
CHAPTER 12

Algorithms in Number Theory

A.K. LENSTRA*
Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA

H.W. LENSTRA, Jr
Department of Mathematics, University of Caitfornia, Berkeley, CA 94720, USA

Contents
1. Introduction
2. Preliminaries
3. Algorithms for finite abelian groups
4. Factoring integers .

5. Primality testing
Acknowledgment .

References

• . . 675
• . . 677

685
697
706
712
712

* Present affiliation: Bell Communications Research, 435 South Street, Morristown, NJ 07960, USA.

HANDBOOK OF THEORETICAL COMPUTER SCIENCE
Edited by J. van Leeuwen

© Elsevier Science Publishers B.V., 1990

ALGORITHMS IN NUMBER THEORY 675

1. Introduction

In this chapter we are concerned with algorithms that solve two basic problems in
computational number theory: factoring integers into prime factors, and finding
discrete logarithms.

In the factoring problem one is given an integer n> 1, and one is asked to find the
decomposition of n into prime factors. It is common to split this problem into two parts.
The first is called primality testing: given n, determine whether n is prime or composite.

The second is called factorization: if n is composite, find a nontrivial divisor of n.
In the discrete logarithm problem one is given a prime number p, and two elements h,

y of the multiplicative group F of the field of integers modulo p. The question is to
determine whether y is a power of h, and, if so, to find an integer my = h. The same
problem can be posed for other explicitly given groups instead of F.

We shall present a detailed survey of the best currently available algorithms to solve
these problems, paying special attention to what is known, or believed to be true, about
their time complexity. The algorithms and their analyses depend on many different

parts of number theory, and we cannot hope to present a complete exposition from first
principles. The necessary background is reviewed in the first few sections of the present
chapter. The remaining sections are then devoted to the problems mentioned above. It
will be seen that only the primality testing problem may be considered to be reasonably
well solved. No satisfactory solution is known for the factorization problem and the

discrete logarithm problem. It appears that these two problems are of roughly the same
level of difficulty.

Number theory is traditionally believed to be the purest of all sciences, and within
number theory the hunt for large primes and for factors of large numbers has always
seemed particularly remote from applications, even to other questions of a number-
theoretic nature. Most number theorists considered the small group of colleagues that
occupied themselves with these problems as being inflicted with an incurable but
harmless obsession. Initially, the introduction of electronic computers hardly changed
this situation. The factoring community was provided with a new weapon in its eternal
battle, and the fact that their exacting calculations could be used to test computing
equipment hardly elevated their scientific status.

In the 1970s two developments took place that entirely altered this state of affairs.
The first is the introduction of complexity theory, and the second is the discovery that
computational number theory has applications in cryptology.

The formalism of complexity theory enabled workers in the field to phrase the fruits

of their intellectual labors in terms of theorems that apply to more than a finite number
of cases. For example, rather than saying that they proved certain specific numbers
prime by means of a certain method, they could now say that the same method can be

used to test any number n for primality within time f(n), for some function f. Although
this is doubtlessly a more respectable statement from a mathematical point of view, it

turned out that such asymptotic assertions appealed mainly to theoretical computer

scientists, and that many mathematicians had a tendency to regard these results as
being of an exclusively theoretical nature, and of no interest for practical computations.
It has since been interesting to observe that the practical validity of asymptotic time

676 A.K. LENsTRA, HW. LENsTRA, JR

bounds increased with the speed of computers, and nowadays an algorithm is
considered incomplete without a complexity analysis.

The area of number-theoretic complexity lost its exclusive function as a playground
for theoretical computer scientists with the discovery, by Rivest, Shamir and Adleman
[67], that the difficulty of factorization can be applied for cryptological purposes. We
shall not describe this application, but we note that for the construction of the
cryptographic scheme that they proposed it is important that primality testing is easy,
and that for the unbreakability of the scheme it is essential that factorization is hard.
Thus, as far as factorization is concerned, this is a negative application: a break-through
might make the scheme invalid and, if not restore the purity of computational number
theory, at least clear the way for applications that its devotees would find more
gratifying.

It is important to point out that there is only historical evidence that factonzation is
an intrinsically hard problem. Generations of number theorists, a small army of
computer scientists, and legions of cryptologists spent a considerable amount of energy
on it, and the best they came up with are the relatively poor algorithms that Section
4 will be devoted to. Of course, as long as the widely believed P # NP-conjecture
remains unproved, complexity theory will not have fulfilled its originally intended
mission of proving certain algorithmic problems to be intrinsically hard; but with
factorization the situation is worse, since even the celebrated conjecture just mentioned
has no implications about its intractability. Factorization is considered easier than
NP-complete and although the optimistic conjecture that it might be doable in
polynomial time is only rarely publicly voiced, it is not an illegitimate hope to foster.

Proving upper bounds for the running time of number-theoretic algorithms also
meets with substantial difficulties. We shall see that in many cases we have to be
satisfied with results that depend on certain heuristic assumptions, of which the
rigorous confirmation must perforce be left to posterity.

Several other applications of computational number theory in cryptology have been
found, a prominent role being played by the discrete logarithm problem that we
formulated above. For more information about these applications we refer to [12, 53].
Although the discrete logarithm problem has classically attracted less attention than
the factoring problem, it does have a venerable history, see [27, Chapter VIII], [35, 81].
The methods that have been proposed for its solution are also important for
factorization algorithms, and we discuss them in Section 3. What we have said above
about the complexity of factorization applies to the discrete logarithm problem as well.

Many more problems than those that we deal with would fit under the heading
algorithms in number theory, and we have preferred a thorough treatment of a few
representative topics over a more superficial discussion of many. As guides for subjects
that we left out we mention Knuth’s book [37, Chapter 4] and the collection of articles
published in [47]. Up-to-date information can often be traced through the current
issues of Mathematics of Computation. An important subject that is much different in
spirit is computational geometry ofnumbers, in particular the basis reduction algorithm
of Lovász [43]. For a discussion of this area and its applications in linear programming
and combinatorial optimization we refer to [31, 72].

Throughout this paper, time will mean number of bit operations. We employ the

ALGORITHMS IN NUMBER THEORY 677

following notation. By Z we denote the ring of integers, and by R the set of real

numbers. For a positive integer n we denote by Z/nZ the ring of integers modulo n. For

a prime power q, the finite field containing q elements is denoted by Fq, and its

multiplicative group by Ft’; notice that for a prime number p we have that F Z/pZ.

The number of primes x is denoted by n(x); the function it is called the prime coun

ting function.

2. Preliminaries

Subsections 2.A—2.D contain some background for the material presented in the

remainder of this chapter. We suggest that the reader only consults one of these first

four subsections as the need arises.

2.A. Smoothness

In many of the algorithms that we will present, the notion of smoothness will play an

important role. We say that an integer is smooth with respect to y, or y-smooth, if all its

prime factors are y. In what follows, we will often be interested in the probability that

a random integer between 1 and x is smooth with respect to some y.
To derive an expression for this probability, we define çls’(x, y) as the number of

positive integers x that are smooth with respect to y. Lower and upper bounds for

i(x, y) are known from [15, 25]. Combination of these results yields the following. For

a fixed arbitrary >O, we have that for x1O and u(logx)’,

ii(x,x1)=xu”

for a function f that satisfies f(x, u)/u—*O for u—’cfj uniformly in x. For fixed x, 13€ R>0

we find that for n—’cx

l/I(n1 ,/(Iog log n)/Iog fl) =
. ((x/$) ..Ji /log log n) —(1 + o(1))(//1og n/log log

which can conveniently be written as

i(n, L(n)) = n L(n) 0(1)

where L(n) /lo n log log n J follows that a random positive integer n is smooth with

respect to L(n) with probability L(n)2°’1,for n—’cc.
For 13 E R we will often write Ln [13] for L(n), and we will abbreviate Ln [/3 + o(1)] to

L[f3], for n—÷co. Notice that in this notation L[ci] +L[/3] Ln[max(, /3)], and that

the prime counting function it satisfies it(L[J3])=L[/3].

2.B. Elliptic curves

We give an introduction to elliptic curves. For details and proofs we refer to [45, 75].

Our presentation is by no means conventional, but reflects the way in which we apply
elliptic curves.

Let p be a prime number. The projective plane P2(F) over F consists of the

678 AK. LENsrRA. H.W. LENsTRA, JR

equivalence classes of triples (x, y, z)e F,, x F,, x F,,, (x, y, z)0, where two triples
(x, y, z) and (x’, y’, z’) are equivalent if cx = x’, cy = y’, and cz = z’ for some cc F; the
equivalence class containing (x, y, z) is denoted by (x:y:z).

Now assume that p is unequal to 2 or 3. An elliptic curve over F,, is a pair a, be F,, for
which 4a3 + 27b2 0. These elements are to be thought of as the coefficients in the
Weierstrass equation

(2.1) y2=x3+ax+b.

An elliptic curve a, b is denoted by Eab, or simply by E.

2.2. SET OF POINTS OF AN ELLIPTIC CURVE. Let E be an elliptic curve over F,,. The set of
points E(F,,) of E over F,, is defined by

E(F)={(x:y:z)eP2(F,,):y2z=x3+axz2+bz3}.

There is one point (x: y : z) e E(F,,) for which z = 0, namely the zero point (0: 1:0), denoted
by 0. The other points of E(F,,) are the points (x:y:1), where x, ye F,, satisfy (2.1). The
set E(F,,) has the structure of an abelian group. The group law, which we will write
additively, is defined as follows.

2.3. THE GROUP LAW. For any Pc E(F,,) we define P+O=O+P=P. For non-zero
P=(x1:y1:l), Q=(x2:y2:l)eE(F,,) we define P+Q=0 if x1=x2 and Yi=—Y2•
Otherwise, the sum P+Q is defined as the point (x:—y:1)e E(F) for which (x,y)
satisfies (2.1) and lies on the line through (x1,y1)and (x2,y2); ifx1=x2,we take the
tangent line to the curve in (x1,Yi) instead. With2=(yi —y2)/(x1—x2)if x1x2,and

= (3x + a)/(2y1)otherwise, we find that x = 22_ x1 — x2 and y = A(x — x1)+ Yi. The
proof that E(F,,) becomes an abelian group with this group law can be found in [75,
Chapter 3].

2.4. THE ORDER OF E(F). The order # E(F,,) of the abelian group E(F,,) equals p + 1 —

for some integer t with tI2\/, a theorem due to Hasse (1934). Conversely, a result of
Deuring [26] can be used to obtain an expression for the number of times a given
integer of the above form p + 1 — t occurs as # E(F,,), for a fixed p, where E raiges over
all elliptic curves over F,,. This result implies that for any integer t with ItI<2/pthere is
an elliptic curve E over F,, for which # E(F,,) = p + 1 — t. A consequence of this result
that will prove to be important for our purposes is that #E(F,,) is approximately
uniformly distributed over the numbers near p + 1 if E is uniformly distributed over all
elliptic curves over F,,.

2.5. PROPosITIoN (cf. [45, Proposition (1.16)]). There are positive effectively computable
constants c1 and c2 such that for any prime number p 5 and any set S of integers s for
which s—(p+ 1) one has

#S—2 - N

2c1(logp) c2(logp)(loglogp)
2[.J]+1 P 2[,.,/]+1

AIG0RITHMs IN NUMBER THEORY 679

where N denotes the number ofpairs a, bE F,, that define an elliptic curve E = E,, over F,,

with #E(F,,)e S.

Because N/p2 is the probability that a random pair a, b defines an elliptic curve

E over F,, for which E(F,,)ES, this proposition asserts that this probability is

essentially equal to the probability that a random integer near p is in S.

2.6. CoMPuTING THE ORDER OF E(F,,). For an elliptic curve E over F,, the number

E(F,,) can be computed by means of the division points method, due to School [71].

This method works by investigating the action of the Frobenius endomorphism on the

i-division points of the curve, for various small prime numbers l. An i-division point is

a point P over an extension of F,, for which l P = 0, and the Frobenius endomorphism

is the map sending (x:y:z) to (x”:y:z”). The division points method is completely

deterministic, guaranteed to work if p is prime, and runs in O((Iog p)8) bit operations (cf.

[46]); with fast multiplication techniques this becomes (log p)5 +o(1) Its practical value

is questionable, however.
Another method makes use of the complex multiplication field. The complex

multiplication field L of an elliptic curve E with #E(F,,)=p+ 1—t is defined as the

imaginary quadratic field Q((t24p)U2)(cf. (2.4)). For certain special curves the field

L is known; for instance for the curve = x3 + 4x and p 1 mod 4 we have L = Q(i),

a fact that was already known to Gauss. Knowing L gives a fast way of computing # E

(F,,). Namely, suppose that L is known for some elliptic curve E; then the ring of integers

A of L contains the zeros p. /5 of the polynomial X2 — tX + p, and # E(F) = (p — 1)(j5 —

1). Although this polynomial is not known, a zero can be determined by looking for an

element it in A for which iu = p (see (5.9)). This it can be shown to be unique up to

complex conjugation and units in A. For a suitable unit u in A we then have that p = uit,

so that #E(F,,)=(uit—1)(ãit—l). Inmost cases A will have only two units, namely

1 and — 1; only if L = Q(i) (or L = Q(JEi)) we have four (or six) units in A. In the case

that A has only the units 1 and — 1, an immediate method to decide whether # E(F,,)

equals(ir— 1)(ii— 1)=m’ or(—n—- 1)(—it— l)=m” does not yet exist, as far as we know;

in practice one could select a random point P e E(F,,) such that not both m’ P and m” P

are equal toO, so that #E(F)=m for the unique m€ {m’,m”} for which mP=0. If

A contains four or six units there exists a more direct method [33, Chapter 18].

In (5.9) we will use this method in the situation where L, A, and p are known; the

elliptic curve E will then be constructed as a function of L and p.

2.7. ELLIPTIc CURVES MODULO n. To motivate what follows, we briefly discuss elliptic

curves modulo n, for a positive integer n. First we define what we mean by the projective

planeP2(Z/nZ) over the ring Z/nZ. Consider the set of all triples (x, y, z) e (Z/nZ)3 for

which x, y, z generate the unit ideal of Z/nZ, i.e., the x, y, z for which gcd(x, y, z, n) = 1.

The group of units (Z/nZ)* acts on this set by u(x, y, z) = (ux, uy, uz). The orbit of(x, y, z)

under this action is denoted by (x:y:z), andP2(Z/nZ) is the set of all orbits.

We now restrict to the case that gcd(n, 6) = 1. An elliptic curve E = Eab modulo n is

a pair a, b Z/nZ for which 4a3 + 27b2 (Z/nZ)*. It follows from Subsection 2.B that

680 A.K. LENsTRA, H.W. LENsTRA, JR

for any prime p dividing n, the pair a = a mod p, 1= b mod p defines an elliptic curve
E,6 over F,,. The set of points of this latter curve will be denoted by E(F,,).

The set of points E(Z/nZ) of E modulo n is defined by

E(Z/nZ)={(x:y:z)EP2(Z/nZ):y2z=x3+axz2+bz3}.

Clearly, for any (x:y:z)e E(Z/nZ) and for any prime p dividing n, we have that
((x mod p):(y mod p):(z mod p))e E(F,,). It is possible to define a group law so that
E(Z/nZ) becomes an abelian group, but we do not need this group structure for our
purposes. Instead it suffices to define the following “pseudoaddition” on a subset of
E(Z/nZ).

2.8. PARTIAL ADDITION ALGORITHM. Let V P2(Z/nZ) consist of the elements (x:y: 1) of
P2(Z/nZ) together with the zero element (0:1:0), which will be denoted by 0. For any
Fe VwedefineP+O=O+P=P. Fornon-zeroP=(x1:y1:1),Q=(x2:y2:1)e Vi,, and
any a E Z/nZ we describe an addition algorithm that either finds a divisor d of n with
1 <d < n, or determines an element R e V,, that will be called the sum of P and Q:
(1) Ifx1=x2andy1=—y2put R=O and stop.
(2) If x1x2, perform step (2)(a), otherwise perform step (2)(b).
(2) (a) Use the Euclidean algorithm to compute s, t e Z/nZ such that s(x1 — x2)+ tn =

gcd(x1—x2,n). If this gcd is not equal to 1, call it d and stop. Otherwise put
A=s(y1—Y2), and proceed to step (3). (It is not difficult to see that in this case
P = Q.)

(2)(b) Use the Euclidean algorithm to compute s, te Z/nZ such that s(y1+y2)+tn=
gcd(y1 +Y2, n). If this gcd is not equal to I, call it d and stop. Otherwise put
)=s(3x+a), and proceed to step (3).

(3) Put x=22—x1—x2,y=2(x —x1)+y1,R=(x:—y:1), and stop.

This finishes the description of the addition algorithm. Clearly the algorithm
requires O((log n)’) bit operations. Notice that this algorithm can be applied to any
P, Q e V, for any a e Z/nZ, irrespective as to whether there exists be Z/nZ such that
a, b defines an elliptic curve modulo n with F, Q e Eab(Z/flZ).

2.9. PARTIAL ADDITION WHEN TAKEN MODULO p. Let p be any prime dividing n, and let F,,
denote the point ofP2(F,,) obtained from Pc V. by reducing its coordinates modulo p.

Assume that, for some a e Z/nZ and F, Q e V, the algorithm in (2.8) has been
successful in computing the sum R = P + Q e V,. Let a denote a mod p, and suppose that
there exists an element be F,, such that 4ã3 + 27b2 #0 and such that Ps,, Q,, e Eab(Fp). It
then follows from (2.3) and (2.8) that R,,=P,,+Q,, in the group EO,b(FP).

Notice also that F = 0 if and only if F,, = 0, for Fe V.

2.10. MuLTIPLIcATIoN BY A CONSTANT. The algorithm in (2.8) allows us to multiply an
element Pc V by an integer k E Z > in the following way. By repeated application of
the addition algorithm in (2.8) for some a e Z/nZ, we either find a divisor d of n with
1 <d < n, or determine an element R = k Fe V such that according to (2.9) the
following holds: for any prime p dividing n for which there exists an element b e F,, such

ALGORITHMS IN NUMBER THEORY 681

that 4ã3 +27b20 and P, E Ea,b(Fp), we have R =kP4,in EOb(F) where a =a mod p.
Notice that in the latter case R

= 0,, if and only if the order of P,, E E,b(F,,) divides k.

But R,,
= 0,, if and only if R = 0, as we noted in (2.9), which is equivalent to Rq °q for

any prime q dividing n. We conclude that if kP has been computed successfully, and if

q is another prime satisfying the same conditions as p above, then k is a multiple of the

order of P,, if and only if k is a multiple of the order of Pq.
By repeated duplications and additions, multiplication by k can be done in O(log k)

applications of Algorithm (2.8), and therefore in O((log k)(log n)2) bit operations.

2.11. RANDOMLY SELECTING CURVES AND POINTS. In Subsection 5.C we will be in the

situation where we suspect that n is prime and have to select elliptic curves E modulo

n (in (5.7)) and points in E(Z/nZ) (in (5.6)) at random. This can be accomplished as

follows. Assume that gcd(n, 6) = 1. Randomly select a, b Z/nZ until 4a3 + 27b2 0, and
verify that gcd(n,4a3+27b2)=’1, as should be the case for prime n; per trial the

probability of success is(n— 1)/n, for n prime. The pair a, b now defines an elliptic curve

modulo n, according to (2.7).
Given an elliptic curve E = Eab modulo n, we randomly construct a point in E(Z/nZ).

First, we randomly select an XE Z/nZ until x3 + ax + b is a square in Z/nZ. Because we

suspect that n is prime, this can be done by checking whether (x3 + ax + b) - 1)/2
= 1.

Next, we determine y as a zero of the polynomial X2 — (x3 + ax + b) e (Z/nZ)[X] using

for instance the probabilistic method for finding roots of polynomials over finite fields

described in [37, Section 4.6.2]. The resulting point (x:y: 1) is in E(Z/nZ).
For these algorithms to work, we do not need a proof that n is prime, but if n is prime,

they run in expected time polynomial in log n.

2.C. Class groups

We review some results about class groups. For details and proofs we refer to [9, 70].

A polynomial aX2+ bX Y+ c Y2 e Z[X, Y] is called a binary quadratic form, and A =

b2 — 4ac is called its discriminant. We denote a binary quadratic form aX2+ bX Y+ c Y2

by (a, b, c). A form for which a >0 and A <0 is called positive, and a form is primitive if

gcd(a, b, c) = 1. Two forms (a, b, c) and (a’, b’, c’) are equivalent if there exist , fi, y, n Z

with th—/3y=l such that a’U2 +b’UV+c’ V2=aX2+bXY+cY2,where U=X+yY,

and V’=/3X+5Y. Notice that two equivalent forms have the same discriminant.

Now fix some negative integer A with A 0 or 1 mod 4. We will often denote a form

(a, b, c) of discriminant A by (a, b), since c is determined by A = b2 — 4ac. The set of

equivalence classes of positive, primitive, binary quadratic forms of discriminant A is

denoted by CA. The existence of the form (1, A) shows that CA is nonempty.

2.12. REDuCrI0N ALGORITHM. It has been proved by Gauss that each equivalence class

in CA contains precisely one reduced form, where a form (a, b, c) is reduced if

$IbIac,
lb0 if bI=a or if a=c.

These inequalities imply that a \/jj7; it follows that CA is finite. For any form (a, b, c)

682 AK. LENsTRA, H.W. LENsTRA, JR

of discriminant A we can easily find the reduced form equivalent to it by means of the
following reduction algorithm:

(1) Replace (a,b) by (a,b—2ka), where keZ is such that —a<b—2kaa.
(2) If(a, b, c) is reduced, then stop; otherwise, replace (a, b, c) by (c, —b, a) and go back

to step (1).

It is easily verified that this is a polynomial-time algorithm. Including the
observation made in [37, Exercise 4.5.2.30] in the analysis from [39], the reduction
algorithm can be shown to take 0((log a)2 + log c) bit operations, where we assume that
the initial b is already 0(a). It is not unlikely that with fast multiplication techniques
one gets 0((loga)’+logc) by means of a method analogous to [69].

If the reduction algorithm applied to a form (a’, b’, c’) yields the reduced form (a, b, c),
then for any value ax2 + bxy + cy2 a pair u = xx + yy, v = fix + y with a’u2 + b’uv +
c’v2 ax2 + bxy + cy2 can be computed if we keep track of a (2 x 2)-transformation
matrix in the algorithm. This does not affect the asymptotic running time of the
reduction algorithm.

2.13. CoMPosITIoN ALGORITHM. The set C, which can now be identified with the set of
reduced forms of discriminant A, is a finite abelian group, the class group. The group
law, which we will write multiplicatively, is defined as follows. The inverse of (a, b)
follows from an application of the reduction algorithm to (a, — b), and the unit element
1 is (1,1) for A odd, and (1,0) for A even. To compute(a1,b1)(a2,b2),we use the
Euclidean algorithm to determine d=gcd(a1,a2,(b1+b2)/2), and r, s, te Z such that
d=ra1+sa2+t(b1+b2)/2. The product then follows from an application of the
reduction algorithm to

(a1a2/d2,b2+2a2(s(b1—b2)/2—tc2)/d),

where c2 = (b — A)/(4a2). It is again an easy matter to verify that this is a polynomial-
time algorithm.

2.14. AMBIGuous FORMS. A reduced form is ambiguous if its square equals 14; for an
ambiguous form we have b = 0, or a = b, or a = c. From now on we assume that A
mod 4. It was already known to Gauss that for these A’s there is a bijective
correspondence between ambiguous forms and factorizations of lAP into two relatively
prime factors. For relatively prime p and q, the factorization Al = pq corresponds to the
ambiguous form (p, p) for 3p q, and to ((p + q)/4, (q

—
p)/2) for p <q 3p. Notice that

the ambiguous form (1,1) corresponds to the factorization A=lpAl.

2.15. THE CLASS NUMBER. The class number h4 of A is defined as the cardinality of the
class group C4. Efficient algorithms to compute the class number are not known. In
[70] an algorithm is given that takes time Al”5+o(1) for A —

—
cc; both its running time

and correctness depend on the assumption of the generalized Riemann hypothesis
(GRH). It follows from the Brauer—Siegel theorem (cf. [41, Chapter XVI]) that
h4 = 1A1112 +o(1) for A—. — cc. Furthermore, h4 <(/log A)/2 for A < —3. It follows
from (2.14) that h4 is even if and only if Al is not a prime power.

ALGORITHMS IN NUMBER THEORY 683

2.16. FINDING AMBIGUOUS FORMS. The ambiguous forms are obtained from forms

whose order is a power of 2. Namely, if (a, b) has order 2” with k >0, then (a, b)2”
- is an

ambiguous form. Because of the bound on hA, we see that an ambiguous form can be

computed in O(log 41) squarings, if a form (a, b) of 2-power order is given.
Such forms can be determined if we have an odd multiple u of the largest odd divisor

ofh4, because for any form (c, d), the form (c, d)U is of 2-power order. Forms of 2-power

order can therefore be determined by computing (c, d)U for randomly selected forms

(c, d), or by letting (c, d) run through a set of generators for CA; if in the latter case no

(c, d) is found with (c, d)u# l4 then hA is odd, so that A is a prime power according to

(2.15).

2.17. PRIME FORMS. For a prime number p we define the Kronecker symbol () by

/4\ Ii if A is a quadratic residue modulo 4p and gcd(A, p)= I,

if gcd(A,p)s.l,
p otherwise.

For a prime p for which ()= 1, we define the prime form I, as the reduced form
equivalent to (p,b), where b =min{be Z>0:b2 A mod4p}. It follows from a result
in [40] that, if the generalized Riemann hypothesis holds, then there is an effectively
computable constant c, such that CA is generated by the prime forms I,, with
pc(logIA)2,where we only consider primes p for which ()=1 (cf. [70, Corollary

6.2]); according to [6] it suffices to take c = 48.

2.18. SMoOTHNEss OF FORMS. A form (a, b, c) of discriminant A, with gcd(a, A)= 1, for
which the prime factorization of a is known, can be factored into prime forms in the

following way. If a HpprjmepeP is the prime factorization of a, then (a, b)
where s,, E { — 1, + 1 } satisfies b sb mod 2p, with b as in (2.17). Notice that the
prime forms I,, are well-defined because the primes p divide a, gcd(a, A)= 1, and

b2 A mod 4a.
We say that a form (a, b) is y-smooth if a is y-smooth. In [74] it has been proved that,

under the assumption of the GRH, a random reduced form (a, b) e C4 is LI41 [$1-smooth

with probability at least LIAI[— l/(4/3)], for any f3E R>0. Since a/FJj7i, this is what
can be expected on the basis of Subsection 2.A; the GRH is needed to guarantee that

there are sufficiently many primes L141[/3] for which ()= 1.

2.D. Solving systems of linear equations

Let A be an (n x n)-matrix over a finite field, for some positive integer n, and let b be an

n-dimensional vector over the same field. Suppose we want to solve the system Ax = b

over the field. It is well-known that this can be done by means of Gaussian elimination

in 0(n3)field operations. This number of operations can be improved to 0(n2376)(cf.

[23]).
A more important improvement can be obtained if the matrix A is sparse, i.e., if the

number of non-zero entries in A is very small. This will be the case in the applications

684 AK. LENsTRA, H.W. LENSTRA, JR

below. There are several methods that take advantage of sparseness. For two of those
algorithms, we refer to [22, 53]. There it is shown that both the conjugate gradient
method and the Lanczos method, methods that are known to be efficient for sparse
systems over the real numbers, can be adapted to finite fields. These algorithms, which
are due to Coppersmith, Karmarkar, and Odlyzko, achieve, for sparse systems,
essentially the same running time as the method that we are going to present here.

2.19. THE COORDINATE RECURRENCE METHOD. This method is due to Wiedemann [82].
Assume that A is nonsingular. Let F be the minimal polynomial of A on the vector
space spanned by b, Ab, A2b,... Because F has degree n we have

F(A)b= JA1b=0,

and for any t0,

JA’b=0.

Let be the jth coordinate of the vector Ab; then

(2.20)

for every t 0 and 1 j n. Fixing j, 1 j n, we see that the sequence (v1,)°o satisfies
the linear recurrence relation (2.20) in the yet unknown coefficients J of F. Suppose we
have computed v1 for i=0, 1,..., 2n as thejth coordinate of Atb. Given the first 2n+ 1
terms v01, vu,. . . , Vfl of the sequence satisfying a recurrence relation like (2.20), the
minimal polynomial of the recurrence can be computed in 0(n2) field operations by
means of the Berlekamp—Massey algorithm [48]; denote by F this minimal
polynomial. Clearly F divides F.

If we compute F for several values of j, it is not unlikely that F is the least common
multiple of the F”s. We expect that a small number of Fi’s, say 20, suffice for this
purpose (cf. [53, 82]). Suppose we have computed F in this way. Because of the
nonsingularity of A we have f0 0, so that

(2.21) x= —fe’ jA1b

satisfies Ax = b.
To analyze the running time of this algorithm for a sparse matrix A, let w(A) denote

the number of field operations needed to multiply A by a vector. The vectors Ab for
= 0, 1 2n can then be computed in 0(nw(A)) field operations. The same estimate

holds for the computation of x. Because we expect that we need only a few F”s to
compute F, the applications of the Berlekamp—Massey algorithm take 0(n2) field
operations. The method requires storage for 0(n2) field elements. At the cost of
recomputing the Ab in (2.21), this can be improved to 0(n)+w(A) field elements if we
store only those coordinates of the Ab that we need to compute the Fi’s. For a rigorous

ALGORITHMS IN NUMBER THEORY 685

proof of these timings and a deterministic version of this probabilistic algorithm we
refer to [82]. How the singular case should be handled can be found in [82, 53].

2.22. SoLvING EQUATIONS OVER THE RING Z/mZ. In the sequel we often have to solve
a system of linear equations over the ring Z/mZ, where m is not necessarily prime. We
briefly sketch how this can be done using Wiedemann’s coordinate recurrence method.
Instead of solving the system over Z/mZ, we solve the system over the fields Z/pZ for
the primes pm, lift the solutions to the rings Z/pkZ for the prime powers pklm, and
finally combine these solutions to the solution over Z/mZ by means of the Chinese
remainder algorithm. In practice we will not try to obtain a complete factorization of m,
but we just start solving the system modulo m, and continue until we try to divide by
a zero-divisor, in which case a factor of m is found.

Lifting a solution Ax0= b modulo p to a solution modulo p” can be done by writing
Ax0 — b = py for some integer vector y, and solving Ax1 = y modulo p. It follows that
A(x0—px1)=b modulo p2. This process is repeated until the solution modulo p” is
determined. We conclude that a system over Z/mZ can be solved by O(log m)
applications of Algorithm (2.19).

3. Algorithms for finite abelian groups

3.A. Introduction

Let G be a finite abelian group whose elements can be represented in such a way that
the group operations can be performed efficiently. In the next few sections we are
interested in two computational problems concerning G: finding the order of G or of
one of its elements, and computing discrete logarithms in G. For the latter problem we
will often assume that the order n of G, or a small multiple of n, is known.

By computing discrete logarithms we mean the following. Let H be the subgroup of
G generated by an element he G. For an element y of G, the problem of computing the
discrete logarithm loghy of y with respect to h, is the problem to decide whether ye H,
and if so, to compute an integr m such that h = y; in the latter case we write loghy = m.
Evidently, loghy is only defined modulo the order of h. Because the order of h is an
unknown divisor of n, we will regard loghy as a not necessarily well-defined integer
modulo n, and represent it by an integer in {O, 1, . . . , n — 1 }. Although loghy is often
referred to as the index of y with respect to h, we will only refer to it as the discrete
logarithm, or logarithm, of y.

Examples of groups we are interested in are: multiplicative groups of finite fields, sets
of points of elliptic curves modulo primes (cf. Subsection 2.B), class groups (cf.
Subsection 2.C), and multiplicative groups modulo composite integers. In the first
example n is known, and for the second example two methods to compute n were
mentioned in (2.6).

In all examples above, the group elements can be represented in a unique way.
Equality of two elements can therefore be tested efficiently, and membership of a sorted
list of cardinality k can be decided in log k comparisons. Examples where unique

686 AK. LENsTRA, H.W. LENsTRA, JR

representations do not exist are for instance multiplicative groups modulo an
unspecfied prime divisor of an integer n, or sets of points of an elliptic curve modulo n,
when taken modulo an unspecified prime divisor of n (cf. (2.7)). In these examples
inequality can be tested by means of a gcd-computation. If two nonidentically
represented elements are equal, the gcd will be a nontrivial divisor of n. In Subsection
4.B we will see how this can be exploited.

In Subsection 3.B we present some algorithms for both of our problems that can be
applied to any group G as above. By their general nature they are quite slow; the
number of group operations required is an exponential function of log n. Algorithms
for groups with smooth order are given in Subsection 3.C (cf. Subsection 2.A). For
groups containing many smooth elements, subexponential discrete logarithm algo
rithms are given in Subsection 3.D. Almost all of the algorithms in Subsection 3.D are
only applicable to the case where G is the multiplicative group of a finite field, with the
added restriction that h is a primitive root of the same field. In that case G = H, so that
the decision problem becomes trivial. An application of these techniques to class
groups is presented in Remark (3.13).

For practical consequences of the algorithms in Subsections 3.B through 3.D we refer
to the original papers and to [53].

3.B. Exponential algorithms

Let G be a finite abelian group as in Subsection 3.A, let he G be a generator of
a subgroup H of G, and let ye G. In this section we discuss three algorithms to compute
loghy. The algorithms have in common that, with the proper choice for y, they can
easily be adapted to compute the order nh of h, or a small multiple of h•

Of course, loghy can be computed deterministically in at most nh multiplications and
comparisons in G, by computing 1? for i= 1,2,. . . until h =y or h 1; here 1 denotes
the unit element in G. Then ye H if and only if W = y for some i, and if y H the
algorithm terminates after O(flh) operations in G; in the latter case (and if y = 1), the
order of h has been computed. The method requires storage for only a constant number
of group elements.

3.1. SHANK’s BABY-STEP-GIANT-STEP ALGORITHM (cf [38, Exercise 5.17]). We can improve
on the number of operations of the above algorithm if we allow for more storage
being used, and if a unique representation of the group elements exists; we describe
an algorithm that takes O(N/nh log nh) multiplications and comparisons in G, and
that requires storage for O(/) group elements. The algorithm is based on the
following observation. If ye H and logh < 2 for some s e Z >, then there exist integers
i and j with Oi,j<s such that In this situation loghy can be computed as
follows. First, make a sorted list of the values h for 0 j <sin O(s logs) operations in G.
Next, compute yh — for i = 0, 1 s — 1 until yh — L equals one of the values in the list;
this search can be done in O(log s) comparisons per i because the list is sorted. If yh — iS is
found to be equal to h, then logh y = is + j. Otherwise, if yh - is not found in the list for
any of the values of i, then either y H or log ys2. —

This method can be turned into a method that can be guaranteed to use O(\/nh X

ALGORITHMS IN NUMBER THEORY 687

log flh) operations in G, both to compute discrete logarithms and to compute nh. For the
latter problem, we put y = 1, and apply the above method with s = 2c for k = 1,2,... in
succession, excluding the case where both I and j are zero. After

lb gznhl/2

k=1

2klog2k) =O(,Jlognk)

operations in G, we find i and j such that hi2’ + = 1, and therefore a small multiple of n,,.
To compute logy we proceed similarly, but to guarantee a timely termination of the
algorithm in case y H, we look for h — in the list as well; if some h — is in the list,
but none of the yh - is, then y H. We could also first determine h, and put s [\/ 1.

We conclude that both the order of h and discrete logarithms with respect to h can
be computed deterministically in ,l2+o(l) multiplications and comparisons in G,
for The method requires storage for O(./) group elements. In practice
it can be recommended to use hashing (cf. [38, Section 6.4]) instead of sorting.

3.2. MuLTIPLE DISCRETE LOGARITHMS TO THE SAME BASIS. If e> 1 discrete logarithms with
respect to the same h of order n,, have to be computed, we can do better than O(e.../ x
log flh) group operations, if we allow for more than O(\/) group elements being
stored. Of course, if e?nh, we simply make a sorted list of h for i=0,l,..., h —1,
and look up each element in the list; this takes O(e log) group operations and
storage for n,, group elements. If e<nh, we put s=[\/enh], make a sorted list of
h for 0j<s, and for each of thee elements y we compute yh5 for 1=0,1 Fnh/sl
until yh_is equals one of the values in the list. This takes

O(” log(en))

group operations, and storage for O(/) group elements.

3.3. POLLARD’S RHO METHOD (cf [58]). The following randomized method needs only
a constant amount of storage. It is randomized in the sense that we cannot give
a worst-case upper bound for its running time. We can only say that the expected
number of group operations to be performed is O(,%/) to compute discrete loga
rithms, and O(/) to compute the order h of h; here n is the order of G. Let us
concentrate on computing discrete logarithms first.

Assume that a number n is known that equals the order of G, or a small multiple
thereof. We randomly partition G into three subsets G1,G2, and G3, of approximately
the same size. By an operation in G we mean either a group operation, or a membership
test xe?G. For yeG we define the sequencey0,y1,y2,... in G by Yo=Y, and

hy1_1 ify1_1eG1,

(3.4) y= y?- if y_1eG2,

ify1eG3,

for i >0. If this sequence behaves as a random mapping from G to G, its expected cycle
length is O(..j) (see [37, Exercise 4.5.4.4]). Therefore, when comparing y and Y2i for

688 A.K. LENsTRA, H.W. LENsTRA, JR

= 1, 2 we expect to find Yk = Y2k for k = O(/). The sequence has been defined in
such a way that Yk = Y2k easily yields yC = hmk for certain e,,, m,, e {0,l,.. . , n — 1 }. Using
the extended Euclidean algorithm we compute s and t such that s e,, + t n = d where
d=gcd(ek, n); if d= 1, which is not unlikely to occur, we find loghy=smk mod n.

If d> 1 then we do not immediately know the value of log y, but we can exploit the
fact that yek

= h as follows. We introduce a number 1>0, to be thought of as the
smallest known multiple of n. Initially we put I = n. Every time that I is changed, we first
check that y’ 1 (if y’ 1 then clearly y H), and next we compute new s, t, and d with
d = gcd(e, 1) = s e, + t1. Note that hlmkI = Iek/d = 1, so that n Ilmk/d. If d does not
divide m,, then change l to gcd(I, lmk/d). Ultimately, d divides mk. We have that

= hsmk, so we may stop if d 1. Otherwise, we determine the order d’ of h’1” by means
of any of the methods described in Subsections 3.B and 3.C. If this is difficult to do then
d is large (which is unlikely), and it is probably best to generate another relation of the
sort y

hrnk. If d’ <d then change I to ld’/d. Finally, suppose that d’ =d. Let
h_1”, then ye H if and only if y’ e H, and since (y)d = 1, this is the case if and

only if y’ belongs to the subgroup generated by h’ = hUjd. The problem with y and h is
now reduced to the same problem with y’ and h’, with the added knowledge that the
order of h’ equals d. The new problem can be solved by means of any of the methods
described in Subsections 3.B and 3.C.

Of course, we could define the recurrence relation (3.4) in various other ways, as long
as the resulting sequence satisfies our requirements.

Notice that, if ye H, the recurrence relation (3.4) is defined over H. If also the GnH
are such that the sequence behaves as a random mapping from H to H, then we expect
the discrete logarithm algorithm to run in O(\/) operations in G. In the case that n or
some multiple of nh is not known, a multiple of n can be computed in a similar way
in about O(/) operations in G. To do this, one partitions G into a somewhat larger
number of subsets G, say 20, and one defines Yo = 1, and y =ht’y1_1if y_1 e G; here
the numbers t are randomly chosen from {2, 3,..., B— 1}, where B is an estimate for
n,, (cf. [68]).

We conclude this section by mentioning another randomized algorithm for
computing discrete logarithms, the so-called Lambda method for catching kangaroos,
also due to Pollard [58]. It can only be used when logh y is known to exist, and lies in
a specified interval of width w; it is not necessary that the order of G, or a small multiple
thereof is known. The method requires O(/) operations in G, and a small amount of
storage (depending on the implementation), but cannot be guaranteed to have success;
the failure probability , however, can be made arbitrarily_small, at the cost of
increasing the running time which depends linearly on \/log(1/). We will not pursue
this approach further, but refer the interested reader to [58]. Notice that, with w =
this method can be used instead of the rho method described above, if at least y e H.

3.C. Groups with smooth order

In some cases one might suspect that the order of G, or of h, has only small prime
factors, i.e., is s-smooth for some small s e Z>0 (cf. Subsection 2.A). If one also knows an
upper bound B on the order, this smoothness can easily be tested. Namely, in these

ALGORITHMS IN NUMBER THEoRY 689

circumstances the order should divide

(3.5) k = k(s, B) = fJ pt”,

ps
p prime

where t, e Z0 is maximal such that pt B. Raising h to the kth power should yield the
unit element in G; this takes O(s 1og B) multiplications in G to verify. If h” indeed equals
the unit element, the order of h can be deduced after some additional computations.

3.6. THE CHINESE REMAINDER THEOREM METHOD (cf [56]). Also for the discrete logarithm
problem a smooth order is helpful, as was first noticed by Silver, and later by Pohlig and
Hellman [56]. Let h = HPIflhPe be the prime factorization of Ifye H, then it suffices
to determine log,, y = m modulo each of the per, followed by an application of the
Chinese remainder algorithm. This observation leads to an algorithm that takes

O(./e, max(e, p)log(pmin(e, p)))
plnh

p prime

group operations, and that needs storage for

o(max (Jpmin(e, p))
\ pin,.

p prime

group elements.
To compute m modulo pe, where p is one of the primes dividing fl and e = e, we

proceed as follows. Write m mp’ modulo pe, with m, e {0, 1 ,. . .
,
p — 1 }, and

notice that

(m — (m modp1))n/p’
+ 1

(n/p)m mod h

for 1=0,1,..., e—1. This implies that, if yeH, then

(. h —(m mod P’))nh/P = (hihIP)mi.

Because h= h” generates a cyclic subgroup ii of G of order p, we can compute
m0,m1,. . . , m —1 in succession by computing the discrete logarithms of =
(y h —(m mod P))nh/P + 1

with respect to h for I = 0, 1,. . . , e — 1. This can be done by means
of any of the methods mentioned in Subsection 3.B. If j, ii for some i, then y H, and
the algorithm terminates. With (3.2) we now arrive at the estimates mentioned above.

3.D. Subexponential algorithms

In this subsection we will concentrate on algorithms to compute discrete logarithms
with respect to a primitive root g of the multiplicative group G of a finite field. In this
case the order of G is known. In principle the methods to be presented here can be
applied to any group for which the concept of smoothness makes sense, and that
contains sufficiently many smooth elements. This is the case for instance for class
groups, as is shown in Remark (3.13).

690 A.K. LENsTRA, H.W. LENsTRA, JR

We do not address the problem of finding a primitive root of G, or deciding whether
a given element is a primitive root. Notice however that the latter can easily be
accomplished if the factorization of the order of G is known. It would be interesting to
analyze how the algorithms in this subsection behave in the case where it not known
whether g is a primitive root or not.

A rigorous analysis of the expected running time has only been given for a slightly
different version of the first algorithm below [61]. The timings of the other algorithms
in this section are heuristic estimates.

3.7. REMARK. Any algorithm that computes discrete logarithms with respect to
a primitive root of a finite field can be used to compute logarithms with respect to any
non-zero element of the field. Let g be a primitive root of a finite field, G the
multiplicative group of order n of the field, and handy any two elements of G. To decide
whether y e <h> = H and, if so, to compute logs y, we proceed as follows. Compute
logg h = m,, logg y = m, and ind(h) = gcd(n, mh). Then ye H if and only if ind(h) divides
m, and if yeH then

log,, y = (mY/ind(h))(m,,/ind(h)) -

where n,, n/ind(h) is the order of h.

3.8. SMooTHNEss IN (Z/p Z)*. If G = (Z/p Z)* for some prime p, we identify G with the set
{1, 2,. . . , p— 1} of least positive residues modulo p; the order n of G equals p— 1. It
follows from Subsection 2.A that a randomly selected element of G that is n is
L [131-smooth with probability L [— /(2$)], for

,
/3 e R > fixed with c 1, and n —, cxD.

The number of primes L [/3] is it(L [/3]) L [/3]. In Subsection 4.B we will see that
an element of G can be tested for L[/3]-smoothness in expected time L[O]; in case of
smoothness, the complete factorization is computed at the same time (cf. (4.3)).

3.9. SMOOTHNESS IN F. If G Fm, for some positive integer m, we select an irreducible
polynomial f e F [X] of degree m, so that F2m (F2 [X])/(f). The elements of G are
then identified with non-zero polynomials in F2 [X] of degree <m. We define the norm
N(h) of an element heG as N()=2de1(h)• Remark that N(f)= #F2m, and that the
order n of G equals 2m 1.

A polynomial in F2 [X] is smooth with respect to x for some x e R>0, if it factors as
a product of irreducible polynomials of norm x. It follows from a theorem of
Odlyzko [53] that a random element of G of norm n is L [/3]-smooth with
probability L[—c/(2/3)], for cçf3eR>o fixed with c< 1, and n—*cx. Furthermore, an
element of G of degree k can be factored in time polynomial in k(cf. [37]). The number
of irreducible polynomials of norm L [/3] is about

L [/31/log2(L [13]) = L [/3].

These results can all easily be generalized to finite fields of arbitrary, but fixed,
characteristic.

3.10. THE INDEX-CALCULUS ALGORITHM. Let g be a generator of a group G of order n as in

ALGORITHMS IN NUMBER THEORY 691

(3.8) or (3.9); “prime element” will mean “prime number” (3.8) or “irreducible
polynomial” (3.9), and for G = (Z/p Z)* the “norm” of x c G will be x itself. Let y c G,
and let S be the set of prime elements of norm L [j3] for some fi E R >. We abbreviate
L[fl] to L[fl]. The algorithms to compute log9y that we present in this subsection
consist of two stages (cf. [81]):

(1) precomputation: compute log9s for all scS;
(2) computation of log9y: find a multiplicative relation between y and the elements of

S, and derive log9y using the result from the precomputation stage.
a This gives rise to an algorithm whose expected running time is bounded by

a polynomial function of L(n); notice that this is better than O(ne) for every >0 (cf. [1]).
First, we will describe the second stage in more detail, and analyze its expected

running time. Suppose that the discrete logarithms of the prime elements of norm
L[13] all have been computed in the first stage. We determine an integer e such that

y gC factors as a product of elements of S, by randomly selecting integers e E {0, 1,.. . , n—i }
until y ge c G is smooth with respect to L[fl]. For the resulting e we have

y.ge fl S,

SES

so that

log9y
= ((e. log9 — e’mod n,

/ /

where the log9 s are known from the precomputation stage. By the results cited in (3.8)
and (3.9) we expect that L[1/(2/3)] trials suffice to find e. Because the time per trial is
bounded by L[0] for both types of groups, we expect to spend time L[1/(2fl)] for each
discrete logarithm.

Now consider the precomputation stage, the computation of log9 s for all s c S. We
collect multiplicative relations between the elements of 5, i.e., linear equations in the
log9 s. Once we have sufficiently many relations, we can compute the log9 s by solving
a system of linear equations.

Collecting multiplicative relations can be done by randomly selecting integers
e c {0, 1,. . . , n — 1 } until gEE G is smooth with respect to L[f3]. For a successful e we
have

ge

= fl

which yields the linear equation

a

(3.11) e=(es logs)modn.

We need about SI L[fi] equations of the form (3.11) to be able to solve the resulting
system of linear equations, so we repeat this step about L[fl] times.

It follows from the analysis of the second stage that collecting equations can be done
in expected time L[/3 + l/(2fl)]. Because the system can be solved in time L[3f3] by

692 A.K. LENSTRA, H.W. LENsTRA, JR

ordinary Gaussian elimination (cf. Subsection 2.D and (2.22)), the precomputation
stage takes expected time L[max(fJ+ 1/(2/3), 3/3)], which is L[4] for the optimal choice
fl=. This dominates the cost of the second stage which takes, for f3=-, time L[l] per
logarithm. The storage requirements are L[1] for the precomputation (to store the
system of equations), and L[] for the second stage (to store the loge s for sE S).

An important improvement can be obtained by noticing that in the equations of the
form (3.11) at most log2 n of the S L[fl] coefficients e can be non-zero. This implies
that we can use the coordinate recurrence method described in (2.19), which has,
combined with (2.22), the following consequence. Multiplying the matrix defining the
system by a vector can be done in time (log2 n)L[/3], which is L[j3]. The system can
therefore be solved in time L[2f1], so that the expected time for the precompu
tation stage becomes L[max(/3+ 17(2/3), 2/3)]. For we get L[,.ji] arithmetic
operations in G or Z/n Z for the precomputation, and L[4] operations per loga
rithm. The method requires storage for L[\/] group elements both in the precomputa
tion and in the second stage. We refer to [61] for a rigorous proof that a slightly
modified version of the index-calculus algorithm runs in time L[\/], for both of our
choices of G.

3.12. REMARK. As suggested at the end of (3.9), the algorithm in (3.10), and the
modifications presented below, can be adapted to finite fields of arbitrary, but fixed,
characteristic. For F2 a modified version of the index-calculus algorithm is presented
in [29]; according to Odlyzko [53] this method applies to F,,m, for fixed m, as well. It is
an as yet unanswered question how to compute discrete logarithms when both p and
m tend to infinity.

3.13. REMARK. The ideas from the index-calculus algorithm can be applied to other
groups as well. Consider for instance the case that G is a class group as in Subsection
2.C, of unknown order n. Suppose we want to compute the discrete logarithm of y with
respect to h, for h, y E G. Let S be a set of prime forms that generates G (cf. (2.17)). The
mapping p from Z to G that maps (e,),5 E Zs to G is a surjection. The kernel
of q, is a sublattice of the lattice Z5, andZ5/ker() G. In particular the determinant of
ker(q) equals n.

To calculate ker(q), we introduce a subgroup A of ZS, to be thought of as the largest
subgroup of ker(p) that is known. Initially one puts A = {0}. To enlarge A, one looks for
relations between the elements of S. Such relations can be found in a way similar to the
precomputation stage of(3. 10)), as described in (4.12); the primitive root g is replaced by
a product of random powers of elements of S, thus producing a random group element.
Every relation gives rise to an element r E ker(q). One tests whether r n A, and if not one
replaces A by A + Zr; if A is given by a basis in Hermite form, this can be done by means
of the algorithm of [36]. Repeating this a number of times, one may expect to find
a lattice A containing SI independent vectors. The determinant of A is then a non-zero
multiple of n. After some additional steps it will happen that A does not change any
more, so that one may hope that A = ker(q). In that case, det(A) = n, and V/A G.

Supposing that A = ker(q), we can write G as a direct sum of cyclic groups by
bringing the matrix defining A to diagonal form [36]. This may change the set of

ALGoRITHMs IN NUMBER THEoRY 693

generators of G. To solve the discrete logarithm problem one expresses both h and y as
products of powers of the new generators, and applies (3.7) repeatedly. Notice that if the
assumption A ker(p) is wrong (i.e., we did not find sufficiently many relations), we
may incorrectly decide that y <h>.

3.14. A METHOD BASED ON THE RESIDUE-LIST SIEVE FROM [22]. We now discuss a variant of
the index-calculus algorithm that yields a better heuristic running time, namely L[l]
for the precomputation and L[4] per individual logarithm. Instead of looking for
random smooth group elements that yield equations like (3.11), we look for smooth
elements of much smaller norm that still produce the necessary equations. Because
elements of smaller norm have a higher probability of being smooth, we expect that this
will give a faster algorithm.

For ease of exposition we take G (Z/p Z)*, as in (3.8), so that n = p — 1. Let the
notation be as in (3.10). Linear equations in the log9 s for s E S are collected as follows.
Let E R>0 and let u and v be two integers in {[/]+ 1,..., [,./+L[x]]}, both
smooth with respect to L[13]. If uv

—
p is also smooth with respect to L[/3], then we have

found an equation of the type we were looking for, because log9u + log9 v = log9(uv
— p).

We analyze how much time it takes to collect L[fl] equations in this way. The
probability of uv

—
p = O(L[c].,/) being smooth with respect to L[fJ] is L[— 1/(4$)], so

we have to consider L[/3+ 1/(4f.J)] smooth pairs (u, v), and test the corresponding mi—p
for smoothness. This takes time L[/3 + 1/(4/3)]. It follows that we need L[$/2 + 1/(813)]
integers u E {[]+ 1 [.J+L[ct]]} that are smooth with respect to L[/3]. For
that purpose we take L[$/2 + 11(813) + 1/(413)] integers in {[,/] + 1 [\/ + L[]]}
and test them for smoothness, because the probability of smoothness is L[— l/(4/3)].
Generating the u’s therefore takes time L[fl/2 + 3/(813)]. Notice that we can take
=j3/2+3/(8$). Notice also that u,v, and uv—p are not generated randomly, but
instead are selected in a deterministic way. Although we cannot justify it theoretically,
we assume that these numbers have the same probability of smoothness as random
numbers of about the same size. The running times we get are therefore only heuristic
estimates.

Combined with the coordinate recurrence method (cf. (2.19), (2.22)), we find that the
precomputation takes time L[max(13 + l/(4/3), 13/2+ 3/(813), 213)]. This is minimized for
13=4, so that the precomputation can be done in expected time L[1] and storage L[4].
Notice that for 13=4 we have = 1.

The second stage as described in (3.10) also takes time L[1]. If we keep the L[4]
smooth u’s from the precomputation stage, then the second stage can be modified as
follows. We find e such that y.gemodp is smooth with respect to L[2] in time L[].
To calculate log9y, it suffices to calculate log9x for each prime factor xL[2]
of y.gemodp. For fixed x this is done as follows. Find v in an interval of size L[4]
around \//x that is smooth with respect to L[4] in time L[4]. Finally, find one of the
L[4] smooth u’s such that uvx—pO(L[],.J) is smooth with respect to L[4] in
time L[4]. The value of log9x now follows. Individual logarithms can therefore be
computed in expected time and storage L[4].

Generalization of this idea to G Fr,,., as in (3.9), follows immediately if we select
some polynomial g eF2[X] of norm about 2m2 (for instance g=XLm!zJ), and compute

694 AK. LENsTRA, H.W. LENsTRA, JR

q, r n F2 [X] such that f = qg + r (cf. (3.9)) with degree(r) < degree(g). In the precomput
ation we consider u = g + a, v = q + U for polynomials a, U e F2 [X] of norm L[c], so
that N(uv —f) is close to L[cc]2m12;here L[] =L2m1[a]. In the second stage we write
q = hx + for h, e F [X] with degree() < degree(x), where x is as above, choose
v = h + U with N(U) <L[], and consider uvx

— f. The running time analysis remains
unchanged. Instead of finding g, q, r as above, we could also choose fin (3.9) such that
f=Xm+f1with degree(f1)<m/2, so that we can take g=q=Xt(m+2].

3.15. A METHOD BASED ON THE LINEAR SIEVE ALGORITHM FROM [22]. Again we consider
G =(Z/p Z)*. An improvement of (3.14) that is of practical importance, although it does
not affect the timings when expressed in L(n), can be obtained by including the numbers
ue{[/]+1,...,[\/+L[c]]} in the setS as well. For such u and v we again have
uv—p=O(L[a]\/), but now we only require that uv—p is smooth with respect to
L[fl], without requiring smoothness for u or v. It follows in a similar way as above that
the L[f3] +L[] equations can be collected in time L[1] and storage L[] for fl= and

= /3/2 + 1/(8f3) = . The reason that this version will run faster than the algorithm from
(3.14) is that uv—p is now only O(L[]\/), whereas it is O(L[1]\/) in (3.14). In
practice this will make a considerable difference in the probability of smoothness. The
second stage can be adapted in a straightforward way. The running times we get are
again only heuristic estimates.

In the methods for G=(Z/pZ)* described in (3.14) and (3.15), the use of the
smoothness test referred to in (3.8) can be replaced by sieving techniques. This does not
change the asymptotic running times, but the resulting algorithms will probably be
faster in practice [22].

3.16. A MORE GENERAL L FUNCTION. For the description of the last algorithm in this
subsection, the bimodal polynomials method, it will be convenient to extend the
definition of the function L from Subsection 2.A slightly. For , r e R with 0 r 1, we
denote by L [r;c] any function of x that equals

+0Ub0gr00g
‘, for x—*co.

Notice that this is (logx) for r=0, and x for r= 1, up to the o(1) in the exponent. For
we get the L from Subsection 2.A.

The smoothness probabilities from Subsection 2.A and (3.9) can now be formulated
as follows. Let , /3, r, s e R be fixed with , /3>0, 0< r 1, and 0< s < r. From
Subsection 2.A we find that a random positive integer L, [r;] is L [s;/3]-smooth with
probability L[r—s; —(r—s)/fl], for x—’cc. From the same theorem of Odlyzko re
ferred to in (3.9) we have that, for r/100 <S < 99r/100, a random polynomial in F2 [X] of
norm L[r;cc] is smooth with respect to L[s;/3] with probability L[r—s;
—(r—s)/f3], for x—*ci.

3.17. CoPPERsMITH’s BIMODAL POLYNOMIALS METHOD (cf [21]). We conclude this
subsection with an algorithm that was especially designed for G F, as in (3.9). This

ALGORITHMS IN NUMBER THEORY 695

algorithm does not apply to fields with a large characteristic. It is again a variant of the
index-calculus algorithm (3.10). Let f be a monic polynomial inF2[X] of degree m as
in (3.9), so that F2(F2[X])/(f). We assume that f can be written as Xm +f1, for
f1 eF2[X] of degree <m213.Because about one out of every m polynomials inF2[X]
of degree m is irreducible, we expect that such an f can be found.

We use the function L from (3.16), and we abbreviate L2,, [r;x] to L[r;c]. Notice
that with this notation

• L[r;]=21+0(1mb0R2m_, for >0, and m—.cc.

We will see that the precomputation stage can be carried out in expected time L[1;2213]
and that individual logarithms can be computed in expected time L[;\/]. Notice that
this is substantially faster than any of the other algorithms in this section.

Let S be the set of irreducible polynomials in F2 [X] of norm L[;fl], for some
f3#0. Furthermore, let k be a power of 2 such that N(XLm/l) is as close as possible to
N(V”), for a polynomial v eF2[X] of norm L[;j3]; this is achieved for a power of 2 close
to 2m3(log2m)3.We find that

t= k/(/3 2m3(log2m) 1/3)

satisfies and that N(X[m1)L[//t] and N(vk)L[;t.,/i]. For
polynomials v1, v2 e F2 [X] of norm L[1;13], we take u1 — XIm/kJ + l1 + v2, and
u2 = t4mod f. Remark that the polynomial u1 can be considered as a string of bits with
two peaks; this explains the name of the method. Since

loggu2 =(klogqu1)mod(2m
— 1),

we find a linear equation in the logg s for s e S, if both u1’s are smooth with respect to
L[;j3]. Because the equations generated in this way are homogeneous, we assume that
g is smooth with respect to L[;fl] as well. To analyze the probability that both ui’s are
smooth, we compute their norms. By the choice of k we have that N(u1) Ljj;..f/t].
Because k is a power of 2, we have

u2 =(X([m/kl+ 1)kvk + v)modf
= X(1m1I] + 1)k — mf + v,

so that N(u2) L[;t/ii]. The probability that both are smooth with respect to L[;fl]
therefore is assumed to be

L[; — l/(3t\/i)J L[4; — t/(3v”)] = L[; — (t + 1

The L[;fl]2 pairs (v1,v2) must suffice to generate the L[4;/3] equations that we need
(where we only consider polynomials v1, v2 that are relatively prime because the pairs
(v1,v2) and (wv1,wv2) yield the same equation). It follows that /3 must satisfy

L[;2I3] L[;f3 + (t + t - 1)/(3\/)]

The optimal choice for /3 is ((t + t -

1)/3)2/3, and the value for t then follows by taking

696 AK. LENsTRA, H.W. LENsTRA, JR

with such that

t((t + t —)/3) —1’3m’’3(log2m) —

I— jjis a power of 2. In the worst case we find f=(2) ‘ O.794, so that the
(1 588+ (1)) 1 (I)2 3

precomputation can be done in time 2 (cf. (2.19), (2.22)). If we are so

lucky that t can be chosen as 1, we find fl=()1!3 O.764, which makes the
precomputation slightly faster.

To compute log8yfor ye F. we proceed as follows. We find e such that y.gemodf of

norm L[1;l] is smooth with respect to Lfl;1] in time L[;1]. Let j be one of the

irreducible factors of y g0modf with N(j)L[;1]. Let k be a power of 2 such that
N(X[mfIdl)N(Vk) for a polynomial v eF2[X] of norm L[;1]; in the worst case we get
N(X[m/k])=L[/] and N(vl)=L[/’]. Find polynomials v1, v2 eF2[X] of norm

L[;1] such that divides u1 X(mhiJVl +v2, and such that both u1/ and

= u mod f are smooth with respect to L[-; 1]. It follows from the choice for k

thatu1/j and u2 have norms bounded by L[;,.,/] and L[*;\/i], respectively, so that the

probability that both are smooth with respect to L[;l] is assumed to be

L[; — \/i/6] L[; — Ji/3] L[;
—

Because Lfl;1]2/L[4;1] of the pairs (v1,r2) satisfy the condition that j divides u1, we

must have that

L[;l] L[;\/].

This condition is satisfied, and we find that the computation of the ui’s can be done in

time

L[4;\/] = (/1/2+o(1))mh!3(iog2m)2/3

Because log8u2=(k(log8(u1/)+logJ))mod(2m— I), we have reduced the problem

of computing the discrete logarithm of a polynomial of norm L[;1] (the factor 5 of
y.gemodf) to the problem of computing the discrete logarithms of polynomials of

norm L[;l] (the irreducible factors of u1/j and u2). To express log8y in terms of

log8 s for s e S, we apply the above method recursively to each of the irreducible factors

of u1, and u2, thus creating a sequence of norms

ri 1. ii , ri 1.11 , ri _L.
‘-L3 + 3,1], 1-L3 + 6”]’ LL3 + 12 ,

that converges to L[1;1]. The recursion is always applied to <m polynomials per

recursion step, and at recursion depth 0(10gm) all factors have norm L[;l], so that

the total time to express log8y in terms of log8 s for s e S is bounded by

mO(Iog m) L[;\/’] 2’ 1/2 + o(1))ml/3(iog2m)213

We refer to [21] for some useful remarks concerning the implementation of this

algorithm.

ALGoRiTHMs IN NUMBER THEoRY 697

4. Factoring integers

4.A. Introduction

Finite abelian groups play an important role in several factoring algorithms. To
illustrate this, we consider Pollard’s p — 1 method, which attempts to factor a composite
number n using the following observation. For a prime p and any multiple k of the order
p — 1 of (Zip Z)*, we have ak I mod p, for any integer a that is not divisible by p.
Therefore, if p divides n, then p divides gcd(d’ — 1, n), and it is not unlikely that
a nontrivial divisor of n is found by computing this gcd. This implies that prime factors
p of n for which p—i is s-smooth (cf. Subsection 2.A), for some se Z>0, can often be
detected in O(s log5n) operations in Z/n Z, if we take k = k(s, n) as in (3.5). Notice that, in
this method, we consider a multiplicative group modulo an unspecified prime divisor of
n, and that we hope that the order of this group is smooth(cf. Subsections 3.A and 3.C).

Unfortunately, this method is only useful for composite numbers that have prime
factors p for which p—I is s-smooth for some small s. Among the generalizations of this
method [7, 57, 84], one method, the elliptic curve method [45], stands out: instead of
relying on fixed properties of a factor p, it depends on properties that can be
randomized, independently of p. To be more precise, the multiplicative group (Z/p Z)*
of fixed order p — I is replaced by the set of points of an elliptic curve modulo p (cf. (2.2)).
This set of points is a group whose order is close to p; varying the curve will vary the
order of the group and trying sufficiently many curves will almost certainly produce
a group with a smooth order.

Another way of randomizing the group is by using class groups (cf. Subsection 2.C).
For a small positive integer t with t — n mod 4, we have that A = — tn satisfies A 1
mod 4 if n is odd. According to (2.14) and (2.16) a factorization of A can be obtained if we
are able to compute an odd multiple of the largest odd divisor of the class number hA. If
hA is s-smooth, such a multiple is given by the odd part of k(s, B) as in (3.5), where
B=IA)l/2+0u> (cf. (2.15)). By varying t, we expect to find a smooth class number after
a while: with s = L [i], we expect L [] trials (cf. Subsection 2.A, (2.15)), so that, with
Subsection 3.C and (2.16), it takes expected time L[1] to factor n. For details of this
method, the class group method, we refer to [68].

In the next few subsections we will discuss the elliptic curve method (Subsection 4.B),
its consequences for other methods (Subsection 4.C), and a very practical factoring
algorithm that does not depend on the use of elliptic curves, the multiple polynomial
variation of the quadratic sieve algorithm (Subsection 4.D). In Subsection 4.E we
mention an open problem whose solution would lead to a substantially faster factoring
algorithm.

Other methods and extensions of the ideas presented here can be found in
[37, 47, 66]. The running times we derive are only informal upper bounds. For rigorous
proofs of some of the results below, and for lower bounds, we refer to [59, 61].

4.B. Factoring integers with elliptic curves

Let n be a composite integer that we wish to factor. In this subsection we present an
algorithm to factor n that is based on the theory of elliptic curves (cf. Subsection 2.B).

698 AK. LENsTRA. H.W. LENsTRA, JR

The running time analysis of this factoring algorithm depends upon an as yet unproved
hypothesis, for which we refer to Remark (4.4).

4.1. THE ELLIPTIC CURVE METHOD (cf [45]). We assume that n> 1, that gcd(n, 6)= 1, and
that n is not a power with exponent > 1; these conditions can easily be checked. To
factor n we proceed as follows:

Randomly draw a, x, E Z/n Z, put P=(x:y:l) E V (cf. (2.8)), and select an integer
k = k(s, B) as in (3.5) (with .c and B to be specified below). Attempt to compute k P by
means of the algorithm described in (2.10). If the attempt fails, a divisor d of n with
1 <d < n is found, and we are done; otherwise, if we have computed k P, we start all
over again.

This finishes the description of the algorithm.

4.2. ExPLANATION OF THE ELLIPTIC CURVE METHOD. We expect this algorithm to work, for
a suitable choice of k, for the following reason. Let p and q be primes dividing n with

p < q. In most iterations of the algorithm it will be the case that the pair a, — x3 — ax
when taken modulo p (modulo q) defines an elliptic curve over F,, (over Fq). Now
suppose that k is a multiple of the order of P; the value for k will be chosen such that
a certain amount of luck is needed for this to happen. Ifit happens, it is unlikely that we
are so lucky for q as well, so that k is not a multiple of the order of Pq. Then kP cannot
have been computed successfully (see (2.10)), and therefore a factorization of n has been
found instead.

4.3. RUNNING TIME ANALYSIS. Let p be the smallest prime divisor of n, and let /3 e R>0.
We assume that the probability that the order of P is smooth with respect to L,,[f3] is
approximately L,,[— 1/(2fl)] (cf. Subsection 2.A and (2.4), and see Remark (4.4)).
Therefore, if we take k = k(L,,[f3], p + 1) as in (3.5) (cf. (2.4)), then about one out of
every L[1/(2f3)] iterations will be successful in factoring n. According to Subsection
3.C and (2.10) each iteration takes O(L,, [/3] log p) additions in V,,, which amounts to

O(L,, [/3](log p)(log)2)

bit operations. The total expected running time therefore is

O((logp)(logn)2L,,[f3+ 1/(2/3)])

which becomes O((log n)2 L,, [v/i]) for the optimal choice /3 =

Of course the above choice for k depends on the divisor p of n that we do not know

yet. This can be remedied by replacing p by a tentative upper bound v in the above
analysis. If one starts with a small v that is suitably increased in the course of the
algorithm, one finds that a nontrivial factor of n can be found in expected time
O((log n)2 L,,[‘2]) under the assumption made in (4.4). In the worst case v = \/ this
becomes L [1]. The storage required is O(log n).

Another consequence is that for any fixed ER>0, an integer n can be tested for

smoothness with respect to v=L[] in time L[0]; in case of smoothness the complete
factorization of n can be computed in time L[0] as well.

ALGoRITHMs IN NUMBER THEORY 699

For useful remarks concerning the implementation of the elliptic curve method we
refer to [13,50,44].

4.4. REMARK. A point that needs some further explanation is our assumption in (4.3)
that the order of P is L[fl]-smooth with probability approximately L[— 1/(2fl)]. Let
Eab(Fp) be the group under consideration. Regarding a and b as random integers
modulo p, Proposition (2.5) asserts that the probability that # Ea,E(Fp) is smooth with
respect to L[fl] and contained in the interval (p—/j+ 1, p+,/’+ 1) is essentially
the same as the probability that a random integer in(p—/+ 1, p+/+ 1)is L[fl]
smooth.

From Subsection 2.A we know that a random integer p is L[j3]-smooth with
probability L[— 1/(2$)], and we assume here that the same holds for random integers
in (p—/+ 1, p+/+ 1). Because this has not been proved yet, the running times
in (4.3) are conjectural.

Of course, if #E,(F) is L[$]-smooth, then the order of P is L[f3]-smooth as
well.

4.5. A RIGOROUS SMOOTHNESS TEST. As explained in (4.4), the running times in (4.3) are
conjectural. The result concerning the elliptic curve smoothness test can, however, be
rigorously proved, in a slightly weaker and average sense. Briefly, the following has
been shown in [61].

4.6. PRoposiTioN. There is a variant of the elliptic curve methodfor which the following
statement is true. For each positive real number there exists afunction 9 with 0(x) = o(1)
for x -. ,such that the number ,‘ (x, y) of y-smooth integers k x that with probability at
least 1 —(log k)/k arefactored completely by the method in time at most L[9(x)] satisfies

i/j’(x, L[cx]) = I/I(x, L[c])(1 + O((log log x)’2(log x) 1/2)),

with the 0-constant depending on .

In other words, apart from a small proportion, all smooth numbers behave as one
would expect based on Subsection 2.A. The “variant” mentioned in Proposition (4.6) is
very simple: first remove prime factors by trial division, and next apply
the elliptic curve method to the remaining quotient, if it is not already equal to 1.

4.C. Methods depending on smoothness tests

The factoring algorithms presented so far are successful as soon as we find a certain
abelian group with smooth order. In Subsections 4.C through E we will see a different
application of smoothness. Instead of waiting for the occurrence of one lucky group
with smooth order, the algorithms in this subsection combine many lucky instances of
smooth group elements. For the algorithms in the present subsection the elliptic curve
smoothness test that we have seen at the end of (4.3) will be very useful to recognize
those smooth group elements. The algorithms in Subsections 4.D and 4.E do not need

700 A.K. LENsi-RA, 11W. LENsTRA, JR

smoothness tests, but instead rely on sieving techniques. We abbreviate L [/3] to L[/3]
(cf. Subsection 2.B).

4.7. Dixon’s RANDOM SQUARES ALGORITHM (cf [28, 59]). Let n be a composite integer
that we wish to factor, and let /3 e R >o. In this algorithm one attempts to find integers
x and y such that x2y2modn in the following way:

(1) Randomly select integers rn until sufficiently many are found for which the least
positive residue r(m) of rn2mod n is L[/3]-smooth.

(2) Find a subset of the rn’s such that the product of the corresponding r(rn)’s is
a square, say x2.

(3) Put y equal to the product of the rn’s in this subset; then x2 y2mod n.

Dixon has shown that, if n is composite, not a prime power, and free of factors
L[fl], then with probability at least -, a factor of n will be found by computing

gcd(x + y, n), for x andy as above (cf. [28]). Therefore, we expect to factor n if we repeat
the second and third step a small number of times. We will see that this leads to an
algorithm that takes expected time L[J], and storage L[.j].

Before analyzing the running time of this algorithm, let us briefly explain how the
second step can be done. First notice that (L[fl])=L[fl] (cf. Subsection 2.A).
Therefore, each r(rn) can be represented by an L[$]-dimensional integer vector whose
ith coordinate is the number of times the ith prime occurs in r(m). A linear dependency
modulo 2 among those vectors then yields a product of r(m)’s where all primes occur an
even number of times, and therefore the desired x2. This idea was first described in [52].

To analyze the running time of the random squares algorithm, notice that we need
about L[fl] smooth rn’s in the first step to be able to find a linear dependency in the
second step. According to Subsection 2.A a random integer n is L[fl]-smooth with
probability L[— 1/(2fl)], and according to (4.3) such an integer can be tested for
smoothness with respect to L[/3] in time L[0]. One L[/3]-smooth r(m) can therefore be
found in expected time L[l/(2/3)], and L[j3] of them will take time L[/3 + 17(2/3)]. It is on
this point that the random squares algorithm distinguishes itself from many other
factoring algorithms that we discuss in these sections. Namely, it can be proved that, for
random rn’s, the r(rn)’s behave with respect to smoothness properties as random integers
<n (cf. [28]). This makes it possible to give a rigorous analysis of the expected running
time of the random squares algorithm. For practical purposes, however, the algorithm
cannot be recommended.

The linear dependencies in the second step can be found by means of Gaussian
elimination in time L[3f3]. The whole algorithm therefore runs in expected time
L[max(/3+l/(213), 3/3)]. This is minimized for /3, so that we find that the random
squares algorithm takes time L[fJ and storage L[1].

As in Algorithm (3.10), however, we notice that at most log2 n of the L[/3] coordinates
of each vector can be non-zero. To multiply the matrix consisting of the vectors
representing r(rn) by another vector takes therefore time at most (log2 n)L[/3] L[fl].
Applying the coordinate recurrence method (cf. (2.19)) we conclude the dependencies
can be found in expected time L[2f3], so that the random squares algorithm takes
expected time L[max(/3 + 1/(2/3), 2/3)], which is L[J] for /3 = \/. The storage needed

ALGORITHMS IN NUMBER THEORY 701

is L[...,/]. For a rigorous proof using a version of the smoothness test from (4.5) that
applies to this algorithm we refer to [61]. Notice that the random squares algorithm is
in a way very similar to the index-calculus algorithm (3.10).

4.8. VALLEE’s Two-THIRDS ALGORITHM (cf [79]). The fastest, fully proved factoring
algorithm presently known is Vallée’s two-thirds algorithm. The algorithm is only
different from Dixon’s random squares algorithm in the way the integers rn in step
(4.7)(1) are selected. Instead of selecting the integers mat random, as in (4.7), it is shown
in [79] how those rn can be selected in an almost uniform fashion in such a way that the
least absolute remainder ofm2mod n is at most 4n213.According to Subsection 2.A the
resulting factoring algorithm then takes expected time L[max(/3 + ()/(2$), 2/3)], which
is L[.,/] for The storage needed is L[/]. For a description of this algorithm
and for a rigorous proof of these estimates we refer to [79].

4.9. THE CONTINUED FRACTION ALGORITHM (cf [52]). If we could generate the rn’s in step
(1) of the random squares algorithm in such a way that the r(m)’s are small, say
then the r(m)’s would have a higher probability of being smooth, and that would
probably speed up the factoring algorithm. This is precisely what is done in the
continued fraction algorithm. We achieve an expected time L[1] and storage L[].

Suppose that n is not a square, let a1/b1 denote the ith continued fraction convergent
to \/‘ and let r(aj = a? — nb?. It follows from the theory of continued fractions (cf. [32,
Theorem 164]) that r(a1)<2\/. Therefore we replace the first step of the random
squares algorithm by the following:

Compute a•modn and r(a1) for i=1,2,... until sufficiently many L[$]
smooth r(aj’s are found.

The computation of the a.mod n and r(a1) can be done in O((log n)2) bit operations
(given the previous values) by means of an iteration that is given in [52]. The second
step of the random squares algorithm can be adapted by including an extra coordinate
in the vector representing r(a) for the factor — 1. The smoothness test is again done by
means of the elliptic curve method. Assuming that the Ir(a1)I behave like random
numbers <2\/ the probability of smoothness is L[1/(4/3)], so that the total running
time of the algorithm becomes L[max(/3 + 1/(4$), 2$)]. With the optimal choice /3 = we
find that time and storage are bounded by L[1] and L[], respectively.

We have assumed that the Ir(a)I have the same probability of smoothness as random
numbers <2,/h. The fact that all primes p dividing r(a1) and not dividing n satisfy
()= 1, is not a serious objection against this assumption; this follows from [74,
Theorem 5.2] under the assumption of the generalized Riemann hypothesis. More
serious is that the r(a) are generated in a deterministic way, and that the period of the
continued fraction expansion for \/ might be short. In that case one may replace n by
a small multiple.

The algorithm has proved to be quite practical, where we should note that in the
implementations the smoothness of the r(a1) is usually tested by other methods. For
a further discussion of the theoretical justification of this method we refer to [59].

702 A.K. LENsTRA, H.W. LENsTRA, JR

4.10. SEYsEN’s CLASS GROUP ALGORITHM (cf [74]). Another way of achieving time L[l]
and storage L[-] is by using class groups (cf. Subsection 2.C). The advantage of the
method to be presented here is that its expected running time can be proved rigorously,
under the assumption of the generalized Riemann hypothesis (GRH). Let n be the
composite integer to be factored. We assume that n is odd, and that — n 1 mod 4,
which can be achieved by replacing n by 3n if necessary. Put A = — n, and consider the
class group CA. We introduce some concepts that we need in order to describe the
factorization algorithm.

4.11. RANDOMLY GENERATING REDUCED FORMS WITH KNOWN FACTORIZATION. Consider the
prime forms Ii,, with pc(logIzl)2,that generate CA under the assumption of the GRH
(cf. (2.17)). Let e E {O,1,. . ., IA — l} be randomly and independently selected, for every
I,,. It follows from the bound on the class number hA (cf. (2.15)) and from the fact that the
I, generate CA that the reduced form HJ’ behaves approximately as a random reduced
form in CA; i.e., for any reduced form f CA we have that f HI’ with probability
(1 +o(1))/h4,for n—*cx (cf. [74, Lemma 8.2]).

4.12. FINDING AN AMBIGUOUS FORM. Let /3 eR>0; notice that L[fl] >c(logIAI)2.We
attempt to find an ambiguous form (cf. (2.14)) in a way that is more or less similar to the
random squares algorithm (4.7).

A randomly selected reduced form (a, b) e CA can be written as 11p L[fl]’1f with
probability L[— 1/(4fl)] (cf. (2.18)), where at most O(logA) of the exponents t, are
non-zero. According to (4.11) we get the same probability of smoothness if we generate
the forms (a, b) as is done in (4.11). Therefore, if we use (4.11) to generate the random
reduced forms, we find with probability L[— 1/(4f3)] a relation

Fl J= El ‘.
p c(IogIA2 p L[fl]

p prime p prime

With r=e —tn, where ep =0 for p>c(logIz1)2,we get

(4.13) 11 ‘p’14.
p L[j
p prime

Notice that at most c(logAI)2+logAI of the exponents rp are non-zero. If all
exponents are even, then the left-hand side of (4.13) with rp replaced by r/2 is an
ambiguous form. Therefore, if we have many equations like (4.13), and combine them in
the proper way, we might be able to find an ambiguous form; as in the random squares
algorithm (4.7) this is done by looking for a linear dependency modulo 2 among the
vectors consisting of the exponents r.

There is no guarantee, however, that the thus constructed ambiguous form leads to
a nontrivial factorization of Aj. Fortunately, the probability that this happens is large
enough, as shown in [74, Proposition 8.6] or [42, Section (4.6)]: if L[f3] equations as in
(4.13) have been determined in the way described above, then a random linear
dependency modulo 2 among the exponent vectors leads to a nontrivial factorization
with probability at least —o(1).

ALGORITHMS IN NUMBER THEORY 703

4.14. RUNNING TIME ANALYSIS. The (L[/3] x L[$])-matrix containing the exponent

vectors is sparse, as reasoned above, so that a linear dependency modulo 2 can be found

in expected time L[2$] by means of the coordinate recurrence method (cf. (2.19)). For

a randomly selected reduced form (a, b), we assume that a can be tested for

L[$]-smoothness in time LEO] (cf. (4.3)). Generation of the L[$] equations like (4.13)

then takes time L{/3 + l/(4$)], under the assumption of the GRH. The whole algorithm

therefore takes expected time L[max($+ l/(4$), 2$)], which is L[l] for $=, under the

assumption of the generalized Riemann hypothesis.
We can prove this expected running time rigorously under the assumption of the

GRH, if we adapt the smoothness test from Proposition (4.6) to this situation. The

argument given in [42] for this proof is not complete; the proof can however be repaired

by incorporating [61, Theorem B’] in the proof of [74, Theorem 5.2].

4.D. The quadratic sieve algorithm

In this subsection we briefly describe practical factoring algorithms that run in
expected time L[l], and that existed before the elliptic curve method. As the methods

from the previous subsection, but unlike the elliptic curve method, the running times of
the algorithms to be presented here do not depend on the size of the factors.
Nevertheless, the methods have proved to be very useful, especially in cases where the

elliptic curve method performs poorly, i.e., if the number n to be factored is the product

of two primes of about the same size. We abbreviate L [fi] to L[$].

4.15. POMERANCE’s QUADRATIC SIEVE ALGORITHM (cf [59]). The quadratic sieve algo

rithms only differ from the algorithms in (4.7), (4.8), and (4.9) in the way the

L[fi]-smooth quadratic residues modulo n are determined, for some fin R>0. In the

ordinary quadratic sieve algorithm that is done as follows. Let r(X) = ([/] + X)2 — n

be a quadratic polynomial in X. For any me Z we have that

r(rn)([\/ii] +m)2modn

is a square modulo n, so in order to solve x2 y mod n we look for L[$] integers

rn such that r(m) is L[$]-smooth.

Let eR>0 and let ImIL[c]. Then Ir(m)I=O(L[]/), so that Ir(m) is L[fi]

smooth with probability L[— l/(4fi)] according to Subsection 2.A, if Ir(m)I behaves as

a random integer L[c]..J. Under this assumption we find that we must take

fJ+ 1/(4fJ), in order to obtain sufficiently many smooth r(m)’s for mi L[x].

We have that () = 1 for primes p #2 not dividing n, because if pir(m), then

([.,,/] + rn)2 n mod p. As in (4.9), this is not a serious objection against our

assumption that the r(m)’s have the same probability of smoothness as random

numbers of order L[cx] \/ (cf. [74, Theorem 5.3] under the GRH). The problem is to

prove that at least a certain fraction of the r(m)’s with ImI.L[] behave with respect to

smoothness properties as random numbers of order L[] /• For a further discussion

of this point see [59].
Now consider how to test the L[x] numbers r(m) for smoothness with respect to

L[$]. Of course, this can be done by means of the elliptic curve smoothness test in time

704 AK. LENsTRA, H.W. LENsTRA, JR

L[ct] (cf. (4.3)), thus giving a method that runs in time L[max(fl + l/(4fl), 2/3)] = L[l] for
fl=(cf. (2.19)). The same time can, however, also be achieved without the elliptic curve
method. Let p be a prime L[13] not dividing n such that p #2 and () = 1. The equation
r(X) 0 mod p then has two solutions m1 (p) and m2 (p), which can be found by means of
a probabilistic method in time polynomial in log p (cf. [37, Section 4.6.2]). But then
r(m1(p) + kp) 0 mod p for any k e Z. Therefore, if we have a list of values of r(m) for all
consecutive values of m under consideration, we easily find the multiples of p among
them at locations m.(p)+ kp for any k e Z such that m1(p)+ kpl L[ct], and = 1, 2. For
every p this takes twice time L[]/p, so that for all p L[f3] with () = 1 together, this
so-called sieving can be done in time L[c]/p = L[x]. A similar procedure takes care of
the powers of p and p=2. We conclude that we indeed get the same time L[1] as with
the elliptic curve smoothness test, but now we need to store all L[1] values r(m). We
should note, however, that sieving is in practice much faster than applying the elliptic
curve smoothness test, and that the sieving interval can easily be divided into smaller
consecutive intervals, to reduce the storage requirements. (Actually, not the r(m)’s, but
their logarithms are stored, and the r(m)’s are not divided by p but log p is subtracted
from log r(m) during the sieving.) For other practical considerations we refer to [59].

4.16. THE MULTIPLE POLYNOMIAL VARIATION (cf [60, 76]). Because there is only one
polynomial in (4.15) that generates all smooth numbers that are needed, the size of the
sieving interval must be quite large. Also, the quadratic residues r(m) grow linearly with
the size of the interval, which reduces the smoothness probability. If we could use many
polynomials as in (4.15) and use a smaller interval for each of them, we might get a faster
algorithm. This idea is due to Davis (cf. [24]); we follow the approach that was
independently suggested by Montgomery (cf. [60, 76]). This algorithm still runs in
expected time L[1].

Let r(X) = a2 X2 + bX + c, for a, b, c E Z. In order for r(m) to be a quadratic residue
modulo n, we require that the discnminant D = b2 — 4a2 c is divisible by n, because then
r(m) (am + b/(2a))2mod n. We show how to select a, b and c so that r(m)I = O(L[z]
for jm L[z]. Let D 1 mod 4 be a small multiple of n, and let a 3 mod 4 be free of
primes L[/3] (if p divides a then r(X) has at most one root modulo p), such that
a2 //L[z] and the Jacobi symbol () equals 1. For a we take a probable prime
satisfying these conditions (cf. (5.1)). We need an integer b such that b2 D mod 4a2; the
value for c then follows. We put b1 = D + 1’4mod a, so that b D mod a because a is
a quadratic residue modulo D and D 1 mod 4. Hensel’s lemma now gives us

b=b1+a((2b1)1((D—b)/a)moda);

if b is even, we replace b by b — a2, so that the result satisfies b2 D mod 4a2.
It follows from a2 //L[] that b = O(//L[x]), so that c = O(L[x].,/). We find

that r(m)=O(L[x]v) for mIL[]. For any a as above, we can now generate a
quadratic polynomial satisfying our needs. Doing this for many a’s, we can sieve over
many shorter intervals, with a higher probability of success. Remark that this can be
done in parallel and independently on any number of machines, each machine working
on its own sequence of a’s; see [17, 44,60, 76, 78] for a discussion of the practical
problems involved. The multiple polynomial variation of the quadratic sieve algorithm

ALGoRITHMs IN NUMBER THEORY 705

is the only currently available method by which an arbitrary 100-digit number can be
factored within one month [44].

4.E. The cubic sieve algorithm

In this final subsection on factorization we mention an open problem whose solution
would lead to a factorization algorithm that runs in expected time L [s] for some s with

s < 1. Instead of generating sufficiently many smooth quadratic residues modulo
n close to as in Subsection 4.D, one attempts to find identities modulo n that in
volve substantially smaller smooth numbers, and that still can be combined to yield
solutions to x2 y2mod n. The idea presented here was first described in [22]; it
extends a method by Reyneri [65] to factor numbers that are close to perfect cubes. We
again abbreviate L [fi] to L[fl].

Suppose that for some fi < we have determined integers a, b, c such that

al, Ibi, Id n22,

(4.17) b3a2cmod n,

b3a2c.

Notice that the last two conditions imply that at least one of al, IbI, and cl is (n/2)113,
so that flJ—(log2)/6.

Consider the cubic polynomial (aU+b)(aV+b)(a(—U-—V)+b). Fix some with
> fi. There are L[2c] pairs (u, v) such that ui, lvi, and lu + vi are all L[x]. For each of

these L[2c] pairs we have

(au+b)(av+b)(a(—u—v)+b)=—a3uv(u+v)—a2b(u2+v2 +uv)+b3

a2(—auv(u+v)—b(u2+v2 +uv)+c)modn,

due to (4.17). Because —auv(u+v)—b(u2+v2 +uv)+cO(L[3c]n2P2)(cf. (4.17)), we
assume that each pair has a probability L[—2fl2/(2f3)] — L[

— fi] to produce a relation
modulo n between integers au + b with ui L[c] and primes L[fl] (cf. Subsection
2.A). The L[2] pairs taken together therefore should produce L[2x—f?] of those
relations. Since there are L[] integers of the form au + b with ui L[x] and n(L[fl])
primes L[fJ], and since L[x] + it(L[13]) = L[a], these L[2ct

— fi] relations should
suffice to generate a solution to x2 y2 mod n.

For each fixed u with ui L[c], the L[j3]-smooth integers of the form — auv(u + v) —

b(u2 +v2 +uv)+c for lvi and iu+vi both L[ca] can be determined in time L[ci] using
a sieve, as described in (4.15). Thus, finding the relations takes time L[2c]. Finding
a dependency modulo 2 among the relations to solve x2 y2mod n can be done by
means of the coordinate recurrence method in time L[2c](cf. (2.19)).

With the lower bound on /3 derived above, we see that this leads to a factoring
algorithm that runs in expected time L [s] for some s with \/ s < 1, at least if we can
find a, b, c as in (4.17) within the same time bound. If a, b, and c run through the integers
l/3+o(l) in absolute value, one gets n1 +o(I) differences b3 —a2c, so we expect that
a solution to (4.17) exists. The problem is of course that nobody knows how to find such
a solution efficiently for general n.

706 AK. LENsTRA, H.W. LENSTRA, JR

The cubic sieve algorithm might be useful to factor composite n of the form b3 —c
with c small, and for numbers of the form y’ ± 1 (cf. [14]). For a discrete logarithm
algorithm that is based on the same idea we refer to [22].

5. Primality testing

5.A. Introduction

As we will see in Subsection 5.B, it is usually easy to prove the compositeness of
a composite number, without finding any of its factors. Given the fact that a number is
composite, it is in general quite hard to find its factorization, but once a factorization is
found it is an easy matter to verify its correctness. For prime numbers it is just the other
way around. There it is easy to find the answer, i.e., prime or composite, but in case of
primality it is not at all straightforward to verify the correctness of the answer. The
latter problem, namely proving primality, is the subject of Subsections 5.B and 5.C. By
primality test we will mean an algorithm to prove primality.

In Subsection 4.B we have seen that replacing the multiplicative group (Z/p Z)* in
Pollard’s p — 1 method by the group E(Z/p Z), for an elliptic curve E modulo p (cf.
Subsection 2.B), resulted in a more general factoring algorithm. In Subsection 5.C we
will see that a similar change in an older primality test that is based on the properties of
(Z/p Z)* leads to new primality tests.

This older algorithm is reviewed in Subsection 5.B, together with some well-known
results concerning probabilistic compositeness algorithms. The primality tests that
depend on the use of elliptic curves are described in Subsection 5.C.

More about primality tests and their implementations can be found in [83, 47].

5.B. Some classical methods

Let n be a positive integer to be tested for primality. In this subsection we review
a method, based on a variant of Fermat’s theorem, by which compositeness of n can
easily be proved. If several attempts to prove the compositeness of n by means of this
method have failed, then it is considered to be very likely that n is a prime; actually, such
numbers are called probable primes. It remains to prove that such a number is prime.
For this purpose, we will present a method that is based on a theorem of Pocklington,
and that makes use of the factorization of n — 1.

5.1. A PROBABILISTIC COMPOSITENESS TEST. Fermat’s theorem states that, if n is prime,
then a a mod n for all integers a. Therefore, to prove that n is composite, it suffices to
find an integer a for which a a mod n; such an a is called a witness to the
compositeness of n. Unfortunately, there exist composite numbers, the so-called
Carmichael numbers, for which no witnesses exist, so that a compositeness test based on
Fermat’s theorem cannot be guaranteed to work.

The following variant of Fermat’s theorem does not have this disadvantage: if n is
prime,thena ±lmodnorau2—lmodnforanintegerie{l,2,...,k—1},where

ALGORITHMS IN NUMBER THEORY 707

0< a <n and n — 1 = u 2” with u odd. Any a for which no such i exists is again called

a witness to the compositeness of n; if a is not a witness, we say that n passes the test for

this a. It has been proved [64] that for an odd composite n, there are at least 3(n — 1)/4

witnesses among { 1, 2,. . . , n — 1 }. Therefore, if we randomly select some a’s from this

interval, and subject n to the test using these a’s, it is rather unlikely that a composite

n passes all tests. A number passing several tests, say 10, is called a probable prime.

In [49] Miller has shown that, if the generalized Riemann hypothesis holds, then

there is for each composite n a witness in {2, 3,. .. ,c (log n)2 } for some effectively

computable constant c; according to [5] the value c = 2 suffices. Notice that a proof of

the generalized Riemann hypothesis therefore would lead to a primality test that runs

in time polynomial in log n. For a weaker probabilistic compositeness test, based on

Jacobi symbols, see [77]; it is weaker in the sense that each witness for this test is also

a witness for the above test, but not conversely.
Now that we can recognize composite numbers, let us consider how to prove the

primality of a probable prime.

5.2. POCKLINGT0N’s THEOREM (cf. [55]). Let n be an integer> 1, and let s be a positive

divisor of n — 1. Suppose there is an integer a satisfying

a’1 lmodn,

l)fq —1, n)= 1 for each prime q dividing s.

Then every prime p dividing n is 1 mod s, and f s > — I then n is prime.

We omit the proof of this theorem, as it can easily be deduced from the proof of

a similar theorem below (cf. 5.4)), by replacing the role that is played by E(Z/p Z) in that

proof by (Z/p Z)* here. Instead, let us consider how this theorem can be employed to

prove the primality of a probable prime n.
Apparently, to prove the primality of n by means of this theorem, we need a factors of

n — 1, such that s> — 1, and such that the complete factorization of s is known.
Given such an s, we simply select non-zero integers a e Z/n Z at random until both
conditions are satisfied. For such a, the first condition must be satisfied, unless n is

composite. The second condition might cause more problems, but if n is prime then

q — 1 out of q choices for a will satisfy it, for a fixed q dividing s. Therefore, if an

a satisfying both conditions has not been found after a reasonable number of trials, we

begin to suspect that n is probably not prime, and we subject n to some probabilistic

s compositeness tests as in (5.1).
The main disadvantage of this method is that an s as above is not easy to find,

because factoring n — 1 is usually hard. If n is prime, then n — 1 is the order of (Z/p Z)*

for the only prime p dividing n; in the next subsection we will randomize this order by
replacing(Z/p Z)* by E(Z/p Z). For other generalizations of this method we refer to the
extensive literature on this subject [14,47,66,73,83].

5.3. THE JACOBI SUM TEST (cf [3, 20]). The first primality test that could routinely

handle numbers of a few hundred decimal digits was the Cohen—Lenstra version [20] of

708 AK. LENsTRA, H.W. LENsTRA, JR

the primality test by Adleman, Pomerance, and Rumely [3]. It runs in time
(1ogn)O0008), which makes it the fastest deterministic primality test. Details
concerning the implementation of this algorithm can be found in [19]. For
a description of an improved version and its implementation we refer to [11].

5.C. Primality testing using elliptic curves

We assume that the reader is familiar with the material and the notation introduced
in Subsection 2.B. In this subsection we discuss the consequences of the following
analogue of Theorem (5.2).

5.4. THEoREM. Let n> I be an integer with gcd(n, 6) = 1. Let E = E0,,, be an elliptic curve
modulo n (cf (2.7)), and let m and s be positive integers with s dividing m. Suppose there is
a point Pe(V—{O})nE(Z/nZ)(çf (2.8)) satisfying

mP=O (cf(2.10)),

(m/q) P is defined and different from 0, for each prime q dividing s,

where in (2.10) we choose the a that is used in the definition ofthe elliptic curve Ea,b. Then
E(F,,) 0 mod sfor every prime p dividing n (cf (2.2), (2.7)), and fs > (n114 + 1)2 then n is
prime.

PROoF. Let p be a prime dividing n, and let Q=(m/s).PcE(F). By (2.10) we have
s Q = m P, = (m P) = Os,, so the order of Q divides s. If q is a prime dividing s then
(s/q) Q = (m/q) P, ((m/q) P), # Os,, because (m/q) . P 0 (cf. (2.9)). The order of Q is

therefore not a divisor of s/q, for any prime q dividing s, so this order equals s, and we
find that #E(F)0mods.

In (2.4) we have seen that # E(F9)= p + 1 — t, for some integer t with It
(Hasse’s inequality). It follows that (p112 + 1)2 #E(F). With s>(n114 + 1)2 and
E(F,) 0 mod s this implies that p> for any prime p dividing n, so that n must be
prime. This proves the theorem. U

5.5. REMARK. The proof of Theorem (5.2) follows the same lines, with p — I replacing m.

Theorem (5.4) can be used to prove the primality of a probable prime n in the
following way, an idea that is due to Goidwasser and Kilian (cf. [30]); for earlier
applications of elliptic curves to primality tests see [10,18].

5.6. OuTLINE OF THE PRIMALITY TEST. First, select an elliptic curve E over Z/n Z and an
integer m, such m # E(Z/n Z) if n is prime, and such m can be written as kq for
a small integer k> 1 and probable prime q > (n114 + 1)2; in (5.7) and (5.9) we will present
two methods to select E and m. Next, find a point P e E(Z/n Z) satisfying the
requirements in Theorem (5.4) withs = q, on the assumption that q is prime. This is done
as follows. First, use (2.11) to find a random point PcE(Z/nZ). Next, compute
(m/q) . P = k . P; if k . P is undefined, we find a nontrivial divisor of n, which is

ALGORITHMS IN NUMBER THEORY 709

exceedingly unlikely. If k P = 0, something that happens with probability < if n is
prime, select a new P and try again. Otherwise, verify that q (k P) = m P =0, which
must be the case if n is prime, because in that case # E(Z/n Z) = m. The existence of
P now proves that n is prime if q is prime, by (5.4). Finally, the primality of q is proved
recursively.

We will discuss two methods to select the pair E, m.

5.7. THE RANDOM CURVE TEST (cf [30]). Select a random elliptic curve E modulo n as
described in (2.11), and attempt to apply the division points method mentioned in (2.6)
to E. If this algorithm works, then it produces an integer m that is equal to # E(Z/n Z) if
n is prime. If the algorithm does not work, then n is not prime, because it is guaranteed
to work for prime n.

This must be repeated until m satisfies the requirements in (5.6).

5.8. THE RUNNING TIME OF THE RANDOM CURVE TEST. First remark that the recursion
depth is O(logn), because k> 1 so that q(/+ 1)2/2 (cf. (2.4)). Now consider how
often a random elliptic curve E modulo n has to be selected before a pair E,m as in (5.6)
is found. Assuming that n is prime, # E(Z/n Z) behaves approximately like a random
integer near n, according to Proposition (2.5). Therefore, the probability that m=kq
with k and q as in (5.6) should be of the order (log n) 1,so that O(log n) random choices
for E should suffice to find a pair E, m.

The problem is to prove that this probability is indeed of the order (log n)_c, for
a positive constant c. This can be shown to be the case if we suppose that there is
a positive constant c such that for all xe R2 the number of primes between x and
x + (cf. (2.4)) is of the order /(log x) - C• Under this assumption, the random
curve test proves the primality of n in expected time O((log)9+c) (cf. [30]).

By a theorem of Heath—Brown, the assumption is on the average correct. In [30] it is
shown that this implies that the fraction of primes n for which the algorithm runs in
expected time polynomial in log n, is at least 1 — 0(2

— 1/log log?)
where 1 = [log2 n]. In

their original algorithm, however, Goldwasser and Killian only allow k=2, i.e., they
wait for an elliptic curve E such that # E(Z/n Z) = 2q. By allowing more values for k, the
fraction of primes for which the algorithm runs in polynomial time can be shown to be
much higher [62] (cf. [2]). For a primality test that runs in expected polynomial time
for all n, see (5.12) below.

Because the random curve test makes use of the division points method, it is not
considered to be of much practical value. A practical version of (5.6) is the following

• test, due to Atkin [4]. Details concerning the implementation of this algorithm can be
found in [51].

5.9. THE COMPLEX MULTIPLICATION TEST (cf [4]). Here one does not start by selecting E,
but by selecting the complex multiplication field L of E (cf. (2.6)). The field L can be used
to calculate m, and only if m is of the required form kq (cf. (5.6)), one determines the pair
a, b defIning E.

This is done as follows. Let A be a negative fundamental discriminant —7, i.e.,
A 0 or 1 mod 4 and there is no s e Z,.1 such that A/s2 is a discriminant. Denote by

710 AK. LENSTRA, H.W. LENsTRA. JR

L the imaginary quadratic field Q(,./J) and by A = Z[(A + \/)/2] its ring of integers
(cf.(2.6)). We try to find v with v’i=n in A. It is known that(’)= 1 and()= 1 for the odd
prime divisors p of A are necessary conditions for the existence of v, where we assume
that gcd(n, 2A)= 1. If these conditions are not satisfied, select another A and try again.
Otherwise, compute an integer b e Z with b2 A mod n. This can for instance be done
using a probabilistic method for finding the roots of a polynomial over a finite field [37,
Section 4.6.2], where we assume that n is prime; for this algorithm to work, we do not
need a proof that n is prime. If necessary add n to b to achieve that band A have the same
parity. We then have that b2 A mod 4n, and that n = Zn + Z((b + /)/2) is an ideal in
A with n = A n. Attempt to solve n = A v by looking for a shortest non-zero vector
i in the lattice n. If 1qi = n then take v = i; otherwise vv= n is unsolvabLe.

Finding j, and v if it exists, can for example be done by means of the reduction
algorithm (2.12). With b as above, consider the form (a, b, c) with a = n and
c (b2 — A)/(4n). For any two integers x and y the value ax2 + bxy + cy2 of the form at
x, y equals Ixn+ y((b+/)/2)l2/n, the square of the absolute value of the correspond
ing element of n divided by n. It follows that 1i can be determined by computing integers
x and y for which ax2 + bxy + cy2 is minimal. More in particular, it follows that v with

= n exists if and only if there exist integers x and y for which the form assumes the
value 1.

Because gcd(n, 2A) = 1, we have that gcd(n, b) = 1, so that the form (a, b, c) is primitive,
which makes the theory of Subsection 2.C applicable. Apply the reduction algorithm
(2.12) to (a,b,c); obviously, the set {ax2+bxy+cy2:x,yeZ} does not change in the
course of the algorithm. Because a reduced form assumes its minimal value for x = 1
and y 0, the x and y for which the original form (a, b, c) is minimized now follow, as
mentioned in the last paragraph of (2.12). The shortest non-zero vector J2 en is then
given by xn+ y((b+,/)/2). Now remark that ax2 +bxy+cy2= I if and only if
the reduced form equivalent to (a, b, c) is the unit element 1 . Therefore, if the reduced
form equals 1, put v = t; otherwise select another A and try again because v with vi = n
does not exist.

Assuming that v has been computed, consider m=(v— l)(— 1), and m’ =(— v—i)
(— i— 1). If neither m nor m’ is of the required form kq, select another A and try again.
Supposing that m kq, an elliptic curve E such that # E(Z/n Z) = m if n is prime can be
constructed as a function of a zero in Z/n Z of a certain polynomial F4 e Z[X]. To
determine this polynomial F4 define, for a complex number z with Tm z >0,

(1+240
k=1 —q

_qk)24

where q=e2’. Then

F4=

with (a, b) ranging over the set of reduced forms of discriminant A, see (2.12). The degree

ALGORITHMS IN NUMBER THEoRY 711

of F4 equals the class number of L, and is therefore /FJi. As these polynomials

depend only on A, they should be tabulated. More about the computation of these

polynomials can be found in [80, Sections 125—133].
Compute a zero j e Z/n Z of F4 over Z/n Z, and let c be a quadratic non-residue

modulo n (assuming that n is prime). Put k =j/(1728 —j); then k is well-defined and

non-zero because A —7. Finally, choose E as the elliptic curve E3k,2k or E3kC2,2kC3 in

such a way that E(Z/n Z) = m if n is prime; the right choice can be made as described

at the end of (2.6).
We made the restriction A —7 only to simplify the exposition. If n 1 mod 3

(respectively n 1 mod 4), one should also consider A = —3 (respectively A = —4), as it
gives rise to six (four) pairs E, m; the equations for the curves can in these cases be
determined in a more straightforward manner, cf. [46].

5.10. THE RUNNING TIME OF THE COMPLEX MULTIPLICATION TEST. We present a heuristic

analysis of the running time of the method just described. The computation of v is

dominated by the computation of /A mod n and therefore takes expected time

O((log n)3) (cf. [37, Section 4.6.2]); with fast multiplication techniques this can be

reduced to O((logn)2).It is reasonable to expect that one has to try O((1ogn)2)

values of A before m (or m’) has the required form, so that we may assume that the final

A is O((log n)2). For a reduced form (a, b) and z=(b+./)/(2a), q=e2”, one can

show that j(z)—q’ 1<2100; and if, with the same notation, the summation in the

definition ofj(z) is terminated after K terms and the product after K factors, then the

error is O(K3q’). To bound the coefficients ofF4 we notice thatj(z) can only be large

for small a. Since the number of reduced forms (a, b) with a fixed a is bounded by the

number of divisors of a, there cannot be too many large j(z)’s. It follows that one

polynomial F4 can be computed in time 1A12+0G) =O((log n)4+C); it is likely that it can

be done in time A 11+ o(1)
= O((log n)2 + E) using fast multiplication techniques. Assuming

that n is prime, a zero of F4 can be computed in time

O((deg F4)2 (log n)3)= O((log n)5 + C)

(ordinary), or

O((degF4)(log n)2 +C)
= O((log n)3 +C)

(fast). Heuristically, it follows that the whole primality proof takes time O((log n)6 fe)

which includes the O(log n) factor for the recursion. The method has proved to be quite

practical as shown in [51].
With fast multiplication techniques one gets O((logn)5).As Shallit observed, the

latter result can be improved to O((logn)4),if we only use A’s that can be written as

the product of some small primes; to compute the square roots modulo n of the A’s, it

then suffices to compute the square roots of those small primes, which can be done at

the beginning of the computation.

5.11. REMARK. It should be noted that both algorithms based on (5.6), if successful, yield

a certificate of primality that can be checked in polynomial time.

712 AK. LENSTRA, H.W. LENsTRA, JR

5.12. THE ABELIAN VARIETY TEST (cf [2]). A primality test that runs in expected
polynomial time for all n can be obtained by using abelian varieties of higher
dimensions, as proved by Adleman and Huang in [2]. We explain the basic idea
underlying their algorithm, without attempting to give a complete description.

Abelian varieties are higher-dimensional analogues of elliptic curves. By definition,
an abelian variety over a field K is a projective group variety A over K. The set of points
A(K) of an abelian variety over a field K has the structure of an abelian group.
Moreover, if K=F then #A(F)=p9+O((4p)112),where g is the dimension of A.
One-dimensional abelian varieties are the same as elliptic curves.

Examples of abelian varieties over F, for an odd prime p, can be obtained as follows.
Let f be a monic square-free polynomial of odd degree 2g + 1 over F, and consider the
hyperelliptic curve y2 =f(x) over F. Then the Jacobian A of this curve is an abelian
variety of dimension g over F. The elements of A(F) can in this case be regarded as
pairs (a,b) with a,beF[T], a monic, b2 fmoda and degree(b)<degree(a)

g. Note the analogy with the definition of reduced forms in Subsection 2.C and (2.12),
with f playing the role of A. The composition in the abelian group A(F) can be done as
in (2.13) (cf. [16]). The order of A(F) can be computed as described in [2], or by an
extension of a method by Pila, who generalized the division points method (cf. (2.6)) to
curves of higher genus and to abelian varieties of higher dimension [54].

The abelian variety test proceeds in a similar way as the random curve test, but with
g= 1 replaced by g=2. The order of A(F) is then in an interval of length 0(x314)
around x =p2. The main difference with the random curve test is that it can be proved
that this interval contains sufficiently many primes [34]. The problem of proving the
primality of a probable prime n is then reduced, in expected polynomial time, to
proving the primality of a number of order of magnitude n2. Although the recursion
obviously goes in the wrong direction, it has been proved in [2] that, after a few
iterations, we may expect to hit upon a number whose primality can be proved in
polynomial time by means of the random curve test (5.7).

Acknowledgment

The second author is supported by the National Science Foundation under Grant
No. DMS-8706 176.

References

[I] ADLEMAN, L.M., A subexponential algorithm for the discrete logarithm problem with applications, in:
Proc. 20th Ann. IEEE Symp. on Foundations of Computer Science (1979) 55—60.

[2] ADLEMAN, L.M. and M.A. HuANG, Recognizing primes in random polynomial time, Research report,
Dept. of Computer Science, Univ. of Southern California, 1988: extended abstract in: Proc. 19th Ann.
ACM Symp. on Theory of Computing (1987) 462—469.

[3] ADIEMAN, L.M., C. P0MERANcE and R.S. RUMELY. On distinguishing prime numbers from composite
numbers, Ann. of Math. 117 (1983) 173—206.

[4] ATKJN, AOL. Personal communication, 1985.

ALGORITHMS IN NUMBER THEORY 713

[5] BAcH, E. Analytic Methods in the Analysis and Design of Number-theoretic Algorithms (MIT Press,

Cambridge, MA, 1985).
[6] BAcH, E., Explicit bounds for pnmality testing and related problems, Math. Comp., to appear.
[7] BAcH, E. and J. SHALLIT, Cyclotomic polynomials and factoring, in: Proc. 26th Ann. IEEE Symp. on

Foundations of Computer Science (1985) 443—450; also: Math. Comp. 52 (1989) 201—219.
[8] BETH, T, N. COT and I. INGEMARss0N, eds., Advances in Cryptology, Lecture Notes in Computer

Science, Vol. 209 (Springer, Berlin, 1985).
[9] B0REvIC, Z.t. and I.R. SAFAREvIC, Teorija Cisel (Moscow 1964; translated into German, English and

French).
[10] B0sMA, W., Primality testing using elliptic curves, Report 85-12, Mathematisch lnstituut, Univ. van

Amsterdam, Amsterdam, 1985.
[11] B0sMA, W. and M.-P. VAN DER HULsT, Fast primality testing, In preparation.
[12] BRAssARD, G., Modern Cryptology, Lecture Notes in Computer Science, Vol. 325 (Springer, Berlin,

1988).
[13] BRENT, R.P., Some integer factorization algorithms using elliptic curves, Research Report CMA-R32-85,

The Australian National Univ., Canberra, 1985.
[14] BRILLHART, J., D.H. LEHMER, J.L. SELFRIDGE, B. TUcKERMAN and S.S. WAGsTAFF JR, Factorizations of

b±1, b=2, 3, 5, 6, 7, 10,11,12 up to High Powers, Contemporary Mathematics, Vol. 22 (Amer.
Mathematical Soc., Providence, RI, 2nd ed., 1988).

[15] CANFIELD, E.R., P. ERDOs and C. P0MERANcE, On a problem of Oppenheim concerning “Factorisatio
Numerorum”, J. Number Theory 17 (1983) 1—28.

[16] CAroR, D.G., Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987) 95—tO 1.
[17] CAR0N, T.R. and R.D. SILVERMAN, Parallel implementation of the quadratic sieve, J. Supercomput.

1(1988) 273—290.
[18] CHuDN0vsKY. D.V. and G.V. CHUDN0vSKy, Sequences of numbers generated by addition in formal

groups and new primality and factorization tests, Adv. in Appl. Math. 7 (1986) 187—237.
[19] CoHEN, H. and AK. LENsTRA, Implementation of a new primality test, Math. Comp. 48(1987)103—121.
[20] CoHEN, H. and H.W. LENsTRA, JR, Primality testing and Jacobi sums, Math. Comp. 42(1984)297—330.
[21] CoPPERsMITH, D., Fast evaluation of logarithms in fields of characteristic two, IEEE Trans. Inform.

Theory 30 (1984) 587—594.
[22] CoPPERSMITH, D., A.M. ODLYzK0 and R. ScHR0EPPEL, Discrete logarithms in GF(p), Algorithmica

1(1986)1—15.
[23] CoPpERsMITH, D. and S. WINOGRAD, Matrix multiplication via arithmetic progressions, J. Sym

bolic Comput., to appear; extended abstract in: Proc. 19th ACM Symp. on Theory of Computing (1987)

1-6.
[24] DAVIs, J.A. and D.B. H0LDRIDGE, Factorization using the quadratic sieve algorithm, Tech. Report

SAND 83-1346, Sandia National Laboratories, Albuquerque, NM, 1983.
[25] DE BRuuN, N.G., On the number of positive integers x and free of prime factors > y, II, Indag. Math.

38 (1966) 239—247.
[26] DEuRING, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkorper, Abh. Math. Sem.

Hansischen Univ. 14 (1941) 197—272.
[27] DIcKsON, L.E., History of the Theory of Numbers, Vol. 1 (Carnegie Institute of Washington, 1919;

Chelsea, New York, 1971).
[28] DIxoN, J.D., Asymptotically fast factorization of integers, Math. Comp. 36 (1981) 255—260.
[29] EL GAMAL, T., A subexponential-time algorithm for computing discrete logarithms over GF(p’), IEEE

Trans. Inform. Theory 31(1985) 473—481.
[30] G0LDwAS5ER, S. and J. KILIAN, Almost all primes can be quickly certified, in: Proc. 18th Ann. ACM

Symp. on Theory of Computing (1986) 316—329.
[31] GROTScHEL, M.. L. LOvAsz and A. ScHRIJvER, Geometric Algorithms and Combinatorial Optimization

(Springer. Berlin, 1988).
[32] HARDY. G.H. and E.M. WRIGHT, An Introduction to the Theory of Numbers (Oxford Univ. Press,

Oxford, 5th ed., 1979).
[33] IRELAND, K. and M. RosEN, A ClassIcal Introduction to Modern Number Theory, Graduate Texts in

Mathematics, Vol. 84 (Springer, New York. 1982).

714 A.K. LENsTRA, H.W. LENsTRA, JR

[34] IwANIEc, H. and M. JUTILA, Primes in short intervals, Ark. Mat. 17 (1979) 167—176.
[35] JAcoBI, C.G.J., Canon Arithmeticus (Berlin, 1839).
[36] KANNAN, R. and A. BAcHEM, Polynomial algorithms for computing the Smith and Hermite normal

forms of an integer matrix, SIAM J. Comput. 8 (1979) 499—507.
[37] KNuTH, D.E., The Art of Computer Programming, Vol 2, Seminumerical Algorithms (Addison-Wesley,

Reading, MA, 2nd ed., 1981).
[38] KNuTH, D.E., The Art of Computer Programming, Vol 3, Sorting and Searching (Addison-Wesley,

Reading, MA, 1973).
[39] LAGARIAs, J.C., Worst-case complexity bounds for algorithms in the theory of integral quadratic

forms, J. Algorithms 1(1980)142—186.

[40] LAGARIAs, J.C., H.L. MONTGOMERY and A.M. ODLYzK0, A bound for the least prime ideal in the
Chebotarev density theorem, Invent. Math. 54 (1975) 137—144.

[41] LANG, S., Algebraic Number Theory (Addison-Wesley, Reading, MA. 1970).
[42] LENSTRA, AK., Fast and rigorous factorization under the generalized Riemann hypothesis, Proc. Kon.

Ned. Akad. Wet. Ser. A 91 (Indag. Math. 50) (1988) 443—454.
[43] LENsTRA, A.K., H.W. LENSTRA, JR and L. LovAsz, Factoring polynomials with rational coefficients,

Math. Ann. 261 (1982) 515—534.
[44] LENsTRA, AK. and M.S. MANA5sE, Factoring by electronic mail, to appear.
[45] LEN5TRA, JR, H.W., Factoring integers with elliptic curves, Ann. of Math. 126 (1987) 649—673.
[46] LENsTRA, JR, H.W., Elliptic curves and number-theoretic algorithms, in: Proc. Internat. Congress of

Mathematicians, Berkeley, 1986 (Amer. Mathematical Soc., Providence, RI, 1988) 99—120.
[47] LENSTRA, JR. H.W. and R. TIJDEMAN, eds., Computational Methods in Number Theory, Mathematical

Centre Tracts, Vol. 154/155 (Mathematisch Centrum, Amsterdam, 1982).
[48] MAssEY, iL., Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory 15 (1969)

122—127.
[49] MIUER, G.L., Riemann’s hypothesis and tests for primality, J. Compur. System. Sci. 13(1976) 300—317.
[50] MoNTGoMERY, P.L., Speeding the Pollard and elliptic curve methods of factorization, Math. Camp. 48

(1987) 243—264.
[51] M0RAIN, F., Implementation of the Goldwasser—Kilian—Atkin primality testing algorithm, INRIA

Report 911, INRIA-Rocquencourt, 1988.
[52] MoRRIsoN, M.A. and J. BRILLHART, A method of factoring and the factorization ofF7,Math. Comp. 29

(1975) 183—205.
[53] ODLYzK0, AM., Discrete logarithms and their cryptographic significance, in: [8] 224—314.
[54] PILA, J., Frobenius maps of abelian varieties and finding roots of unity in finite fields, Tech. Report,

Dept. of Mathematics, Stanford Univ., Standford, CA, 1988.
[55] P0cKLINGT0N, H.C., The determination of the prime and composite nature of large numbers by

Fermat’s theorem, Proc. Cambridge Philos. Soc. 18 (1914—16) 29—30.
[56] P0HLIG, S.C. and M.E. HELLMAN, An improved algorithm for computing logarithms over GF(p) and

its cryptographic significance, IEEE Trans. Inform. Theory 24 (1978) 106—I 10.
[57] PoLLARD, J.M., Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76

(1974) 521—528.
[58] PoLLARD, J.M., Monte Carlo methods for index computation (mod p), Math. Comp. 32(1978)918—924.
[59] POMERANcE, C., Analysis and comparison of some integer factoring algorithms, in: [47] 89—139.
[60] P0MERANcE, C., The quadratic sieve factoring algorithm, in: [8] 169—182.
[61] P0MERANcE, C., Fast, rigorous factorization and discrete logarithm algorithms, in: D.S. Johnson, T.

Nishizeki, A. Nozaki and H.S. Wilf, eds., Discrete Algorithms and Complexity (Academic Press,
Orlando, FL, 1987) 119—143.

[62] P0MERANcE, C., Personal communication.
[63] POMERANcE, C., J.W. SMITH and R. TuLER, A pipeline architecture for factoring large integers with the

quadratic sieve algorithm. SIAM J. Cornput. 17 (1988) 387—403.
[64] RABIN, MO., Probabilistic algorithms for testing primality, J. Number Theory 12 (1980) 128—138.
[65] REYNERI, J.M., Unpublished manuscript.
[66] RIE5EL, H., Prime Numbers and Computer Methodsfor Factorization, Progress in Mathematics, Vol. 57

(Birkhuser, Boston, 1985).

ALGoRITHMs IN NUMBER THEORY 715

[67] RIvEsT, R.L., A. SHAMIR and L. ADLEMAN, A method for obtaining digital signatures and public-key

cryptosystems, Comm. ACM 21(1978) 120—126.

[68] ScHN0RR, C.P. and H.W. LENsTRA, JR, A Monte Carlo factoring algorithm with lineai storage, Math.

Comp. 43 (1984) 289—311.

[69] ScHONHAGE,A., Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform. 1(1971)139—144.

•
[70] ScH0OF, R.J., Quadratic fields and factorization, in: [47] 235—286.

[71] ScH0OF, R.J., Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp.

44 (1985) 483—494.
[72] ScHRIJvER, A., Theory of Linear and Integer Programming (Wiley, New York, 1986).

[73] SEIFRIIXE, J.L. and M.C. WuNDERLIcH, An efficient algorithm for testing large numbers for primality,

in: Proc. 4th Manitoba Conf Numerical Math., University of Manitoba, Congressus Numerantium,

Vol. XII (Utilitas Math., Winnipeg, Canada, 1975).
[74] SEYsEN, M., A probabilistic factorization algorithm with quadratic forms of negative discriminant,

Math. Comp. 48 (1987) 757—780.
[75] SILvERMAN, J.H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Vol. 106

(Springer, New York, 1986).
[76] SIIvERMAN, R.D., The multiple polynomial quadratic sieve, Math. Comp. 48 (1987) 329—339.

[77] SoLovAv, R., andY. STRAssEN, A fast Monte-Carlo test for primality, SIAM J. Comput. 6(1977)84—85;

Erratum, ibidem 7(1978) 118.
[78] TE RIELE, H.J.J., W.M. LIOEN and D.T. WINTER, Factoring with the quadratic sieve on large vector

computers, Report NM-R8805, Centrum voor Wiskunde en Informatica, Amsterdam, 1988.

[79] VALLÉE, B., Provably fast integer factoring algorithm with quasi-uniform small quadratic residues,

INRIA Report, INRIA-Rocquencourt, 1988.

[80] WEBER, H., Lehrbuch der Algebra, Band 3 (Vieweg, Braunschweig, 1908).

[81] WEsTERN, A.E. and J.C.P. MILLER, Tables of Indices and Primitive Roots, Royal Society Mathematical

Tables, Vol. 9 (Cambridge Univ. Press, Cambridge, 1968).

[82] WIEDEMANN, D.H., Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory 32

(1986) 54—62.
[83] WILLIAMs, H.C., Primality testing on a computer, Ars Combin. 5 (1978) 127—185.

[84] WILLIAMs, H.C., A p+ I method of factoring, Math. Comp. 39 (1982) 225—234.

