
Reprinted from Series A, volume 91, no. 4, December 19, 1988

I

proceedings

Fast and rigorous factorization under the generalized Riemann
hypothesis

by A.K. Lenstra

Department of Computer Science, The University of Chicago, 1100 E 58th Street,
Chicago, illinois 60637, U.S.A.

MATHEMATICS Proceedings A 91(4), December 19, 1988

Fast and rigorous factorization under the generalized Riemann
hypothesis

by A.K. Lenstra

Department of Computer Science, The University of Chicago, 1100 E 58th Street,
Chicago, Illinois 60637, U.S.A.

Communicated by Prof. J.H. van Lint at the meeting of November 30, 1987

ABSTRACT

We present an algorithm that finds a non-trivial factor of an odd composite integer n with
probability 1/2 — 0(1) in expected time bounded by e — o(ll) log n log log n This result can be
rigorously proved under the sole assumption of the generalized Riemann hypothesis. The time
bound matches the heuristic time bounds for the continued fraction algorithm, the quadratic sieve
algorithm, the Schnorr-Lenstra class group algorithm, and the worst case of the elliptic curve
method. The algorithm is based on Seysen’s factoring algorithm [14J, and the elliptic curve
smoothness test from 1121.

INTRODUCTION

In this paper we show that combination of results of Seysen [14] and
Pomerance [12] leads to a probabilistic algorithm that factors an odd com
posite integer_n in an expected number of bit operations that is bounded by
(1+0(1V08b00, The storage required is (I/2+o(I))I/i nioglcun bits. The
algorithm is not considered o be practical, but has the advantage that the
bound on its running time can be rigorously proved, under the assumption of
the generalized Riemann hypothesis (GRH). This confirms a prediction of both
Seysen [14, Section 6] and Pomerance [12, Section 1], who both mention the
likelihood of this result, although a clear statement was lacking.

Deterministic factoring algorithms all have a running time that is exponential
in log ii. The fastest known one is the Pollard-Strassen algorithm that runs in
time Q(l/4+C) for any e>O (cf. [15]). Under the assumption of the GRH one
can do slightly better, namely time Q(l/5+C) for any e>O, using Shanks’
class group method or Shanks’ infrastructure method (cf. [13]).

443

The fastest fully proved probabilistic integer factoring algorithm is

Dixon’s random squares algorithm, when combined with the elliptic curve

smoothness test. As shown by Pomerance in [12] it runs in expected time

and storage (IR7 o(1))lonlog1ogn• This result is based on a

combination of the elliptic curve method [9], a recent result of Friedlander and

Lagarias [5], and Wiedemann’s coordinate recurrence method [16] to solve

sparse systems of linear equations. The fastest fully proved probabilistic

factoring algorithm under the assumption of the GRH was Seysen’s class group

method [14], which runs in expected time e+0(1DVb05 fl log log ‘• The present

algorithm is based on Seysen’s algorithm, extended with the techniques

introduced by Pomerance.

Some definitions and results on class groups and solving sparse systems of

linear equations are reviewed in Section 1. What we need about smoothness and

testing for smoothness is presented in Section 2. The algorithm, an adapted

version of the algorithm from [14, Section 8], is described in Section 3. Its

expected running time and its probability of success are analyzed in Section 4.

The paper heavily draws on [14], where proofs of many of the results we use

can be found. It is a detailed version of [8, Section (3.12)1, from which most

of sections 1 and 2 was taken.

An informal outline of the algorithm is as follows. Given an odd composite

integer n to be factored, we consider the class group CA of discriminant — n or

— 3n. Because ambiguous forms in CA might lead to a factorization of n, we

attempt to find an ambiguous form in the following way. Using a small set of

‘small prime forms’ generating CA, we randomly select elements of CA with a

known factorization in C4. By means of the elliptic curve smoothness test we

can easily decide which of these elements can also be factored in another way,

using somewhat bigger but still reasonably small prime forms. An element for

which this second factorization can be found yields a factorization of the unit

element of the class group into reasonably small prime forms. Given suffi

ciently many factorizations of the unit element, we combine them into a factori

zation of the unit element in which the exponents of all prime forms are even.

Dividing all exponents by two, we now find an ambiguous form, and possibly

a non-trivial factorization of n. The proper combination of factorizations is

found by solving a system of linear equations over 1/27/.

The rigorous analysis of the algorithm hinges on several points. In order to

be able to prove that the elliptic curve smoothness test works sufficiently often,

we have to restrict the class of allowable prime forms. This should be done in

such a way that the probability that a random form is built up from these prime

forms is high enough. That this is possible follows by combining results from

[141 and [12]. Then we have to prove that the forms generated in the algorithm

behave approximately as random forms. This is a consequence of the fact that

we use a set of generators of CA. Because the latter set has a small cardinality

the resulting system is sparse, which makes a fast solution possible. Finally, it

has to be shown that the ambiguous form leads to a non-trivial factorization

of n with probability 1/2—o(l).

1. PRELIMINARIES

(1.1) Class groups. For details and proofs of the following results about
class groups we refer to [1, 13]; most of these results are due to Gauss. A
polynomial aX2 + bXY+ cY2E l[Y] is called a binary quadratic form,
and 4 = b — 4ac is its discriminant. We denote a binary quadratic form
aX2+ bXY+ cY2 by (a, b, c). A form for which a> 0 and 4 <0 is called
positive, and a form is primitive if gcd(a, b, c) = 1. Two forms (a, b, c) and
(aç bce’) are equivalent if there exist a, /3, y, 6 El with aô — fly = 1 such that
a’U2+b’UV+ c’V2=aX2+bXY+ cY2, where U=aX+ yY, and V’/3X+ 6)’.
Two equivalent forms have the same discriminant.

Now fix some negative integer 4 with 4 0 or 1 mod 4. We will often denote
a form (a, b, c) of discriminant 4 by (a, b), since c is determined by zl = b2 — 4ac.
The set of equivalence classes of positive, primitive, binary quadratic forms of
discriminant A is denoted by CA. The existence of the form (1, 4) shows that

CA is non-empty.

(1.2) Reduction algorithm. Each equivalence class in C4 contains precisely
one reduced form, where a form (a, b, c) is reduced if

f
L

bO if Jbj=a or if a=c.

These inequalities imply that a /[Jj/3, so that CA is finite. For any form
(a, b, c) of discriminant A the reduced form equivalent to it can be determined
by means of the following reduction algorithm:
(1) Replace (a,b) by (a,b—2ka), where keZZ is such that —a<b—2kaa.
(2) If (a, b, c) is reduced, then stop; otherwise, replace (a, b, c) by (c, — b, a) and

go back to step (1).
It is easily verified that this is a polynomial-time algorithm.

The class number hA of A is defined as the cardinality of CA. It follows
from the Brauer-Siegel theorem (cf. [7, Ch. XVI]) that hA = A1/2+o(l) for
A — — . Furthermore, hA <(1/i log 4)/2 for 4< —3.

(1.3) Composition algorithm. The set CA, which will be identified with the
set of reduced forms of discrjmjnant A because of (1.2), is a finite abelian
group, the class group. The group law, which we will write multiplicatively, is
defined as follows. The inverse of (a, b) follows from an application of the
reduction algorithm to (a, — b), and the unit element ‘A is (1, 1) for A odd, and
(1,0) for A even. To compute (a1,b1) . (a2,b2), we use the Euclidean algorithm
to determine d=gcd(a1,a2,(b1+b2)/2), and r,s,tE7L such that d=ra1+sa2+
1(b1 +b2)/2. The product then follows from an application of the reduction
algorithm to (a1a2/d2,b2 +2a2(s(b1—b2)/2 —tc2)/d), where c2 = (b — 4)/(4a2).
It is again an easy matter to verify that this is a polynomial-time algorithm.

444 445

(1.4) Ambiguous forms. A reduced form is ambiguous if its square equals
14; for an ambiguous form we have b0, or a=b, or a=c. From now on we
assume that zi 1 mod 4. For these A ‘s there is a bijective correspondence
between ambiguous forms and factorizations of Al into two relatively prime
factors. For relatively prime p and q the factorization A =pq corresponds
to the ambiguous form (p, p) for 3p q, and to ((p + q)/4, (q —p)/2) for
p<q3p. Notice that the ambiguous form (1,1) corresponds to the factori
zation Al 1. Al, and that h4 is even if and only if lAl is not a prime power.

(1.5) Prime forms. For a prime number p we define the Kronecker symbol

{—) by

11 if A is a quadratic residue modulo 4p and gcd(A, p) = 1

(—)=- Oifgcd(A,p)1

L — I otherwise.

For a prime p for which (s-) = 1, we define the prime form I, as the reduced

form equivalent to (p, br), where b = mm { b El> o: b2 A mod 4p}. It follows
from the effective Chebotarev density theorem in [61 that, if the generalized
Riemann hypothesis holds, then there is an effectively computable constant c,
such that C4 is generated by the prime forms I with p c (log A 1)2, where we

7A\
only consider primes p for which (—) 1 (cf. [13, Cor. 6.2]); apparently no

explicit value for the constant c has been published.

(1.6) Factorization of forms. A form (a, b, c) of discriminant A, with
gcd(a, 4) = 1, for which the prime factorization of a is known, can be factored
into prime forms in the following way. If a = fl prime

peo is the prime
factorization of a, then (a, b) flp prime jj’ where sj,, e { — 1, + 1 } satisfies
bsb mod 2p, with b as in (1.5). Notice that the prime forms Ij,, are well-
defined because the primes p divide a, gcd(a, A)= 1, and b2A mod 4a.

(1.7) Solving sparse systems of linear equations. Let A be an m x (m + 1)-
matrix over a finite field, for some positive integer m. Suppose we want to find
a non-zero vector x over the field such that Ax= 0, in the situation where A is
sparse, i.e., if the number of non-zero entries in A is very small. Straight
forward application of Gaussian elimination would need 0(m3) field opera
tions, but then we do not take advantage of the sparseness of A.

A faster method is provided by Wiedemann’s coordinate recurrence method
[16]. Let B be an m x m-matrix, and lety be an m-dimensional vector, both over
the field in question. Let w(B) be the number of non-zero entries in B. By means

446

of the coordinate recurrence method we can compute a vector x such that either

Bx=y or x is non-zero and Bx=0 [16, Section 3]. This takes an expected
number of field operations 0(m’ + C w(B)), for >0 arbitrary, and storage for

0(m) + w(B) field elements. This algorithm can easily be used to solve our
problem. Let B be the matrix consisting of the first m columns of A, let y be
the last column of A, and find x=(x1)1such that either Bx=y or x*0 and

Bx=0. In the first case put Xm+J= —1, and in the latter case put Xm+l=O,

then the vector (x1)j1 is a non-zero solution to the original problem.
For details about this algorithm we refer to [16]. A deterministic version of

the coordinate recurrence method has the same (deterministic) running time,
but needs storage for 0(m2) field elements. Other algorithms for the solution
of sparse systems over finite fields can be found in [3] and [11].

2. TESTING FOR SMOOTHNESS

(2.1) Smoothness. An integer is smooth with respect toy, or y-smooth, if all

its prime factors are y. The function (x, y) is defined as the number of
positive integers xthat are smooth with respect toy. From [2] and [4] we have

that for a fixed arbitrary E>0, and for x 10 and u(log x)l_e,

(x, x)=x

for a function f that satisfies f(x, u)/u—*0 for u—’ uniformly in x. It follows
that for fixed a,/3e[R>0and for n—’

W(na,
fll/(lo log n)/log fl)

n° ((a/fl)1/1 ijiogn) —(1 + o(l))(a/fl)y’iAog log

With L(n) eVo05, this becomes

(2.2) ei(n°, L(n)) na . L(n) — a/(2/3) +

We find that a random positive integer na is smooth with respect to L(n)

with probability L(n)_a/(20m, for n—’.

For fi e R we will often write L0[fl] for L(n), and we will abbreviate

L0[fl+ o(1)] to L[fl], for n—boo. Notice that in this notation L[a] +L0[fl]

L1., [max(a, fi)], and that n(L [/3]) = L0 [/3], where i(y) is the number of primes

y.

(2.3) Testing for smoothness. Given an integer x n and some fixed

fleER>0,how many operations does it take to test x for L[fl]-smoothness, and

to find the complete factorization of x in case of smoothness? Clearly, both

tasks can be completed in L [/3] bit operations by trial division up to L [/3]. A

faster method is provided by the elliptic curve method (cf. [9]). This method

finds a factor p of x in expected time 0((logx)2L[)/]). Unfortunately, this

running time can only be rigorously proved under the assumption that a
random integer in the interval (p — + 1, p + + 1) isL[1/i7]-smooth with

probability at least L [— i/i7], the probability that would be expected on the

447

basis of (2.2). If this assumption holds for the primes L[/Jj dividing x, then
x can be tested for L[,8]-smoothness in expected time L[O]; this time includes
the time needed to factor x in case of smoothness.

In order to get a rigorous smoothness test we have to restrict our attention
to primes p for which the interval (p

—
+ 1, p + + 1) contains sufficiently

many smooth numbers. Pomerance has shown in [12] how this can be achieved.
Define for a real number y the set S(y) as the set of primes p, 3 <py, for
which the interval (p

—

/ji, p + i) contains at least i e — ((log y)”7log log y)/6

numbers that are 1’)6 ‘-smooth. It then follows from a result of Friedlander
and Lagarias (cf. [5]) that

(2.4) n(y) — # S(y) = O(y e — ((log Y)”6)/2)

where it is the prime counting function (cf. [12, Theorem B’]).
A restricted definition of smoothness now leads to a rigorous smoothness

test. We say that an integer is (x, y)-smooth if it is x and built up from primes
p such that < 64(log log x)6 or p E S(y). Define ig1 (x, y) as the number of (x, y)
smooth integers (cf. [12, Section 31). From (2.4) it follows that for 8 e A>0
fixed and for x—

/(log log x)2\\
(2.5) 1(x, L[fl]) = (x, L[fl])(1 + üç

(cf. [12, proof of Lemma 3.1]), so that, with (2.2),

(2.6) w1(x,L[fl])=x.L[— 1/(2/i)].

From (2.6) it follows that (n, L[fl])-smooth numbers occur asymptotically
about as frequently as ordinary L[fl]-smooth numbers, a result that we will
not need.

(2.7) A rigorous smoothness test. It has been proved in [12] that any
(n, L[/3])-smooth number can be recognized with high probability in time
L0 [0]. This is done as follows. First remove the prime factors <64(log log n)6 by
trial division. If the resulting quotient a is not equal to 1, apply the elliptic curve
method (cf. [9]) to find the factors L0[f] of a. If a is (n, L[/I])-smooth,
then all factors in the second stage are actually in S(L[fl]). From [12,
Theorem 2.1] it follows that, in case of smoothness, the complete factorization
will be found with probability at least 1 — (log a)/a and in time L [0]. This
finishes the description of the rigorous smoothness test.

(2.8) Smoothness in class groups. Now fix a negative integer A with 4 1
mod 4, and consider the elements of the class group C as in (1.1). We say that
a form (a, b) E C with gcd(a, A) I is y-smooth if a is y-smooth (cf. (2.1)); the
factorization of the form (a, b) follows from the factorization of a as in (1.6).
Consequently, the only primes that can occur in the factorization of a are

primes p for which = 1. For that reason, we define y) as the

number of positive integers x that are built up from primes py for which

= 1. In the notation of (2.1) we have from [14, Theorem 5.2] and (2.1)
‘p1
that for fixed flEU>0 and A——

(2.9) w./ij/2, LA[/3])=1/fZf .L141[— l/(4fl)],

under the assumption of the generalized Riemann hypothesis. This means that,
under the GRH, the probability that a random integer 1[[j/2 is built up from

primes pL1j[fi] for which (--) = 1 is asymptotically about the same as the

probability that such an integer isL11[fl]-smooth. The extra condition

= 1 on the primes p therefore makes asymptotically no difference. In [14]
\pJ
it is shown as a consequence of (2.9) that a random reduced form is L11[fl]-
smooth with probability at least L1[— 1/(4fl)]. We will have no need for this
result; instead we need a slightly stronger version.

Testing a reduced form (a, b) for smoothness can be done by testing a for
smoothness. In view of the rigorous smoothness test in (2.7) we must restrict
the allowable prime factors of a as we have done in (2.3). We say that an integer
is (x, y, 4)-smooth if it is (x, y)-smooth and built up from primes p with

= 1; a form (a, b) is (x y, 4)-smooth if a is (x, y, 4)-smooth. Let

(x, y) be the number of (x, y, 4)-smooth integers. Clearly ig(x, L[fl])—
(x L[/J]) is bounded from above by ii(x, L[fl]) —

(x, L[fl]). From (2.5)
it follows that

(log log x)”2
WA(x, L[fl]) - I (x, L[fl]) = O(i(x L[fl1).)

so that, with (2.2) and (2.9),

(2.10) ii1(1/jJj/2, LIAI[fl]) /[Jf.L[4][— 1/(4fl)],

for fixed fin [R>o, 4—* — co, and under the assumption of the generalized
Riemann hypothesis.

Because the (n, L[J3], 4)-smooth numbers form a subset of the (n, L[fi])
smooth numbers, they can be recognized with the same high probability and in
time L[O] by the smoothness test in (2.7).

It follows from (2.10) that a random positive integer l/f/2 is
(1/i/2,L141[fi], 4)-smooth with probability LIA![— 1/(4fi)], for 4—’— oo and
under the assumption of the GRH. Now consider how likely it is that a random
reduced form is (1/f/2,L14[fi], 4)-smooth. Let F(A) be the number of
(1/fF/2,L14[fi], 4)-smooth reduced forms. As in [14, Lemma 5.1] one then
easily shows with (1.2) and (1.6) that

(2.11) F(4)w4,i(1/f2ij/2, LIAI[/i]).

448 449

The probability that a random reduced form is (i/fj/2, L i[fl], zl)-smooth is

F(A)/h. With (2.11) and the upper bound on h4 from (1.2) we find that

this probability is at least

w4,i(ViF/2,L141[fl])

V9ogIz1

(cf. [14, proof of Proposition 4.4]). Application of (2.10) now yields that a

random reduced form is (1/f/2,L1[/J], A)-smooth with probability at least

L1[—1/(4fi)], for LI—’ — and under the assumption of the generalized

Riemann hypothesis. As was the case for integers, this smoothness can be

recognized with high probability in time L[0J by the smoothness test in (2.7).

3. THE ALGORITHM

We describe a probabilistic algorithm to factor an integer n that is based on

the algorithm from [14, Section 8], and that makes use of the smoothness test

from (2.7).

(3.1) The algorithm

(1) Let n be an odd composite integer that is not a power of a prime number.

Put LI = — n. If LI E 3 mod 4, then replace A by 3A.

(2) Define P for a positive constant c as the set of primes p with p c

(log lLI)2 and (-‘ = 1, where c is chosen such that the prime forms

(‘p)pEp generate C (cf. (1.5)); this is possible under the assumption of

the GRH. Define P, as the set of primes p for which peMO0s log (I/jj/2))6

or p e S(L [1/2]) (cf. (2.3)), and for which (--) = 1. Let P = P UPS, and

put i = 0. (Notice that asymptotically P is contained in P5.)

(3) For all p e P randomly and independently draw e E {0, 1,..., LIj — 1 }, and

compute the reduced form

(a,b)= 1-I
P E P

(4) Use the smoothness test from (2.7) to test whether a is

(1/fT/2,L1[1/2], LI)-smooth, i.e., can completely be factored using the

primes in P. If not, go back to step (3). Otherwise, use the factorization

of a to determine an integral vector (tp)pep such that

(a,b)= II
p E s

Putr1=e—t,,, where e=0 for peP\P and t=0 for peP\P5,then

1-I
pEP

(5) If 1< P, then replace i by 1+ 1 and go back to step (3). Otherwise, we have

#P+ 1 vectors (rPl)PEP. Let A be the #Px(#P+ 1)-matrix having the

(r1 mod 2)PEP’ for 1=0, 1,..., #P, as columns. Apply the algorithm de
scribed in (1.7) to the matrix A to compute a non-zero solution x= (x1)1
to Ax=O over 77/27/, and determine the integral vector (Op)PEP defined by
(‘ rPIxI)PEP=(2vP)PEP. Notice that 11p€P

‘pP_ 14
(6) Compute the ambiguous form

11pP
Jp and attempt to factor n using this

ambiguous form (cf. (1.4)).
This finishes the description of the factoring algorithm.

4. THE ANALYSIS

In this section we give an analysis of the probability of success and of the
expected running time of Algorithm (3.1). We need the following lemma, which
is a slightly modified version of [14, Lemma 4.5].

(4.1) LEMMA. Let m be a positive integer, and let A be a lattice in 7/rn of
determinant h such that the exponent of Zm/A is at most d. Then for any
we7Zm and BeiZ>d we have

(4.2) ±.(1’zJ< #{z:ZEZzwmodJi}1(h

h\ BJ Btm h\ B

and

(4.3) (i— d-*” #{z: ze7Z, zw mod A} (.zJm
h\ B) Btm h\ B)

where7ZB={0,l,...,B—1}.

PROOF. Let e, be the ith basis vector in the standard basis for 7/”, and ë its
image in 7/tm/A. The order h of modulo the subgroup of 7/tm/A generated by
L’2’••’j—l satisfies h,sd and Jh1=h.

There is a bijection between any h1 x h2 x x h,, box in 7/tm and 7/tm/A. This
implies that, for integers k1, 1im, anyk1h1xk2h2x Xkphp box in 7/”
intersects every coset modulo A precisely fl k1 times. With k1= [B/h1]
(B—h,+ 1)/h, it follows that the number of times that Z intersects a partic
ular residue class is at least

m Btm m h—i
II [B/h1J—. II (i___).

The lower bound in (4.3) now follows from h•d, and the lower bound in
(4.2) follows by repeated application of

a—I b—i (a—1)(b—l) ab—I

B B B2 B

for a,bl. The upper bounds in (4.2) and (4.3) can similarly be derived by
taking k1r= EB/h11(B+h,— 1)/h1. This proves Lemma (4.1).

450 451

(4.4) We now prove that the forms generated in step (3) of Algorithm (3.1)

behave approximately as random reduced forms in C. The proof follows the

lines of the proof of Proposition 4.3 in [141.

Let P be as in step (2) of (3.1), and let M=7L”. Define a mapping from

M onto C that maps (eP)PE, EM to llpEP Je C4; that 0 is a surjective

homomorphism follows from the choice of c, and such a c can be chosen under

the assumption of the GRH. The kernel N of 0 is a sublattice of the lattice M,

and M/N C4. The determinant of N equals h4.

Now let e = (e) where the e are randomly and independently selected

from {O, 1,
...,

— 1}, as in step (3) of (3.1). For an arbitrary reduced form

fe C4 we have that f= 0(e) with probability

with the notation as in Lemma (4.1). Applying Lemma (4.1) with m = #P,

A N, h = h4, d h, w =f, and B = A I’ we find from (4.2) that this proba

bility is (1 + o(l))/h4 for n— (cf. (1.2)), so that the forms generated in step

(3) of Algorithm (3.1) indeed behave as random reduced forms in C4.

(4.5) Running time analysis. From (4.4) and the last paragraph of (2.8) (with

6= 1/2), it follows that a in step (4) of Algorithm (3.1) is(1/fj/2,L14[1/2], 4)-

smooth with probability at least L141[— 1/2], under the assumption of the

GRH; the time per smoothness test is L141[OJ. Because #Pn(L14L[l/2])=

L1[1/2], we find that it takes expected time L141[1/2] .L[1/2] •L141[OI

L1[l] to generate the matrix A in step (5), under the assumption of the GRH.

As noted in (1.7) the expected time to solve the system Ax =0 over 7/127/ in

step (5) is L1,[1/2] . w(A), where w(A) is the number of non-zero entries

in A. Let us analyse how many non-zero entries there can be in any column

(r,1 mod 2)pEp of A, wherer1=e—t. The number of non-zero er’s is

bounded by #P (cf. step (3)), and therefore by c (log A 1)2. The number of

non-zero t,’s is bounded by the number of distinct prime divisors of a in step

(4). Because al/j2i1/2, we find that there are at most log2 41 non-zero t,,’s.

It follows that there are O((log IA 1)2) non-zero entries per column of A, so

that w(A)=L141[1/21. We find that the system can be solved in time L41[lJ.

Notice that the GRH plays an important role in this argument, namely to bound

the number of generators of C in such a way that A becomes sparse.

An ambiguous form now follows in L141[1/2} applications of the compo

sition algorithm (1.3), so that we conclude that the algorithm runs in an ex

pected number of bit operations that is bounded by L[l]. The storage

required for Algorithm (3.1) is L[1/2] as follows from (1.7).

(4.6) Probability of success. Let G be the group of ambiguous forms in C4,

and let H be the subgroup of C containing the ambiguous forms that lead

to a trivial factorization of n, i.e., those forms that lead to the factorization

A l.A or, if —n3 mod 4, toA = —3 n. It is easily seen that His a subgroup

452

of C (cf. (1.4)), and because n is composite H is a proper subgroup of G. We
will show that, over all possible runs of Algorithm (3.1), the ambiguous form
computed in step (6) of the algorithm equals any given element of C with
probability (1 + o(1))/# G. It follows that this ambiguous form is contained in
H with probability at most #H(l + o(1))/# G, so that the probability of success
of the algorithm is at least 1/2 — 0(1).

To explain how this is proved we use the notation M, 0, and N from (4.4),
and we introduce the following new notation. Let U€M’ denote the
matrix whose columns are the P+ 1 vectors (eP)PEP that are found in steps
(3) and (4) of Algorithm (3.1); so the entries of Uare in = {0, 1,..., Il — 1),
and the columns of U have a(1/fJj/2,L141[1/2], 4)-smooth image under 0.
Notice that the matrix consisting of the as in step (4) of (3.1) depends
only on the coset of U modulo the sublattice of M*I’+ , and that
the matrix consisting of the (e mod 2)p€p depends only on the coset
of U modulo (2M)#l This suggests to consider U modulo K, where
K = (Nfl J) P+ 1

Fix a coset ‘ of K in M*I’+ , and assume that some (and hence any) matrix
in ‘ has the property that its columns have a (V’f/2,L141[l/2], 4)-smooth
image under 0. To prove our claim we may restrict our attention, first, to those
runs of the algorithm for which Ue ‘.

The probability that U is equal to a particular matrix in with entries from

7/ii depends only on the images of the columns of that matrix under 0 and
therefore only on ‘. Writing m = #P(P+ 1) and identifying M’ with

we thus find that U is uniformly distributed over fi
The matrix A appearing in (3.1) depends only on so it is now fixed. The

probability that the non-zero solution x to Ax = 0 that is found in step (5) of
(3.1) is equal to a given solution depends only on A, hence on ‘. Therefore we
may, again, restrict attention to those runs of the algorithm for which this
solution is equal to a given non-zero solution. We call this solution x=(x1),
withx1e7//27/.

For UE , we write v(U) for the ambiguous form that is found in step (6)
of (3.1). To describe how v(U) varies with U, we define a mapping v from
Nfl 2M to the group G by (y) = Ø(y/2), for y€ Nfl 2M. This is a well-defined
group homomorphism with kernel 2N; it is surjective because 0 is surjective.
Let now U, U’ € , and let the columns of the matrix U— U’ e K be denoted by
k,, for 0 I * P. Then we have that

Denote the mapping from K to G given by the right hand side of this expression
by w, and write J= ker(). Because w is surjective and x0, we have that
K/J C, so that det(J)/det(K) = #0.

The above formula implies that the set of Ue for which v(U) is equal to
a given element v E 0 is a coset of J in M#ll with C ‘. We find that the

453

#{e: e€7/jo(e)=f}

IA I #P

v(U)/v(U’)
=

(k1)-’€ C.

probability that v(U) equals v is equal to # (Z)“ #(fl). It remains
to be shown that this number is (1 + o(1))/#G.

Both the lattices K and J contain (2N)° , so that the exponents of Ztm/K
and 7Zm/J are bounded by 2h. Application of (4.3), Lemma (4.1), then yields
that

Ifl(1 +o(1)) II’ +o(l))
#(l1fll)=

det(J) det(K)

because of the respective sizes of m, h and I. The required result now follows
upon division, since det(J)/det(K) = # G.

Acknowledgments are due to H.W. Lenstra, Jr. for his valuable assistance
while writing this paper, and especially for his formulation of the proof in (4.6).
I would also like to thank the Centrum voor Wiskunde en Informatica in
Amsterdam, where most of the work on this paper was done, for its hospitality
and support.

REFERENCES

1. Boreviè, Z.I. and I.R. afarevië — Teorija isel, Moscow 1964. Translated into German,
English and French.

2. Canfield, E.R., P. Erdös and C. Pomerance — On a problem of Oppenheim concerning
“Factorisatio Numerorum”, J. Number Theory 17, 1—28 (1983).

3. Coppersmith, D., A.M. Odlyzko and R. Schroeppel — Discrete logarithms in GF(p),

Algorithmica 1, 1—15 (1986).
4. de Bruijn, N.G. — On the number of positive integers x and free of prime factors >y, II,

Indag. Math. 38, 239—247 (1966).
5. Friedlander, J.B. and J.C. Lagarias — On the distribution in short intervals of integers having

no large prime factor, J. Number Theory 25, 249—273 (1987).
6. Lagarias, J.C., H.L. Montgomery and A.M. Odlyzko — A bound for the least prime ideal in

the Chebotarev density theorem, Inventiones Math. 54, 137—144 (1975).
7. Lang, S. — Algebraic number theory, Addison-Wesley, Reading (1970).
8. Lenstra, A.K. and H.W. Lenstra, Jr. — Algorithms in number theory, in: van Leeuwen, J.,

A. Meyer, M. Nivat, M. Paterson and D. Perrin (eds) — Handbook of theoretical
computer science, to appear; technical report 87—008, Department of Computer Science,
The University of Chicago (1987).

9. Lenstra, Jr., H.W. — Factoring integers with elliptic curves, Ann. of Math., 126, 649—673
(1987).

10. Lenstra, Jr., H.W. and R. Tijdeman (eds) — Computational methods in number theory,
Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam (1982).

11. Odlyzko, A.M. — Discrete logarithms and their cryptographic significance, pp. 224—314 in:
Beth, T., N. Cot and I. Ingemarsson (eds) — Advances in cryptology, Springer Lecture
Notes in Computer Science, Vol. 209 (1985).

12. Pomerance, C. — Fast, rigorous factorization and discrete logarithm algorithms, pp. 119—143
in: Johnson, D.S., T. Nishizeki, A. Nozaki and H.S. Wilf (eds) — Discrete algorithms
and complexity, Academic Press, Orlando, Florida (1987).

13. Schoof, R.J. — Quadratic fields and factorization, pp. 235—286 in: [10].
14. Seysen, M. — A probabilistic factorization algorithm with quadratic forms of negative dis

criminant, Math. Comp. 48, 757—780 (1987).
15. Voorhoeve, M. — Factorization algorithms of exponential order, pp. 79—87 in: [10].
16. Wiedemann, D. — Solving sparse linear equations over finite fields, IEEE Trans. Inform.

Theory, IT—32, 54—62 (1986).

454

The proof given in [FRF] can be repaired by incorporating a slightly changed version of [POM, Thm
B’] in the proof of [SEY, Thm 5.2]. Let S’(y) denote the set of primes p for which 3 < p < y and
&o(p, exp((logp)617))> exp(—(log4p)1/7(loglog4p)/6), where JO(V, w) is the number of w-smooth inte

gers in (v — ../, v + /i). So, S’(y) consists of primes p y that have a high probability to be found by the
elliptic curve method, in time depending in the usual way on p. As in the proof of [POM, Thm B’] one proves
that ir(y) — S’(y) = O(y exp(—(logy)116/2)). It follows that ir(y) — S(y) = O(y . exp(—(logy)1/6/2)),
where ir(y) and S(y) are the subsets of ir(y) and S’(y), respectively, consisting of the primes p for which

Let (x, y) be the number of integers x that are entirely built up from primes in S (y). Our goal is
to prove [SEY, Thm 5.2] with replaced by With [SEY, Thm 5.3] (where one should read ‘Li(x)/2’
instead of ‘Li(x)’), one gets IS(x) — Li(x)/21 O(x . exp(—(logx)1/6/2)). This is a slightly weaker version
of [SEY, Thm 5.3], but still sufficiently strong to let both applications of [SEY, Thm 5.3] in Seysen’s proof of
his [SEY, Thm 5.2] go through in our case. The first application does not require any changes. The second
application, in the proof of ‘our version’ of [SEY, Cor 5.16], causes a slightly different error-term, and as a
consequence somewhat different constants in the application of [SEY, Cor 5.16] in the proof of [SEY, (5.17)].
The resulting final inequality [SEY, (5.18)], however, remains unchanged. The proof of the version of [SEY,
Thm 5.2] as needed in [FRF] follows.

