µ, M2 }. For our purposes here we define
µ̄ := min{µ, αM2 }. Analogous to the proof of Lemma IV.4 we
can show for t̂ := min

{
t :

∑
i∈J (t)mi < αM − µ̄

}
that∑

i∈J (t)mi < αM − µ̄ for all t ≥ t′. Since t̂ · (αM − µ̄) ≤
M · T we reason that t̂ ≤ M ·T

αM−µ̄ . Like in Theorem IV.6,
after time t̂ the memory constraint is not a limitation anymore.
Hence, the makespan of the overall schedule is bounded by
(t̂+T+τ), or equivalently the expression in the theorem state-
ment. By construction, at each point in time the constructed
schedule uses at most αM units of memory.

Using the fact that µ ≤M we can simplify the bound stated
in Theorem IV.8.

Corollary IV.9. If for some instance there is a schedule with
makespan T using an available amount of memory M then
Algorithm 3 computes a solution with a makespan of ≤ βT
with

β =
{

1 + τ
T + 2

α , if 1 ≤ α < 2
1 + τ

T + 1
α−1 , if α ≥ 2,

using at most αM units of memory.

Proof: Using that µ ≤M we obtain a bound of(
1

α−min
{

1, α2
} +

(
1 +

τ

T

))
· T

which yields the bounds stated in the corollary for the two
relevant cases for α.

V. PROVISIONING SHARED MEMORY

In both of Sections III and IV, we have considered schedul-
ing problems: given the specifications of an instance to be
scheduled upon a particular unrelated multiprocessor platform
with a fixed amount of shared memory M , the goal was to
determine a correct schedule.

In designing embedded devices, however, it is often the
case that the hardware platform is not a priori fixed; rather,
the design process for the device involves exploring the space
of possible hardware platforms upon which a desired set of
functionalities can be implemented in a cost-effective manner.
This is essentially the converse of the question we have been
asking in Sections III and IV: rather than being given the
platform and seeking a correct schedule for a given problem
instance, we now seek to know what the parameters of the
platform need to be, in order to be able to achieve a correct
schedule. If there are multiple such platforms possible (and
in general, there will be), we would like to be able to
present these alternatives to the system designers and give
them the freedom to choose from among these different viable
alternatives.

We formalize this somewhat fuzzy notion of different viable
alternatives for the memory-constrained jobs problem in the
concept of Pareto-optimal memory-makespan pairs; a similar
formalization can be defined for the memory-constrained tasks
problem.

Definition V.1. An ordered pair (T,M) of positive integers is
said to be a Pareto-optimal memory-makespan pair for a given
instance of the memory-constrained jobs problem if there is a
feasible schedule for this instance with makespan at most T
and memory requirement at most M , and there are no feasible
schedules with a makespan ≤ T and memory requirement
< M or with a makespan < T and memory requirement ≤M .

Informally speaking, Pareto-optimal memory-makespan
pairs represent “best” design choices with regards to the
platform for implementing the instance. If there are multiple
Pareto-optimal memory-makespan pairs for a given instance,
we would like to be able to present all these choices to the
system designers, letting them base their final choice on other

processors
0 1 2 · · · n − 1 n

0 (M, 20) · · · (20, 0)

1 (M, 21) · · · (21, 0)

jobs 2 (M, 22) · · · (22, 0)

...
...

...
...

. . .
...

n − 1 (M, 2n−1) (2n−1, 0)

n (M, 0)

TABLE I
THE PAIRS (p, m) INDICATE THE PROCESSING TIME AND THE MEMORY REQUIREMENT OF THE RESPECTIVE JOB ON THE GIVEN PROCESSOR. TO
SIMPLIFY THE TABLE, WE LEFT ALL ENTRIES BLANK WHERE THE RESPECTIVE JOB HAS INFINITE PROCESSING TIME ON THE GIVEN PROCESSOR.

factors. Unfortunately, it turns out that this is not really a
reasonable option: there are, in general, too many Pareto-
optimal memory-makespan pairs for a given problem instance.
This is formalized in the following theorem.

Theorem V.2. For each n ∈ N, there is an instance with
(n + 1) jobs and processors but 2n Pareto optimal points.
Hence, there is a family of instances whose number of Pareto
optimal points is exponential in the size of the instances.

Proof: We define our family of instances with exponen-
tially many Pareto optimal points. Let n ∈ N. Our instance
has n+ 1 jobs and n+ 1 processors, the jobs and processors
being numbered from 0 to n. Let M ∈ N be a sufficiently
large integer with M > 2n. For i = 0, . . . , n − 1, job i has
an execution time of M on processor i, execution time 2i on
processor n and execution time ∞ on all other processors.
Moreover, job i has memory requirement 2i on processor i
and 0 on all other processors. Finally, job n can only be
assigned to processor n with execution time M and memory
requirement 0. See Table I for an overview of the pairs of
processing time and memory requirement.

Let k ∈ {0, 1, 2, . . . , 2n − 1}. Let (k)2 be the binary
representation of k. Let (k)j2 be the j-th bit in (k)2 (counted
from least value to highest value, the smallest index being 0).
Let Sk := {j : (k)j2 = 1}, i. e. Sk is the set of bit-indexes
which are set to 1 in k. Note that Sk ⊆ {0, . . . , n− 1}. In the
sequel, we will identify Sk with a subset of the jobs.

The idea behind this construction is as follows: We want
to create a schedule whose makespan is determined by the
execution time of the jobs on processor n. If we decide not
to put job i on processor n, the only other feasible choice is
to put it to processor i. Since job n can be scheduled only
on processor n, the makespan of n is M +

∑
i∈J(n) 2i where

J(n) denotes the jobs which are assigned to processor n. If
M is large enough, in every schedule with that makespan
the jobs assigned to processors other than n will always
overlap. Therefore, the total memory requirement will be∑
i∈{0,1,...,n}\J(n) 2i. Hence, the amount of time we save for

the makespan when putting a subset of jobs to processors
other than n equals the memory requirement. This gives us a
different Pareto optimal pair for each subset of jobs we decide
not to put to processor n.

Now we prove the above statements formally. As men-
tioned above, the binary representation of every integer k ∈
{0, ..., 2n − 1} encodes a feasible schedule using k units of
memory: For each i ∈ Sk, schedule job i on processor i
at time 0. All other jobs are scheduled on processor n in
arbitrary order. This results in a schedule with makespan
M + 2n − 1− k < 2M since∑

i/∈Sk

pn,i = M +
∑
i/∈Sk

0≤i<n

2i = M + 2n − 1− k.

The memory requirement equals k since∑
i∈Sk

mi,i =
∑
i∈Sk

2i = k.

Conversely, given a schedule with a makespan less than 2M
which needs a memory of size exactly k ∈ {0, ..., 2n−1}. We
choose M large enough such that this implies that at some
point in the schedule every processor i ∈ Sk executes the
respective job i. Note that by construction there is no other way
of obtaining a memory usage of exactly k. Since the makespan
is less than 2M all jobs i /∈ Sk are scheduled on processor n.
Hence, the makespan of the schedule equals

∑
i/∈Sk

pn,i =
M + 2n − 1 − k. This implies that there can be no schedule
using k units of memory with a smaller makespan than M +
2n−1−k. Hence, the pair (M+2n−1−k, k) is Pareto optimal.
For the described instance, there are 2n values k. Therefore,
the described family of instances has an exponential number
of Pareto optimal points.

VI. RECURRENT TASKS; ADDITIONAL OPTIMIZATION
CRITERIA

As we had stated in Section II-B, our ultimate interest is
in scheduling recurrent task systems, rather than task systems
consisting of a finite number of jobs with a common deadline.
We are working on extending the techniques we had intro-
duced in Section IV from the analysis of jobs to the analysis
of systems of recurrent tasks.

Although we do not yet have complete results for scheduling
such recurrent tasks under the memory model assumed in the
memory-constrained jobs problem, we would like to point out
that the techniques we had introduced in Sections IV and V
can be applied to some other bicriteria optimization problems

concerning preemptive recurrent task systems. Consider some
system of implicit-deadline sporadic tasks to be partitioned
among the processors of an unrelated multiprocessor platform
that also includes some additional resource that gets consumed
at a constant rate ri,j whenever a job of task i is executing
on the processor j to which it has been assigned, and that
is being replenished platform-wide at a constant rate as well.
(Under some grossly simplifying assumptions, for example,
this resource could be energy: while executing, different tasks
consume energy at different rates on different processors.) This
problem could be dealt with in a manner similar to the way we
have handled our problem of scheduling memory-constrained
jobs: we could map this problem on to the scheduling problem
with costs by setting pi,j := ui,j and ci,j := ui,j × ri,j (here
uij denotes the utilization of the i’th task if implemented
on the j’th processor, as stated in Section II-A), and then
applying the approximation algorithm of [7] to obtain a 2-
approximation.

VII. CONCLUSION

The accelerating trend in embedded systems design to-
wards the use of heterogeneous multicore CPU’s calls for
corresponding advances in multiprocessor real-time scheduling
theory. In this work, we have begun studying the problem
of partitioning real-time workloads on heterogeneous multi-
processors that share a pool of common memory. We have
formalized several interesting aspects of such problems, and
have obtained some novel results concerning approximate
scheduling in such systems. As important, we have identi-
fied some powerful techniques from the general scheduling
literature, and have introduced some new techniques of our
own, for dealing with the multi-criteria optimization problems
that arise when doing real-time scheduling on heterogeneous
multiprocessor platforms.

REFERENCES

[1] M. Dertouzos. Control robotics : the procedural control of physical
processors. In Proceedings of the IFIP Congress, pages 807–813, 1974.

[2] F. T. Hady, M. B. Cabot, J. Beck, and M. Rosenbluth. Heterogeneous
processors sharing a common cache. United States Patent 7,577,792.
Assignee: Intel Corporation, 2009.

[3] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. Journal of the
ACM, 34:144–162, 1987.

[4] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme
for scheduling on uniform processors: Using the dual approximation
approach. SIAM Journal on Computing, 17:539–551, 1988.

[5] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for
scheduling unrelated parallel machines. In Mathematical Programming
46, pages 259–271, 1990.

[6] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20:46–61, 1973.

[7] D. B. Shmoys and É. Tardos. Scheduling unrelated machines with costs.
In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1993), pages 448–454. ACM, 1993.

