Polynomial factorization by root approximation

Arjen K. Lenstra Centrum voor wiskunde en informatica Kruislaan 413 1098 SJ Amsterdam The Netherlands

Abstract

We show that a constructive version of the fundamental theorem of algebra [3], combined with the basis reduction algorithm from [1], yields a polynomial-time algorithm for factoring polynomials in one variable with rational coefficients.

Introduction

In 1982 the first polynomial-time algorithm for factoring polynomials in one variable with rational coefficients was published [1]. The most important part of this factoring algorithm is the so-called basis reduction algorithm. This basis reduction algorithm, when applied to an arbitrary basis for an integral lattice, computes in polynomial time a reduced basis for the lattice, which is, roughly speaking, a basis that is nearly orthogonal. Also, such a reduced basis yields approximations of the successive minima of the lattice, and the first vector in the reduced basis is a reasonable approximation of a shortest non-zero vector in the lattice.

For certain specially constructed lattices it can be shown that the basis reduction algorithm actually computes a shortest non-zero vector in the lattice. This happens for instance in the factoring algorithm from [1]. By means of a sufficiently precise, irreducible, p-adic factor of the polynomial $f \in \mathbb{Z}[X]$ to be factored, an integral lattice is defined that contains a factor of f as shortest non-zero vector. The basis reduction algorithm is then applied to this specially con-

structed lattice to compute this factor in polynomial time.

Here we show that the lattice for the factoring algorithm can also be constructed in another way. Instead of a p-adic factorization of f, we use approximations of the (real or complex) roots of f to define a lattice with similar properties as the lattice above: its shortest vector leads to a factorization of f, and this shortest vector can be found by means of the basis reduction algorithm. As a result we get a polynomial-time algorithm for factoring univariate rational polynomials, which does not apply the usual Berlekamp-Hensel techniques (to compute the p-adic factors), but which relies on (a constructive version of) the fundamental theorem of algebra.

An outline of our algorithm to factor f is as follows. First, we compute a sufficiently precise approximation $\tilde{\alpha}$ of a root α of f, by means of the algorithm from [3]. The minimal polynomial h of α , which clearly is an irreducible factor of f, can then be found by looking for a Zlinear relation of minimal degree among the powers of $\tilde{\alpha}$. In Section 1 we show that the coefficients of this Z-linear relation are given by the shortest vector in a certain lattice, and in

Section 2 we present the factoring algorithm and we analyze its running time.

For a polynomial $f = \sum f_i X^i \in \mathbb{Z}[X]$ we denote by δf its degree, and by $|f| = (\sum f_i^2)^{V_i}$ its length. We say that f is primitive if the gcd of its coefficients equals one. By Z, Q, and C we denote the set of the integers, the rational numbers, and the complex numbers respectively.

1. Approximated roots and lattices

Let $f \in \mathbb{Z}[X]$ be a primitive polynomial of degree n, and let $\alpha \in \mathbb{C}$ be a zero of f. Obviously, the minimal polynomial $h \in \mathbb{Z}[X]$ of α is an irreducible factor of f. We will show that a sufficiently

precise complex rational approximation of α enables us to determine the factor h of f. First, we need the following proposition.

(1.1) Proposition. For any $s \in \mathbb{Z}_{\geq 0}$ and for any $\tilde{\alpha} \in \mathbb{C}$ satisfying $|\alpha - \tilde{\alpha}| < 2^{-s}$, we have $|h(\tilde{\alpha})| < 2^{-s} \delta h |f| (2+|f|)^{\delta h-1}$.

Proof. Because $h(\alpha)=0$, and because the $(\delta h+1)$ -th derivative $h^{(\delta h+1)}$ of h is zero, we derive from Taylor's formula and $|\alpha-\tilde{\alpha}|<2^{-s}$, that

$$|h(\tilde{\alpha})| < \sum_{i=0}^{\delta h} \frac{2^{-si}}{i!} |h^{(i)}(\alpha)|.$$

Let $h = \sum_{j=0}^{\delta h} h_j X^j$, then

(1.3)
$$h^{(i)}(\alpha) = \sum_{j=i}^{\delta h} (\prod_{k=0}^{i-1} (j-k)) h_j \alpha^{j-i}, \text{ for } 1 \le i \le \delta h.$$

Because h is a factor of f in $\mathbb{Z}[X]$, we have from [2] that $|h_j| \le {\delta h \choose j} |f|$, and because α is a zero of f we have from for instance [3] that $|\alpha| \le |f|$. Combined with (1.3) this yields

$$|h^{(i)}(\alpha)| \le |f| \sum_{j=i}^{\delta h} (\prod_{k=0}^{i-1} (j-k)) {\delta h \choose j} |f|^{j-i},$$

so that we get from (1.2) that

$$|h(\tilde{\alpha})| < |f| \sum_{j=1}^{\delta h} {\delta h \choose j} \sum_{i=1}^{j} {j \choose i} 2^{-si} |f|^{j-i}.$$

Because
$$\sum_{j=1}^{j} \binom{j}{i} 2^{-si} |f|^{j-i} = (2^{-s} + |f|)^j - |f|^j$$
, and because $\sum_{j=1}^{\delta h} \binom{\delta h}{j} (2^{-s} + |f|)^j - \sum_{j=1}^{\delta h} \binom{\delta h}{j} |f|^j = (2^{-s} + |f| + 1)^{\delta h} - (|f| + 1)^{\delta h}$, we find $|h(\tilde{\alpha})| < |f| ((2^{-s} + |f| + 1)^{\delta h} - (|f| + 1)^{\delta h})$.

The proposition now follows from

$$(2^{-s} + |f| + 1)^{\delta h} - (|f| + 1)^{\delta h} < 2^{-s} \delta h (2^{-s} + |f| + 1)^{\delta h - 1}. \square$$

Suppose that we are given an $s \in \mathbb{Z}_{>0}$ and an $\tilde{\alpha} \in \mathbb{Q}(i)$ such that

(1.4)
$$|\alpha - \tilde{\alpha}| < 2^{-s}$$
, and $|\tilde{\alpha}| \le |\alpha|$.

In the sequel we will see how large s should be chosen, i.e. how well α should be approximated.

(1.5) Let m be a positive integer, and let $c \in \mathbb{Q}$ be a positive constant. Suppose that we have computed, for $0 \le i \le m$, approximations $\tilde{\alpha}_i \in \mathbb{Q}(i)$ of $\tilde{\alpha}^i$:

(1.6)
$$|\tilde{\alpha}^i - \tilde{\alpha}_i| < 2^{-s}, \text{ for } 0 \le i \le m.$$

We will identify a polynomial $g = \sum_{i=0}^{\delta g} g_i X^i \in \mathbb{Z}[X]$ of degree at most m with the (m+1)-dimensional integral vector $(g_0, g_1, ..., g_m) \in \mathbb{Z}^{m+1}$, where $g_{\delta g+1}, g_{\delta g+2}, ..., g_m$ are zero. By $\tilde{g}(\tilde{\alpha})$ we will denote $\sum_{i=0}^{\delta g} g_i \tilde{\alpha}_i \in \mathbb{Q}(i)$. For an (m+1)-dimensional integral vector $v = (v_0, v_1, ..., v_m) \in \mathbb{Z}^{m+1}$ we will denote by $\hat{v} \in \mathbb{Q}^{m+3}$ the (m+3)-dimensional rational vector $(v_0, v_1, ..., v_m, c(\text{Re}(\sum_{i=0}^{m} v_i \tilde{\alpha}_i)), c(\text{Im}(\sum_{i=0}^{m} v_i \tilde{\alpha}_i))$. Notice that $|\hat{v}|^2 = |v|^2 + c^2 |\tilde{v}(\tilde{\alpha})|^2$. By L we will denote the lattice \mathbb{Z}^{m+1} embedded in \mathbb{Q}^{m+3} by

for $v \in \mathbb{Z}^{m+1}$. The next proposition shows that s and c can be chosen in such a way that a short vector in L leads to an irreducible factor of f.

(1.7) Proposition. Let $g \in \mathbb{Z}[X]$ of degree at most m be such that gcd(h, g) = 1. Suppose that $\delta h \leq m$, and that

(1.8)
$$2^{\frac{m^2}{2} + \frac{m}{2} + 4} B^{\frac{1}{2} + m} |f|^{m-1} \le c \le \frac{2^s}{4m |f|(2+|f|)^{m-1}},$$

where $B = {2m \choose m} |f|^2 + 1$. Then $|\hat{h}|^2 < B$, and $|\hat{g}|^2 \ge 2^m B$.

Proof. First we will show that $|\hat{h}|^2 < B$. Because $|\hat{h}|^2 = |h|^2 + c^2 |\tilde{h}(\tilde{\alpha})|^2$ and $|\tilde{h}(\tilde{\alpha})| \le |h(\tilde{\alpha})| + |h(\tilde{\alpha}) - \tilde{h}(\tilde{\alpha})|$, we find

$$|\hat{h}|^2 \le |h|^2 + c^2 (|h(\tilde{\alpha})|^2 + 2|h(\tilde{\alpha})||h(\tilde{\alpha}) - \tilde{h}(\tilde{\alpha})| + |h(\tilde{\alpha}) - \tilde{h}(\tilde{\alpha})|^2).$$

From Proposition (1.1) and $\delta h \leq m$ we know that $|h(\bar{\alpha})| < 2^{-s} m |f| (2+|f|)^{m-1}$, which yields, combined with (1.8)

$$(1.10) |h(\tilde{\alpha})| < \frac{1}{2c}.$$

The polynomial $h = \sum_{j=0}^{\delta h} h_j X^j$ is a factor of f in $\mathbb{Z}[X]$, so that we get from [2] that $|h_j| \leq {\delta h \choose j} |f|$.

With (1.6) and $\delta h \leq m$ this gives $|h(\tilde{\alpha}) - \tilde{h}(\tilde{\alpha})| < 2^{-s} \sum_{j=0}^{\delta h} {\delta \choose j} |f| \leq 2^{-s+m} |f|$, and with (1.8)

$$(1.11) |h(\tilde{\alpha}) - \tilde{h}(\tilde{\alpha})| < \frac{1}{2c}.$$

From $|h_j| \leq {\delta h \choose j} |f|$ we also derive

(1.12)
$$|h|^2 \le {2\delta h \choose \delta h} |f|^2$$
,

so that we obtain by combining (1.9), (1.10), (1.11), (1.12), and $\delta h \leq m$

$$|\hat{h}|^2 < {2m \choose m} |f|^2 + c^2 (\frac{1}{4c^2} + \frac{2}{4c^2} + \frac{1}{4c^2}) = B.$$

Now we will prove that $|\hat{g}|^2 \ge 2^m B$. If $|g|^2 \ge 2^m B$, then $|\hat{g}|^2 \ge 2^m B$, because $|\hat{g}|^2 = |g|^2 + c^2 |\tilde{g}(\tilde{\alpha})|^2$. Therefore, we may assume that

$$(1.13) |g|^2 < 2^m B;$$

we will prove that $c^2 |\tilde{g}(\tilde{\alpha})|^2 \ge 2^m B$, so that $|\hat{g}|^2 \ge 2^m B$. From (1.13), (1.6), and $\delta g \le m$ we derive

$$|g(\tilde{\alpha}) - \tilde{g}(\tilde{\alpha})| \leq 2^{-s + \frac{m}{2}} (m+1)B^{\frac{1}{2}},$$

so that, with $2^{-s}(m+1) \le \frac{1}{c}$ (cf. (1.8)), it suffices to prove that

(1.14)
$$c |g(\tilde{\alpha})| \ge 2(2^m B)^{\frac{1}{2}}$$

Because gcd(h, g) = 1, there exist polynomials $a, b \in \mathbb{Z}[X]$ satisfying $\delta a < \delta g$ and $\delta b < \delta h$, such that ah + bg = R, where $R \in \mathbb{Z}_{\neq 0}$ denotes the resultant of h and g. Because δh and δg are both at most m, it follows from the definition of the resultant and Hadamard's inequality, that the

coefficients of a and b are bounded by $|h|^{m-1}|g|^m$ in absolute value, and therefore by $2^{\frac{1}{2}}B^m$ (cf. (1.12), (1.13)). From $|\alpha| \le |f|$ (cf. [3]), $\delta a < m$, $\delta b < m$, and (1.4), we now obtain

(1.15)
$$\max(|a(\tilde{\alpha})|, |b(\tilde{\alpha})|) \leq 2^{\frac{m^2}{2}} B^m \sum_{i=0}^{m-1} |\alpha|^i$$

$$\leq 2^{\frac{m^2}{2}} B^m \frac{|f|^m - 1}{|f| - 1}$$

$$\leq 2^{2 + \frac{m^2}{2}} B^m |f|^{m-1},$$

where we use that $|f|-1 \ge \frac{|f|}{4}$. From (1.15), Proposition (1.1) and $\delta h \le m$, it follows that

$$|a(\tilde{\alpha})h(\tilde{\alpha})| < 2^{2-s}m|f|^m(2+|f|)^{m-1}2^{\frac{m^2}{2}}B^m,$$

which gives with (1.8)

$$(1.16) |a(\tilde{\alpha})h(\tilde{\alpha})| < \frac{1}{2}.$$

Because $R \in \mathbb{Z}_{\neq 0}$ and $a(\tilde{\alpha})h(\tilde{\alpha}) + b(\tilde{\alpha})g(\tilde{\alpha}) = R$, it follows from (1.16) that $b(\tilde{\alpha}) \neq 0$, and that

$$|g(\tilde{\alpha})| \ge \frac{1}{2|b(\tilde{\alpha})|}$$
.

Combining this with (1.8) and (1.15), we see that (1.14) holds. \square

(1.17) Corollary. Let c and s be such that (1.8) holds, and suppose that $\delta h \leq m$. Then for any non-zero polynomial $g \in \mathbb{Z}[X]$ satisfying $\delta g < \delta h$ we have $|\hat{g}|^2 \geqslant 2^m B$, where B is as in (1.7).

Proof. The proof follows from the fact that h is irreducible, so that gcd(h, g) = 1, combined with (1.7). \square

(1.18) Corollary. Let c and s be such that (1.8) holds, and let \hat{b}_1 , \hat{b}_2 , ..., $\hat{b}_{m+1} \in \mathbb{Q}^{m+3}$ be a reduced basis for the lattice L as defined in (1.5) (cf. [1: (1.4), (1.5)]). If $\delta h = m$, then $|\hat{b}_1|^2 < 2^m B$ and $h = \pm b_1$, where $b_1 \in \mathbb{Z}^{m+1}$ is the (m+1)-dimensional vector consisting of the first m+1 coordinates of \hat{b}_1 (cf. (1.5)), and B is as in (1.7).

Proof. From (1.7) it follows that $|\hat{h}|^2 < B$. Because $\delta h = m$ we have that $\hat{h} \in L$, so that L contains a non-zero vector of length smaller than $B^{\frac{1}{1}}$. From [1: (1.11)] we derive that $|\hat{b}_1|^2 < 2^m B$, so that, again with (1.7), we conclude that $\gcd(h, b_1) \neq 1$. Because $\delta b_1 \leq m$, and because h is irreducible we find that $h = tb_1$ for some $t \in \mathbb{Z}_{\neq 0}$, so that $h = \pm b_1$, because \hat{b}_1 belongs to a basis for L. \square

2. Description of the algorithm

(2.1) Let $f \in \mathbb{Z}[X]$ be a primitive polynomial of degree n. We describe an algorithm to compute the irreducible factorization of f in $\mathbb{Z}[X]$.

First, we choose $s, c \in \mathbb{Z}$ minimal such that (1.8) holds with m replaced by n-1:

(2.2)
$$2^{\frac{n^2}{2} - \frac{n}{2} + 4} \left(\binom{2(n-1)}{n-1} |f|^2 + 1 \right)^{n-\frac{1}{2}} |f|^{n-2} \le c$$

and

$$(2.3) 4(n-1)|f|(2+|f|)^{n-2}c \le 2^{s}.$$

Next, we apply the algorithm from [3] to compute an approximation $\bar{\alpha} \in \mathbb{Q}(i)$ of an arbitrary root $\alpha \in \mathbb{C}$ of f, such that (1.4) holds.

Finally, we apply the results from the previous section to determine the minimal polynomial $h \in \mathbb{Z}[X]$ of α . For the values of m = 1, 2, ..., n - 1 in succession we compute a reduced basis $\hat{b}_1, \hat{b}_2, ..., \hat{b}_{m+1}$ of the lattice L as defined in (1.5) (this can be done by means of the basis

reduction algorithm from [1]). But we stop as soon as we find a vector \hat{b}_1 of length less than

 $2^{\frac{1}{2}}(\binom{2m}{m}|f|^2+1)^{\frac{1}{2}}$.

It follows from the choice of s and c that, if we find such a vector \hat{b}_1 , then $m \ge \delta h$ according to (1.17); furthermore, because we try the values for m in succession, we find from (1.18) that $h = \pm b_1$ (where b_1 is defined as in (1.18)). If, on the other hand, we do not find such a vector \hat{b}_1 , then $\delta h > n-1$ according to (1.18), so that h = f.

The polynomial h that we find in this way is an irreducible factor of f; the complete fac-

torization of f can be found by applying Algorithm (2.1) to $\frac{I}{h}$.

(2.4) **Theorem.** Algorithm (2.1) computes the irreducible factorization of any primitive polynomial $f \in \mathbb{Z}[X]$ of degree n in $O(n^6 + n^5 \log |f|)$ additions, subtractions, multiplications, or divisions of numbers which can be represented by $O(n^3 + n^2 \log |f|)$ binary bits.

Proof. The correctness of Algorithm (2.1) follows from its description. We now analyze its running time. From the fact that c and s are chosen minimal such that (2.2) and (2.3) hold, we find

(2.5)
$$\log c = O(n^2 + n \log |f|), \text{ and } s = O(n^2 + n \log |f|).$$

According to [3] and (2.5), the computation of approximations of the n roots of f such that (1.4) holds, satisfies the estimates in (2.4). Obviously, the same is true for the computation of the approximated powers $\tilde{\alpha}_i$ of an approximated root $\tilde{\alpha}$ as in (1.6); these powers have to be computed for the initial basis for L.

The entries of the initial basis for L can be represented by $\lceil \log c + s + \log |\tilde{\alpha}_i| \rceil = O(n^2 + n \log |f|)$ bits (cf. (2.5), (1.6); remember from Section 1 that $|\tilde{\alpha}| \le |f|$). The applications of the basis reduction algorithm for the computation of one irreducible factor h of f can therefore be done in $O(\delta h^4(n^2 + n \log |f|))$ operations on $O(n^3 + n^2 \log |f|)$ -bit numbers (cf. [1: (1.26), (1.37), (1.38)], (1.5)).

It follows that the computation of the complete factorization of f satisfies the estimates in

(2.4), where we apply that
$$\left|\frac{f}{h}\right| = O(n + \log|f|)$$
 (cf. (1.12) with h replaced by $\frac{f}{h}$). \Box

(2.6) Remark In [4] A. Schönhage noticed that for the lattice that we use in Algorithm (2.1), a better running time can be proved for the basis reduction algorithm. His observation leads to $O(n^5 + n^4 \log|f|)$ arithmetic operations on $O(n^2 + n \log|f|)$ -bit numbers. Furthermore he wins another factor of O(n) by an improved version of the basis reduction algorithm.

References

- A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1972), 515-534.
- M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153-1157.
- A. Schönhage, The fundamental theorem of algebra in terms of computational complexity, manuscript, 1982.
- A. Schönhage, Factorization of univariate integer polynomials by diophantine approximation and by an improved basis reduction algorithm, manuscript, 1983.