AN IMPLEMENTATION OF THE

ELLIPTIC CURVE
INTEGER FACTORIZATION
METHOD

Wieb Bosma* and Arjen K. Lenstra**

* School of Mathematics and Statistics
University of Sydney

Sydney NSW 2006

Australia

wieb@maths.su.o0z.au

** Room MRE-2Q334
Bellcore

445 South Street
Morristown, NJ 07960
U.S A

lenstra@bellcore.com

ABSTRACT

This paper describes the second author’s implementation of the elliptic curve method for the
factorization of integers as it is currently available in the computational algebra package Magma,
which is under development at the University of Sydney.

1991 Mathematics Subject Classification: 11Y05, 11AS51, 11G0S, 11-04.

1 INTRODUCTION

The elliptic curve method (ECM) is an integer factorization method that was proposed
by H.W. Lenstra, Jr., in 1985 [9]. Several authors (cf. [1, 11]) have proposed
practical improvements on the original method. The resulting implementations of
ECM currently provide the fastest means of finding factors of up to approximately 30
decimal digits. The purpose of this paper is to document the Magma implementation
of ECM, which is based on a combination of ideas from [1, 3, 11, 16].

In Section 2 we recapitulate some basic facts about elliptic curves. In Section 3 we
will describe the very simple and elegant ideas behind the original algorithm, and
we will give an overview of the practical variant that we will describe in detail in

119

W. Bosma and A. van der Poorten (eds.), Computational Algebra and Number Theory, 119-136.
© 1995 Kluwer Academic Publishers. Printed in the Netherlands.

120 Wieb Bosma and Arjen K. Lenstrq

later sections. Section 4 is devoted to two different models of elliptic curves and the
explicit addition algorithms on them. In Sections 5 and 6 the two main steps of ECM
are described. Finally, in Section 7 we present some examples.

2 ELLIPTIC CURVES

To define elliptic curves modulo some integer n, we first summarize well-known re-
sults for the special case that 7 is prime. Although these results are readily generalized
to arbitrary finite fields, or to fields in general, we restrict our attention to prime order
fields and refer the reader to [15].

2.1 Elliptic curves over E,. Let p > 3 be a prime number. An elliptic curve
E = E, over a finite field F, of order p consists of a pair a, b € F, for which
403 + 27b% s£ 0. This pair is to be thought of as coefficients for a Weierstral model

(1) V27 = X3+aXZ2+b2°

of E. The set of points E(F,) of E over F, is the set of projective solutions
(z:y: 2z) over F, tothe Weierstra equation (1); here a projective point (z: ¥ : z)
over F}, is an equivalence class of triples (0,0,0) # (z,y,2) € (Fy,)3, under the
equivalence

(z,y,2) ~ (@ ,y,2) <= FacE : 2=az,y =0y, =az

where F denotes the multiplicative group of units of F}, . Since z may be thought of
as the denominator of the point (z : y : z), we will call the elements of E(F,) with
z # 0 the finite points on E; the point O = (0: 1:0) is the only point on E at
infinity.

The set E(Fp) forms an abelian group, usually written additively. The zero element
isthe point O = (0:1:0).

The addition of points P = (z; : y; : 27) and Q = (x5 : Y5 : 29) can be given
explicitly and uniformly by simple polynomials in the coordinates of the points and
the coefficient a as follows, using the rule that the sum of two points on the curve is
the opposite of the third point of intersection of the curve with the line joining the two
points (see [15] for more details). Firstof all P+ O = O + P = P for any P. Next
assume that both P and @ are non-zero. If z; = az,,y; = —ayy and z; = az
for some o € F,, then P+ @ = O; in other words, the opposite —(z :y:z) of a
point on E'is given by (z : —y : z). In all other cases the intersection of the curve
and the line y = Az + vz joining P and Q is determined, where this line is taken
to be the tangent to the curve if P = Q. Explicitly, with
2 2
3 :c21 +azj if P=0Q
) A= s

Y122 — W% * }
xlzz—mzzl lfP#Q

The elliptic curve integer factorization method 121

we find P+ Q = (x5 : y3 : 23) with

Iz — N2_n_ %
3) Z3 21 &

Ya ,\(&_za)_yz_

Z3 21 23 Z

Two elliptic curves E = E,p, and E' = Ey iy over E, are isomorphic if there

exists u € F;f such that a’ = u*a and & = 4%b; the map sending (z : y : 2) to

(u?z : udy : 2) gives an isomorphism between the groups of points of E and E’.

2.2 Elliptic curves modulo . We must generalize the above concept of elliptic
curves slightly, to define curves modulo any integer n ; from now on we will assume
that n is not divisible by 2 or 3. An elliptic curve E = E, }, over Z/nZ consists
of a pair a,b € Z/nZ for which 4a® 4+ 276> € (Z/nZ)*. The set of points
E(Z/nZ) of E modulo n is the set of projective solutions (x : 7 : z) to (1) over
Z/nZ; a projective point (z : y : z) over Z/nZ is an equivalence class of triples
(z,y,2) € (Z/nZ)> for which ged(z,y,2,n) =1, under the equivalence

(z,y,2) ~ (2,y,2)) <= 3Fae(Z/nZ)": 2'=az,y =0y, =0az.

Again it is true that F(Z/nZ) can be made into an abelian group [10], but we will
not need this fact. Note that over Z/nZ it is not necessarily true any more that
O=(0:1:0) is the only point on E with z = 0.

We will call the elements of E(Z/nZ) with z = 1 everywhere finite, for the following
reason. Taking @ = a mod p and b = b mod p modulo some prime p dividing 7,
the elliptic curve E, , over Z/nZ givesrise to an elliptic curve E, over Fyp. Any
point in E(Z/nZ) gives a point in E(F,) when we take its coordinates modulo p
(reduction of E modulo p). Only those elements of E(Z/nZ) that are everywhere
finite yield a finite point on £ over F, for every p dividing n. Note that a triple
(z,y,2z) with =,y , 2z € Z/nZ satisfying (1) thus defines an everywhere finite point
if and only if ged(z,n) =1.

Two curves E = E,p and E' = Ey y over Z/nZ will be called isomorphic again
if there exists u € (Z/nZ)* such that a/ = u*a and b’ = u°b.

2.3 Partial addition and scalar multiplication. For an elliptic curve modulo n
a partial addition algorithm is an algorithm that does the following. Given two
points P,Q € E(Z/nZ) that are each either O or everywhere finite, the algorithm
determines either a non-trivial divisor of n, or a point R € E(Z/nZ) that againis O
or everywhere finite, but in any case has the property that for every prime divisor p
of n the reductions P, ,Qp, R, of P,Q, R modulo p satisfy R, = I, +Qp, in
the abelian group E(Fy).

We will describe partial addition algorithms explicitly in Section 4.

122 Wieb Bosma and Arjen K. Lenstra

By repeated application of the partial addition algorithm, one gets a partial scalar
multiplication algorithm which, for given k€Zs, and everywhc?re finite point P e
E(Z/nZ), determines either a non-trivial divisor of n, or a point R € E(Z/nZ)
that may be (0 : 1 :0) or everywhere finite, with the property that the reduction
modulo any prime p dividing n satisfies Ry = kP, in E(Fp).

3 THE ELLIPTIC CURVE METHOD

Lenstra’s original elliptic curve method can be briefly described as follows.

3.1 Elliptic curve method. Let n € Z,; be an integer coprime to 6, and not of
the form n = m¢ with m,e € Z.,. To find a non-trivial factor of n, repeat the
following two steps until such factor has been found.

(i) Select a random pair (E, P), consisting of an elliptic curve £ modulo n and an
everywhere finite point P on E.

(ii) Select a suitable positive integer k£ and apply the partial multiplication algorithm
to compute Q) = kP.

3.2 Remarks. The obvious way to choose a pair (E, P) of an elliptic curve and a
point, is to put 2 =1, choose z,y,a € Z/nZ at random, and let b be determined
by the equation %z = 23 + azz® + bz3. (We will show in Section 5 what we do
in practice.) It may be that gcd(n,abxy) is non-trivial, in which case the algorithm
terminates in Step (i). Usually however, a factor of n will be found in Step (ii), during
the execution of the partial multiplication algorithm. We explain next how this can
happen, and how to choose k£ to improve the chances.

3.3 The choice of k. Suppose that p and g are different prime factors of n. If
k is a multiple of the order of P, in E(F,) but not a multiple of the order of F,
in E(F,), then the partial multiplication algorithm on k£ and P must yield a non-
trivial divisor of n. For suppose that it succeeded in finding the point ¢ = kP on
E(Z/nZ); then Qp must equal kP, = O, the zero element in E(E,), so Q cannot
be everywhere finite and hence it equals (0:1:0) € E(Z/nZ). But in that case
also kFy; = @y = O in E(F;), which contradicts the assumption that k is not a
multiple of the order of P, in E(F,).

If one chooses & as the product of “small” prime powers, it may happen that after
some trials in (3.1) one will hit a pair (£, P) for which the order of P is a divisor
of k£ on E modulo the smallest prime divisor p of n, but not so for the other primes
dividing n. Let

B, = ell+o)V/logp loglogn)/2 iy p— 00,

The elliptic curve integer factorization method 123

Under a mild (but unproved) hypothesis on the smoothness of random integers in
intervals, it has been shown in [9] that using ECM one may expect to find the smallest
prime p dividing n in Bj trials with

4) k= [

rsBl

where t, € Zy , is maximal such that 7* < p+2./p +1. Because each trial takes
time O((logn)?B,) this leads to a total expected time O((logn)2B?) . The value
for k depends on p, thus is not known beforehand. Typically, for each new trial one
selects a £ that is slightly bigger than the previous one. In this way both the run-time
and the probability of success per trial increase slowly. See Section 7 for examples.

3.4 Practical improvements. So far, we have only described ECM in theory. In
practice the performance of ECM is greatly enhanced by adding a second phase to
each trial. One possible extension is to compute g @) for a number of primes ¢ that do
not occur in k. If n has a prime divisor p such that the order of F, divides k times
one of the gs, then p will most likely be detected. This computation can be carried
out quite efficiently, as shown in [11], and considerably increases the probability of
success per trial. Another extension is to apply the idea from Pollard’s p-method by
simulating a random walk in the group generated by) and wait for a collision to
occur, cf. [1]. This is the approach that we have chosen in our implementation for
reasons described in Section 7; it will be described in detail in Section 6.

Other improvements that have been incorporated in our implementation are concerned
with the choice of the initial curve and point, and the parameterization of the curve.
They will be described in sections 4 and 5.

As a result, our ECM implementation can be outlined as follows.

3.5 Algorithm. Let n € Z., be an integer coprime to 6, and not of the form
n =me with m,e € Z., . Repeat the following steps until a non-trivial factor of n
has been found.

(i) Curve setup: select a random pair (E,P) consisting of an elliptic curve E
modulo n and an everywhere finite point P on E(Z/nZ), such that the order of
E(F,) for any prime p dividing n is divisible by 12, cf. Section 5.

(ii) First phase: select a suitable positive integer k£ and apply the partial multiplication
algorithm to determine @ = kP, cf. Section 5.

(iii) Second phase: simulate a random walk Q1 = (z; 1 y; : 1), Q2 = (x5 : 45 : 1),
. in <@>; compute ged(n,[](z; —x;)), for i, j as described in Section 6.

124 Wieb Bosma and Arjen K. Lenstra

4 CURVE PARAMETERIZATIONS

In the first phase of Algorithm (3.5) it is advantageous to use another parametrization
of the elliptic curve than the usual Weierstra$3 form; we follow the approach suggested
by Chudnovsky, Montgomery, and Suyama (cf. [3]; [11]; [16]). For the second phase
it is more efficient to transform back to the WeierstraB form (1).

In this section we describe partial addition and multiplication algorithms for both
parameterizations of the elliptic curve.

4.1 Partial scalar multiplication in the Weierstra model. We first describe
a partial addition algorithm for two points P,Q € E(Z/nZ), with E as in (1)
(i.e., in the Weierstral model), satisfying the description in (2.3). Next we discuss
how this can be used to formulate a partial scalar multiplication algorithm. Because
we will only encounter points (xz : y : z) that are either equal to the zero point
O =(0:1:0) oreverywhere finite (i.e. z = 1), we will only keep track of the
affine coordinates (z,y) of the non-zero points.

It should be understood that if any of the algorithms described here fails, a non-trivial
factor of n has been detected. Because we only intend to apply them in algorithms
that attempt to factor n, failure implies that the factoring attempt was successful.

4.1.1 Partial addition. Let P ,Q € E(Z/nZ),both either O or everywhere finite.
We describe a method that either finds a non-trivial factor of nn,or computes an element
R € E(Z/nZ) that can be interpreted as the sum P + @ of P and @, as in (2.3).
First, for any P we have again that P 4+ O = O + P = P. Now assume that P and
@ are everywhere finite; we can work affinely: P = (z1,y;) and Q = (z5,%,) . If
x; =2y and y; = —yy, put R = O. Otherwise, attempt to compute (cf. (2))

3 2

NYE g —a,
A= W

N —Y .

—‘———"—‘wl__$2 lf xl?émz

in Z/nZ. If A could be computed put z = A\?—z, —z, and R = (z,A\(z;—2)—y,)
(cf. (3)); otherwise a non-trivial factor of n has been detected. It follows that a point can
be doubled in eight additions, two squarings, two multiplications, and one inversion
modulo n (where the multiplication by 3 accounts for two additions); addition of two
distinct points can be done in six additions, one squaring, two multiplications and one
inversion modulo 7.

To compute P — (), apply the above to P and —Q = (24, —5) .

4.1.2 Partial scalar multiplication. let P € E(Z/nZ) and let m be some
positive integer. There are many ways to compute mP € E(Z/nZ) (or a factor

The elliptic curve integer factorization method 125

of n) using (4.1.1). The ordinary “double and add”-strategy, for instance, works as
follows. Let m = > _7_om, 2" with m; € {0,1} and m, # 0, and let Q = P. For
i=r—1,r—2,...,0 in succession, first replace @ by Q+Q and nextif m, =1
replace @ by @ + P (cf. (4.1.1)). As a result we have Q = mP unless one of the
steps failed, in which case a factor of n has been detected. For a randomly chosen
m approximately half of the m, will be equal to 1, so that P can be computed
in about 11 log, m additions, 2.5 logy m squarings, 3 log, m multiplications, and
1.5 log, m inversions modulo 2.

Other strategies might use different addition chains and, for instance, minimize the
number of doublings (which are more expensive than additions) and/or introduce
subtractions (which are as hard as additions). In [4] the ordinary approach is used, but
the ms are constructed such that there are only a few m,; equal to 1 per m; this led
to a speed up of 18%. In Magma we use the 4-ary approach: write m =3y ;_qm; 4
with m, € {0,1,2,3} and m, $# 0, pre-compute 3P if at least one of the m,
equals 3, and build mP in the obvious way using two doublings and at most one
addition per 7 .

4.2 The Montgomery model. In this subsection we describe the model for elliptic
curves proposed in [11].

Suppose that (z : y : z) is a point on an elliptic curve given by the Weierstral3
equation (1). Suppose moreover that the coefficients a , b of the curve are of the form

(5) a=(1-%)b"? and b= (Ha>-1%a)d7?

for certain @, b in the field of definition of the curve. _A straightforward calculation
then shows that the projective point (% :§: 2) = ((bx — %&z) : by : z) satisfies
the equation:

(6) B : bYZ =X%+ax’Z+X2Z°.

Thus, a linear transformation converts the Weierstra3 form (1) into the Montgomery
form (6), if it exists for this particular curve. Conversely, the inverse of the above
transformation clearly converts any curve in Montgomery form to a curve in Weier-
straB form, and this represents an elliptic curve provided 4a® + 27 b? £ 0; that is,
b#0 and @ #4.

Below we will point out why partial multiplication is more efficient on a curve in
Montgomery form. Since the elliptic curve method allows us a free choice of elliptic
curve, we simply start out with a point on some curve in Montgomery form (see
Section 5 on how this is done), and transform back to Weierstra3 form for the second
phase (cf. Remark (6.5)).

Let E = E&B be an elliptic curve over Z/nZ in Montgomery form, where we

assume that ged(n,b(@ + 2)(@ — 2)) = 1. The curve parameterization in (6) allows

126 Wieb Bosma and Arjen K. Lenstra

us to compute the # and Z coordinate of the sum of two points in E(Z/nZ), if the
Z and Z coordinates of the two points and of their difference is known: in (4.3) we
describe how this can be done (cf. [11]) and how it can be used in a partial scalar
multiplication algorithm that, given the Z and Z coordinates of an initial point in
E(Z/nZ), computes the Z and Z coordinate of any scalar multiple (or finds a factor
of n). Since only the Z and Z coordinates are involved, it suffices to obtain an initial
point (Z : g : 2) € E; ;(Z/nZ) for which we can show the existence of 7 without
the need to actually construct it. More precisely, we will show in (5.1) how Z ,a and
b can be chosen such that b~ (% + @%2 +) is the square of an integer 7.

To indicate that the §-coordinate does not enter into any of the formulas, it will often
be replaced by an underline (‘_’).

Let (Z:_:1) € E(Z/nZ), with E‘:Ea ; asin (6), so bi? =% +ax? +7 for
some unspecified 7 in Z/nZ. To transform any such point (Z: __: 1) to a point
on a curve in the WeierstraBB model (1), put

t = #4ai’+3
(7) J = (1-1a)t?
¥ o= i(a*-a)t?
then
(8) (5.9) = (@E+3a) ¢ 1) € Byy(2Z/n2)

provided that ¢ € (Z/nZ)*. Since t = b§?, we see that a = §*a’ and b = F°V,
with a,b as in (5), and therefore Ej, ;, and Ey p are isomorphic (cf. (2.2)). Hence
it is possible to transform to the Weierstral form of the curve without explicitly
specifying . Since b is also not needed here, and since it will not appear in the
partial addition and multiplication below either, there will be no need to compute it.

Note that is not necessary to actually compute b or b’ either, because it is not needed
for the scalar multiplication in the Weierstra model (cf. (4.1)).

4.3 The group law in the Montgomery model. We will use the transformation

T az y .

(9) (CE,y,Z) (E"*—BB)E ,Z)

to transform a point (& : § : Z) on an elliptic curve in Montgomery model (6) to a
point (x : y : z) on the curve in WeierstraB3 form (1), with a, b as in (5). Combining
this with the explicit group law from (2.1) (cf. (2) and (3)), we will derive the explicit
group law on an elliptic curve over a finite field in Montgomery form. As in (4.1),
this is used to define partial addition on such a curve over Z/nZ, by interpreting
divisions as taking inverses modulo n (if possible).

Let P=(Z,:9 :2) and Q= (Z,: 7, : 2) bepoints on
;0 bYPZ = XP+ax*Z+ X2

The elliptic curve integer factorization method 127

If either point equals (0 : 1 :0) or if the points are opposites (i.e. (Zy : gy : Z)
= (&g : —Tp : Z5)), thesum P+ Q = (&3 : U3 : Z3) is found as usual. So suppose
that this is not the case.

If P = Q it follows from (2) and (9) that

Y129 — W22 — %7122"?3251.

A ===

therefore (3), (6) and (9) imply

(312, — 5, 2)* 71 5
—2b iy Gy B3 + BT 21 7o (813 + B9Z) + 2071 Z))
(Z) 29 — T9%)? 21 %
—2b T B 2o + B Fg (B 3y + o2y +28 5 5) + (F125 +T71) Z1 5
(%1 2y — %5 %)?

b (2,0 — &1)% 51 2
BTy (Ty 2y — B9)2

The difference (%4 : Jy : 24) = P — Q will then be given by

~ T o~ o~ ~ -~ 2~ -~

Ty b(Zofy +%152) %%
—~ })
7

- - 9= =2 =2 ~2\2:2 22 079~ &~ 22525 5 \2
T3 %y V(37 — 51 92)25%% (B30 B — b5 E)
=2 AT (5~ 2 = =3 m 5~ o\

(10) = 55— =
x%x% (Zy 2y — Ty 21)4

D e e Ny~ - .~ \\2 . .
x% ((xlﬂ’?z — 21 2) (125 — 93221)) _ (T35 — 2 Z2)2
TIT3 (&) 2y — Ty 2)* (T 2y — Ty 2)*

The latter equation will enable us to compute Z and Z for the sum of two points once
they are known for the difference.

If Q = P then (cf. (2), (5), and (9)), dropping the subscripts,

_ 3a%4az? bP(B(E+3aE) +(1-3a)F?) 38 +2aF%+2

A

2yz 25zb1 N

128 Wieb Bosma and Arjen K. Lenstra

so by (3) and (9)
Bs _ 5y 9% 5 b(332 +2a5z + 32)? — 8% 257z —4a b? 272
Z Z 4b2 272

and therefore, using the equation of the curve again,
an Z3 (7% — 32)2 N (% +2)% (3 — 2)*
23 42(533+&§325+5752) 41”;5((5_5)2 +4§,’.2(@%_2_)) :

Note that neither ¥ , 7 nor b appears in (10) or (11).

4.4 Scalar multiplication in the Montgomery model. We can now describe how
any point in E(Z/nZ) can be doubled and how the sum of two distinct points in
E(Z/nZ) can be computed if their difference is known, with E asin (6). Finally,
we present the resulting scalar multiplication. Forany (Z:__:Z) € E(Z/nZ) we
keep track of £ — Z and Z + Z as well, at the cost of two additions.

4.4.1 Doubling. let (% : _ : 3) € E(Z/nZ), and assume that 7(d + 2) has
been pre-computed. To compute 2(Z : __ : Z) € E(Z/nZ) first compute 472 as
(% + %)% — (£ — £)? in two squarings and one addition. Since

205 _:12) = ((5:+2)2(5:-5)2 477 ((@ -2 +433. %(a+2)))

by (11), doubling of a point can be done in four additions, two squarings and three
multiplications, all of them modulo n.

4.42 Computing the sum given the difference (cf.[11]). Let (Z;, : _ : Z;) €
E(Z/nZ) for i =1,2,4 suchthat (F;:__ 12)—(Fg:_:3)=(T4:_:%)
in E(Z/nZ). Tocompute (&, : __: 7)+(3y:__: 3) € E(Z/nZ) first compute
t, = (Z; — %) (T + Z,) and ty = (Z; + Z;) (T3 — Z,) in two multiplications. Put

(5)3:_223) == (24(t1 +t2)2I__Zi4(t1—t2)2)
= (42 (%12, ~55) 14Ty (315 — 0 5)?)
which equals (Z, : __: 2)+ (Zy : __: Zy) by (10); this takes two additions, two

squarings, and two multiplications. It follows that the sum can be computed in four
additions, two squarings, and four multiplications, all modulo .

Notice that we need only three multiplications if z, = 1, and that b does indeed not
enter into any of the formulas.

4.4.3 Scalar multiplication. Let Py = (Z,: _:2) € E(Z/nZ),andlet m > 2
be some odd positive integer. To compute mP; € E(Z/nZ) we proceed as follows.

The elliptic curve integer factorization method 129

Let (P,,P3) = (P;,P, + P,) be a pair of points in FE(Z/nZ), computed us-
ing (4.4.1), let 7 be such that 2" < m < 27+! and let 2! —m = S m, 2t
with m, € {0,1}. For ¢ =r —1,r —2,...,0 in succession replace (Pz,P3)
by (P2+P3,P3 +P3> lf m =0 andby (P2+P2,P2 +P3) if m =]. now
because the difference P; — P2 = P, throughout this computation, it can be car-
ried out using just (4.4.1) and (4.4.2). As a result we have that the final P; equals

mP, € E(Z/nZ).

This takes 8 log, m additions, 4 logym squarings and 7 logy ™ multiplications;
the latter can be reduced to 6 logy m if Z; = 1. Notice that for ¢ = 0 (and therefore
mg = 1 since m is odd) the computation of P, + P, can be omitted, and that
P2+P2=P3 ifm,r._]_:]..

To compute m P, for even m we apply this procedure to P, and the odd part of m,
followed by one or more doublings as in (4.4.1).

5 CURVE SET-UP AND FIRST PHASE

In this section we describe how we carry out Steps (i) and (ii) of Algorithm (3.5).

5.1 Curve setup. We follow Suyama’s suggestion [16] to obtain a random curve
and point on that curve. Let u,v € Q be such that uv (u? — 1) (9u? —1) # 0 and

let &= (—3u* —6u? + 1)/(4u3) and b = (u? — 1)?/(4uv?) . For p not dividing
b(a + 2) (@ — 2) the equation (6) defines an elliptic curve, and for this choice of &
and b the order of Ea,B(FP) will be divisible by 12. To obtain a non-trivial point
(Zg:_:1) on E&,E over Z/nZ, one takes I, = (3u/4) mod n; this implies that
u must be chosen such that

o —3ut —6uZ4+1 9 — 61
<$0+$0 du 3 +$0) = 64

is a square. This can for instance be achieved by putting u = 65/ (s* 4-6) for some
randomly selected s € Z /’I;LZ (cf.[11], also for other choices of initial points). Since
explicit values for §j, and b are not needed, v can be left unspecified.

In the first phase we attempt to compute @ = kP, for some appropriately chosen
integer k. As indicated in (3.3), the optimal choice for k& (and the total number of
trials in (3.5)) depends on the size of the smallest prime factor p of n. Because p is
usually unknown in practice, one often simply picks some value for B, , depending
on the size of factors one would hope or expect to find, and defines

(12) ko=]] o

q prime
q<B 1

130 Wieb Bosma and Arjen K. Lenstra

where, unlike (4), ¢, € Z , is maximal such that g < B; and the product ranges
over the primes only; of course k is not actually computed. For examples of choices
for B, we refer to Section 7. Putting it all together, we get the following.

5.2 First phase. Let P € E& 5(Z/nZ) and B; be as above. For all m = g%

as in (12) in succession, use (4.4.3) to compute the point mP = (T : __ : 2)
€ E‘é ;(Z/nZ), then next attempt to compute %71 mod n and finally replace P by

(8271:_:1) € E,3(Z/nZ).

After P has been replaced successfully by kP € E&,E(Z/nZ) this way (i.e. if no
factor if n has been detected), use (7) and (8) to convert it to a point () of the form
(z,y) € E,p(Z/nZ), with E,p = Ey p in the Weierstra model (1). This finishes
the description of the first phase of ECM.

Notice that, during the application of (4.4.3) we can take advantage of the fact that
the Z-coordinate of P equals 1. It is of course possible to do the inversion only once
every few ms, instead of per m. In that case, it is advisable to define m as the
product of a few prime powers, to avoid the extra log, g* multiplications modulo
that are needed per prime power if the Z-coordinate is not equal to 1 (which would be
more expensive, even for moderate g*¢s, than the inversion that would be saved).

6 PHASE TWO

Let Q = (z,y) be the point kP on E = E,; (as in (1)), as computed in the first
phase of ECM (since we will be working with inhomogeneous coordinates in this
section, z will always be equal to 1). Assume that n has a factor p such that the
order of @, in E(Fp) is at most B, , for some B, that may be up to several orders of
magnitude larger than B; (cf. Sections 3 and 5). In this section we review the method
from [1, § 9.1] that may detect this factor p of n, followed by some implementation
details.

6.1 Brent’s birthday paradox second phase. Let e, r and ¥ be three positive
integers that depend on By, with e small, r < ¥ and r7 = B, (cf. (6.3)). Let
u,v,U and ¥ be four small randomly chosen positive integers (cf. (6.4)).

(i) Compute (z;,y;) = (ut+v)¢Q for i =1,2,...,7 (cf. (6.4)).

T

(ii) Compute the polynomial f = > ijj = [[(X — ;) mod n (cf. (6.6)).
7=0

1=1

(iii) Compute (Z, ;) =(@j+0)2Q for j=1,2,...,7 (cf. (6.4)).

The elliptic curve integer factorization method 131

(iv) Compute d = f] f(:?:j) mod n (cf. (6.7)).
j=1

(v) Attempt to factor n by computing ged(n,d).

6.2 Remark. Because d = [[;_; [T;~(Z; — ;) mod n, it follows that it is quite
likely that p = gcd(n, d) if some random scalar multiple (ui+v)® @, of @y equals
some other random scalar multiple (% j + 7)€ Qp (notice that —(z,y) = (z, —y)
on the curve, so by using the z-coordinates of the points on the curve we identify
points with their negatives). This happens if one of the (ui+-v)® equals one of the
+(%j +)¢ modulo ¢, where g is the order of Q) in E(F;). Since 77 ~ B, and
B, is assumed to be > g, it follows from the ‘birthday paradox’ that the approach
from (6.1) has a fair probability of success.

It is beneficial (and relatively cheap, cf. (6.4)), to choose e as a highly composite
integer > 1, because the number of solutions to w® = 1 mod g equals ged(e,qg—1)
and the scalars (ui-+v)¢ and (% j+7)° have a higher probability to be equal modulo
g for such e than for general e (or e =1).

6.3 Selecting B, ,e, r and 7. From various asymptotic analyses of ECM [1],
[11] it appears to be optimal to choose B, so that the runtimes of the two phases are
approximately equal; for our implementation this led to By = 10 B; .

Given B; and B, as above, we choose e,r and 7 as follows. First, we select
e as the largest value from {1,2,3,6,12,18,24,30,60} (cf. (6.2)) such that
1250€? < B; . Next, we take the largest integer t such that 2t — 1 < 50e and set
r = 2t —1. Finally, we set 7 = [By/r] so that ¥ ~ 57. Our implementation of
(6.1)(iv) uses the fact that 7 is a 2-power minus 1 and that ¥ is considerably larger
than . For our implementation our choices lead to approximately equal runtimes for
the two phases of ECM; other implementations might lead to other choices.

6.4 Computing (x,,y;) = (ui+v)*Qfor i =1,2,...,7.

Because the ¢-th scalar multiplier (u7 -+ v)® is an e-th power of a linear function of
i, the e-th differences of the scalar multipliers are constant. This implies that after
an initial O(e? log(ue +v)) additions and doublings on the curve, the (z;,1;) for
i=1,2,...,r canbe computed in 7 - ¢ additions on the curve. We selected u and
v as random positive integers < [230/(e +2)], so that the ui + v for i < e could
be represented by single length integers.

In the pre-computation we first set R, to (ut +v)¢@ for ¢« = 0,1, ... ,e (cf.
(4.1.2)) and next we do the following for 4 = 1,2, ... ,e in succession: for j =
e,e—1, ... 1 insuccessionreplace Rj by R; -—Rj_1 on the curve (cf. (4.1.1)). As

aresult R; contains the i-th successive difference Z;zo(—l)j (;) (u(i~7)+v)° Q
for i=0,1, ... ,e. This computation can be done for the cost mentioned above.

132 Wieb Bosma and Arjen K. Lenstra

These R; allow us to compute (z;,y;) for ¢ =1,2,...,7 in succession at a cost
of e curve additions per i: for = 0,1, ... ,e — 1 in succession update R; by
replacing it by R; + R; and next set (z,,y;) equal to Ry (cf. (4.1.1)). Notice
that R, does not get updated, which is intentional because it is the constant e-th
difference.

6.5 Remark. Notice that the WeierstraB model is more convenient than the Mont-
gomery model for the computation in (6.4), because in the latter we can only efficiently
add points on the curve if their difference is known. Furthermore, all points would
have to be normalized to have z coordinate equal to 1 before it makes sense to
compute f as in (6.1)(ii). This would lead to r additional inversions modulo n.

r . r
6.6 Computing f = Y f; X! = [[(X —z;) mod nn.
j=0 i=1

This computation can trivially be carried out during the computation of the (z; ,3;)
for i=1,2,...,r. Initially set f = 1. Right after (z;,7;) has been computed,
simply replace f by (X — z;) - f mod n using 4 — 1 modular multiplications and
additions. In this way only the f; for 2=0,1, ... ,r have to be kept, but not the
(z; ,y;) » which saves some storage.

Clearly, the runtime of this method is quadratic in r. There exist various methods to
compute the f; that are asymptotically much faster. For the relatively small r that
we have been using they are probably not competitive with the above straightforward
approach, and we did not implement them. If our implementation is going to be
used for very large B, values, however, then it might be a good idea to change this.
See [12] for an independent ECM implementation that incorporates this and other
improvements.

'F
6.7 Computing d =] f(Z;) mod n.
i=1

Each f(Z;) mod n can be computed using about —%r + log, 7 modular multiplica-
tions (and some additions) if we first pre-condition f. To pre-condition the monic
polynomial f of degree » = 2t — 1 we used Algorithm A from [13]. If the de-
gree T equals 1 pre-conditioning does not change the polynomial. Otherwise, write
f=30-0fiX? of degree r = 25 —1 > 1 as (X5 + fo_; — 1)g + h with
g =X 4 YU fo X0 and b= X3V 4 SR (F — (fem — 1) figg) X
both monic; replace f,_; by fq_; — 1, replace foq_5, ..., fs by the coefficients
G2, ---, gp of the recursively pre-conditioned polynomial g, and similarly re-
place f,_o, ..., fo by the coefficients h,_,, ... ,hy of the pre-conditioned A . All
computations are carried out modulo 7.

To evaluate f(:?:j) mod n, first compute i‘?i for 0 < 7 < t then next evaluate
f(z;) mod n as (Z5 + fs—1) 9(Z;) +A(Z;) mod n which can be done by recursively
evaluating g(Z;) mod n and h(Z;) mod n.

The elliptic curve integer factorization method 133

7 PARAMETER CHOICE AND EXAMPLES

The implementation described in this paper was originally written at the Digital
Equipment Corporation’s Systems Research Center (DEC SRC) for application on
small multi-processor workstations, where each processor would run its own copy of
the program. This put severe constraints on the size of the program, also because the
total available memory was fairly limited. For this reason it was decided to use the
second phase from [1] instead of the one from [11]. Using this set-up many ‘most-
wanted’, ‘more-wanted’, and ‘other’ numbers from the list of unfactored numbers
from the Cunningham tables have now been factored [2]. For further details we refer
to [8]; the results can be found in the updates to [2] that are regularly published by
S. S. Wagstaff, Jr.

A portable version of the DEC SRC implementation was included in the second
author’s long integer package [5]. Using this version of the program many numbers
from the ‘RSA Partition Challenge List’ have been factored, see below; for further
results and run times we refer to [14]. This portable version of the implementation was
included in Magma, more or less unchanged and including the underlying arithmetic
from [5].

As mentioned in (3.3) the optimal number of trials and first phase bound B; depend
on the size of the prime factor p one attempts to find. In the table we give some
choices that are close to optimal for a 60% probability of success (cf. [8]).

loggp # trials B,
12 50 125
13 53 250
14 57 500
15 62 830
16 68 1500
17 75 2500
18 85 4200
19 100 6500
20 120 10000
21 145 15000
22 175 22000
23 210 32000
24 250 45000
25 300 65000
26 400 85000
27 500 115000
28 650 155000
29 750 205000
30 950 275000

In practice there is not much difference between 50 trials with B; = 125 and 25

134 Wieb Bosma and Arjen K. Lenstra

trials with B; = 250, or 12 trials with B; = 500; they all have a fair probability to
find factors of up to about 12 digits. To cast out the small factors one usually runs
a few trials, say 30, with small B, ’s starting at for instance 1000 and growing by a
small factor like 1.02 per trial. If the remaining cofactor is still composite, and one
is willing to invest more time in its factorization, the table can be used to decide how
that time can best be spent. Notice that finding factors of about 25 or more digits
requires on average a considerable effort.

To give an example, we tried to factor the randomly chosen 26-digit number:
28021516895 80271 82839 42993

several times, using B; = By X 1.025—1 at the k-th trial, for various choices of
B, (and with changing random seeds to initialize the random generator). Each time
we found the 11-digit factor 93874982749 (and thereby the prime 15-digit prime
cofactor 2984982374 98757): for By = 100 at the 19th trial, another attempt with
B, = 100 only at the 64" trial; for By = 300 at the first trial, and at another attempt
only at the 13™ trial; for By = 500 first at k = 15 but later at k = 4; and for
By = 1000 at k = 4 and later at k¥ = 1. In all cases the factor was detected in the
second phase, except for the 15™ trial with By = 500 where it was found in the first
phase.

A similar experiment with a 30-digit number (the product of the 14-digit prime
25130834513221 and the 17-digit prime 1585659 19182 38809) led to the follow-
ing: 100 trials with By = 100 and By = 500 were unsuccessful; a later attempt

with By = 500 had success at k = 28 for B, = 1000 success at the 11 and later

at the 7t trial; for By = 2500 success at the 6t and later at the 5t trial. In all cases
the 14-digit factor was found, in the second phase.

A more challenging example is provided by the factorization of 2213 —1. Using trial
division we found the prime factors 7 and 66457 , with a 59-digit composite cofactor.
Using ECM with By = 1000 we found, in four separate attempts, the prime factors
228479, 48544121, and 212885833 all at the first trial, and the 19-digit prime
2849 8819721147 40679 at the 125% trial, with B, = 11408 =~ 1.02!24 x 1000.
Notice that finding a 19-digit factor after 125 trials with bounds ranging from 1000 to
11408 agrees reasonably with the table given above.

The resulting factorization is:

2213 _ 1 = 7 x 66457 x 228479 x 48544121 x 2128 85833 x
x 284988197 21147 40679 x 4205 26857 41913 96793 .

The factorization of 2217 —1 was slightly harder to find. The prime factors 127, 5209
and 62497 were found using trial division, and the 10-digit prime factor 21474 83647
was found at the third ECM trial with initial bound B, = 1000. Of the remaining
46-digit composite cofactor a 22-digit prime factor was found at the 182%™ trial with

The elliptic curve integer factorization method 135

B, = 1000 and B; = 35220 ~ 1.02'8! x 1000, which again agrees reasonably well
with the table. The resulting factorization is:

9217 _ 1 = 127 x 5200 x 62497 x 2147483647 x
% 6268703 93384 03640 33151 x 3784 28804 43142 44840 82633 .

In other attempts to factor 2213 —1 and 2217 —1 weused B; = (k—1) x 12042600
at the k-th trial and found the smallest 19-digit prime factor of 22*3 —1 at k = 18
and B; = 4640; with B; = (k —1) x 169 + 3090 we found the 22-digit prime
factor of 2217 —1 at k =55 and By = 12216.

The point of all these examples is that the practical behavior of ECM varies wildly,
although the theoretically expected behavior can indeed on average be recognized. In
large scale factoring projects as reported in [2], for instance, one often tries to make
sure that the numbers do not have factors of less than 30 digits before one resorts
to general purpose factoring methods like quadratic sieve [6] or the number field
sieve [7]. As a result most applications of general purpose methods indeed lead to
factors larger than 30 digits, but every now and then a small factor slips through, and
leads to a ‘disappointing’ general purpose factorization.

As a final example we present the factorization of the 100-digit 86811 partition
number, the smallest number on the ‘RSA Partition Challenge List’:

p(8681) = 103044421462757 26816 32914 05934 79689 71268 88523 07078
04428 43814 28792 35363 90501 57594 55268 03826 57246 61691 .

This number has two small prime factors that are trivially found using trial division,
and a 7 and an 8-digit prime factor that were both found at the first ECM trial with
B, = 500. The remaining 81-digit number was factored in 2 25 and a 56-digit prime

at the 25 trial with B; =~ (1.02)?* x 10000, which is faster than could have been
expected for a 25-digit smallest factor:

p(8681) = 3 x 4021 x 7876147 x 76181269 x 24406 29475 22833 49402 16899
x 583317 88122 50720 17503 89880 54295 33625 95615 24841 35764 07801 .

The entire factorization took 50 minutes on a DECstation 5000 workstation.

136 Wieb Bosma and Arjen K. Lenstra

REFERENCES

[1] R.P. Brent, Some integer factorization algorithms using elliptic curves, Research Report
CMA-R32-85, The Australian National Univ., Canberra, 1985.

[2] J.Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, S. S. Wagstaff, Jr., Factorizations
of b" £ 1,b=23,5,6,7, 10, 11, 12 up to high powers, second edition, Contemp. Math.
22, Providence: Amer. Math. Soc., 1988.

[3] D.V. Chudnovsky, G.V. Chudnovsky, Sequences of numbers generated by addition in
Jormal groups and new primality and factorization tests, IBM Research Report RC 11262,

1985.

[4] B. Dixon, A.K. Lenstra, Massively parallel elliptic curve factoring, Advances in Cryp-
tology, Eurocrypt’92, Lecture Notes in Comput. Sci. 658 (1993), 183-193.

[5] A.K. Lenstra, LIP, a long integer package, available for anonymous ftp from
/pub/lenstraon flash.bellcore.com.

[6] A.K. Lenstra, H. W. Lenstra, Ir., Algorithms in number theory, Chapter 12 in: J. van
Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algorithms and
complexity, Amsterdam: Elsevier, 1990.

[7]1 A.K.Lenstra, H. W. Lenstra, Jr., (eds.) The development of the number field sieve, Lecture
Notes in Math. 1554, Berlin: Springer—Verlag, 1993.

[8] A.K. Lenstra, M. S. Manasse, Factoring by electronic mail, Advances in cryptology,
Eurocrypt 89, Lecture Notes in Comput. Sci. 434 (1990), 355-371.

[9]1 H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987),
649-673.

[10] H.W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms, pp. 99-120 in: A. M.
Gleason (ed.), Proceedings of the International Congress of Mathematicians, August
3-11, 1986 (Berkeley, California), Providence: American Mathematical Society, 1987.

[11] P.L.Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp. 48 (1987) 243-264.

[12] P.L. Montgomery, An FFT extension of the elliptic curve method of factorization, PhD
thesis, Los Angeles, 1992.

(13] M.S. Paterson, L.J. Stockmeyer, On the number of nonscalar multiplications necessary
to evaluate polynomials, SIAM J. Comput. 2 (1973), 60—66.

(14] RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available by
sending electronic mail to challenge-rsa-list@rsa.com.

[15] J.H. Silverman, The arithmetic of elliptic curves, New York: Springer—Verlag, 1986.
[16] H. Suyama, Informal preliminary report, October 1985.

