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Seeing Big with Scanning Electrochemical Microscopy

Specialized microelectrode probes fabricated in a soft polymer film now make it possible to use
scanning electrochemical microscopy to image the reactivity of large, corrugated, tilted, and dry
surfaces. (To listen to a podcast about this Feature, please go to the Analytical Chemistry multimedia
page at pubs.acs.org/page/ancham/audio/ index.html.)
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Scanning electrochemical microscopy (SECM) has evolved as
a versatile tool for the spatial characterization of surface
reactivity and mass fluxes at solid—liquid, liquid—liquid, and
liquid—gas interfaces." > Its applications include imaging pat-
terned sensor surfaces,* measuring substance uptake and release
from biological cells,” investigating very fast electrochemical
reactions,’ studying local corrosion,” screening electrocatalysts,8
analyzing forensic samples,” and modifying surfaces.'® The most
common probes are amperometric microelectrodes produced by
sealing a Pt wire of 10 or 25 ym diameter in a glass capillary and
exposing the cross-section by grinding and polishing. The
microelectrode is attached to a positioning system that provides
translation of the probe in horizontal (x,y) and vertical (z)
directions. During scanning, a steady-state faradaic current is
measured with a (bi)potentiostat. The faradaic reaction results
from the electrolysis of diffusing redox-active species undergoing
electrochemical reactions at both the microelectrode and the
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local reaction sites on the specimen surface. The measured
currents reflect the interplay between mass transport by diffusion
and heterogeneous reactions at the sample. For many situations,
they can be calculated by continuum simulation."' ~** Quantita-
tive kinetic information can be extracted from comparison of
experimental data with such simulation.

Typical optical microscopy and other scanning probe tech-
niques such as atomic force microscopy (AFM) or scanning
tunneling microscopy (STM) differ from SECM by the physical
principles of operation and thus by the type of information
extracted.'* Additionally, SECM can be applied to study samples
that are challenging for optical microscopy such as multicolored
surfaces and porous materials. The major advantage of SECM is
its ability to probe local surface reactivity with lateral resolution
and high sensitivity."> Indeed, SECM provides researchers in
many fields with an important tool for mapping chemical and
electrochemical processes occurring at almost any interface.'®'>

However, the steady-state current recorded during scanning
depends on the probe—substrate distance, d. Therefore, corru-
gated, tilted, and curved samples yield experimental artifacts and
are difficult to image. In addition, when closely scanning over such
surfaces, probe—substrate crashes can destroy the commonly used
glass microelectrodes. This may require additional equipment for
constant distance images or special samples and alignment proce-
dures to adjust the sample plane parallel to the x,y-plane of the
positioning system. Moreover, when the sample area is larger than
a few square millimeters, the recording time for such a large image
frame is extremely long, ie, >10 h. Consequently, solvent
evaporation, electrode fouling, and sample aging limit the use of
SECM. Although SECM imaging of samples covered only by a
thin film of condensed moisture has been reported,'”"® the typical
SECM experiment aims to exploit the redox chemistry of sample-
generated or deliberately-added redox systems, which requires the
immersion of the sample surface into an electrolyte solution. The
latter procedure becomes cumbersome for large, bent, or delicate
sample surfaces that need to be investigated and from which
smaller samples cannot be taken: for example, testing coated metal
pieces of working machines at regular intervals.
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This feature describes new SECM probes developed to over-
come these limitations that allow the analysis of large image
frames and/or samples of complicated topology without loss of
resolution compared to conventional glass-shielded microelec-
trodes."” ! The new probes are made by classical microfabrica-
tion techniques and are appropriate for a wide range of samples,
thereby broadening the applicability of SECM to new areas.

B SOFT STYLUS PROBES TO IMAGE TILTED AND
CORRUGATED SURFACES

The response of a SECM probe strongly depends on the
surface reactivity of the sample and the distance, d, between the
surface and the active area of the probe electrode. To obtain a
reactivity image that is not influenced by topography, d must be
constant. In conventional SECM operations, this can be achieved
by analyzing samples with a roughness that is considerably
smaller than the radius of the microelectrode, rr, and by leveling
the plane of the sample surface with respect to the x,y-scanning
plane of the positioning system. However, this approach be-
comes inappropriate on rough surfaces or when investigating
large image frames (in the square centimeter range); similar
limitations apply when imaging curved samples.

In the case of a small rr, a constant d can be maintained by
coupling SECM with scanning ion conductance microscopy
(SICM),** by working in a tip-position modulation SECM mode
with a supplementary system that allows close feedback loop
positioning of the probe,”*** or by combining SECM with AFM
(AFM-SECM)>™*” or electrochemical tunneling microscopy
(EC-STM).”® The integrated AFM-SECM probes proposed by
Kranz et al. contain an insulating thorn that is used for AFM
imaging and at the same time defines a constant d for the frame
electrode exposed by a focused ion beam.” Metal nanowire
AFM-SECM probes have been built by coating single wall carbon
nanotubes with metal, insulating them with a polymer film, and
exposing the final electrode surface with a focused ion beam.*
Tilting the disk-shaped probe establishes a physical contact be-
tween one side of the insulating probe apex and the substrate
while the active electrode area remains at a given distance from
the sample. These nanowire AFM-SECM probes have been used
in intermittent contact mode for high resolution imaging of both
topographical and electrochemical surface information.”

For rough surfaces and for sample areas larger than the typical
scanning range of AFM instruments (e.g, 100 #m X 100 ym X
10 um), a distance control has been achieved by shear-force
detection in combination with a positional feedback system.*"**
Since the shear forces must be measured in a viscous liquid, the
signal change upon approach is rather small. Therefore, long
integration times restrict the lateral translation rate, which becomes
limiting when imaging large areas. Alternating current SECM
(AC-SECM) has also been proposed to circumvent these difficulties.
However, the distance measurement is difficult to interpret quanti-
tatively because it depends on the electrochemical cell setup, the
nature of the sample, frequency, and electrolyte conductivity.> >

The problems of scanning tilted, rough, or curved samples can
be circumvented by using microelectrodes fabricated in soft
polymeric materials that allow the probe to scan the sample in
a contact regime. Figure la illustrates the concept and use of the
soft stylus probe for SECM in a contact regime. As shown in
Figure 1, when scanning in a contact regime over a substrate,
recycling of a redox mediator is only achieved when the bent
probe is in the neighborhood of a conductive surface. This clearly
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Figure 1. a) SECM principle of surface reactivity characterization with a
soft stylus probe working in a contact regime. b) SECM image in a
contact regime of a partially gold-covered glass surface obtained by using
a soft stylus probe. Imaging conditions: 2.1 mM FcCH,OH, 0.1 M
KNO;. Working electrode potential Er = 0.3 V, step size in «x
and y directions was 10 and SO um, respectively. Translation rate
vp=10ums "
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Figure 2. a) Schematic representation of a soft stylus probe used as a
working electrode for SECM in a contact regime. b-c) Optical image of
the soft stylus probe scanning in a contact regime above an unbiased
carbon band with a height of 118 xm.

illustrates the possibility of surface reactivity imaging with the
soft stylus probe approach. The schematic representation of the
probe shown in Figure 2a depicts the soft stylus that was micro-
fabricated by ablating a microchannel on a polyethylene ter-
ephthalate (PET) sheet and filling it with carbon ink. Lamination
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of the cured carbon track with a polyethylene/PET film com-
pletes the probe. To obtain the microelectrode, either laser or
blade cutting exposes a cross-section of the carbon track, follo-
wed eventually by mechanical polishing. The probe contact angle
and the lamination film thickness when scanned in a contact regime
define the probe—substrate distance (see Figure 1a, 2b, and 2c).
This provides a constant d between the active electrode area and the
sample surface without the use of an electronic feedback loop for
vertical positioning."” The main advantage of scanning in a contact
regime is that a small and almost constant d can be maintained
without tip or sample destruction by probe—substrate crashes. In
addition, the broad range of soft plastic materials that can be used in
microfabrication processes allows the tuning of the probe stiffness to
avoid the destruction of even modestly fragile samples.

The probe—substrate distance can be reduced by choosing thin
polymer coating materials and by adjusting the contact angle when
the probe is pressed against the substrate. A smaller d results in a
higher current contrast. Levelling the sample before SECM imaging
is not required when working in a contact regime, making the setup
of SECM experiments much faster and easier. Additionally, soft
stylus probes can be employed in a contactless regime as they are
normally used during SECM experiments, showing the versatility of
the soft stylus probes in different SECM applications."”

Soft stylus probes with different active electrode materials can
be easily fabricated by modern microfabrication methods such as
photolithography or laser photoablation. Like normal microelec-
trodes sealed in glass, the soft probes can be used many times. As
seen in Figure 2b—c, the bent probe can scan over 3D patterns as
thick as a 118 ym without drastically changing d or destroying the
probe, which allows imaging the chemical reactivity of rough
surfaces regardless of the topography."

Il FOUNTAIN PEN PROBE TO IMAGE DRY SURFACES

In classical SECM, the sample should be placed within an
electrochemical cell filled with electrolyte solutions. This is a
major drawback in comparison to other scanning probe methods
such as AFM and STM. Furthermore, when imaging over long
periods of time, solvent evaporation becomes a problem. There-
fore, different approaches have been proposed to circumvent
these inherent difficulties.*®”>*

Integrated three-electrode®® or two-electrode cells have
been introduced to simplify the electrochemical cell design, to
prevent collisions between electrodes, and to allow an easier
positioning of the electrochemical cell. To avoid experimental
artifacts from solvent evaporation (e.g., change in solute concen-
tration and precipitation processes), different approaches have
been proposed.®®* Lohrengel et al. have built a three-electrode
setup in which the studied surface acts as a working electrode while
reference and counter electrodes are contained in a capillary that
delivers an electrolyte droplet.*® In this case, the area covered by
the electrolyte droplet defines the active electrode area of the
working electrode, which at the same time limits this device to the
study of conductive surfaces. Spaine et al. introduced a position-
able microcell, in which the reference and working electrodes were
localized separately in one of the channels of a theta glass capillary
(a capillary tubing that is divided into two hemicylindrical sides by
a central glass septum).>” A carbon fiber sealed with epoxy was the
working electrode, while a Ag/AgCl wire was positioned as the
reference electrode in the other compartment with a concentrated
solution of NaCl and a salt bridge at the bottom of the glass
capillary. Although voltammetry and SECM measurements were
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Figure 3. Optical image of a fountain pen that enables SECM imaging
of dry surfaces by delivering microliter volumes of mediator solution into
a miniaturized two-electrode cell (upper left). Principle of surface
reactivity characterization with a fountain pen (lower left). SECM image
of a gold micro EPFL (Ecole Polytechnique Fédérale de Lausanne) logo
taken with a polished fountain pen in feedback mode (lower right).

performed successfully at subnanoliter volumes, the configuration
was cumbersome, and high expertise was required.

Recently, Turcu et al. have reported a simple way of preparing a
two-electrode cell by coating a common glass-encapsulated micro-
electrode with a Ag film.3® Thus, successful SECM imaging was
carried out in a nanoliter droplet of mediator solution covered with a
layer of paraffin oil to avoid solvent evaporation problems. The
paraffin film is a potential source of electrode contamination and
restricts the scanned area because physical barriers are needed to
avoid paraffin or redox mediator leakage. Working in a water-
saturated atmosphere within a humidity chamber or adding glycerin
to the supporting electrolyte can also slow solvent evaporation.”*”

Junker et al. applied a multipurpose microfluidic probe concept to
a microfluidic system in which two open channels are employed for
local delivery and aspiration of a solution over the sample surface.*
Fluidic channels also have been introduced into the AFM cantilever,
allowing fluid transport from a reservoir to the end of the
cantilever.*' ~* Leichle et al. used an electrically contacted cantilever
with integrated microfluidics for localized copper deposition.**

More recently, a fountain pen probe for SECM that integrates a
microfluidic system with a two-electrode cell has been pro-
posed.”® The fountain pen is made by the same microfabrication
technology as the soft stylus probes described above'” but intro-
duces a microfluidic channel and a counter/reference electrode
prepared by ablating a parallel and aligned second microchannel on
the opposite side of the carbon track used as working electrode. For
surface reactivity characterization, the fountain pen is used in the
contact regime similar to the soft stylus probe. Then microliter
volumes of mediator solution are delivered into the miniaturized
two-electrode cell—like a fountain pen—allowing the surface reac-
tivity characterization of dry surfaces (Figure 3, left). When the
probe is biased to a potential in which the redox mediator
electrolysis is performed under diffusion-controlled conditions
and is scanned over an insulating substrate, a low current is recorded
as a consequence of the hindered diffusion (negative feedback).
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When the probe is scanned over a conductive substrate, recycling of
the mediator (positive feedback) causes current to increase. A
concentration cell with cathodic and anodic regions on the wetted
surface regions (Figure 3, lower left) provides the driving force.*

As a proof-of-concept, the fountain pen probe was employed
for surface reactivity imaging in the feedback mode of a gold on
glass pattern, as shown in the lower right of Figure 3 (EPFL
logo). The recording time of this image was 2 h 15 min, during
which no apparent changes of the current caused by the evapor-
ation process (i.e., drastic increase of the redox mediator con-
centration) were observed when scanning over the dry surface.
Thus, problems in microenvironment SECM studies related to
evaporation processes could be counterbalanced by the constant
flow of solution from the open microchannel. In addition, the
simplified two-electrode cell design circumvents all the con-
straints for SECM experiments in microvolumes and extends the
scope of SECM to the scanning of dry surfaces.

B SECM SCANNING WITH MULTIPLEXED PROBES

Several apgplications of interest such as protein arrays,47 human
fingerprints,” electropherogram read-out,*® quality control of
coatings,” and screening of combinatorial libraries* " could
require image frames in the square centimeter range. The chal-
lenges in imaging large area samples stem from the difficulties in
handling tilted, corrugated, and curved samples and from elec-
trode fouling, solvent evaporation, and sample aging introduced
by the long recording times. To overcome these problems, three
different approaches have been proposed.

Translation rates up to 500 um s ' with step sizes of 150 #m
have reduced the recording time for large areas but with loss of
image resolution and introduction of convective effects.*”*>** A
second strategy for reduction of evaporation and electrode fou-
ling is to image sub-regions of large samples followed by renewal
of supporting electrolyte and electrode surface between image
frames.>** However, overall recording time cannot be reduced
in this way. A third strategy is to use multiple probe arrays, which
have already been applied to AFM imaging of large areas with a
clear decrease of the recording time.>**° A similar approach with
SECM used a 2D microelectrode array to image samples in the
generation-collection mode.*” The problem of diffusional shield-
ing of individual electrodes was solved for a confined etchant
layer technique by periodically renewing the solution between
probes and sample and limiting the extension of the diffusion
layer with a homogeneous scavenger reaction.*® Barker et al.
reported a multielectrode for parallel SECM imaging that com-
prised a linear array of 16 individually addressable microelec-
trodes placed on a planar insulating chip.>® 10 um diameter Pt
microelectrodes were prepared by laying a nanometer-thick Pt
layer over an insulating silicon nitride film, followed by the
application of a second thin nitride film. After exposure of the
slightly recessed contact pads and reference and working elec-
trodes, the microelectrode array was fixed below a positioning
system that moved the sample horizontally. SECM imaging was
successfully demonstrated with this multiprobe. The use of this
approach is limited because renewing the active electrodes by
mechanical polishing is difficult.>

As shown above, the concept of soft stylus probes provides an
interesting approach to image rough surfaces.'” By multiplexing
the readout of the electrodes with a probe array, the recording time
for imaging a large area sample can also be reduced drastically
without compromising the image quality, while avoiding the related
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Figure 4. SECM image of a gold printed interdigitated array taken with
an array of eight microelectrodes (500 um electrode-to-electrode
spacing) in feedback mode (acquisition time = S h). Step size =
25 pm and translation rate vp = 25 um s~ ' in 2 mM FcCH,OH with
0.1 MKNO3. The inset is an enlargement of the highlighted area (green)
with a multiprobe array of eight electrodes (130 um electrode-
to-electrode spacing) in feedback mode (acquisition time = 40 min).
Er =035V, hp = —50 um, step size =10 xm, and translation rate vy =
10 um s~ ' in 2.0 mM FcCH,OH with 0.1 M KNOs,

experimental problems outlined above. Thus, the same microfabri-
cation methods employed for fabricating soft stylus probes have
produced linear arrays of microelectrodes.”* As a consequence, all
the advantages provided by performing SECM in a contact
regime are combined with a multiplexed probe array.

An important issue when working with arrays is the cross-talk
between electrodes, which can be avoided if the thickness of the
diffusion layer of each microelectrode is smaller than half the
distance between adjacent electrodes.** With this aim, Barker
et al. employed an interelectrode spacing equal to 120 ym for a
10 um diameter microelectrode, which should be sufficient for
avoiding diftusion layer overlapping. However, lower than ex-
pected currents were observed by cyclic voltammetry, which
could indicate an overlap of the diffusion layers of neighboring
electrodes. The latter is most likely due to the fact that the
diffusional independence of microelectrodes in arrays is only
valid for a finite time scale determined by the distance between
neighboring probes.®%>%° Because soft microelectrode linear
arrays are obtained as the cross-section of a planar structure
rather than on the surface of a chip, the problems of diffusional
shielding are reduced and contact with the linear array elements
is greatly simplified. Finite element method simulations have
predicted that even soft microelectrode arrays presenting quarter-
moon shape electrodes (i.e., 40 um width and 20 #m depth) with
500 um electrode-to-electrode distance will develop an over-
lapping of the diffusion layers.”! However, for such interelectrode
spacing, insignificant current differences are recorded at the inner
and outer electrodes, allowing qualitative SECM imaging.

Linear soft microelectrode arrays are used by “combing” the
surface of the sample. Figure 4 shows a SECM image of an
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Figure 5. SECM feedback image of a human fingerprint developed by
benzoquinone tagging with an array of eight microelectrodes of 500 xm
interelectrode spacing. Er = —0.35 'V, step size = 50 #m, and translation
rate vy = 50 um s ' (acquisition time = 5 h 12 min) in 2 mM
K;[Fe(CN)g] with 0.1 M KCL.

interdigitated array of gold microelectrodes scanned by a linear
array of eight carbon microelectrodes (500 #m electrode spacing)
that was obtained in only S h. The recording time is directly propor-
tional to the number of multiplexed electrodes, and therefore 256
electrodes should reduce the time to 10 min. The gold band
width and spacing between gold patterns is equal to 50 um,
which represents a very high resolution when taking into account
the dimension of the complete area scanned (0.9 X 0.4 cm). At
the top of Figure 4, a gold on glass EPFL logo (green) can be
identified but is not perfectly resolved because of its more
complex structure and smaller size. To obtain a clearer image
of this zone, a SECM image in contact mode was acquired by
using the array of eight microelectrodes with an electrode-to-
electrode distance of 130 um (Figure 4, inset). Despite the
diffusion layer overlapping among neighboring microelectrodes
in this microelectrode array, high quality SECM images can be
attained.

To illustrate further the potential of a linear array of soft
microelectrodes, Figure S shows the SECM image of a complete
human fingerprint. The image is based on the detection of a
protein-inked fingermark deJ)osited on a PVDF membrane and
tagged with benzoquinone.”> The microelectrodes carried out
the diffusion-controlled reduction of ferricyanide. At the sample
areas tagged with benzoquinone, benzoquinone molecules are
reduced and the oxidized mediator is regenerated.”® Positive
feedback is encountered when scanning protein-containing
regions of the fingerprint, while negative feedback is developed
for regions without adsorbed proteins.

Human fingerprints are valuable tools for personal identity
verification because each individual fingerprint has unique fea-
tures such as the flow of the ridges (i.e., the overall pattern), the

ridge path deviations (e.g, ridge endings and bifurcations marked
in Figure S as zones A and B, respectively), and the intrinsic ridge
characteristics (e.g, ridge shape and pores marked in Figure S as
zones C and D, respectively). Recently it has been shown that
SECM provides forensic scientists a new tool for the visualization
of human fingerprints on unusual surfaces (e.g., multicolored
backgrounds, those contaminated by body fluids or other
components, and porous surfaces) with high resolution and
sensitivity.**%>® However, approximately 1—2 days would be
required to image a full fingerprint with a single electrode. This
excessively long time restricts the use of SECM for forensic
purposes. The fingerprint shown in Figure S was constructed
from four different images taken in a total experimental time of 5
h 12 min, showing the feasibility of using SECM for such a task.

B SEEING THE BIG HORIZON WITH SECM

SECM is increasingly becoming a popular technique to study
chemical surface reactivity thanks to its well-developed theory
and recent instrumental advances. SECM has been positioned
among other scanning probe techniques as an important tool for
studying biological samples, screening combinatorial libraries of
catalysts, and analyzing protein arrays. Additionally, SECM can
be successfully applied to samples ranging from nano to macro
dimensions.

Scanning large sample areas is now becoming possible with the
use of soft microelectrode arrays as SECM probes. Amperometry
is a technique that can easily be multiplexed, so hundreds or even
thousands of microelectrodes could be used for imaging. Elec-
trochemical scanners based on this concept will undoubtedly
provide new tools for surface analysis and surface patterning in
biological and nano- and microtechnology sciences. The applica-
tion of the soft stylus probe concept should increase the use of
SECM because the method is simple and specialized microelec-
trodes could be prepared easily by modifying the carbon ink with
electrocatalysts such as Pt nanoparticles.

Combination of microfluidic systems with the microelectrode
array in a multi-fountain pen array configuration could open new
horizons for fast, simple, and high resolution write and read-out
scanning of almost any interface. For instance, multi-fountain
pen scanners could be used in forensic sciences for human finger-
print imaging at the crime scene.

Furthermore, more complicated microfluidic systems can be
prepared by adding supplementary open microchannels for the
aspiration of the flowing redox mediator solution to avoid sample
contamination encountered during scanning with a fountain pen
device. Moreover, such channels might also be useful to deliver
minute solution volumes for further analyses to mass spectrome-
ters, chromatographs, electrophoresis, or other analytical instru-
ments. As a consequence, online monitoring of electrochemical
and chemical surface information can be foreseen. SECM imag-
ing in a contact regime is likely possible on curved samples as well
as under weightlessness conditions by adjusting the attractive
forces at the interfaces between redox mediator solution, probe,
and sample surface.

Soft SECM probes can be fabricated with different approa-
ches, such as photolithography, in which a wafer-level batch
fabrication method is used to reproducibly produce standard soft
stylus probes. To perform SECM experiments in organic sol-
vents, polymeric materials chemically more stable than PET can
be used for the microfabrication of soft probes. For instance,
polyimide can be employed for the preparation of fountain pen
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probes for SECM experiments in dichloroethane or acetonitrile.
Less demanding techniques might be used for the preparation of
microelectrodes simply by printing processes.

In summary, the time has come for imaging chemical reactivity
on substrates of different shapes and sizes and for SECM to
become a routine imaging tool with applications ranging from
biological tissue imaging to process control.
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