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Abstract

It is notoriously difficult to make distributed systems re-

liable. This becomes even harder in the case of the

widely-deployed systems that are heterogeneous (mul-

tiple implementations) and federated (multiple adminis-

trative entities). The set of routers in charge of the Inter-

net’s inter-domain routing is a prime example of such a

system. In this paper, we argue that a key step in mak-

ing these systems reliable is the need to automatically

explore the system behavior to check for potential faults.

We present the design and implementation of DiCE, a

system for online testing of heterogeneous and feder-

ated distributed systems. DiCE runs concurrently with

the production system by leveraging distributed check-

points and isolated communication channels. DiCE or-

chestrates the exploration of relevant system states by

controlling the inputs that drive system actions. While

respecting privacy among different administrative enti-

ties, DiCE detects faults by checking for violations of

properties that capture the desired system behavior. We

demonstrate the ease of integrating DiCE with a BGP

router and a DNS server, the building blocks of two vi-

tal services in the Internet. Our evaluation in the testbed

shows that DiCE quickly and successfully detects three

important classes of faults, resulting from configuration

mistakes, policy conflicts and programming errors.

1 Introduction

Many successful distributed systems are inherently het-

erogeneous and federated — heterogeneity arises from

the creation of multiple, inter-operable implementations;

federated refers to the existence of multiple service

providers operating under different administrative do-

mains. The Internet’s inter-domain routing system gov-

erned by BGP is a prime example of a heterogeneous

and federated system. Other such systems include DNS,

electronic mail, peer-to-peer content distribution [16],

content and resource peering [8], computing grids, and

Web services. However, the resulting competing envi-

ronment of mutually mistrusting providers fosters a ten-

sion between a provider’s own goals versus the common

overarching desire of keeping the federated system func-

tioning properly.

In such an environment, making distributed systems

reliable does not stop with the already difficult task of

producing a robust design and implementation. Achiev-

ing high reliability also bears the difficulties in deploy-

ing and operating these systems whose aggregate be-

havior is the result of interleaved actions of multiple

system nodes running in a heterogeneous and failure-

prone environment. In fact, several factors such as subtle

differences in the details of inter-operable implementa-

tions, or system-wide conflicts due to locally admissi-

ble (mis)configurations can cause harmful node interac-

tions that lead to faults, i.e., deviations of system compo-

nents from their expected behavior. These faults which

span the state and configuration across multiple nodes

are perhaps less frequent than single-machine bugs, e.g.,

memory-related issues. However, when these faults man-

ifest themselves they have far-reaching and substantial

negative impact, and require considerable resources to

be diagnosed and eliminated.

For example, a BGP router can rightfully decide to

reset its peering session in response to a syntactically

valid, but semantically ambiguous message. However,

when many of such routers are coupled with another

large number of routers that propagate the ambiguous

message (because of a different message parser imple-

mentation), the overall effect is a large fraction of routers

that are continuously resetting and restoring sessions as it

happened in several episodes [4]. The resulting high up-

date processing rate causes a performance and reliability

problem. Others have argued that a malformed packet

could take down a significant fraction of the Internet [1].

Even with a 100% protocol-compliant message, such an

incident inadvertently occurred in August of 2010 [3].
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Our overarching vision is to harness the continuous

increases in available computational power and band-

width to improve the reliability of distributed systems.

We argue that nodes in the system and their adminis-

trators should be proactively working towards finding

which node actions could potentially lead to faults. This

task cannot be done only locally by checking the single-

node behavior, as the erroneous system state can span

multiple nodes and remote node configurations are not

available locally. Thus, detecting faults in the general

case requires some collaboration among the nodes. The

faults these actions lead to are evidence of possible fu-

ture system failures which may be avoided by detecting

these potential faults.

To detect faults, we propose to automatically explore

the system behavior alongside the production system,

but in complete isolation from it using a system snap-

shot captured from the current state. That is, we check

system-wide consequences of actions nodes can under-

take, and output actions that lead to failures. In practice,

node actions are the result of subjecting the node’s code

in its current state to messages, configuration changes,

failures, random choices, etc., collectively called inputs

in the following. Ideally, we want to subject nodes to a

large number of possible inputs that systematically exer-

cise their behavior.

We have to address several difficult challenges [13] in

our work. The federated nature of many deployed sys-

tems means that a node cannot gain unrestricted access

to other nodes’ state and configuration. Moreover, we

have to carefully manage the information flowing be-

tween system participants to preserve their confidential

nature. The heterogeneity of the system makes it diffi-

cult or impossible to have local access to the source or

binary code of other participants. Systematically explor-

ing node behavior even for a single node easily runs into

the problem of exponential explosion in the number of

code paths that need to be explored. Finally, the sheer

size of the system can pose scalability problems.

Static analysis of configuration files [19] cannot be ap-

plied to this problem because it does not take into ac-

count the actual state and software of the system. Tools

for predicting inconsistencies using live model checking

(e.g., [44]) cannot be used because they require a node

to (i) retrieve checkpoints (with private state and config-
uration) from other participants, and (ii) obtain access

to the source code of other participants. Applying sys-

tematic source code exploration tools based on symbolic

execution from initial state [11, 39] cannot explore code

paths sufficiently deep due to exponential growth in the

number of possible paths caused by having large inputs

(configuration and messages received over a long time).

In this paper, we introduce DiCE, a system for online

testing of heterogeneous, federated distributed systems.

Accounting for the federated nature of the system, we let

each node autonomously explore its local actions. We

use a set of lightweight node checkpoints to allow the

single node’s actions reach out to other nodes as a way to

drive and explore system-wide state in isolation from the

production environment. To preserve privacy between

different administrative domains, we define a narrow in-

formation sharing interface that enables a node to query

remote nodes for relevant state checks. We detect faults

by checking and flagging violations of given properties

that, tying together state checks over multiple system

nodes, capture the desired system behavior. These fea-

tures enable the basic “what-if” exploration block that

can be used in three different ways. First, it can be used

to test for the outcome of a single input or configuration

change. Second, to enable checking for insidious faults

due to corner cases, remote node failures and different

local choices, we enable the developer to encode these

choices in a simple function that DiCE can then exercise.

Finally, to systematically exercise possible node actions

and check for the faults they might induce, we use a tech-

nique called concolic execution [10, 17, 23] to automat-

ically produce the inputs that explore all possible code

paths at one node. We overcome the problem of expo-

nential explosion of code paths by starting exploring the

node behaviors from current system state, and by sub-

jecting the node’s code to small-sized inputs that affect

localized parts of state-changing code.

We demonstrate DiCE’s ability to detect insidious

faults in two systems that provide fundamental services:

BGP and DNS. By doing so, we demonstrate the benefits

of having a framework that enables system operators to

specify the desired behavior in the form of safety prop-

erties, and learn about possible faults and their impact.

DiCE is a crucial step in being able to guard against

important classes of faults. Advance warnings can be

used to notify the system operator(s) about a particular

misconfiguration, or to trigger automatic installation of

a filter against the problem caused by the software re-

action to an unanticipated message. A particular benefit

of our approach is that the separate administrative enti-

ties can use DiCE by integrating only their source code

with it, and without requiring access to the source code,

executable, or configuration of other participants.

The contributions of this paper are as follows:

1. We describe the design and implementation of

DiCE, a system for detecting possible faults in heteroge-

neous, federated environments that imposes light over-

head and resource requirements.

2. We provide a technique for automatic and

lightweight distributed snapshot creation that (i) respects
trust boundaries, and (ii) allows system behavior to be

explored in isolation. This technique effectively enables

node actions to extend their reach across the network to
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explore relevant system state. We believe that this prim-

itive can be successfully applied to other “what-if” ex-

ploratory scenarios.

3. We demonstrate how a small amount of input-

producing code can be used to drive execution across

the relevant federated distributed system states. Doing

so uncovers faults due to events that are difficult to ex-

plore, such as remote node failures. To the best of our

knowledge, this is the first such approach.

4. We integrate DiCE with the BIRD [5] open-source

router written in C. In our evaluation on the network

testbed with Internet-like conditions, we demonstrate

that DiCE quickly detects two important classes of faults

that have affected the Internet: (i) Internet-wide BGP

session resets, and (ii) policy conflicts among ISPs.

5. We integrate DiCE with the MaraDNS [2] open-

source DNS server, and demonstrate its ability to detect

cyclic zone dependencies – an insidious type of DNS

misconfiguration that can render entire domain names

unresolvable [37].

2 Design

To detect faulty states (those in which the system com-

ponents deviate from their desired behavior), our goal is

to continuously and systematically explore the behavior

of a distributed system. In this section, we first offer an

overview of how DiCE meets this goal. We then discuss

each aspect of our design in detail, together with its ra-

tionale and principles.

Overview DiCE runs online, alongside a deployed sys-

tem, off the critical execution path. Figure 1 gives a high-

level illustration of how DiCE tests running distributed

systems. First, one node in the system acts as an explorer

(node marked with a double ellipse in step 1 of Figure 1).

The explorer triggers the creation of a shadow snapshot,

i.e., a consistent and distributed snapshot composed of

nodes’ local checkpoints based on the current state of the

system (step 2). Then, DiCE exercises a variety of local

behaviors at the explorer that result in exploring system-

wide relevant states. As detailed later, the code, current

state, and inputs fed to the code determine how a node

behaves. Thus, DiCE uses a combination of techniques

to carefully construct the inputs that systematically ex-

plore node behavior.

The execution of each node behavior occurs in isola-

tion, over a clone of the shadow snapshot. The messag-

ing is also confined to the cloned snapshot. Each cloned

snapshot represents one instance of possible system be-

havior involving multiple nodes. DiCE detects faults by

checking for violations of given safety properties in each

cloned snapshot.

Using DiCE DiCE enables three modes of online test-

ing. First, it allows for a single input or configuration

2. Establish consistent shadow snapshot 

of isolated, local node checkpoints

2

3. Explore input/config change

over a lazily cloned snapshot

1

1. Choose explorer and trigger 

neighborhood snapshot creation

4. Check cloned snapshot for 

errors by collating {0,1} outputs 

of local function checks

4
f()

f()

f()

Figure 1: DiCE explores and checks system behavior over iso-

lated snapshots. DiCE determines the result of each exploration

by summing up 0 or 1 outputs of functions that run locally.

change to be presented at the explorer (basic “what-if”

building block). Second, it allows for systematic explo-

ration of federated system states. DiCE user does this

by writing and calling from the code a choice function

that locally mimics remote node and network failures,

random choices, etc., and writes the code that uses the

return value to perform one of many possible actions.

This type of exploration involves explicitly enumerat-

ing and exploring multiple individual inputs or config-

uration changes, and it uses the basic “what-if” block

for each such case. Third, DiCE can systematically and

automatically explore the code paths for relevant mes-

sage handlers at the explorer. This feature is highly rele-

vant in cases in which the code dominates node behavior,

e.g., when a configuration file is interpreted on-the-fly

or when message parsing code can create failures. This

mode effectively allows the explorer node to judge its

potential system-wide impact.

2.1 Exploring system behavior in isolation

In this section we describe the basic building block

of DiCE: testing with the single input or configuration

change, and gauging its impact across the neighborhood

on a node in a manner that respects privacy. DiCE does

this in isolation from the production system, starting

from a consistent snapshot of its current state [33].

2.1.1 Checkpointing state across nodes

Despite all the best efforts in thorough local testing and

configuration checking, there is no substitute for having

the ability to inspect distributed system state for potential

faults. This is challenging because the federated nature

of the systems we target makes it impossible to simply

retrieve state checkpoints from other nodes. Moreover, it

may be impossible to have the exact copy of the software

running at other nodes, as the system is fundamentally

heterogeneous. Finally, the entities controlling different

nodes might not be willing to reveal their configurations.
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A snapshot that respects trust boundaries Presented

with these constraints, we decide to let nodes keep their

state, code and configuration in a local checkpoint. A

checkpoint never leaves the node that creates it. How-

ever, the checkpoint has the ability to clone itself and re-

sume execution from its saved state and to communicate

with checkpoints belonging to other nodes. This way,

a node that wishes to explore its behavior can do so by

creating and executing inside a shadow snapshot, i.e., a

consistent, distributed set of individual node checkpoints

of the explorer’s neighborhood.

The explorer establishes a snapshot by sending an an-

notated message to its immediate neighbors, which for-

ward the message further on to their neighbors, etc. until

a desired scope is reached.

Isolating execution in a snapshot To prevent the ex-

ploratory executions from changing system state, each

node checkpoint is isolated from its environment. For

example, all outgoing messages are intercepted and, in-

stead of being transmitted over existing connections, are

sent over shadow connections that the checkpointed node

creates to the message destinations.

2.1.2 Detecting faults while respecting privacy

We detect faults by checking for violations of safety

properties in the cloned snapshots. These properties are

user-specified and we assume that they capture system-

specific invariants or describe the desired system behav-

ior. Some systems were designed with these types of

properties in mind. When that is not the case, the prop-

erties can capture the best system practices and the post-

mortem analysis of insidious faults that have previously

occurred, as is the case with BGP [25]. In addition, ap-

proaches exist to automatically infer safety properties in

distributed systems [43].

Checking properties across domains Let N be the

set of nodes, and Θi, i ∈ N denote the set of

node’s i states executing in the cloned snapshot. A

property, or global check, is expressed as a function

g(Θ1,Θ2, · · · ,Θ‖N‖) ∈ {0, 1}. Note that a global

check considers system-wide behavior and may poten-

tially require accessing information at multiple nodes in

different administrative domains.

To control the information shared across domains, we

introduce a narrow interface. We consider a subfam-

ily of global checks for which g(Θ1,Θ2, · · · ,Θ‖N‖) =
1 if [

∑
i∈N f(Θi)] > th, 0 otherwise; where f(Θi) ∈

N0 is a check that only accesses local state and th is a

property-specific threshold (e.g., 0).

In this scheme, a centralized entity (e.g., the explorer)

computes the global check as the sum of local check val-

ues1. To preserve privacy, the output of a local check

1A global check is decomposed into local checks; this might require

an ad-hoc protocol as we show later for detecting policy conflicts.

should not contain any private information. For exam-

ple, local checks can be written as: was there a certain

change in the node’s state? However, we anticipate there

could be cases when individual domains are not willing

to disclose local checks unless anonymity can be guaran-

teed, e.g., if a local check necessarily leaks private infor-

mation. At the expense of increased computational com-

plexity, we can control information sharing by securely

summing local check values so that only the final out-

come is known to participating nodes and single addends

are not known. Appendix A discusses one such scheme

for providing anonymous property checks.

2.2 Driving exploration of system behavior

The key step in detecting potential faults is to explore

possible system behaviors. In practice, the aggregate be-

havior is the result of interleaved actions of multiple sys-

tem nodes. To explore system behavior under different

scenarios, we could take a position atop the system from

where we would control all individual node actions and

their interleaving2. Unfortunately, this principle would

create the need for a third party responsible for orches-

trating state exploration in the targeted federated sys-

tem. Also, when considering a large-scale system, sev-

eral scalability issues would arise.

Because we want to let the nodes (and administrative

domains) maintain control of how they participate in the

system state exploration, we propose a different princi-

ple — focus on local actions of one node and let the ex-

ploration of a single node’s behavior reach out to other

nodes as a way to explore system state. This kind of ex-

ploration can take place one node at a time, in parallel,

or a combination thereof.

What drives node behavior In practice, the behavior

of each node is determined by the path taken through its

code. Keeping in mind that we resume execution from

a local node checkpoint, we note that the code that will

execute next is affected by (i) the current state and (ii)
what we collectively term as inputs. As illustrated in

Figure 2, the inputs encompass a variety of sources and

events: e.g., messages, configuration changes, timers.

Other less explicit inputs are events such as node failures

and random choices. Next, we discuss the three modes of

DiCE’s operation that progressively cover an increasing

number of possible inputs.

2.2.1 Testing a single input or configuration change

Testing a single input or configuration change is straight-

forward, and reuses the basic “what-if” exploration

building block. This testing mode is useful for quickly

checking whether a particular configuration change is

2Commonly done for model checking distributed systems [30, 45].
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Figure 2: DiCE explores executions from live state, and pro-

vides a number of means of controlling inputs that it can use to

explore system-wide behavior. Exploration occurs in parallel

with the production system.

safe, or whether a change to a message will not have

detrimental effect elsewhere in the system.

The node serving as the explorer, runs a controller,

which starts by demanding the creation of a shadow

snapshot (Section 3 describes the mechanism we adopt

in our prototype). To explore a particular input, the

controller instructs the explorer’s shadow checkpoint to

clone itself, and then resumes running from this cloned

checkpoint. Once the exploration with a particular input

completes3, the cloned snapshot is checked for faults as

described before.

2.2.2 Testing under network failures and different

local choices

The second mode of testing is useful for examining sys-

tem behavior under a variety of conditions and corner

cases that might be difficult to test otherwise: remote

failures, sequence of random choices, etc. The goal here

is to test for faults either prior to contemplating a config-

uration change, or in steady-state.

As shown in Figure 2, a variety of means can be used

to enable DiCE to drive the explorer’s behavior to reach

relevant federated system-wide states. However, how to

identify all these inputs is an open question which might

not have a general solution. In our experience, we find

that leveraging domain knowledge is an effective approx-

imation. For instance, anticipating some of the discus-

sion from the next section, we identify that a key aspect

of DNS name resolution is the random choice in query-

ing one of many possible name servers for a given do-

main name. This driver of node behavior is easy to rec-

ognize and, when encoded in a choice function that DiCE

can use to effect a fault, configuration change, or some

other input in general. By doing so, DiCE can explicitly

enumerate possible federated system states that are the

3Deciding on the termination of a distributed computation is a well-

understood problem [32] (Section 3.8.5).

result of nondeterminism including remote node and net-

work failures, random choices, etc. that is similar to the

approach taken by explicit state model checkers [46] for

single-machine code. Interestingly, property definitions

may give hints as to what inputs need to be exposed. For

example, persistent oscillations in BGP can be caused by

conflicting policies at different administrative domains.

Policies are encoded in router configuration. Treating a

policy configuration change as an input enables to exer-

cise the BGP route selection process and find potential

conflicts lurking in the configuration.

2.2.3 Systematically exploring node behavior

Because node behavior depends on the inputs, we might

want to explore a node’s behavior by subjecting the node

to a variety of possible inputs in a way that systematically

exercises its code paths. Given that this process is bound

to take longer, this model of testing is useful in steady-

state of the system, when we are interested in using the

time to proactively find as many faults as possible.

The literature presents us with a technique for this pur-

pose (automatically generating test cases from the code

itself). In software testing, symbolic execution [11] is a

technique that explores all possible code paths in a pro-

gram — symbolic execution treats the input variables of

the program as symbolic inputs, and during execution

collects the constraints that describe which input values

can lead to a particular point in the code. Albeit pow-

erful, this technique comes with significant program ex-

ecution overhead and, more problematically, it does not

easily interact with the environment due to the abstrac-

tion of symbolic values.

As these two aspects are crucial for testing a real sys-

tem that runs over the network, we look at a variant of

symbolic execution called concolic execution [10, 17,

23] which easily interacts with the environment and has

less overhead. This technique executes the code with

concrete inputs, while still collecting constraints along

code paths. To drive execution down a particular path,

the concolic execution engine picks one constraint (e.g.,

branch predicate) and queries the satisfiability solver to

choose a concrete input that negates the constraint. As

shown in Figure 2, this technique for automatically gen-

erating the inputs is optional and ties seamlessly together

with the rest of DiCE.

To exhaustively explore node behavior, we would ide-

ally explore all possible paths at the each node. While

concolic execution is in theory capable of exploring all

possible code paths, in practice it is severely limited as

the number of paths to explore grows exponentially with

the number of branches in the code and the size and

number of the inputs (think of each invocation of an if

statement that checks for end of input as an additional

branch). We discuss later in this section our insights for
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dealing with this problem.

Exercising node behavior to test system states The

explorer uses a previously encountered real input (e.g.,

a message) to record the constraints encountered on the

code path executed with that input (e.g., by invoking

a message handler). This initial set of constraints are

then passed on to the concolic engine. After complet-

ing the initial constraint recording, the concolic engine

starts negating predicates one at a time, resulting in a

set of inputs, each of which satisfies a particular con-

straint. To explore a particular input and check for its

outcome, the explorer uses the basic “what-if” mecha-

nism (the shadow snapshot is made only once and then

used for cloning).

The constraints during this new execution path at the

explorer node are once again recorded and fed to the con-

colic engine, which then updates the aggregate set of

constraints and keeps producing new inputs. Updating

the aggregate set is important for achieving full cover-

age, since the previous runs might not have reached all

branches that exist in the code.

When dealing with symbolic messages we observe

that concolic execution easily ends up creating many in-

valid inputs that simply exercise the message parsing

code. Also, if the message format allows for variable

length fields, we note that concolic execution has dif-

ficulties in producing messages where such fields are

shrunk or grown. Therefore, we find it useful to use

grammar-based whitebox-fuzzing [22] which leverages

knowledge of the message format to produce a large

number of inputs that quickly pass validation checks. We

apply the fuzzing code before the message handlers, and

rely on the domain knowledge to identify these handlers.

Countering exponential explosion of code paths In

addition to a thoughtful choice of symbolic inputs, we

have two key principles for dealing with the path explo-

sion and large input problems: 1) start the exploration

from current system state (the shadow snapshot). Doing

so eliminates the need to replay from initial state a poten-

tially large history of inputs to reach a desired point in the

code, and 2) explore behaviors that are a result of small

inputs, both size-wise and in number. The intuition is to

try to reach faulty states that are small deviations from

current state rather than being more exhaustive with the

associated exponential increase in states.

2.2.4 Preventing information leakage

Ideally, the data that is crossing the trust boundary among

the nodes should not reveal any confidential information.

At a high level, we observe that there are two main kinds

of information that can be leaked: potential node behav-

ior and configuration data.

Leakage of node behavior is a direct consequence of

systematic code path exploration. We argue however that

in a long-running system the behavior has already been

revealed for at least the most common set of code paths.

Configuration data can be leaked if the executed code

paths produce messages containing a direct copy of the

configuration data or an indirect manipulation thereof

from which the configuration data can be reverse engi-

neered. However, using concolic execution aids in in-

formation hiding. When the concolic engine wants to

negate a constraint, it can pick any random value that

negates the constraint to drive execution. Thus, the ran-

domized nature of these inputs limits this kind of infor-

mation leakage. In addition, we can annotate what data

is confidential and avoid recording constraints from the

code that handles the confidential data so that it cannot

leak into the inputs the concolic engine produces.

Additional measures can be taken, including: (i) rate
limiting the exploration or responses to property checks,

or (ii) refusing certain explorer nodes altogether in the

absence of any trust. In our future work we will do a

thorough study of the security-related aspects of DiCE.

2.3 Discussion

A number of issues, such as the (possibly parallel) or-

der in which the nodes act as explorers, the size of the

shadow snapshot, and the amount of resources devoted

to exploration at each node are application-specific and

orthogonal to this paper; we discuss them in more de-

tail in [12]. Here we only note that it is possible to limit

resource consumption during exploration using existing

primitives on many platforms.

Limitations The types of faults we can detect are a sub-

set of faults that can be detected in a general distributed

system [26]. We do not attempt to verify algorithms, pro-

tocols, or the operating system of the node. We do not in-

corporate Byzantine faults. To help it deal with this type

of faults, DiCE could directly benefit from schemes that

ensure accountability [25]. Further, we only check for

known classes of faults that are captured in the supplied

system-specific properties. We rely on the programmer,

experienced system operator, or an automated tool [43]

to identify these properties.

As with any fault detection solution, the potential

DiCE issues are false positives and false negatives. DiCE

can exhibit false negatives if the given properties are not

capable of discerning the faulty state. False negatives

also arise when there exists no code path that the con-

colic engine can exercise with small inputs to reach a

faulty state. False positives are less of a problem, as the

live execution over the cloned snapshot is evidence of be-

havior that is the result of processing a particular input.

However, the properties themselves should be defined in

a way that avoids false positives.

Note that the set of inputs that systematically covers
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message handling code on one node might not result in

full path coverage of other participants (when they run

using the inputs they receive in the shadow messages).

We cannot easily accommodate system-wide coverage

because we would need to share constraints with remote

nodes and we deem this unfeasible because of privacy

considerations. However, our evaluation with BGP and

DNS demonstrates that important classes of faults can be

detected without having system-wide path coverage.

Finally, DiCE is not a bug-finding tool that could be

used to pinpoint the location of programming errors.

DiCE is neither a traditional fault detection tool in the

sense that the faults it can find are not detected in the live

production system, but rather by reaching faulty states in

the cloned snapshots.

3 DiCE prototype and applications

This section discusses our DiCE prototype and its appli-

cation to two federated, heterogeneous distributed sys-

tems: BGP and DNS. For each case study, we present

a brief overview of the target distributed system and de-

scribe how we integrate DiCE with it.

Our prototype consists of a concolic engine, a part

written in C and integrated with the target systems, and

a Python implementation of the DiCE controller. We use

the Oasis [17] concolic engine as the basis for code path

exploration. Oasis instruments C programs to record

constraints on symbolic inputs during program execu-

tion. We discussed in [12] the modifications we made in

Oasis. These include support for exploring from current

state and the ability to use a single executable where both

the original and instrumented code co-exist for avoid-

ing performance overheads in the deployed system while

recording constraints during exploration. In addition, in

this work we change the Oasis filesystem/network model

to manage shadow connections.

3.1 Integration with BGP

Here, we present the BGP case study, and use it to de-

scribe the details of our DiCE prototype. We start by

providing an overview of BGP. We then discuss the in-

tegration of DiCE with the BIRD [5] open-source rout-

ing daemon. BIRD is written in C and supports multiple

routing protocols. It is in production use serving as a

route server in several Internet exchange points.

3.1.1 BGP overview

The Internet consists of tens of thousands of domains, so-

called autonomous systems (ASes). ASes are typically

administered by Internet Service Providers (ISPs). While

the ASes have freedom in choosing their intra-domain

routing protocol, Border Gateway Protocol (BGP) [38]

is the inter-domain routing protocol that acts as the glue

that ensures universal connectivity in the Internet and is

spoken at each border router.

Each BGP speaker maintains a routing table, or Rout-

ing Information Base (RIB) that associates a route to a

network prefix with the next hop router and the list of

ASes (AS PATH) that needs to be taken to reach a given

IP in that prefix. The routing information is distilled

into a Forwarding Information Base (FIB) that is used

to make packet forwarding decisions. BGP speakers es-

tablish their routing tables by exchanging UPDATE mes-

sages which announce routes (each composed of a prefix

and a bitmask length) along with their corresponding at-

tributes (e.g., AS PATH) and/or withdraw routes that are

no longer available.

Recently, the protocol has been extended to allow for

4-byte AS numbers [42], and thus the messages can

carry the optional AS4 PATH attribute. Legacy routers

that do not understand the 4-byte AS numbers do not at-

tempt to interpret the new attribute and simply pass it

along with their updates.

3.1.2 Implementation

For integrating with BIRD, we made a small number

of changes that fulfill the application requirements for

applying DiCE to BGP. Specifically, (i) we marked the

symbolic inputs (only a few LoC), (ii) we added support
for taking snapshots and managing shadow connections

(about 1300 LoC), and (iii) we exposed certain proper-

ties based on the local state that are queried by the con-

troller in order to detect faults (about 200 LoC). We now

discuss each of the implementation details.

Inputs For the reasons given in Section 2.2.2, we

choose to treat UPDATE messages and policy configu-

ration changes as the basis to derive new inputs during

exploration.

In BGP, UPDATE messages are the main drivers for

state change while the other state changing messages are

only responsible for establishing or tearing down peer-

ings and we leave them for future work. As the format

of BGP messages is well-defined in the RFC [38], we ap-

ply grammar-based fuzzing [22] to the path attributes and

we mark the Network Layer Reachability Info (NLRI)

region of the message as symbolic. An UPDATE mes-

sage can carry several path attributes each of which is

encoded as a type, length, and value field. To fuzz mes-

sage attributes, we create two symbolic inputs for each

attribute present in the initial message4. With respect

to the fuzzed message, we assign to these inputs the

meaning of attribute presence and length, respectively.

In other words, if Oasis picks a non-zero value for the

first input we include the attribute, otherwise we remove

4Except for mandatory attributes which we cannot exclude as a mes-

sage without them is an invalid input.
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Figure 3: DiCE prototype in action. Thin lines correspond

to the checkpoints being created from live state, dashed lines

denote cloned state and connections, and the dash-dotted lines

are DiCE controller actions.

it from the message; the attribute’s length is matched to

the second input. Therefore, Oasis can produce fuzzed

messages based on all combinations that these symbolic

inputs can have. In addition, Oasis can change the con-

tent of the NLRI based on the set of recorded constraints.

We define a further symbolic input that represents

changes to a route preference as it would be caused by a

configuration change. Specifically, this input reflects for

a given route whether that is the most preferred route or

not. Thus, Oasis can explore system behaviors for differ-

ent preferences in the explorer’s route selection process.

Snapshot We use Figure 3 as the guiding example of

DiCE’s operation in one round of exploration. Recall

that the explorer initiates the exploration by triggering

a checkpointing phase which results in the creation of a

consistent snapshot [33] (Figure 3 step 1). In the cur-

rent implementation, this is done by taking a checkpoint

at the explorer and sending an UPDATE message anno-

tated with a custom path attribute (step 1’). Enclosed in

the attribute are the checkpoint number, the IP address

of the explorer, a counter that is decreased at each hop

to confine the exploration scope, and a weight used for

termination detection (explained below).

A router that receives this annotated message inter-

prets the custom attribute and, if this is the first time it

sees the current checkpoint number, it takes a checkpoint

(step 1”). As BIRD runs a single process, the proce-

dure to take a checkpoint is simply implemented using

the fork system call. This way of checkpointing allows

us to create a large number of checkpoints with a small

memory footprint. When a checkpoint is created from

the BIRD process running in production, DiCE isolates

the forked process from its parent by closing the open

sockets5 and marking them as shadow sockets. Also, the

checkpoint is isolated from the FIB. Finally, DiCE opens

a new socket to listen for incoming shadow connections

on a different port from that used by the production in-

5Of course, this does not affect the production instance of BIRD.

stance of BIRD. With some implementation effort, the

same techniques could be applied to other, more com-

plex routing software6.

The dissemination of the checkpoint message is

achieved by announcing a route to a dedicated prefix

so that every router eventually receives the checkpoint-

annotated message. However, the explorer needs to be

acknowledged when the checkpointing phase ends. For

this purpose, we use a variation of the weight-throwing

algorithm for termination detection in a distributed sys-

tem [32]. Briefly, the explorer starts by sending the

checkpointing message with an initial weight (e.g., 1).

When a router receives the message, it keeps a part of

the weight for itself (e.g., weight ·1/(#neighbors+1))
and, while propagating the message, equally shares the

remaining part of the weight among its neighbors. A

router that does not propagate the message further keeps

the received weight for itself. Meanwhile, every router

reports its weight to the controller (step 1”). When the

reported weights sum up to the initial weight the con-

troller concludes termination of checkpointing and starts

exploring by running the Oasis concolic engine.

Exploration Oasis collects constraints along the

branches it encounters in the code. In our prototype, the

constraints come from: (i) the BIRD C code that deals

with UPDATE processing, (ii) the code for fuzzing path

attributes, (iii) the code for injecting policy changes, and
(iv) the BIRD configuration interpreter. Note that BGP

router’s behavior is a result of not only the code but also

configuration. This is why the concolic engine records

constraints for the interpreted configuration. Therefore,

the explored execution paths are comprehensive of both

code and configuration.

To perform path exploration, Oasis negates one con-

straint at a time and produces a new assignment of sym-

bolic inputs (step 2) which are used to drive one exe-

cution of exploration. First, an isolated BIRD process

is forked from the previously established shadow check-

point (step 2’). Recall we term a process forked from

a shadow checkpoint as cloned checkpoint. Before a

message exchange between cloned checkpoints can take

place, a connection is required to be setup. This is done

by connecting7 to the shadow checkpoint of the message

destination (step 2”) which creates a cloned checkpoint

(step 2”’). Note that only one cloned checkpoint per

node is created for each execution: the first connection

is handled by the shadow checkpoint, any subsequent

connection is managed by the cloned checkpoint itself.

Then, messages are exchanged over these connections

(step 3). When it receives the first message, each pro-

6For example, Quagga [6] is structured as a set of processes, one

per routing protocol. DiCE can be applied by controlling per-protocol

shadow connections, and by isolating the processes from the FIB.
7This requires a 2-way handshake to avoid race conditions.
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cess ignores the previously existent information about

the route(s) contained in the message. This is to ensure

that messages are propagated as they would in produc-

tion, because otherwise the BGP selection would ignore

the announcement.

The messages are extended to carry weight informa-

tion so that the same termination detection algorithm de-

scribed before is used to detect BGP convergence in the

cloned snapshot (step 3’). However, routing may not

converge if BGP is in an ill-state [24] within the snap-

shot. Therefore, during exploration, we use the method

in [18] to prevent persistent BGP oscillation under arbi-

trary filtering (explained in Section 4.2). Lack of con-

vergence due to system dynamics (session failures) are

tolerated by shutting down the failed BGP session at the

node at which a BGP error occurs.

When the controller detects that one execution termi-

nates, it queries (step 4) all routers that participated in

the exploration for properties that allow for fault detec-

tion as explained in Section 4. Then, exploration can

progress with another execution based on the next input.

When each execution terminates, the processes involved

in the exploration can terminate as well and release the

resources. The exploration then concludes when Oasis

has covered the paths reachable by controlling the com-

posite set of recorded constraints. At the end of the ex-

ploration all checkpoint processes are terminated as well.

Legacy routers and deployment To capture a system-

wide snapshot, the annotated message has to propagate

through the network and reach all routers within the ex-

ploration scope. This can be easily achieved by reserving

a prefix for this purpose which is announced to trigger the

checkpointing and withdrawn afterwards. This does not

require any modification to BGP because custom route

attributes are allowed in the protocol specifications, mak-

ing it possible to pass-through legacy routers.

DiCE could be deployed incrementally on BGP

routers. An ISP might configure a DiCE-enabled router

to send exploration messages to spare equipment which

can run in isolation and be monitored for observable er-

rors (e.g., through system logs). In addition, an ISP

could check for misconfigurations by deploying a sin-

gle DiCE-enabled route server configured with the ISP

policy and connected with similar machines or DiCE-

enabled routers at the neighboring ISPs.

3.2 Integration with DNS

We now build upon the first case study and describe the

important differences for applying DiCE with another

crucial system for the Internet infrastructure: Domain

Name System (DNS). DNS [34, 35] realizes a name reso-

lution service for the Internet that maps host names to IP

addresses. DNS is a distributed database composed of a

large number of hierarchically organized, autonomously

administered zones, each of which is a subspace of the

global namespace that is authoritative for the names that

share the same suffix with the zone’s domain name. Each

zone maintains a list of so called Resource Records (RRs)

for the domains under the zone’s authority. For example,

the A records map names to IP addresses; the NS records

identify authoritative name servers (ANSs). Typically,

name resolution is carried out by a DNS resolver. In the

basic form, given a name, the resolver queries one of the

ANSs belonging to the name’s domain.

Implementation Using the lessons learned during BGP

integration, it took us less than a week to integrate DiCE

with MaraDNS [2] 2.0.02, an open-source DNS server.

This time includes all the efforts to compile the code-

base, implement light-weight checkpointing, setup an

experimental testbed, read the DNS code, decide what

to make symbolic, and implement the code that drives

exploration. Overall, we added 74 LoC to MaraDNS to

integrate with the concolic engine, and another 78 LoC

to enable symbolic inputs.

We leverage the fact that DNS servers process queries

that do not change their state (we neglect the impact of

caching). This simplifies the integration because the de-

ployed nodes form a snapshot. We only instrument the

recursive resolver, and integrate it with DiCE.

Inputs In DNS, local node actions do not result in state

changes at remote nodes (we do not consider security

exploits). In principle, therefore, a single node cannot

be responsible for an event like system-wide session re-

sets such as in BGP. However, node behavior is not only

driven by code but also by configuration. In the case

of DNS, errors lurking in the system configuration are

an example of a cause of misbehavior that can be prob-

lematic for system reliability (e.g., the impossibility of

resolving certain domains [37]). In the absence of state-

changing operations, subtle misconfigurations manifest

themselves as the result of specific interleaving of node

actions. For DNS, that is the particular path (ordering

of nodes) in which a DNS resolver attempts to resolve a

domain name. Note that this path is also affected by fail-

ures of DNS servers or routing instabilities. We therefore

recognize the importance of achieving systematic explo-

ration of the system-wide execution paths during DNS

resolution.

To drive the exploration, we change the way the re-

solver decides which ANS to query when it has mul-

tiple choices. We introduce a get server() func-

tion that for each ANS list, maintains a subset of active

servers. Each time the resolver needs a server from that

list, the function selects one from the active subset. This

way, DiCE tries all the possible server subsets and all

the possible server combinations. In doing so, it mim-

ics the remote server failures that could cause different
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Figure 4: The topology we used in our BGP experiments with

harmful global events.

local choices, as well as the different random choices in

choosing a server.

4 Evaluation

In this section, we describe the way we evaluated our

DiCE prototype, including a detailed description of the

properties we use to detect faults.

4.1 Experimental setup

BGP setup In our experiments, we make use of a

48-core machine with 64 GB of RAM, running Linux

2.6.30. We install virtual interfaces on this machine, and

use them to configure and run multiple BIRD router in-

stances. We have previously quantified the memory over-

head (37%) and performance impact (8% in a stress test;

negligible in normal operation) of using a concolic en-

gine for path exploration of a BGP router [12].

The 27-router topology we use is shown in Figure 4,

and it corresponds to the topology used in [25]. We

further annotate the topology with link latencies (30 ms

among the routers in the same AS, 5 ms otherwise8) and

link capacities (620 Mbps), and install it into the Mod-

elNet [40] network emulator running FreeBSD 4.9 on a

separate machine. This setup allows us to subject indi-

vidual packets to link latencies and queuing delays that

mimic Internet conditions.

The BIRD instances within an AS are connected in a

full-mesh IBGP (internal BGP) topology, while the inter-

domain protocol is EBGP (external BGP). This setup

does not use route reflectors. The network includes a

mix of AS types (tier-1 ASes, tier-2 ASes and small

stub ASes) interconnected with either customer-provider,

peering or backup relationships as indicated by the ar-

rows in Figure 4. We loaded 319,355 prefixes into the

topology by replaying a BGP trace obtained from Route-

Views (RIB dump plus 15-min updates trace from route-

8This mimics the 60 ms RTT across the continental US an ISP in

the US would experience.

views.eqix at April 1, 2010, 17:28 UTC). BGP policies

were configured as in [25]: if a route is imported from

a customer, it is exported to all neighbors; if a route is

from a peer or provider, it is exported to customers only.

This set of policies adheres to the Gao-Rexford condi-

tions for stable routing [21] and therefore policy-induced

oscillations are not possible. In our network, all ASes

except AS 3 use customer route filtering to prevent their

customers (including customers’ customers and so on)

from injecting advertisements for prefixes they do not

own. We already showed in [12] how concolic execu-

tion can exercise a BGP router’s behavior in a way that

locally exposes potential origin misconfigurations (route

leaks). Because of space limit, we do not present its ex-

tension to a system-wide property.

DNS setup We run 5 nodes in the DNS testbed: one

recursive DNS server and four authoritative ones. The

recursive one uses the “deadwood” resolver from the

MaraDNS software package that we integrated with

DiCE. Other nodes run standard “maradns” servers,

without any source changes. The nodes and their roles

in our DNS experiments are as follows:

• Client: wants to determine the IP address of

foo.dd.aaa and knows only Node1.

• Node1: recursive server. Knows Node2 and Node5.

• Node2: authoritative server for the aaa zone. Pub-

lishes the following NS records for dd.aaa:

1. ns.dd.aaa (Node3)

2. ns2.dd.aaa (Node4)

3. ns3.dd.aaa (unreachable server)

4. ns.dd.bbb (glueless record)

• Node3: authoritative server for the dd.aaa zone. Has

the IP address of foo.dd.aaa

• Node4: redundant authoritative server for

the dd.aaa zone. Has the IP address of

foo.dd.aaa

• Node5: authoritative server for the dd.bbb zone.

Publishes one NS record:

1. ns.dd.aaa (glueless record)

The glueless record is a record that spans different do-

mains without providing “glue” (similar to the A record)

in the form of (name, IP address) that could be used to

reach a name server.

4.2 Testing configuration changes for pos-

sible policy conflicts in BGP

BGP has evolved over time to allow each ISP to indepen-

dently decide on the set of routes that will be announced

to each neighboring AS using a set of policies. These

policies capture business decisions and are often private.
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However, conflicting policies can cause undesired per-

sistent routing oscillations [41] which negatively impact

end-to-end performance of the Internet. We use the case

of checking for the effect of a change in the local policy

to showcase DiCE’s baseline “what-if” testing ability.

Note that policy conflicts are due to a design flaw in

BGP and only by changing the protocol itself the prob-

lem can be definitely addressed. In fact, a recent ap-

proach for resolving policy conflicts advocates changing

BGP [18]. Here we describe our approach for detecting

policy conflicts in a way that does not require protocol

modifications for the production traffic. Detecting con-

flicts is important, for example, to avoid oscillations due

to the use of backup routes that were not checked.

Griffin et al. [24] formally analyzed the Stable Paths

Problem (SPP) which is an abstraction of the problem

that BGP intends to solve in a distributed fashion. They

attribute policy-inflicted oscillations to a circular set of

conflicting rankings between various nodes which form

a dispute wheel. They show that the absence of a dis-

pute wheel ensures the existence of a unique, stable and

robust SPP solution. The work in [21] suggests that

ISPs observe a set of best practices to avoid the dispute

wheel, but these are unnecessarily restrictive and diffi-

cult to check in a distributed fashion. In order to prevent

policy-induced oscillations from occurring, Ee et al. [18]

augment BGPwith the global precedence value, which is

carried as an additional attribute in route announcements

and is used as discriminator in the BGP decision process

with higher importance than local policy preferences.

The key idea for detecting policy conflicts is to lever-

age the global precedence value to detect a policy con-

flict in a cloned snapshot while exploring a large number

of possible behaviors. Specifically, we implemented the

global precedence value [18] and we used it to ensure

that the routing protocol converges9. If during conver-

gence a route announcement contains a non-zero global

precedence value, it means that the snapshot contains a

dispute wheel, and therefore a policy conflict exists.

For our experiments with policy conflicts, we con-

struct a 5-node topology presented in [24], known as

GOOD GADGET. This topology presents a Stable Paths

solution. However, a single switch in the ranking of

paths (policy change) transforms it into a BAD GAD-

GET topology that has a dispute wheel.

DiCE successfully detected the possibility of a policy

conflict in this topology by systematically exploring the

consequences of one change at a time in the route prefer-

ence assignments. Overall, there were 75 iterations that

took 39 seconds to explore.

Benefits of using DiCE The ability to detect policy con-

flicts (and the resulting routing oscillations) before they

9Outside of exploration, the usual BGP decision process runs with

the node’s policy and unmodified protocol messages.

happen on the Internet is beneficial for allowing the free-

dom of policy decisions in order to accommodate the

complex objectives that govern route choices for ISPs.

4.3 Testing under failures and random

choices: cyclic dependencies in DNS

Pappas et al., [37] identified three important classes of

configuration errors in DNS, and the one they report be-

ing particularly difficult to identify is the cyclic zone de-

pendency. This error involves configuration of multiple

servers, and importantly, cannot be detected by inspect-

ing the individual server configurations. The error is also

insidious in that in the normal course of operation the

system functions correctly notwithstanding possible de-

lays. However, a particular failure pattern of authorita-

tive servers can cause resolution to take place via other

servers in a domain’s configuration, which then leads to

a cyclic dependency involving two or more servers that

cannot be resolved. This error results in domain names

becoming unresolvable and ultimately unavailable.

Using DiCE’s second testing mode (the choice func-

tion) we successfully detected a cyclic dependency in our

testbed after executing 502 explorations that took 532

seconds. The cyclic dependency is locally detected at

the resolver. In this case, the get server() function

chooses an execution path in which Node3 and Node4

are not queried (e.g., because they are considered to have

failed). Query resolution proceeds via Node5, but unfor-

tunately Node5 redirects the query back to Node2, where

the same decision to avoid Node3 and Node4 is made

again and again. The cyclic dependency would manifest

itself in the production system if Node3 and Node4 were

both to fail. This experiment demonstrates how DiCE

systematically explores system behavior under possible

failures in a case when it is not possible, or difficult, to

cause these failures to occur in the production system.

4.4 Testing BGP router code for possibly

causing harmful global events

To showcase DiCE’s ability to systematically use the

code itself to test it, we install a property that checks

for the presence of a particular event at a global scale,

akin to emergent behavior. An example that affected

BGP is the session reset problem [4]. The core of the

problem is the fact that the affected routers had diffi-

culty handling an update in which the AS4 PATH at-

tribute had zero (0) length. The router receiving such

an update would not crash, but it would reset the ses-

sion with the sender of the message. In strict isolation,

this seemingly valid handling of a semantically confus-

ing message would not have a far-reaching impact. Un-

fortunately, a large fraction of routers were not affected

by this programming error and were effectively multi-
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casting the session reset signal. Each session reset is

followed by a new session establishment that triggers a

full routing table download and route processing that is

CPU intensive. Moreover, the routing updates containing

the confusing AS4 PATH attributes would then be rede-

livered to the affected routers, causing another round of

session resets, and so on. As a result, the peak update

traffic in the Internet was increased by more than a fac-

tor of 10 (1000%) [4]. Operators had to manually install

packet filters to prevent this fault from recurring.

To enable DiCE to detect this type of a fault, we install

the property which signals a possible fault whenever a

router resets the session (seen as an increase in the BGP

error count) in response to an exploratory message. To

trigger this fault in our testbed, we replicate the previ-

ously described scenario [4] to the extent possible as we

do not have access to the Cisco IOS code. We introduce

code into BIRD (already 4-byte AS-compliant) that re-

sets the session when a zero-length AS4 PATH attributes

arrives. The routers that are configured to be affected by

the confusing attributes are marked with a circle in Fig-

ure 4. Note that AS 165053 is using a 4-byte AS num-

ber. The update containing the zero-length AS4 PATH

was generated using a fuzzed message.

Detection results We instructed the routers in our

testbed to perform exploration after finishing loading the

319,355 prefixes. The routers use an actual message to

record the constraints. Different routers explore a differ-

ent number of iterations on the same code because of the:

1) different messages that end up being used to initially

record the constraints, and 2) different C code that gets

instantiated by BIRD to enforce the filtering commands.

However, Oasis reported that it had explored all paths at

each router. The maximum number of explorations was

2002, minimumwas 7 while the average number was 763

and std. dev. of 586. Routers 23 and 27 explored with 7

inputs because they only accept a default route and have

no filtering enabled. The maximum observed time was

670 s to explore the total of 1156 explorations. The av-

erage time to explore was 243 s with a std. dev. of 204 s.

We also measured the exploration time without account-

ing for network delays by repeating the experiments with

the same initial messages, but without Modelnet. Over-

all, the times are smaller with an average of 155 s and

std. dev. of 113 s.

Given the timescale over which the Internet incidents

occurred due the erroneous configuration files and soft-

ware (likely to be in place for weeks if not months), the

time DiCE took to detect these faults is negligible.

Benefits of using DiCE Armed with a property that

checks the BGP error count (which can be increased due

to a variety of different reasons), DiCE produces a list

of possible actions that can cause the systemwide error

count to go over the threshold. Each ISP would ben-

efit from this advance warning and could take a num-

ber of actions, including: 1) notifying the router vendor

and requesting a patch, 2) manually fixing the code if the

source is available, and 3) automatically installing filters

to filter out the offending message (if the action is caused

by message). Without DiCE, this kind of repair was un-

dertaken only after the reset incident took place across

the Internet and was diagnosed after several hours [4].

5 Related Work

Model checking. CrystalBall [44], and MODIST

[45] represent the state-of-the-art in model checking

distributed system implementations. CrystalBall [44]

proactively predicts inconsistencies that can occur in a

running distributed system due to unknown program-

ming errors, and effectively prevents them. It works for

systems implemented in the Mace [29] framework. Crys-

talBall nodes periodically collect a consistent snapshot of

system state, and locally run a model checking heuristic

on the set of state machines instantiated from the snap-

shot. MODIST [45] is capable of model checking un-

modified distributed systems. One could use MODIST

to orchestrate state space exploration across a cluster of

machines in an isolated (non-deployed) scenario.

DiCE goes beyond these approaches in several impor-

tant aspects because it: 1) can uncover faults due to in-

puts that are different than those fed by the model check-

ing harness, 2) deals with the issues arising from federa-

tion (need for privacy, inability to retrieve state and con-

figuration), and 3) incorporates the intrinsic heterogene-

ity of the system (nodes behave differently either due to

different implementations, or configurations).

Symbolic execution. Symbolic [11] and concolic ex-

ecution [10, 17, 23] are effective in discovering bugs in

single-machine code by trying to achieve complete cov-

erage of possible code paths. However, they are limited

in their ability to reach faulty states as they cannot handle

large inputs in long-running systems and realistic config-

uration (e.g., Klee [11] works with only several bytes of

input to achieve good path coverage). In addition, these

engines are only successful in searching for violations of

local assertions (e.g., memory violations). Thus, without

the spatial awareness achieved by DiCE, it is not possible

to judge the system-wide impact of node actions.

KleeNet [39] builds a test harness that accommodates

messaging and fault injection on top of Klee [11]. To

search for bugs, KleeNet arranges for path exploration

among the set of TinyOs nodes running in isolation on

one machine, prior to deployment. This approach is thus

similar in spirit to model checking that starts from initial

state, along with the shortcomings in dealing with long-

running, federated, and heterogeneous systems.

Relative to symbolic execution approaches, DiCE: 1)
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explores system behavior starting from live state and

configuration which is crucial for overcoming the path

explosion problem in long-running systems, 2) provides

a way to control inputs to a single node that explore rel-

evant federated system states, 3) adapts to the federated

environments by providing a narrow interface for shar-

ing the information of local checks, and 4) accommo-

dates system heterogeneity by allowing each administra-

tive domain to separately integrate DiCE.

There have been proposals for performing path explo-

ration at selected points in time on a single-machine [15].

Extending this work to handle networked systems require

developer’s involvement in eliminating inconsistent or

impossible states. DiCE provides this information nat-

urally, using the system itself. We have highlighted chal-

lenges of fault detection in federated, heterogeneous sys-

tems [13]. DiCE is a system that addresses these chal-

lenges. In our short paper [12], we present a preliminary

DiCE design, and detail our experiences in integrating a

BGP router with a concolic execution engine. This pa-

per goes beyond our short paper in that it: 1) shows how

to carefully checkpoint the system to allow the concolic

engine to extend its reach across the network, 2) shows

how to control the inputs to the concolic engine to enable

it to reach relevant federated system states, 3) includes

a privacy-preserving scheme for checking properties, 4)

presents a disjoint set of experimental results involving

BGP, and 5) details our experience of integrating DiCE

with DNS, along with the accompanying experimental

results.

MAX [31] uses symbolic execution to find protocol

manipulation attack which can be harmful to a network

participant. In contrast, DiCE determines the impact of a

node’s actions on the remainder of the system.

Castro et al., [14] use symbolic execution and con-

straint solving to randomize inputs that cause application

crashes in an effort to improve privacy of bug reports.

DiCE applies a similar idea, but to a different domain

and for new functionality (fault detection).

Application-specific fault detection and prevention

Tools that look for faults in the set of router configu-

rations using static analysis [19] can be quite effective,

but cannot check live state spanning multiple nodes, and

their configuration (which can differ from the statically

checked files). The work on NetReview [25] posits that

is difficult to prevent all classes of faults, and argues that

the best we can do for the general case is to detect faults

in BGP after they occur. DiCE goes one step further in

that it detects important classes of faults before they man-

ifest themselves.

Alimi et al. advocate use of shadow configuration as

a network management primitive [7]. This approach in-

stalls an alternative configuration within a single ISP’s

routers, and checks its validity. DiCE’s shadow snap-

shot bears resemblance to this “shadow config” primi-

tive, but: 1) is lightweight (works on existing router pro-

cesses), 2) is automatically created without operator in-

volvement post-deployment, 3) can span multiple ISPs,

and 4) serves to detect faults due to unanticipated in-

puts [4], bugs, or operator mistakes before they are tried

out or put into effect. DiCE can benefit from virtual net-

work substrates (e.g., [9]) to simplify shadow and cloned

snapshot creation.

Bug-Tolerant Routers [27] run multiple router imple-

mentations in parallel using virtualization, and mask

faults by voting and changing the environment of the

router processes. In contrast, DiCE possesses the neces-

sary spatial awareness to detect semantic faults that span

multiple routers, systematically explores node behavior,

and does not require multiple router implementations.

Proposals exist for dealing with specific BGP faults,

e.g., oscillations [18]. We argue that it is better to detect

a large class of faults before they occur. It is then possi-

ble to devise general or specific solutions for preventing

them. Our work is complementary to the numerous secu-

rity extensions to BGP (e.g., [28]) which prevent certain

classes of attacks. However, these works cannot guard

against programming errors or policy conflicts.

Pappas et al., [36] have proposed and implemented

a third-party tool that periodically downloads DNS re-

source records belonging to a large number of domains,

and checks them for cyclic dependencies (as well as other

misconfigurations). We demonstrate DiCE’s ability to

automatically accomplish a similar task within DNS it-

self, where there is a clear incentive for the DNS admin-

istrators to identify and eliminate cyclic dependencies.

6 Conclusions

We presented the design and implementation of DiCE, a

system for detecting faults in the long-running, heteroge-

neous, and federated distributed systems. DiCE enables

system operators to first specify properties that capture

the desired system behavior. DiCE then: 1) automati-

cally and systematically explores a large number of rele-

vant executions, 2) checks their system-wide impact in

isolation while respecting privacy among different ad-

ministrative entities, and 3) reports safety property vi-

olations. We integrated DiCE with two systems crucial

for Internet’s operation: BGP and DNS. This paper de-

scribes the lessons we learned on how to control inputs

fed to nodes in order to explore relevant system-wide

state. Our evaluation demonstrates DiCE’s effectiveness

and ease of integration with existing software written in

C. Specifically, our prototype quickly detects faults that

can occur due to policy conflicts, misconfigurations, and

programming faults.
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[36] V. Pappas, P. Fältström, D. Massey, and L. Zhang. Distributed

DNS Troubleshooting. In NetT, 2004.

[37] V. Pappas, D. Wessels, D. Massey, S. Lu, A. Terzis, and L. Zhang.

Impact of Configuration Errors on DNS Robustness. IEEE J.Sel.

A. Commun., 27:275–290, 2009.

[38] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4

(BGP-4) IETF RFC 4271. 2006.

[39] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,

S. Kowalewski, and K. Wehrle. KleeNet: Discovering Insidious

Interaction Bugs in Wireless Sensor Networks Before Deploy-

ment. In IPSN, 2010.

[40] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
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talBall: Predicting and Preventing Inconsistencies in Deployed

Distributed Systems. In NSDI, 2009.

[45] J. Yang, T. Chen, M.Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,

L. Zhang, and L. Zhou. MODIST: Transparent Model Checking

of Unmodified Distributed Systems. In NSDI, 2009.

[46] J. Yang, C. Sar, and D. Engler. EXPLODE: a Lightweight, Gen-

eral System for Finding Serious Storage System Errors. In OSDI,

2006.

A Anonymous property checks

We now describe a proof-of-concept scheme that uses a

protocol for Secure Multy-Party Computation (SMPC)

based on the threshold variant of Paillier’s cryptosys-

tem in [20]. Let D denote the set of participating do-

mains, Nj be the nodes of domain j ∈ D. We assume

there exists an out-of-band mechanism for disseminat-

ing a shared public key PK and a list of private keys

SK1, · · · , SK‖D‖. Each domain j sends the cyphertext

EPK(
∑

i∈Nj
[f(Θi)]) to all other domains. Next, each

domain leverages the homomorphic property of the cryp-

tosystem [20] to compute c = EPK(
∑

i∈N [f(Θi)]) =∏
j∈D EPK(

∑
i∈Nj

[f(Θi)]). The decryption of c is

shared across all domains. Specifically, each domain j
runs a decryption algorithm using SKj that produces a

decryption share cj and sends it to other domains. Fi-

nally, each domain inputs cj , ∀j to a combiner algorithm

that outputs
∑

i∈N [f(Θi)]. Comparing this value with

the threshold th gives the global check.

We implemented the above protocol in Java using

“thep”10 as a starting point. We ran a micro-benchmark

to evaluate its performance using the same experimen-

tal setup used for BGP. With respect to the experimen-

tal topology (Figure 4), we only used one node per AS

because we assume that nodes inside the same domain

would trust each other. In summary, we obtained that the

times needed for one secure computation are 417 ms and

1979 ms for running without and with ModelNet, respec-

tively. This result leads us to a conclusion that a version

of DiCE prototype supporting SMPC should implement

secure computations as a pipeline running in parallel to

the system exploration process, and batch multiple com-

putations together.

10A Java implementation of Paillier’s cryptosystem http://

code.google.com/p/thep/.
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