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Abstract. The purpose of this paper is to report the unexpected results 
that we obtained while experimenting with the multi-large prime varia- 
tion of the general number field sieve integer factoring algorithm (NFS, 
cf. [8]). For traditional factoring algorithms that make use of at most 
two large primes, the completion time can quite accurately be predicted 
by extrapolating an almost quartic and entirely ‘smooth’ function that 
counts the number of useful combinations among the large primes [l]. For 
NFS such extrapolations seem to be impossible-the number of useful 
combinations suddenly ‘explodes’ in an as yet unpredictable way, that 
we have not yet been able to understand completely. The consequence of 
this explosion is that NFS is substantially faster than expected, which 
implies that factoring is somewhat easier than we thought. 

1 Introduction 

For the last ten years all ‘general purpose factoring records’, i.e., those that are 
relevant for cryptographical applications of factoring, have been obtained by the 
quadratic sieve factoring algorithm (QS, cf. [13, 151). The most recent of these 
records was the factorization of the 129-digit RSA Challenge number, which was 
published in 1977 and factored in 1994 using the double large prime multiple 
polynomial variation of QS [l]. The authors of [l], however, suspected that their 
factorization would be the last factoring record obtained by QS, and that future 
records will be set by another, faster method, the general number field sieve 

It has been known since 1989 that NFS is asymptotically superior to  any of 
the variants of QS: for n + 00 it can be expected, on loose heuristic grounds, 
that it takes time 

( N W  [W. 

exp( ( 1.923 + o( 1) ) (log n) ‘ j 3  (log log n)2/3) 

to factor a composite number n using NFS, as opposed to  a (slower) heuristic 
expected run time 

exp(( l+  o(1)) (log n)’l2 (log log 
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also for n + 00, for QS. These heuristic run time estimates do not imply that 
NFS is also faster than QS in practice. Indeed, it has for some time been sus- 
pected that NFS would never be practical at all, and that, even if we would be 
able to get it to work, the crossover point with QS would be far beyond our 
current range of interest. 

In this paper we present some evidence that NFS is actually more practical 
than expected, and that the crossover point with QS is easily within reach of 
our current computational resources. Our results indicate that NFS is already 
substantially faster than QS for numbers in the 115 digit range. Since the ‘gap’ 
between the factorization times for these methods only widens for larger num- 
bers, our results imply that the 124digit number factored in [l] could be factored 
by NFS in about a quarter of the time spent by QS. The consequences for the 
strength of 512-bit composites, as sometimes used in cryptographic applications, 
will be commented on in future work. 

One of the major reasons that NFS is performing so much better than ex- 
pected, is that NFS has a certain advantage over QS that has almost no relation 
to the theoretical advantage of NFS over QS. Roughly speaking, QS only allows 
efficient usage of two ‘large primes’, whereas in NFS it should be possible to use 
four large primes. Practical experiments that exploit this large prime advantage 
have so far been limited to three large primes [3]. These experiments did not 
indicate a distinct advantage of three over two large primes, possibly because 
the numbers that were factored were rather small. The NFS implementation 
from [S] allowed us to carry out some large scale experiments with four large 
primes, which, for the first time, unequivocally proved the advantage of more 
than two large primes. 

In Section 2 we describe why it is easier for NFS to take advantage of large 
primes than it is for QS. Our experiments and results are presented in Section 3, 
followed by some of the new methods that were used to obtain our results: an 
alternative ‘cycle’ counting method in Section 4, and a discussion of the matrix 
step in Section 5. 

2 Large primes in QS and NFS 

Let n be an odd number that is not a prime power. 

Large primes in QS. To factor n with QS, one begins by selecting a ‘factor 
base’ P, consisting of -1 and certain primes up to some bound B. One then em- 
ploys a ‘sieving’ process to efficiently collect a set V of more than # P  ‘relations’, 
which are identities modulo n of the form 

v2 = n pe(’J’) mod n, 

with I J ,  e ( v ,p )  E Z. Since #V > #P, the vectors e(v)  = e (v ,p ) ,Ep  are linearly 
dependent. This implies that #V - #P subsets W of V can be found (using 
linear algebra) for which there are linearly independent dependencies of the 
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form xuEwe(o)  = 2 ( ~ @ ) ) ~ ~ p  with w(p) E Z. Each W therefore leads to an 
identity 

VEW P E P  

of the form z2 = y2 mod n with 2, y E Z. For each such identity there is a 
chance of at least 1/2 that gcd(s - y, n) will be a nontrivial factor of n. 

In [9] is was shown that it is advantageous to collect identities of a slightly 
more general form, namely 

PEP 

with v, e(w,p) E Z and qI(w), qZ(v) either equal to 1 or to some prime not in 
P satisfying qt(v) 5 qZ(v) 5 8 2  < B2, for some bound B2 with Bi < B3. If 
q1(v) = qz(v) = 1 these are the same as the earlier relations, which will be called 
‘full’ relations from now on; otherwise a relation is called ‘partial’. The qi’s are 
referred to  as the ‘large primes’. Partial relations are potentially useful because 
it might be possible that they can be combined into ‘cycles’: collections of partial 
relations where all occurring large primes can be combined into squarea, thus 
making the combination ‘look like’ a full relation. As an example, if v and w are 
two different partial relations for which q1(v) = q1(w) = 1 and ~ ( w )  = qz(w), 
then 

PE p 

is just as useful as a full relation, unless gcd(qs(v),n) # 1. This implies that the 
condition that the number of full relations is larger than # P  can be replaced by 
the condition that the number of full relations plus the number of independent 
cycles is larger than #P.  The large primes that occur in the cycles can be thought 
of as cheap factor base extenders-cheap because they are found almost for free, 
without having to sieve or to trial divide with them. The cycles are simply 
linear combinations of exponent vectors where the coordinates corresponding to 
the factor base extenders, the large primes, are even. 

We explain how partial relations can efficiently be collected during the search 
for full relations. During the sieving, candidate v’s are identified in an efficient 
manner. For each candidate v the least absolute residue v2 mod n is trial divided, 
to see if it factors using the elements of P. If so, a full relation has been found. 
If not, and the remaining cofactor t after trial division with the primes < B 
is < B2, a partial relation with q1(v) = 1, q 2 ( w )  = t has been found. How 
many of such partial relations will be found depends on how easily candidates 
are accepted after the sieving-if many near misses for fulls are accepted, many 
partials will be found. If we accept even more candidates, we might also find 
near misses for the partials with q1(v) = 1: if t > B2, t < B;, and t is composite 
we find a partial relation if both of the prime factors of t are < B2 (note that 
t can have at most two prime factors because B; < €I3). Since compositeness 
tests are cheap, because composites of this form are fairly easy to factor, and 
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because relatively many t ’s  will have their factors in the right range, it follows 
that these partials can also be found at relatively small cost.3 

Of course, it only makes sense to spend this extra effort if the partial relations 
are useful in practice, i.e., if cycles among the partials indeed turn up. In [9] it 
is shown that if only partials with q1(v) = 1 are allowed, the total number of 
independent combinations (of the type as shown in the example above) can be 
expected to behave as c - m2, where m is the number of partial relations (with 
@(v) = l), and c is some very small constant depending on the bounds (cf. [9], 
and the ‘birthday paradox’). This quadratic behavior can indeed be observed in 
practice. Using these restricted partials leads to a speed-up of about a factor 2.5 
compared to using only full relations. 

Using all partials, i.e., also those with q1(v) # 1 leads to another speed-up 
of about a factor 2.5, for sufficiently large numbers. A theoretical analysis of 
the expected number of cycles has not been given yet, but according to the 
data from (11 the number of cycles seem8 to grow almost as c‘ - m4, where c‘ is 
another small constant, and m is now the total number of partials. In any case, 
the number of independent cycles as a function of the number of partials seems 
to behave as a very smooth curve, at least over the intervals where it has been 
observed so far. Thus, reliable estimates of the expected completion time of the 
relation collection stage can easily be derived from this curve. 

Large primes in NFS. To factor n with NFS, one begins by selecting two bi- 
variate polynomials f l ( X ,  Y), f2(X, Y )  E Z[X, Y] that satisfy certain properties 
that are not relevant for this paper (cf. [8]). Given f1 and f z  one selects two 
factor bases PI and Pa, consisting of the primes I B1 and 5 B2, respectively. 
Relations are given by coprime integers a, b, with b > 1, such that 

Ifi(a,b)I = n pel(a*b’p) and If~(a,b)l = n pea(a*b*p), 
PEP1 PE% 

with el(a, b ,p ) ,  eZ(a,b,p) E Z. If more than (approximately) #Pl+#P2 relations 
have been found, a factorization of n can, with high probability, be derived from 
linear dependencies modulo two among the (#PI + #P2)-dimensional vectors 
consisting of the concatenation of (e l (0 ,  b , ~ ) ) ~ ~ p ~  and (e2(0, b , ~ ) ) ~ ~ p , .  How this 
is done is beyond the scope of this paper (but see [8]; lo]), and neither will we 
discuss the influence of the (small) amount of ‘free’ relations. 

As in QS,  we can allow large primes in the factorizations of the Ifi(a,b)l, 
where those that occur in cycles among the partial relations can be regarded 
as cheap factor base extenders (where it should be noted that a large prime 
dividing fi (a, b) cannot be combined with the same prime dividing fZ(a, b), and 

’ If we relax the conditions on the candidates even more, we might be able to allow 
three large primes in the factorization of w Z  mod n. So far, however, this does not 
seem to lead to a speed-up because it leads to a huge amount of numbers to be trial 
divided, the vast majority of which will lead to cofactors that do not have the right 
factoring pattern. Also the factorization of the composite cofactors is substantially 
more expensive. 
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vice versa-even more restrictive, a large prime q dividing fi(a, b) can only be 
combined with the same large prime q dividing fi(a’, b’) if ab’ G a’b mod q). In 
the NFS implementations described in [8] at most one large prime per Ifi(a, b)l, 
for a total of at most two per relation, was used. Candidate relations are identified 
using a sieve, similar to QS. For each candidate, If1 (a, b)l is trial divided with 
the primes 5 B1, and upon success Ifi(a,b)l is trial divided with the primes 
5 B 2 .  This implies that, in principle and as explained above, two large primes 
per If,(a, b)l can quite easily be recognized. In [S] it was reported, however, that 
actually finding these relations with up to 2 + 2 large primes was prohibitively 
expensive. Fortunately, it was shown in [6] that they can efficiently be found 
with better sieving and trial division methods. These methods do not seem to  
apply to QS to efficiently generate three or more large primes per relation in QS. 
The important difference is that in QS we have one composite cofactor that has 
to be factored into three or more factors in the right range, whereas in NFS we 
are dealing with two composite cofactors that each have to factor in the right 
way - the latter both occurs with higher probability and is easier to decide. 

The experiments from [8] indicated that the number of cycles in the 1 + 1 
large prime variation of NFS is consistently lower than the number of cycles 
found in the (two) large prime variation of QS, i.e., for NFS substantially more 
relations are needed than for QS to get the same number of cycles. This is due 
to the fact that in QS we have a single set of large primes, whereas in NFS we 
have two ‘incompatible’ sets of large primes, one for fi and one €or f2. Thus, for 
NFS it takes longer for the ‘birthday paradox’ to take effect. On the other hand, 
1 + 1 large primes in NFS behaves markedly better than the single large prime 
variation of Q S ,  i.e., if only partials with q1(v)  = 1 are considered in QS. 

Based on these observations, the work from [3], and the ‘almost quartic’ 
behavior observed in 111, we hoped that 2+ 2 large primes in NFS would produce 
somewhat better than quartic cycle growth. We also expected that the number 
of independent cycles as a function of the number of partial relations would, as 
usual, behave as a nice and smooth curve that would allow easy extrapolation to 
predict the completion time of the relation collection stage. These expectations 
turned out to be wrong, a8 we will see in the next section. 

In the sequel, partials with i large primes in Ifl(c,b)l and j large primes in 
Ifi(a, b)l will be called ‘i,j-partials’. Partials for which i + j = k will be called 
‘k-partials’, if a + j 5 k they will be called ‘5 k-partials’, and similarly for ‘2’. 

3 Experiments and results 

In this section we describe the details of three NFS factoring experiments in 
chronological order: a 116, a 119, and a 107-digit number. 

Factoring a 116-digit integer. Let n be the following 116-digit composite 
factor of the 11887th partition number: 

7E = 1 50802 87457 98463 07441 49612 94413 35408 90110 76626 79218 10826 04486 

78500 16206 10665 65455 29820 06606 21307 78648 81680 71410 39443. 
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To factor n using NFS we first spent a few workstation days to find 5 reasonable 
candidate polynomials f l  and f2. Next we sieved a while with each candidate 
pair, using reasonably sized factor bases. This yielded one pair that stood out 
from the others with a more than 10% better yield than the next beat one: 
fl(X,Y) = X - 49999 99918 54766 46567Y and 

f 2 ( X ,  Y) = 48 25692 37961 89830 X5 + 35 68080 39372 65531 X4Y 
- 4 65605 61818 75120 X3Y2 - 59 69883 14526 21728 X 2 Y 3  
- 13 44285 55250 45260 XY4 + 29 65432 72740 38354 Y5, 

with common root X/Y = 49999 99918 54766 46567 modulo n. We could not 
observe any correlation with properties that were thought to be relevant, like 
coefficient sizes or number of roots modulo small primes. The issue of polynomial 
selection in NFS needs to be understood better; we have not pursued this yet as 
our current trial-and-error approach seems to work satisfactorily, for the moment. 

Having thus decided on f r  and f2, we selected #PI = 100,001, #P2 = 
400,001, and B2 = 230. From our sieving experiments we derived that this 
choice could lead to approximately 50 million partials in about 250 mips years, 
using [6]. Given our experience with QS and NFS with fewer large primes, and the 
expected counts of the various types of relations (i.e., with a total of 0, 1, 2, 3, 
or 4 large primes), we expected that this choice would be enough to produce 
more than 500,000 fulls plus cycles, even without relying on any 2 %partials. 
Furthermore, since 250 mips years is less than QS would need for this number 
(about 400 mips years), our choice of #PI, #Pz and B2 seemed not too bad. 

Initial results were not surprising. The relations were found at the expected 
rates and the cycle-yield followed our worst-case scenario. The 5 2-partials com- 
bined more or less at their expected rate, and the other partials hardly con- 
tributed to the cycles: at 7,336,602 partials (and 12,607 fulls) there were only 
five bpartials involved in the 1,474 cycles, and no 2,2-partials. 

The results were mixed after we had completed more than half our anticipated 
sieving, at 28,243,830 partials (and 43,555 fulls). Even though the curve of the 
cycleyield as a function of the number of partials resembled a quartic function, 
extrapolation suggested that we would not even be close to what we needed 
by the time we would be finished sieving. On the other hand, of the 2,a-partials 
there were 10,495,464 of which 5,645 (0.054%) that occurred in cycles (of which 
there were 41,366), which was a marked improvement. 

It all looked different by the next time we attempted to count the cycles; 
attempted, because the counting program failed to work properly, a first indica- 
tion that something had changed. After replacing the failing counting approach 
by a new one (cf. Section 4), we found 317,862 cycles among 33,264,762 par- 
tials (and 49,680 fulls), with the 2,Zpartials at 12,460,866 with 672,773 (5.4%) 
participating in the cycles. Although this was still not enough, we did not fail to 
notice that our nice smooth curve had effectively been cut short by an almost 
vertical line, implying that the sieving was almost complete. 

A side effect associated with this explosive cycle behavior was that the aver- 
age length of the cycles (i.e., the number of partials that together form a cycle) 
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total 
fulls 

12607 
19456 
25782 
29744 
332 15 
37724 
40466 
43555 
49680 
58325 
61849 

total 
partials 
7336602 

11521334 
15773678 
18368031 
20736047 
23902815 
25972266 
28243830 
33264762 
42202890 
45876382 

Table 1 
useful 

partials 
3368 
8913 

18627 
28982 
42299 
73039 

11 1358 
224217 

348666 1 
9369843 

13970578 

% 

0.04 
0.07 
0.11 
0.15 
0.20 
0.30 
0.42 
0.79 

10.48 
22.20 
30.45 

cycles 

1474 
3842 
7491 

10934 
14895 
22329 
29415 
4 1365 

317862 
1746609 
2605463 

seemed to grow rapidly (we failed to keep the number, but see Table 6). Because 
longer cycles could lead to problems in the matrix step, and because we were cu- 
rious to see if and how the explosion would continue, we decided to  keep sieving 
for a while-hoping that if we had many cycles, we would also be able to find 
enough short ones, and restrict ourselves to those short ones in the matrix. 

This led to two additional counts. At 42,202,890 partials, there were 1,746, 
609 cycles of average length 93. Of the 16,079,778 2,2-partials 15.4% were useful, 
i.e., occurred in cycles. At 45,876,382 partials, there were 2,605,463 cycles (and 
61,849 fulls). The average length of these cycles had dropped to 74, and the 
proportion of useful 2,2-partials m e  to 23.4% with 4,111,077 useful 2,2-partials 
out of a total of 17,572,446. Further, we note that 87.3% of the cycles used a 
2,%partial. More details can be found in Tables 1, 2 and 3. 

So the explosion indeed continued. Further, the cycle length went down suf- 
ficiently that there were 459,922 cycles of length 5 23, which was acceptable for 
our matrix processing method back then. Note that 459,922+61,849 > 500,002. 
At this point we stopped sieving, after about 220 mips years. We could have 
sieved more, and attempted to find the 50 million partials that we hoped to 
find in 250 mips years, to see if indeed the 5 2-partials would have sufficed, as 
expected. This is unlikely: where we stopped those partials led to only 93,328 
cycles (with only 56,328 cycles among the i,j-partials with i, j 5 1 88 used in [8]. 
The 5 bpartials would have had a better chance, with 330,485 cycles where we 

We have not yet been able to understand why this very sudden growth in 
the number of cycles occurs. Counting arguments failed to prove anything, and 
probabilistic arguments are complicated by the inhomogeneous nature of the 
data. Connections with well-known ‘crystalization’ behavior of random graphs 
have been suggested, but have so far not given any insights that could be used 
to prove or predict cycle explosions. Obviously this would be useful for a better 
selection of factor base sizes and minimization of the total sieving time: if no 
explosion had occurred we would have needed larger factor bases, but if we had 

stopped. 
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fulls % 0,l-partials % 0,a-partials % 
total 61849 668995 1670521 
useful 417840 62.45 753575 45.11 

wrt total useful 2.99 5.39 
1,O-partials 1,l-partials 1,Zpartials 

total 466728 5038434 12521329 
useful 303125 64.94 2043376 40.55 3670595 29.31 

wrt total useful 2.16 14.62 26.27 
2,O-partials 2,l-partials 2,a-partials 

total 67621 1 7261718 17572446 
useful 346120 51.18 2324870 32.01 4111077 23.39 

-wrt total useful 2.47 16.64 29.42 

cycles 

10934 
14895 
22329 
29415 
41365 

317862 
1 746609 
2605463 

cycles 

10934 
14895 
22329 
29415 
41365 

317862 
1746609 
2605463 

total 
1-partials 

515439 
579057 
660552 
709775 
768018 
8841 18 

1065782 
1135723 

total 
&partials 

7946983 
8970893 

103380 14 
11 194689 
12207997 
14368629 
18200456 
19783047 

useful 
1-partials 

21906 
29991 
45965 
62463 
9771 1 

371434 
600653 
720965 

useful 
%partials 

808 
1666 
4823 

10389 
35208 

1379124 
3968763 
5995465 

Table 2 
% 

4.24 
5.27 
6.95 
8.80 

12.72 
42.01 
56.35 
63.48 

% 

0.01 
0.01 
0.04 
0.09 
0.28 
9.59 

21.80 
30.30 

total 
2-partials 

3157511 
3556296 
4076913 
4395522 
4772352 
5551149 
6856874 
7385166 

total 
2,2-partials 
’ 6748098 

7629801 
8827336 
9591557 

10495464 
12460866 
16079778 
17572446 

useful 
2-partials 

6224 
10529 
21808 
37346 
85653 

1063330 
2319722 
3143071 

useful 
2,2-partials 

44 
113 
443 

1160 
5645 

672773 
2480705 
4111077 

% 

0.19 
0.29 
0.53 
0.84 
1.79 

19.15 
33.83 
42.55 

% 

0.00 
0.00 
0.00 
0.01 
0.05 
5.39 

15.42 
23.39 

known about it we could have settled for smaller onea, so that the explosion 
would occur exactly when the sieving is done. This would lead to either denser 
or much larger matrices than we were used to, and thus would require better 
matrix techniques than used at the time we sieved this 116-digit number. 

For the present number the matrix did not pose a big problem, because of 
all the extra sieving we had done. After inclusion of 256 columns for quadratic 
signatures, we had a 521,771 x 500,258 bit-matrix, with on average 277 o n e  
bits per row. This matrix was reduced to an almost 9 gigabyte dense 274,696 x 
274,496 bit-matrix using ‘structured Gaussian elimination’ [7; 12; 141. It took 6 
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CPU-days on a 16K MasPar MP-1 to find the dependencies in the dense matrix 
using plain Gaussian elimination. 

The first dependency was processed by Peter Montgomery at the CWI in 
Amsterdam, using the method from [lo], in less than 2.5 CPU-days on a MIPS 
R4400 processor. This resulted in the following factorization: 

n = 3 73787 18590 84719 25152 67256 20648 89920 58833 29019 x 40344 58115 

87486 91262 33674 44522 38913 92270 04005 21248 10720 24860 30673 43497. 

More data points can be obtained by pruning the data that we have for smaller 
values of B2 = 230, and checking if and where the resulting sets of relations lead 
to cycle-explosions. We have not done this for the present number, but we did 
for the 114digit number discussed below. F'rom these and other experiments of 
this sort that we carried out in [5] (for a QS factorization) it follows that using a 
higher value of B2 indeed saves sieving time, at the cost of substantial amounts 
of disk space. 

Factoring a 119-digit integer. To convince ourselves that the cycleexplosion 
described above wits not an isolated incident, we tried factoring the following 
l lsdigi t  composite factor of the 13171th partition number: 

12 = 1472 39730 37795 02230 11857 21506 65046 38946 42104 16013 39117 46791 27360 

74474 37214 92509 46318 17633 03651 67483 02069 42164 60898 11241. 

We again found one pair of polynomials that stood out from the rest, for no 
reasons that we could find: fl(X,Y) = X - 1 44999 99959 86876 68083Y and 

f2(X, Y) = 229 71270 09947 70930 X5 - 75 24490 95044 76954 X4Y 
- 349 19223 42428 31010X3Y2 + 213 34303 57653 48142 X2Y3 
- 133 73262 31271 45009XY4 - 83 88784 35301 30136Y5, 

with common root X/Y = 1 44999 99959 86876 68083 modulo n. Anticipating 
the explosion this time, we chose relatively small factor bases (#PI = 100,001 
and #P2 = 320,001). This turned out to  be too small: after 195 mips years 
sieving was complete with only about 24,000 cycles among 30 million partials 
(and 30,000 fulls). Extension of #P2 to 360,000 and about 45 additional mips 
years of sieving led to 470,000 cycles among 35.8 million partials (and 39,000 
fulls), occupying almost 2 gigabytes of storage. Details can be found in Tables 4 
and 5. 

As expected this led to an unusually large matrix problem. Structured Gaus- 
sian elimination would have required in exceas of 15 gigabytes of storage and 
more than two CPU-weeks on a 16K MasPar MP-1, which is hardly feasible. In- 
stead we used an experimental MasPar implementation of the blocked Lanczos 
method from [ll] (cf. Section 5,  and [4]). This took 2.5-CPU-days. The depen- 
dencies were again processed by Peter Montgomery, this time in one CPU-day 
per dependency-the factorization was found on the third one: 
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fulls % 0,l-partials % 0,Zpartials % 
total 38741 459082 1254636 
useful 207979 45.30 314563 25.07 

.wrt total useful 4.40 6.66 
1,O-partials 1,l-partials 1 ,Ppartials 

total 303127 3603958 9746884 
useful 148271 48.91 794788 22.05 1197510 12.29 

, wrt total useful 3.14 16.82 25.34 
P.O-~artials 2,l-~artials 2.2-~artials 

total 
fulls 
5607 

10426 
13157 
16363 
18297 
21100 
25233 
28194 
30289 

total 
useful 

wrt total useful 

35953 
38199 
38741 

462715 5476700 14456422 
143305 30.97 770361 14.07 1148426 7.94 

3.04 16.30 24.30 

total 
partials 
3683540 
7262853 
9387071 

121 5261 7 
1401 7542 
16950688 
21930116 
2646581 7 
30107586 

30 10 1922 
34567876 
35763524 

Table 4 
(with #P2 = 320,001) 

useful % cycles, total 2 3- useful 2 3- 
partials partials partials 

588 0.01 280 2898623 2 
2525 0.03 1157 5771533 6 
4451 0.04 1997 7492921 24 
7840 0.06 3371 9755753 69 

10881 0.07 4549 11301609 138 
16743 0.09 6621 13765642 365 
31702 0.14 11118 18018822 1339 
56158 0.21 16716 21950471 4146 

110348 0.36 23886 25129694 15258 
(after recounting with #P2 = 360,001) 

219051 0.72 34728 24735646 44746 
3980288 11.51 337351 28636652 2548939 
4725203 13.21 472426 29680006 3116297 

% 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.06 

0.18 
8.90 

10.49 

n = 54 67135 70838 33359 03092 89109 24162 82702 67063 91975 73477 X 26 93178 

62846 37991 75226 13452 71731 62372 36050 27370 88674 71432 35361 24533. 

With less than 250 mips years spent on sieving, this factorization was completed 
about 2.5 times faster than it would with Q S .  Had we known how well our blocked 
Lanczos implementation would work, then we would have used larger factor 
bases, but sieved shorter per ‘special-q’ (cf. [S]), which would have reduced the 
sieving time considerably. Combining this observation with many other possible 
improvements, the 250 mips year figure should not be taken too seriously. 

As indicated above, we obtained more data points by pruning the final data 
sets for smaller values of B2. Some results are given in Table 6, including results 
for the data sets as they were at 88%, 90%, and 95% of the sieving. Note the 
sharp increase of the cycle length (of the cycles as found by our method, cf. 
Section 4) ‘early’ in the explosion, and the subsequent decrease of the cycle 
length as the explosion continues. Apparently, a first indication of an upcoming 
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Table 6 
total % cycles longest average total 2 3- 

partials useful cycle length partials 
using the data sets after 88% of the sieving: 

3716735 2.12 22920 66 4 2435866 
7141411 1.49 26652 106 5 5172320 

12566475 1.14 29867 564 6 9708 135 
20536267 5.37 32464 1072 8 16560014 
31471940 5.92 61402 2 lo6 >_ 388360 26118418 

using the data sets after 90% of the sieving: 
3801311 2.28 23477 65 4 2491247 
7303838 1.69 27794 134 5 5289915 

12852293 1.42 31665 997 8 9928854 
21003354 8.26 59148 2 lo6 2 214885 16936513 
32187175 7.35 98433 2 10’ 3 57252 26712006 

using the data sets after 95% of the sieving: 
4012410 3.93 33026 230 6 2629594 
7709526 12.30 55897 127536 742 5583741 

13566166 15.49 137720 50136 948 10480347 
22169973 13.75 237435 34279 835 17877242 
33975344 11.02 319882 32783 788 28195708 

using the final data sets: 
4223679 4.86 37133 619 8 2768053 
8115376 17.25 86015 329761 2664 5877684 

14280326 19.21 216173 21728 663 11032061 
23337060 16.62 357792 17235 612 18818348 
35763524 13.21 472426 16524 590 29680006 

% 
useful 

0.28 
0.27 
0.22 
3.17 
3.95 

0.34 
0.33 
0.35 
5.56 
5.18 

0.95 
7.52 

11.30 
10.44 
8.46 

1.41 
11.87 
14.77 
13.13 
10.49 

cycleexplosion is the sudden growth of the number of useful relations and of 
the average cycle length. Note also that for larger B2 there are relatively more 
partials with more large primes. 

Factoring a 107-digit integer. As a third experiment we factored a 107-digit 
number, with assistance from Magnus Alvestad and Paul Leyland (using our 
program described in [6]), Peter Montgomery (using his implementation at the 
CWI in Amsterdam), and Jorg Zayer (using his implementation from [3]). Zayer’s 
and our program both use ‘special q’s’ (cf. [6]), so that non-overlapping sieving 
tasks could easily be distributed among Zayer and the users of our program. To 
avoid overlap with Zayer’a and our results, Montgomery used his more traditional 
siever with ‘large prime special q’s’, i.e., special q’s that would be considered as 
large primes by the other programs. As a consequence, Montgomery’s program 
also produced i,j-partials with i , j  > 2 (but with i 5 4 and j 5 6). 

Although smaller numbers lead to smaller factor bases, and therefore to  
smaller large primes with a higher cycleyield, the cycle-yield for the 107-digit 
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number was initially even smaller than the cycleyield for the 116 and 11Sdigit 
numbers reported above: at 12,921 fulls and 24,660,318 partials, there were only 
7,552 cycles among 26,070 useful partials, compared to 22,239 cycles among 
73,039 usefuls in 23,902,815 partials (for the 116-digit number) and 11,118 cy- 
cles among 31,702 usefuls in 21,930,116 partials (for the 119-digit number). 
This lower than expected cycle-yield cannot be explained by the _> 5-partials, 
because at this point we had hardly received any partials from Montgomery yet. 

At 29,061,638 partials (and 13,918 fulls) on the other hand, the cycleyield 
was better than for the 119-digit number: 202,387 cycles among 2,856,606 u s e  
fuls, compared to 34,728 cycles among 219,051 usefuls in 30,101,922 partials 
for the 1lSdigit number (good comparison data with the 116digit number were 
not available). When we stopped sieving, we had 34,135,923 partials, 5,531,053 
of which were useful (we did not count the cycles). 

We conclude that also for this smaller number we got a cycle-explosion, even 
a bit more dramatic than before. The behavior of the cycle-yield is however suffi- 
ciently erratic that we have not been able to derive a reasonable ‘ruleof-thumb’ 
that could be useful to predict the explosion for future NFS factorizations. 

4 Counting 

In [9] some elementary methods were given to count and build the useful combi- 
nations among relations with at most two large primes per relation. A generaliza- 
tion of these methods to the ca8e of at most three large primes per relation was 
presented in [2]. This generalization does not extend to our case where relations 
can have four (or more) large primes. We give an outline of our methods. 

From the data presented in the previous section it should be clear that we 
are dealing with large amounts of data: it takes at least 24 bytm to store one a, 
b pair with four large primes, which already implies several hundred megabytes 
for the 2,a-partials (which actually take more space than that). The first concern 
while counting cycles therefore is to quickly weed out partials that are useless, 
i.e., that do not occur in any cycle (of course they will be kept, because they 
might be useful in later counts). Note that a partial is useless if it contains a 
large prime that does not occur in any other partial. 

We hashed each large prime, without collision resolution, to a 2-bit location 
where the hits were counted (not counting further than 2). We kept only those 
relations for which all large primes had hashed to a location with count 2. This 
process waa repeated on the resulting collection, until the resulting relations 
could be handled by another version of the same program that did use collision 
resolution. The latter version was repeated until no relations were deleted. The 
number of cycles among the partials in the resulting collection can then easily be 
estimated by subtracting the total number of distinct primes from the number 
of partials. The latter can also be done on ‘earlier’ collections of partials as long 
as there is enough disk space for the sorting and uniqueing. 

To do an exact count of the cycles, or to build them, we always first computed 
the collection of useful partials, as sketched above, and next applied the following 
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‘greedy elimination’. First we process the single large prime partials, storing each 
large prime when it is encountered for the first time, and counting (and building) 
a cycle each time it is encountered after that. Next, we remove all those stored 
primes from all other partials (counting, and building, cycles for partials where 
all large primes get removed), separating the resulting partials that still have 
at least one large prime into those with one, and those with at least two large 
primes. The entire process is repeated until no new partials with one remaining 
large prime are kept. Usually, at this point, no other partials remain; if there are, 
the cycles among them can easily be found using a similar strategy. Note that for 
the ‘building’ this greedy elimination requires some additional administration to 
account for the ‘history’ of the large prime deletions; so far this has not taken 
serious amounts of disk space. 

5 The matrix step 

In all previous QS and NFS factorizations, including the l lsdigi t  one from 
Section 3, we used the following strategy for the matrix step: first build all 
cycles to get a, roughly, # P  x # P  (or (#PI + #P2) x (#PI + #&)) bit-matrix, 
next apply structured Gaussian elimination [7; 12; 141, and finally apply ordinary 
Gaussian elimination. The extent to which the first step should be carried out 
before applying the last two steps is debatable. That is, we may remove all of the 
large primes before starting elimination on the matrix; some of the large primes 
may be removed in the first step, with the others included in the matrix; or 
none of the large primes need to be removed-without a clear advantage among 
these possible strategies. For the 119-digit number from Section 3, only the large 
primes that occurred at most three times in the useful partials were removed by 
constructing cycles. This resulted in a sparse 1,475,898 x 1,472,607 bit-matrix, 
which could have been ‘reduced’ to a dense 362,597 x 362,397 bit-matrix by 
structured Gauss. In our experience about the same would have happened if 
we had removed all large primes and processed the (unusually dense) Lsparse’ 
461,001 x 460,001 matrix with structured Gauss. 

We did, however, not actually build this dense 362,597 x 362,397 bit-matrix. 
Instead we used the blocked Lanczos method from [ll] to process the sparse 
1,475,898 x 1,472,607 bit-matrix for the l lsdigi t  number. The reason that 
we removed only the large primes that occur 5 3 times in the useful partials 
before using blocked Lanczos, is the following. The expected run time of blocked 
Lanczos applied to a matrix of (approximately) m rows and m columns with on 
average ‘w non-zero entries per row, is proportional to m times the total weight 
(i.e., mw) of the matrix. Initially, we may assume that all rows have about 
equal weight. Therefore, removal of a large prime that occurs in k different rows 
results in rn - 1 rows, m - k of the same average weight w as before, and k - 1 of 
average weight at most 2w - 2, and thus expected run time for blocked Lanczos 
proportional to rn- 1 times (m-k)w+ (k-1)(2w-2). In realistic circumstances, 
the latter is less than m2w as long as k 5 3. 
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Evidently, removal of large primes destroys the even distribution of the non- 
zeros over the rows, so the same argument cannot be used to analyse the effect 
of removing more large primes. Nevertheless, similar arguments imply that the 
run time can reasonably be expected to decrease if large primes tha t  occur in at 
most 3 rows are removed, but that an increase can be expected if large primes 
that occur more often are removed. This explains the choice that we made for the 
119-digit number. For a detailed description of the blocked Lanczos algorithm 
we refer to [ll], and to [4] for a description of the implementation that we used. 

Acknowledgments. Acknowledgments are due to M. Alvestad, S. Contini, 
P. Leyland, P. Montgomery, and J. Zayer for their assistance. 

References 

1. D. Atkins, M. GrafT, A.K. Lenstra, and P.C. Leyland, THE MAGIC WORDS ARE 

2. J. Buchmann, J. Loho, and J. Zayer, niple-largeprime variation, manuscript, 1993. 
3. J. Buchmann, J. Loho, and J. Zayer, An implementation of the general number 

field sieve, Advances in Cryptology, Crypto’93, Lecture Notes in Comput. Sci. 773 

4. S. Contini and A. K. Lenstra, Implementations of blocked Lanczos and Wiedemann 
algorithms, in preparation. 

5. T. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse, On the factorization of 
RSA-120, Advances in Cryptology, Crypto’93, Lecture Notes in Comput. Sci. 773 

6. R. Golliver, A.K. Lenstra, and K. McCurley, Lattice sieving and trial division, 
ANTS’94, Lecture Notes in Comput. Sci. 877 (1994), 18-27. 

7. B. A. LaMacchia and A.M. Odlyzko, Solving Large Sparse Linear Systems over 
Finite Fields, Advances in Cryptology, Crypto’90, Lecture Notes in Comput. Sci. 

8. A. K. Lenstra and H. W. Lenstra, Jr. (eds), The development of the number field 

9. A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Math. Comp 

10. P. L. Montgomery, Square roots of products of algebraic numbers, Proceedings 
of Symposia in Applied Mathematics, Mathematics of Computation 1943-1993, 
Vancouver, 1993, Walter Gautschi, ed. 

11. P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2), 
Advances in Cryptology, Eurocrypt’95, Lecture Notes in Comput. Sci. 921 (1995), 

12. A. M. Odlyako, Discrete Logarithms in Finite Fields and their Cryptographic Sig- 
nificance, Advances in Cryptology, Eurocrypt’M, Lecture Notes in Comput. Sci. 

13. C. Pomerance, The quadratic sieve factoring afgorithm, Advances in Cryptology, 

14. C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over finite fields 

15. B. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 

SQUEAMISH OSSIFRAGE, Asiacryp t ’94, to appear. 

(1994), 159-165. 

(1994), 166-1 74. 

637 (1991), 109-133. 

sieve, Lecture Notes in Math. 1564, Springer-Verlag, Berlin, 1993. 

63 (1994), 785-798. 

106-120. 

209, 224-314. 

Eurocrypt’84, Springer, Lecture Notes in Comput. Sci. 209, 169-182. 

via created catastrophes, Experiment. Math. 1 (1992) 89-94. 

329-339. 


