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1 Abstract

In Europe, low back pain (LBP) affects the quality of life of up to 30% of

the active population. Although the origin of LBP is not well identified and

is probably not unique, epidemiological studies suggest that the severity of

the disease is correlated with mechanical factors. The lumbar spine is a

complex structure where bone, cartilage, ligaments, and muscles have spe-

cific and functional mechanical interactions that depend on the shape and

structure of each tissue. Thus, any local tissue abnormality may generate

non-physiological loadings on surrounding tissues, extending or catalysing

a pre-existing degenerative process. To date, lumbar spine finite element

modelling is one of the most promising methods to thoroughly investigate

functional load transfers between the different spine tissues. However, many

geometrical or mechanical parameters used for tissue modelling are still not

quantified and need to be assumed.

Previous computational studies demonstrated that the intervertebral disc

(IVD) plays a key role in distributing the internal forces across the lum-

bar spine structure. Within the IVD, together with the nucleus pulposus

(NP) pressure, the annulus fibrosus (AF) collagen organization is one of the

most influential parameter for the disc stabilization. However, AF colla-

gen organization is not unique and seems to depend on the particularity of

spine morphologies. Therefore, any lumbar spine model based on partic-

ular geometrical data would require specific definitions of fibre-induced AF

anisotropy. Unfortunately, particular AF anisotropies are hardly measurable.

Thus, the present project aims to investigate the stabilization of a L4-L5
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lumbar spine bi-segment finite element model as a function of the AF fibre

orientations. For this, a mathematical function, based on local AF matrix

shear strains, fibre stresses and fibre stress distribution has been proposed.

In this function was implemented and was partially validated on smaller AF

model. Enhancements could be proposed and be applied to the L4-L5 model.

Methods and procedure to optimize annulus AF orientations could be vali-

dated. The proposed evaluation function had to be changed. It was found

that an optimal orientation depends mainly on fibre stress and matrix shear

stress. The optimizations converged to average angles between 32 and 68

and radial gradients between 10 and 17 degree. Tangential gradients could

not be found. Moreover a critical fibre angle could be determined where fibre

under uni-axial load are not loaded any more.

Using literature data it was possible to solve one of the main issues of colla-

gen fibre orientations in the AF and to bring together the two hypothesis of

either a only radial or only a tangential gradient.

Moreover it was concluded that pre-stress respectively hoop stress is an non-

negligible factor which has to be accounted for in IVD finite element models.

2 Introduction

This report resumes the work which was done during the Master thesis of

Andreas Schmocker at the Institute for Bioengineering of Catalunya (IBEC).

It was supervised by Jérôme Noailly and Damien Lacroix (IBEC) and tutor-

ized by Dominique Pioletti from the Swiss Federal Institute of Technology
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(EPFL).

On one hand it shall illustrate the scientific findings of the of the last four

months and on the other hand it is dedicated to any person continuing the

project or the research line.

The introduction has a top-down structure, starting with low back pain,

the final reason of our research, then introducing anatomical and structural

issues, getting more and more specific within the state of the art.

2.1 Low back pain

According to the European Agency for health and safety at work almost

30% of the population has low back pain sometime. Men and women are

equally affected. It occurs most often between ages 30 and 50, due in part to

the aging process but also as a result of sedentary life styles with too little

(sometimes punctuated by too much) exercise. The risk of experiencing low

back pain from disc disease or spinal degeneration increases with age. To

counter low back pain various therapeutic modalities have been attempted

with minimal long-term success to alleviate the poorly described disc-related

pain[1].

Yet, heavy loading conditions and high flexibility make the human lumbar

spine to be quite sensitive to daily poor ergonomic factors and convert it into

a preferential site for mechanically induced traumas and degenerations [2].

There is no single cause for low back pain. The following conditions could

be related to it [3]:

(a) Bulging disc
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(b) Cauda equina syndrome

(c) Spinal stenosis

(d) Skeletal irregularities

(e) Fibromyalgia

(f) Spondylolystois

Although low back pain has always affected human beings, it has turned into

one of the major healthcare problem of the industrialized countries [2]. 30%

of European workers suffer from back pain and between 60% and 90% of

people will undergo low back disorders at some point in their life [4].

According to [5], in Belgium, 29% of the total number of sick-leave days are

attributable to low back pain which corresponds to a total economic loss of

992.6 million Euros or 5.7 million days of absenteeism per year. In the United

Kingdom, back pain was identified as the most common cause of disability

in young adults with a 100 million labour days lost each year. In Sweden in

1987 a total number 28 million days lost was reported [6]. Extrapolating the

data from Belgium and assuming a population of one billion (for the US and

Europe without Russia) the total economic cost in the western world could

be roughly estimated around 100 billion Euros a year.

2.2 The human spine

The main function of the spine is to transfer external loads through the

body. It also ensure controlled flexibility between head, trunk and pelvis
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and the protection of the spinal nerve roots from loads, shocks and excessive

displacement [7, 8]. The human spine consists of 33 or 34 vertebra and 23

intervertebral discs (IVD), and is atomically divided into five subsections

(Fig. 1), listed from the head to the pelvis:

(a) Cervical spine (C1-7)

(b) Thoracic spine (T1-12)

(c) Lumbar spine (L1-5)

(d) Sacrum (S1-5)

(e) Coccyx

Each subsection is characterized by its own vertebra morphology, which is

correlated with the required flexibility or resistance to the transferred loads.

Except the for sacrum, the coccyx and the first two cervical vertebra a IVD

is sandwiched between all vertebra.

2.3 Lumbar spine

2.3.1 Anatomy

The anterior and main part of a vertebra, the vertebral body, consists of

trabecular bone which is surrounded laterally by a cortical shell and by the

bony endplates, at the higher and lower end. The vertebral bodies bear the

main loads the lumbar spine is exposed to. The posterior parts, the pedi-

cle, lamina and the processes (Fig. 2) contribute to block extensive rotations
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Figure 1. The spine, schematic view of the osseous lumbar spine, including
vertebral discs [9].
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around the three anatomical axis and protect the spinal nerve roots.

With heights of 8 to 10 cm, the lumbar IVDs account for 30% - 35% of

the total lumbar spine height. With an average diameter around 4 cm, the

lumbar IVD surface transversal cross-section is bigger than that of the other

IVDs. They provide flexibility and absorb and transmit loads. Therefore,

the lumbar discs consist of a specialized structure, particularly able to re-

sist compressive loads, while enabling the mechanically complex movements

required between the trunk and the pelvis. The nucleus pulposus (NP) in

the center is surrounded by the annulus fibrosus (AF) laterally and by the

cartilaginous endplates at the bottom and top ends (Fig. 2).

(a) (b)

Figure 2. Vertebra body and annulus fibrosus a) Two spinal segments with
its major components [10] b) vertebral body(1), annulus fibrosus
(2), nucleus pulposus (3), cartilagous endplantes (4) and spinal
nerve root(5)[1].
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2.3.2 Load transfer between the vertebra and IVD

The U.S. Consumer Product Safety Commission estimates that more than

13,260 injuries related to backpacks were treated at doctor’s offices, clinics,

and emergency rooms in the year 2000 [3].

Due to their position and as a consequence of muscle forces, the vertebrae

and IVD in the lumbar spine have to resist to higher loadings than in other

spine sections.

Compared to the IVD tissues, the vertebrae are much stiffer. However, the

compressive loadings transmitted by the vertebra can be efficently bore by

the IVD through a coordinated action between the nucleus pulposus and the

annulus fibrosus. When compressed between the vertebral endplates, the soft

and gel-like nucleus will is pressurized and extends laterally, which stresses

the AF fibres. In other words, as the spine is loaded in compression or bend-

ing (the primary loading modes of the spine), tensile loads are transmitted

to the well-organized, lamellar collagen fibre structure of the annulus fibro-

sus. Compression of the intervertebral disc results in outward bulging of the

annulus fibrosus and fibre strains in the order of 3% [11].

2.3.3 Importance of the AF and its structure

Within each AF region, collagen bundles are distributed into concentric lay-

ers characterized by preferential fibre orientations [12, 13]. Typically collagen

fibres have no compressive stiffness but provide most of the AF mechanical

strength, as they can locally reorient and stretch [14] to resist tissue trac-

tions and/or AF bulging when the disc is under compression. Anchored to
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the top and bottom vertebrae, AF collagen bundles can also stretch as a

response of IVD shear deformations. Thus, they play a key role in mechani-

cally reinforcing the IVD and transmitting loads to other spine tissues under

any kind of mechanical loading. However, since before stretching AF fibres

need to align with the local loads felt by the annulus, IVD reinforcement and

load transmissions should partly depend on undeformed fibre orientations.

Accordingly several groups showed that AF and IVD mechanical proper-

ties depend strongly of fiber angle values [15–18]. Moreover it was reported

that degeneration had a significant effect on fibre reorientation, which prob-

ably contributes to the mechanical disfunctioning of the degenerated disc.

Therefore characterizing fibre initial orientation and reorientation in the hu-

man AF is important in order to fully understand and accurately model

the relationship between IVD structure and function, and design functional

tissue-engineered intervertebral discs [19].

2.4 State of the art

2.4.1 AF Anatomical description

The human lumbar AF is made out of 15 to 25 concentric collagen fibre

[12] layers laterally wrapping the nucleus pulposus. The fibre orientation

alternates from positive to negative from one layer to the next and forms a

criss-cross pattern with altering fiber angle (fig. 5 and 3). Fibres consist out

of collagen type I and II with collagen ratios1 changing from layer to layer.

The highest collagen I ratio is found in the outer AF decreasing gradually to
1Collagen I is stiffer than collagen II.
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the inner AF. In total the collagen content rises up to 60% of the dry weight

[20].

(a)

α

(b)

Figure 3. a) Oriented cells of the embryonic annulus fibrosus [21] - collagen
bundles are orientated in a criss-cross pattern. b) Global fibre
angle constitution in the AF and definition of the fibre angle α.

In the literature several different fibre orientations exist:

(a) Constant fibre orientation of 30 ◦ in all AF layers and tangential seg-

ments (anterior, posterior, etc.) [12, 22]

(b) Fibre angles increase form 28 ◦ in the outer to 45 ◦ in the inner AF, no

tangential change [23]

(c) No change in radial direction (through the tissue thickness), fibre angles

change form 23.5 ◦ in the posterior to 67.3 ◦ in the anterior AF[24]

(d) Fibre angle decrease from the outer to the inner AF except for the

posterior section. Tangentially maximal fibre angles (∼10 ◦;outer to

∼0 ◦;inner) were found in the posterior part and minimal fibre an-

gles (33-57 ◦;outer and 65-70 ◦;inner) in the right anterior-lateral section

[25].
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Measurement b) and c) are schematically represented in (Fig. 4). These qual-

itative differences in AF fibre criss-cross pattern angle distributions lead to

the question whether specific local angles maintain a functional relationship

with local loadings and/or geometrical characteristics.

anterior

28°(67.3°)

posterior

28°(23.5°)

45°(23.5°)

45°(67.3°)

α
r

∇ α
t

∇
0

α

α

Figure 4. Representation of a semi annulus fibrosus. The criss-cross pattern
changes from outer to inner AF and form anterior to posterior.
The given angles present measurements (b): a radial gradient
∇rα of +17 ◦ [23] and (measurement (c): a tangential gradient of
-43.8 ◦) [24].

2.4.2 Evaluation of collagen fibre orientations in soft connective

tissues

i) Aorta and articular cartilage

An important topic in tissue engineering is remodelling. Several groups tried

to model remodelling collagen fibre orientations in soft connective tissues,

especially the aorta, aortic valves and different cartilages. Driessen proposed

two algorithms based on the following hypothesises [26–28]:



14 of 109 2.4 State of the art

(a) Collagen fibres align in the (positive) principal strain directions, re-

spectively the directions of the eigenvectors with a positive eigenvalue.

(b) Collagen fibres align between the principal positive strain directions

according to equation 1. The ep being the preferred fibre direction.

~ep,i = g1~e1 ± g2~e2√
g2

1 + g2
2

(1)

Where gi:

gj =


εj if εj > 0

0 if εj < 0
(2)

εj being the eigenvalue corresponding to the eigenvector ~ej. In the

case of one positive principal strain direction (i=1), one preferred fi-

bre direction ~ep,1 is predicted. In case of two positive principal strain

direction (i=1,2), two preferred fibre directions ~ep,1, ~ep,1 are predicted.

Remodeling analysis based on hypothesis a) could not reproduce the helical

collagen orientation found in arteries. In articular cartilage the remodelling

rule of hypothesis b) correctly predicted the collagen architecture, while hy-

pothesis a) failed [28].

Moreover, Hariton et al. [29] suggested that collagen fibres align between the

two highest principal stress directions similar as in Equations (1) and (2),

but ei being two eigenvectors attributed to the two highest positive stress

eigenvalues, and εj being replace by those eigenvalues [29]. The hypothesis

was able to model the collagen structure in the arterial wall and to minimize

local shear stress and strain.
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ii) Annulus fibrosus

In the IVD Noailly et al.[30] proposed a new type of collagen orientation

evaluation function for the AF. This function takes into account fibre stress

magnitude, fibre stress distribution and strain in the ground substance re-

spectively the cells around the collagen fibres. Results were promising, since

the proposed function was able to quantitatively relate the local AF loading

to the studied local AF fibre orientations. A further evaluation of this func-

tion in terms of optimal fibre orientation prediction will be the main subject

of this work and is precisely described in section 3.1.

2.5 Objectives of the project

As demonstrated previously, in most connective soft tissues, primary fibre

orientations are correlated to mechanical loadings. In tissues like arteries,

tendons, or ligaments, load patterns are sufficiently simple and repetitive so

that maximum principal strain directions correspond to the alignment of the

reinforcing fibres [31]. However, in fibrous tissues resisting to complex loads,

the relation between primary fibre orientation and external loadings is not

straightforward.

For lumbar spine AF’s, different orientations in the literature suggest that

fibre alignments are dependent on individual morphologies and physical ac-

tivities. Thus, to explore the fibre-related stabilization of such tissues, a

quantitative relationship between local fibre and tissue loadings was estab-

lished, assuming that optimally oriented fibres should bear as much load as
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possible, while limiting load concentrations and shear deformations within

the tissue. The potential of such hypothesis to give rational fibre orienta-

tions will be tested through an optimization procedure. Thus, the aim of this

master thesis is to evaluate a newly proposed objective function for AF fibre

orientation, if necessary propose improvements and finally apply the algo-

rithm to a complete lumbar spine L4-L5 segment finite element (FE) model,

in function of different loads.

3 Materials and methods

In this section, the lumbar spine segment FE model and the fibre orientation

optimization procedure will be introduced. Moreover, the validation process

and runtime respectively convergence improvements are presented at the end

of the section.

3.1 Evaluation function

In this study, the ”evaluation function”, ”objective” or ”fitness function” is a

function attributing to a simulation output (e.g. displacement, strain, stress

etc.) a normalized positive value that is a measurement or an evaluation of

the current (simulated) fibre distribution. This objective function, the fibre

contribution quality (FCQ)[30], will be used at every optimization step. It

was constructed from the hypothesises that an optimal AF fibre criss-cross

angle distribution shall:

(a) Maximize fibre stresses
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(b) Counterbalance non-uniform fibre stress distributions trough the AF

thickness

(c) Minimize matrix shear strains

Assumption a) was based on the mechanical fact that collagen fibres in soft

connective tissues are the element providing the tissue with its main resis-

tance. b) refers to the ability of fibres to avoid load concentrations , possible

source of damage. This is based on an analogy with the hoop stress reduction

in tick walled vessels [32]. c) refers to the ability of fibres to limit matrix

shear strains, according to the functional role of layered structures, from

an engineering point of view [33]. These hypothesises led to the following

mathematical parameters:

(a) Radial Mean Stress (RMS)

RMS =
∑Nf

i=1 σfibre,i
Nf

(3)

σi being the stress in fibre i and Nf the total fibre number. RMS is zero

when all fibres are unloaded and maximal when the fibres are aligned

with the highest principal stress direction.

(b) Radial Stress Distribution (RSD)

RSD =
Nt=4∑
t=1

√
4a2

t + b2
t (4)

where a and b are the coefficients of the first and second order degree

terms of the fibre stress’s quadratic regression over all fibres through
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the AF thickness for one AF tangential quadrant i.e. anterior, lateral,

posterio-lateral or posterior quadrant:

σ(r)t = atr
2 + btr + c (5)

Where t = anterior, lateral, posterio-lateral, posterior. RSD is zero in

the case of a constant stress distribution and increases as fibre stress

gradients appear through the AF thickness.

(c) Matrix Shear Stress (MSE)

MSE =
∑Ne
j=1 εmax,j − εmin,j

2Ne

(6)

εmin,j respectively εmin,j being minimal and maximal principal matrix

strains at integration point j and Ne the total number of integration

points. MSE is low in the case of mainly volumetric strains and in-

creases with the degree of deviatoric deformation in the matrix.

The three parameters were normalized and scaled between zero and one

(Eq. 7)

RMS = RMS −RMSmin
RMSmax −RMSmin

(7a)

RSD = RSD −RSDmin

RSDmax −RSDmin

(7b)

MSE = MSE −MSEmin
MSEmax −MSEmin

(7c)

and integrated (Eq. 8) into one function, the Fibre Contribution Quality

(FCQ) which was designed to reach a maximal value of one (optimal fibre
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distribution) and minimal value of zero (worst fibre distribution).

FCQ = log(1− e−2 + eRMS−RSD−MSE)
log(1 + e1 − e−2) (8)

One important issue is how to define minimal and maximal values for pa-

rameter scaling and normalization (Eq. 7). First, six optimisations were run

to find each of them. Yet, due to computation time but also to the posi-

tion of minima and maxima, this was not a realistic option, especially for

large FE models and was therefore aborted. Second option was to evalu-

ate a limited number of fibre orientations, where maximal or minimal values

were expected and then to adapt dynamically, if the algorithm encountered

a lower or higher parameter value during the optimisation. However, this

method was considered not to be deterministic enough, because it was some-

times difficult to say where a maximal and minimal parameter values occur.

Thus, in the end fibre angles were changed between 0 and 90 degree for α,

∇rα and ∇tα using a step size of 10 ◦. Out of this different fibre orientations

maxima and minima values were chosen and then during the optimization

dynamically adapted if it was necessary.

Equations (3) to (7) are those used for the main simulations, but enhance-

ments were done and presented in Section 4.2.2. Moreover a summary is

given in table 4.

3.2 Finite element modelling (FEM)

To run the simulations, three different FE models, from a very simple to a

complete L4-L5 segment model, were used. The used FE software was Marc
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Mentat (MSC Software, Santa Ana, CA, USA). Non-linear fibre properties

and mechanical behaviours were implemented using Fortran subroutines.

3.2.1 Fibre orientation in the finite element model

α

Element

Fibre

t

z

(a)
Element

t

z

r

(b)

Figure 5. a) The fibre angle α is the angle between the fibre and the
vertical axis of the element (z). b) The fibre angle changes sign in
direction of the AF thickness (r) from one fibre layer to the next.
Finally two axes (r and t) were used to define the local fibre
orientation of one element (Eq. 9).

Fibre orientations was defined with respect to the vertical element axis z

as presented in figure 5. Moreover, the main assumption when implementing

fibre orientations was that fibre angles vary linearly in radial (through AF

tissue thickness - r axis and tangential direction (from anterior to posterior -

t axis (Fig. 5). Thus, the function defining a local angle was chosen as follow:

α(r, t) = α0 +∇rα ∗ r +∇tα ∗ t (9)

Where r = r/rmax and t = t/tmax. Hence, r is zero in the outermost AF

layer and one in the innermost. t is zero in the anterior and one in the pos-
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terior AF. 5 has the advantage that maximal or minimal fibre angles can be

calculated and visualized easily. For example if both gradient are positive

the minimal angle is α0 and the maximal angle α0 +∇rα+∇tα. An example

of tangential and radial gradients is given in figure 4.

3.2.2 Geometries and boundary conditions

Because of the complexity of the loads transmitted to the AF, it can be

very time-consuming to directly assess the FCQ objective function with the

complete lumbar spine segment model. Therefore, different simple geometries

were used first, which permitted to tackle a problem at different complexity

levels. Moreover the use of several models allowed to do useful comparisons

to evaluate, change and validate the FCQ function. The geometries presented

in the report are (Fig. 6):

(a) A simple cuboid model mainly used to assess the basic behaviour of

automatic fibre orientation and possible convergence problems.

(b) A computationally inexpensive semi-cylinder model, which permitted

to run simulations with a simplified geometry close to the real AF. It

consists of a semi ring and the NP was replaced by an constant pressure,

internal to the ring .

(c) A complete L4-L5 lumbar spine segment model was used for the final

validation of the FCQ function. It was adapted from a validated L3-L5

model [2].
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In Table 1 all relevant geometrical and modelling information is summarized.

The semi-cylinder and the complete model were symmetric in respect to the

sagittal plane.

For the L4-L5 segment model, maximum load magnitudes leading to con-

vergence were applied and being in the range of physiologically admissible

loads for mono-segmental specimens [11]. For the small model a big issue

was whether to choose constant loads or constant deformations. Finally it

was considered that constant deformations were more realistic and easier to

interpret.

3.2.3 Material properties

In general, the material properties of the simplified models were more or less

the same as for the complete model. Collagen I content was homogenized by

averaging values of the L4-L5 segment model. Implemented properties are

presented in table 1 and as the L4-L5 model was adapted from [2] properties

not related to the AF are not presented.

AF matrix was modelled using a hyper-elastic Mooney-Rivlin incompress-

ible material. To model the AF fibres a collagen I-dependant hypo-elastic
2approximation with a main linear and power law toe part was used [2].

Moreover the fibre stress is assumed to be zero under compression. The fibre

stress implemented in Marc Mentat is S = E
2 (T T : CT − 1) (linear case),

where E and S are material strain and stress, C is fourth order elastic tensor

and T texture tensor (orientation vector’s vector direct product)[43].
2Acient Greek: hypo, ”under”; hyper, ”over”. A hypo-elastic material law is a simplified

non-linear elastic constitution model, behaves like a hyper-elastic model, but is not deduced
form a strain energy function.
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(a) (b)

(c)

Figure 6. Used geometries a): simple cuboid model b): semi-cylinder model
c): complete L4-L5 lumbar spine segment model.
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3.2.4 Analysis

All forces or displacements were applied on a linear growing time scale which

led to better convergence. Time steps were constant (total time steps between

30 and 1000), but allowing cutback. As convergence criteria relative force

residuals (value 0.1) were implemented. Only implicit discretisation was used

(mostly Single-step Houbolt, else Newmark). To master the non-linearity,

total lagrangian large strain method was applied. All in Marc Mentat existing

solvers were tested on the L4-L5 geometry, finally the mixed iterative-direct

solver showed best performance (section 3.4) and was used.

3.3 Optimization of fibre orientation

Some parts in this section are purely technical (e.g. 3.3.2) and dedicated to

people, who want to take over the project and develop it further.

As the main aim was to find the optimal fibre orientation an iterative opti-

mization procedure was necessary. Thus, Matlab (MathWorks Inc.) was used

to run FE software Marc Mentat, extract the data and run the optimization

algorithm.

When talking about an iteration of the optimization algorithm, it is referred

to as optimization iteration and when talking about one iteration of a FE

simulation it is referred to as simulation iteration.

3.3.1 Algorithm

Usually to find the minimum or maximum of an objective function (in our

case FCQ) a methods taking into account function and gradient value at a
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specific point are used3. In our case no analytical function exists therefore a

discrete method has to be used. Due to the time intensive objective function

evaluation (one FE simulation) and the three dimensional solution space

(α0, ∇rα and ∇tα) discrete search methods were chosen and more specific

the version of the in Matlab implemented simplex algorithm. A simplex

algorithm evaluates the function value at each point of the simplex (in 2D

a triangle, in 3D a pyramid, etc.), compares the three, four or n+1 values,

chooses the highest one (if the global minimum is of interest) or the lowest

one (maximum) and replaces it with a new point, which is the creation of

the next simplex or one optimization iteration. The advantage of a simplex

algorithm is its ability to solve discontinuous problems.

Furthermore, the use of genetic algorithms (GA), was test, but, due to its

necessity of intensive fitness (objective) function evaluation, quickly aborted.

In Annex A.0.2 a sample solution can be found. Although the use of an GA

would be too time-intensive, its use either with reduced population size or in

parallel was always left open. One possibility would be the use of a GA with

limited population and generation size which induces after certain number

of generations a discrete algorithm. This solution is also implemented into

Matlab. For more information about GA check [34, 37].

3.3.2 Task organization

The flow diagram in Figure 7 presents the structure of the fibre orientation

optimization. Among the Matlab M-files, Run file.m initiates the optimiza-
3Because direct search methods neither compute nor approximate derivatives, they are

also described as ”derivative-free” [35].
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tion(s) and delivers to Opti fmin.m the initial position, name of the simula-

tion and other parameters which are specific to each optimization (e.g. the

maximal allowed number of function evaluations). In the Opti fmin.m file

is all information specific to one type of simulation (e.g. geometrical infor-

mation, number of layer to evaluate, subroutine name, Marc Mentat .dat-file

name etc.). Moreover, it contains the optimization algorithm command line,

generates the graphical outputs and keeps track of the optimization steps.

The optimization algorithm calls the F eval.m file. As a Marc Mentat simu-

lation required easily an hour or more F eval.m checks first whether a sim-

ulation with a given α0,∇rα and ∇tα was already run. If this was the case

it read the information out of the existing file, else it saved the α0,∇rα and

∇tα into the COMMON VAR file, initialised a Marc Mentat simulation and

read the strain and stress tensors from simu results #.txt once the simula-

tion was finished. Finally it had to return one objective function value to the

optimization algorithm: F eval.m communicated stress and strain tensors to

FCQ eval.m which contains the mathematical formulations of the objective

function FCQ and calculated its value for each iteration of the optimisation.

To evaluate just one FCQ value for a defined fibre orientation, the F eval.m

file can also be called directly from Run file.m or from the Matlab command

window. The only value it requires is a row vector containing a fibre orien-

tation ([α0,∇rα,∇tα]).

There are a several values which have to be communicated between the dif-

ferent files. Parameter which are huge in size (e.g. stress and stain tensors)

were handled as function arguments. Most of the other parameters were ex-

ternally stored in .mat-files. Therefore at the beginning, each .m-file loaded
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Matlab - Runs optimizations and / or function 
evaluations

Run_file.m

simu_resluts_#.txtCOMMON_VAR

Opti_fmin.m

F_eval.m

FCQ_eval.m

- Sets all inital values
- Runs the optimiazation function
- Graphical output of one optimization

- Runs Marc Mentat
- Reads in the simulation resutls

- Calculates the FCQ parameters

Marc Mentat

Fortran Subroutine.f - Sets hypo-elastic fibre properties (hypela2)
- Sets fibre orientations (rebar)
- Writes simulation results to files (elevar)

Interface - Geometry
- Material properties
- Boundary conditions
- Analysis parameters

Figure 7. The flow diagram shows the optimization’s main structure and
gives an overview of each functional level.

the required parameters, which had been saved before by an other .m-file.

To keep track of several runs, an optimization or some iteratively performed

fibre orientation evaluations two files were being written. The most impor-

tant was iter file.mat (generated by F eval.m) and iter FCQ.val.mat (gen-

erated by FCQ eval.m). In both of them, one iteration was represented as

one row. iter file.mat tracks fibre angle data [ ◦] (column 1 = α0, 2 = ∇rα,

3 = ∇tα), FCQ function values (column 4) and required iteration time [s]

(column 5). FCQ eval.val.mat keeps track of RMS (column 1), MSE (col-

umn 2) and RSD (column 3) and of their absolute values (RMS,MSE,RSD

= column 4-6). In column 7 again FCQ values, which allowed comparing

values without changing the file.

The second operational level (Fig. 7) was Marc Mentat, where modelling pa-



29 of 109 3.3 Optimization of fibre orientation

rameters were introduced using the simulation interface. The lowest struc-

tural level is the Fortran subroutine file (e.g. subroutine big 45.f) which was

called by Marc Menatat for each simulation iteration. It contains three sub-

routines:

(a) Hypela2

(b) Rebar

(c) Elevar

According to the hypo-elastic material formulation, hypela2 attributes at

each fibre and ligament strain level a corresponding tangent stiffness and

stress value following predefined stress-strain curves [2]. There, collagen I

volume fractions were defined.

rebar orientates the fibres and assigns to each rebar element a fibre vec-

tor. First, α0,∇rα and ∇tα are ”read in” from the COMMON VAR file

(COMMON VAR is included into the code as a common block, which helps

significantly to reduce computational time). As the rebar subroutine had to

return to Marc Mentat fibre vectors in global coordinates, the elements axes

in the global system were calculated using the elements nodes coordinates,

which served to define the three-dimensional rotation matrix.

In Marc Mentat each AF subsection (e.g. anterior/middle(1), post-lateral/outer

etc.) was defined as a different material. Each material had a material num-

ber, which was used in the code to access subsection properties (fibre angles

and collagen I content). Hence in the rebar subroutine a relative position

consisting of r and t values were allocated. The same was done for the rebar
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layers within each element. Finally using (Eq. 9) a fibre vector was defined,

rotated using the rotation matrix and returned to Marc Mentat in global

coordinates. In the L4-L5 model, the problem of wrong oriented elements

was solved using a Euler rotation angles.

elevar writes the output files simu results #.txt. For each subsection or ma-

terial, one file was written which permitted to further distinguish the fibre

elements in Matlab. The files were written for one specific increment. This

increment had to be the implemented in Marc Mentat.

For more information about the written code, see Sections C Fortran and B

Matlab.

3.3.3 Error hunting and parameter overview

The aim of the chosen program(s) structure (Fig. 7)) is the ability to change

geometry or mathematical models without modifying any basic code. There-

fore, the amount of parameters is huge and code complexity could be source

of a failure. Thus, it was decisive to implement a structure that permit-

ted to quickly locate errors. The lowest level, where an error could occur

was in the rebar subroutine (e.g. wrong n r or n t), the second lowest level

was represented by parameters in Marc Mentat (solver, loads, etc.) and the

third lowest level was the interface between Matlab and Marc Mentat (e.g.

number of increments in the elevar subroutine). In Matlab, the lowest level

where an error could occur was in the the opti fmin file (in most cases an

error was due to wrong definitions like the material matrix M (see Appendix

B.2, line 25 and B.3, line 27 to 55)or the Marc Mentat simulation name).

The F eval file should not generate errors itself, as long as the dimensions
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of the simu result files are not changed and the M matrix set properly. Due

to its large number of components M was the majors source of error. The

final and top level where could occur an error, was the FCQ file containing

all mathematical formulations. These errors were address simply by plotting

the results and checking the formulae. In general, it is recommended to start

debugging either at the top or at the bottom level.

Note that optimisation algorithms implemented in Matlab always seek a min-

imum value not a maximum, but this minimum is represented by a maximum

FCQ value in the following sections.

Before running a optimization it should always be checked:

(a) If in Marc Mentat the right subroutine was chosen (incl. the ”compile

and save” - option).

(b) If COMMOM VAR file path in the rebar subroutine is correct (Ap-

pendix C, line 50).

(c) If the increment number to write the output in the Elevar subroutine

(Appendix C, line 228) is the same as the maximal number of incre-

ments set in Marc Mentat .

(d) If the right .dat file was generated by Marc Mentat.

3.4 Computational time and stability

Computational time is a key parameter when running an optimization. To

obtain an accuracy lower than 1 ◦, between 50 and 120 optimization itera-
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tions were necessary. So if one simulation iteration took two hours, the total

run time of one optimization was more than two days. At Matlab level, cal-

culation time was relatively negligible (Table 2).

In table 2 the average time of a total optimization iteration (Marc Mentat

simulation and Matlab function evaluation) is presented for different cases.

Model Iterations Total time Matlab only
Small model 1000 61.33s 0.66s
Semi-ring
Compression 10 25.43s 0.38s
Traction 10 17.32s 0.38s
Complete model
Extension 30 29min 60s 1.50s
Flextion 48 37min 24s 1.46s
Compression 48 31min 26s 1.51s
Torsion 48 22min 45s 1.48s

Table 2. Number of iterations and total time of one optimization iteration
including simulation, writing and reading in the output files and
evaluating the objective function. Due to strong non-linearities the
small model was only run with 1000 iterations. Values were
obtained by taking the average over several iterations. In any case
values are only approximative because they depend on how many
calculations are running in parallel.

Runtime had to by playing with the increment and solver parameters in

Marc Mentat. This was done by decreasing the time step size to a minimum

(until convergence was not achieved any more), benchmarking the solvers

and implementing the most efficient one (Table 3). The following analyses

types result in non-symmetric systems of equations: Inclusion of convective

terms in heat transfer analysis, Coriolis effects in transient dynamic analysis,

fluid mechanics, steady state rolling, soil analysis, follower force stiffness and
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frictional contact. A symmetric solver was used, since it could approximate

the problem solution and uses half as much memory for storing the stiffness

matrix than non-symmetric solvers [43]and therefore less time.

Solver Iterations [-] Wall time [s]
Multifrontal sparse / non-sym. 150 ∼4200
Multifrontal sparse / non-sym. 100 ∼3200
Direct profile / non-sym. 150(14)* ∼6400
Mixed (iterative/direct) / sym. 150 1841
Direct sparse / sym. 150(N/A)* 17439
Casi iterative / sym. 150 4013
Hardware sparse / sym. 150 ∼2500
Multifrontal / sym. 150 2580
Multifrontal / sym. 250 3829
Mixed (iterative/direct) / sym. 150 1841
Mixed (iterative/direct) / sym. 100 1825
Mixed (iterative/direct) / sym. 80 1628
Mixed (iterative/direct) / sym. 30(11)* 2800
Mixed (iterative/direct) / sym. 50 1300

Table 3. Solver benchmarking for a first version of complete model under
extension (α0 = 10 ◦, ∇rα = 0 ◦ and ∇tα = 50 ◦).
* Simulation did not converge, in brackets the iteration number
where the failure occurred.

3.5 Verification, sensitivity and validation

First verification were about the newly implemented subroutine code, espe-

cially the rebar subroutine. Also the interface between Matlab and Marc

Mentat, other new subroutine parts and m-files have to be validated. More-

over a mesh resolution convergence testing is necessary. For example, the

cuboid mesh was set to be only a ”one” element (column) mesh. Therefore,

in the context of this study, its limits in term of convergence are numerous
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and discussed in Section 4.1.

Implemented optimization functions and parameter normalisation were ini-

tially tested using simple problems of known solutions.

Then, the sensitivity of the optimisation procedure to the parameters α0,

∇rα and ∇tα was checked and discussed in result section 4.2.2.

Finally a comparison with AF fibre angle distributions was treated in the

section 5.4.

3.5.1 Subroutine verification

As the code for to orientate the fibres was not trivial, a rigorous validation

was necessary. The following controls were undertaken:

(a) Comparison between a model with and without subroutines: A fibre

orientation was implemented manually in Mentat and then compared

to an orientation generated by the rebar subroutine.

(b) Visual verification of the rebar output file: Global fibre orientations,

local element errors, and fibre criss-cross pattern were checked using

visual control (Fig. 8).

(c) Comparison of parameters at every iteration: Marc Mentat calls the

rebar subroutine at every iteration, not just at the beginning of the

simulation. Thus, at large deformations element coordinates had to

be replaced by the coordinates plus the deformation to calculate the

actual fibre orientation.
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(d) Internal parameters of the subroutine code like material number, ro-

tation matrices or relative element positions were verified writing the

required data to text files.

(a) (b)

Figure 8. The rebar output file permitted to verify visually fibre orientation
a): AF b): zoom of a fibre layer in the anterior AF (α0 = 0 ◦ and
∼ ∇rα = 30 ◦)

Quantitative verification of the ordinary output files - the output of a

simulation, which is read in by Matlab has to be the same, as the Marc

Mentat ouput. Values were compared manually between the Marc Mentat

output file and Matlab plots.

3.5.2 Matlab file verification

M-files were verified using single parameters of one element or layer (e.g.

strain at an integration point), whose output was tracked through the files.

It was assumed that if formulae or a process work with single values (e.g

the first and the last), it will work with all the others, treating them in the
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same way. Moreover, many procedures were validated by plotting results or

writing them to the workspace.

3.5.3 Link between Matlab and Marc Mentat: Convergence issue

The basic functioning was controlled and verified manually by checking out-

going and incoming values.

More serious becomes the verification during the optimization process. Non-

linearity of the material properties, composite materials, large deformations

and contact had a negative effect on FE simulation stability. Therefore the

question how to control during an optimization whether on single FE sim-

ulation converged or not, became a main issue: Time step size and total

number of time steps were constant and the output files (”simu result #”

files) were always written at the same predefined time-step (see also 3.3.2).

This allowed to have good control over convergence: When a simulation did

not converge, evaluation function values do not change at all from one op-

timization iteration to the next 4 , because the simulation does not reach

the final time-step. Therefore, at the end of an optimization it was always

controlled whether two consecutive equal evaluation function values were ob-

tained. Moreover a convergence control was achieved by checking the time

needed for one simulation. It is possible that one simulation duration may be

higher than the average duration (e.g. tab.2), but in case of large differences

convergence was controlled by running a simulation at the point (α0, ∇rα

and ∇tα), where the instability had been suspected.
4At an evaluation function error of 10−5 the probability that the values form two

consecutive optimization iterations are the same is 1:1010.
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4 Results and discussion

The result section is structured into three main part according to the three

used FE geometries. Moreover, results have do be differentiated by function

evaluations (FCQ values at given fibre orientations consisting in α0, ∇rα

and ∇tα) and complete optimisations consisting in an initial and a final fibre

orientation and an optimisation path.

4.1 Cuboid model

Problems occurred in terms of convergence. However, the model was useful

to introduce different result representations and discuss convergence.

4.1.1 Result representation

To prove that a global minima or maxima of the FCQ function was really

global, all possible solutions had to be tested. A four-dimensional repre-

sentation would be necessary to present a value (e.g. FCQ) at each point

of the three-dimensional solution space (α0, ∇rα and ∇tα). This was too

complicated and would have required a huge amount of function evaluations.

Therefore, three simplified options were chosen:

(a) Surfaces or contour plots taking into account two optimization direc-

tions (e.g. Fig. 9 and 10).

(b) XY-plots in the three directions varying on parameter and keeping the

other two constant (e.g. α0 = [0 ◦;90 ◦] ∇rα = ∇tα = 0, Fig. 11)
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Figure 9. Surface representation of FCQ (z axis & colour bar) values in
function of α0 and ∇rα. Cuboid model under uni-axial traction
(total strain of 10%).

(c) Optimization path plots in two directions (Example in Section 4.3)

As the computational time was higher to produce a surface or a contour.

In case of the L4-L5 segment geometry results will be presented only using

option (b) or (c) and as in this report only optimisations run on the L4-L5

segment geometry were presented, option (c) will only be used in Section

4.3.

Option (b) was not very self explaining. In fact it consisted of one, two

or three slices of a surface or contour intersection in a region of interest.

Each plotted line represents one direction of the solution space changing one

parameter and keeping the others constant. A step by step example was
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Figure 10. The surface of Figure 9 represented as contour plot. FCQ
(colour bar) values in function of α0 and ∇rα. Cuboid model
under uni-axial traction (total strain of 10%. The black lines
indicate the same data as presented in figure 11.

created in Figure 11: Under traction, the region of interest is α0 = 0 ◦ and

∇rα = 0 ◦, since the maximal FCQ value was expected to be at this point.

The two intersecting lines in the contour plot (Fig. 10) were redrawn varying

α0 while keeping ∇rα constant (Fig. 11a) or varying ∇rα while keeping α0

constant (Fig. 11a). Both were placed into one graph (Fig. 11c) and then, as

the solution was symmetric, just only half of the plotted lines was reproduced

(Fig. 11d). Note that in the cuboid geometry no ∇tα existed. In later plots

∇tα will be drawn as an own direction.
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Figure 11. FCQ values of the small model under uni-axial traction (total
strain of 10%). Each point represents one FE simulation a):
varying α0 while keeping ∇rα = 0 and b) varying ∇rα while
keeping α0 = 0 c): both put together in the same graph d): only
the positive part of the solution.

In some cases, especially for the L4-L5 model, graphs are no more sym-

metric around a minima or maxima and both positive and negative directions

will be reproduced (Example in Section 4.3.1 in Figure 19d).

4.1.2 FCQ values and convergence

Figure 10 had a lot of irregularities, abrupt FCQ changes and local FCQ

minima. It will be demonstrated in the next section that some of these
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irregularities were due to boundary conditions. However, more important

were all the flat contour lines (parallel to the ∇rα axis). A flat line meant

having a constant value in one direction. This was simply not possible to

such an extend and indicated non-converged simulations (Section 3.5.3).

Although simulations with 1000 increments were run at each point about

50 and 75% of the simulations did not converge. As a change of fibre angle

within a single element from almost 0 to 90 degree is huge was simulated,

convergence problems are not surprising, but showed that the stability of the

used unconstrained optimisation procedure depended on mesh refinement.’0

4.2 Semi cylinder

First, the obtained results of the FCQ objective function and its parameters

will be presented and in a second stage using a benchmarking it was explained

why the current FCQ function had been chosen.

4.2.1 RMS, MSE, RSD and FCQ results

In Figure 12 RMS values in the semi-ring are presented. Under compression,

the maximal fibre stresses were computed at α0 = 90 ◦ with ∇rα = 0 ◦ and

∇tα = 0 ◦ and under traction at α0 = 0 ◦ with ∇rα = 0 ◦ and ∇tα = 0 ◦

which were the expected maxima.

Under compression, for a constant fibre orientation with α0 between 0 ◦ and

32.5 ◦) the RMS value was practically zero. This indicated that in the given

interval the fibres are practically unused. Bellow a constant fibre orientation

of ∼62 ◦ fibre stresses are bellow 0.1. Under traction, at an absolute fibre



42 of 109 4.2 Semi cylinder

angle over ∼62 ◦ RMS values are below 0.1 and become completely negligible

over 80 ◦.

MSE or matrix shear strain parameter values are presented in Figure 13.
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Figure 12. Radial Mean Stress (RMS) respectively averaged fibre stress
values. One direction (α0,∇rα or ∇tα) was varied while keeping
the other two constant. a): axial compression - zone of interest:
α0 = 90 ◦, ∇rα = 0 ◦ and ∇tα = 0 ◦ b): axial traction - zone of
interest: α0 = 0 ◦, ∇rα = 0 ◦ and ∇tα = 0 ◦.

Under compression, minimum values were obtained at a fibre orientation of

α0 = 90 ◦ with ∇rα = ∇tα = 0 ◦. At a constant angle of ∼ α0 = 32.5 ◦

matrix strain values suddenly rose. This also happened in the case of RMS,

but its sudden decrease was less visible. This was further further illustrated

in Section 4.2.3.

Under traction, maximal fibre stress did not imply minimal matrix shear

strain: minimalMSE values were either around α0 =∼27 ◦ or over α0 =∼70 ◦.

To understand the behaviour of the RSD parameter, i.e. the radial stress

distribution parameter, first the effective radial stress have to be presented.

In Figure 14 and 15, fibre stresses through the tissue thickness in the anterior
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Figure 13. Matrix Shear Stress (MSE). One direction (α0,∇rα or ∇tα)
was varied while keeping the other two constant. a): axial
compression - zone of interest: α0 = 90 ◦, ∇rα = 0 ◦ and
∇tα = 0 ◦ b): axial traction - zone of interest: α0 = 0 ◦,
∇rα = 0 ◦ and ∇tα = 0 ◦.

section were presented (all sections - anterior, lateral, etc. - have the same

shape in case of compression or traction). To compute the RSD values, a

second order polynomial was fitted to the stress values (Eq. 5).

Figure 16 showed RSD values. RSD was maximal for optimal fibre orien-

tations. As the aim was to minimize the parameter RSD this was not really

expected. Yet, when comparing RSD values to the radial strain distributions

(fig.14 and 15) this would be explained: As coefficient ”a” weight four times

that of ”b” (Eq. 4) under traction (compression) RSD values will be highest

at α0 = ∇rα = ∇tα = 0 ◦ (α0 = 90 ◦ and ∇rα = ∇tα = 0 ◦) because also ”a”

reached its maximal value at the same point. In function of ∇rα under trac-

tion and compression RSD was maximal at ∇rα = 0, reached a minimum

around 45 ◦ and increased again toward 90 ◦. As fibre distribution around

∇rα = 45 ◦ was nearly linear (Fig. 14b and 15b) this could be explained.
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Figure 14. Fibre stress∗ distribution through the tissue thickness under
traction and the fitted parabolic curves. rrelative = 0 is the
outermost fibre and rrelative = 1 in the innermost fibre.
*One fibre is defined by a layer of four integration point ⇒ to
obtain the absolute fibre stresses values have to be divided by
four.

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

r
relative

M
P

a

 

 

• (0°)

• (15°)

• (30°)
• (45°)

(60−90°)

original
interpolation

(a) Varying α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

40

r
relative

M
P

a

 

 

• (0°)
• (15°)

• (30°)

• (45°)

• (60°)

• (75°)
• (90°)

original
interpolation

(b) Varying ∇rα

Figure 15. Fibre stress∗ distribution through the tissue thickness under
compression and the fitted parabolic curves. rrelative = 0 is the
outermost and rrelative = 1 the innermost fibre.
*One fibre is defined by a layer of four integration point ⇒ to
obtain the absolute fibre stresses values have to be divided by
four.



45 of 109 4.2 Semi cylinder

Relevance of this results out of a biological perspective were treated in the

discussion.
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Figure 16. Radial Stress Distribution (RSD). One direction (α0,∇rα or
∇tα) was varied while keeping the other two constant. a): axial
compression - zone of interest: α0 = 90 ◦, ∇rα = 0 ◦ and
∇tα = 0 ◦ b): axial traction - zone of interest: α0 = 0 ◦,
∇rα = 0 ◦ and ∇tα = 0 ◦.
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Finally the FCQ parameter was plotted in Figure 17. It predicted better

fibre orientations around a constant fibre angle of 45 ◦ for compression and

traction. As for traction and compression a internal pressure was applied,

function evaluations were repeated without internal pressure. Although val-

ues changed slightly the same minima and maxima of FCQ, RMS, MSE

and RSD were found.
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Figure 17. Fiber contribution Quality (FCQ). One direction(α0,∇rα or
∇tα) was varied while keeping the other two constant. a): axial
compression - zone of interest: α0 = 90 ◦, ∇rα = 0 ◦ and
∇tα = 0 ◦ b): axial traction - zone of interest: α0 = 0 ◦,
∇rα = 0 ◦ and ∇tα = 0 ◦.

Concerning ∇tα, FCQ and its parameters according to the symmetry of

both loads and geometry. In both load cases and for all FCQ parameters

slops of the plotted lines were steeper for α0 than for ∇rα and ∇tα meaning

that optimisation convergence along α0 would be faster than along ∇rα and

∇tα.



47 of 109 4.2 Semi cylinder

4.2.2 Parameter benchmarking

A benchmarking was done for MSE and RSD. Three versions of MSE

were tested using either sum of total shear strains (∑ |εij|, i 6= j), the sum

of maximal shear strains (∑ | εI−εIII

2 |) or the sum of shear stresses in only z

direction (∑ |ε13|). No significant differences were found since the aim of the

MSE parameter was to track loads of the extracellular matrix the maximal

shear strain was kept. The benchmarking results are presented in Appendix

A.0.3.

Among all three parameters contribution to the FCQ values, RSD was

the most complex parameter. Initially, it had the form ∑
t

√
4a2

t + b2
t/

∑
σt

which results in a division by zero in case of no fibre stress in all fibres of

a segment. Therefore, it was changed to ∑
t

√
4a2

t + b2
t/(

∑
σt + 1) to avoid

these problem. In a final step it was changed to ∑
t

√
4a2

t + b2
t arguing that

stress gradient values should be absolute values and not relative to the sum

of total fibre stress in tangential section. Introducing this last change a over

evaluation of weakly loaded fibres could be avoided. The second and the third

version were presented in Figure 18. Moreover, further RSD formulations

were presented, but as there was no time to thoroughly explore them, they

will only be part of the general discussion.
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Figure 18. RSD benchmarking. One direction(α0,∇rα or ∇tα) was varied
while keeping the other two constant. a) and b):
RSD =

√
4a2

t +b2t∑
t
σt+1 c) and d): Final RSD ∑

t

√
4a2

t + b2
t .

4.2.3 Critical angle

At a given angle, the fibre strain became negative and so the fibre stress

was equal to zero. When this happened abruptly in many different fibres a

sudden increase or decrease ((Fig. 13)a). This sudden change was found to

be situated between a fibre angle of 33 ◦ and 33.4 ◦ (under traction between
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56.6 ◦ and 57 ◦). However, this explains these shifts which occurred for in

case of all FCQ parameters.

Several different types of optimisations were run on the semi-cylinder

geometry mainly to test an verify the program structure. As these opti-

misations only gave one result in function of one initial point, but did not

contribute to a better understanding of the overall FCQ function and its

parameters, non of the optimisation results is presented here.

4.3 Complete L4-L5 segment model

The optimisation results presented bellow were all obtained in the case of

a runtime of iterative FCQ function evaluations which correspond to ap-

proximately one day of calculations. The initial position (e.g. α0 = 40 ◦,

∇rα = 10 ◦ and ∇rα = −20 ◦) was chosen by evaluating about 25 points

along the axis α0, ∇rα and ∇rα, which also served to set the initial maxi-

mal and minimal parameter values of the FCQ parameters. In the figures

in this section the results are either presented in terms of optimisation path

(sub-figures a and b), change of the FCQ parameters during the optimiza-

tion (sub-figure c) or in terms of deviation from the final encountered FCQ

maximum (sub-figure d). Last was computed after the optimization was fin-

ished: In direction α0, ∇rα and ∇tα several points around the maximum

were evaluated and plotted, which permitted to verify whether a maximum

value was global or local.
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4.3.1 Flexion

With an initial position of a constant fibre angle of 35 ◦FCQ was found to be

maximal at α0 = 32.2 ◦ and ∇rα = ∇tα = 0 ◦. Neither radial or tangential

gradients were found thought a positive gradient was expected in tangential

direction, due to the compression in the anterior annulus and the traction

in the posterior. High fibre stresses (RMS) were obtained together wit high

matrix shear stresses MSE. A complete example of stress distribution in all

segments of the AF is given in Appendix A.0.4
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Figure 19. Tracking of an optimization - L4-L5 under flexion (6 Nm). a)
and b) evolution of the optimization in the three different
directions. Black points indicate some function evaluations (one
simulation) and the blue line the final path. c) evolution of
RMS, RSD, MSE and FCQ d) the maxima was checked in all
three direction over a radius of ± 20 ◦.

4.3.2 Extension

FCQ converged to α0 = 52.5 ◦ and ∇rα = ∇tα = 0 ◦ . As for flexion no

tangential nor radial gradient was found. A negative gradient was expected.
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In this initial (constant α = 52 ◦) value was not as good as expected and

the algorithm hat to find the maximum over a path of 15 degree. A solution

with low matrix shear strain (low MSE) was favoured in respect to a high

RMS value.
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Figure 20. Tracking of an optimization - L4-L5 under extension (10 Nm).
a) and b) evolution of the optimization in the three different
directions. Black points indicate some function evaluations (one
simulation) and the blue line the final path. c) evolution of
RMS, RSD, MSE and FCQ d) the maxima was checked in all
three direction over a radius of ± 20 ◦.
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4.3.3 Torsion

Under torsion (9 Nm), the optimal fibre orientation found was α0 = −2.0 ◦,

∇rα = 32.0 ◦ and ∇tα = 0.0 ◦. There was no time to validate the solution

and the optimisation only brought few information, since the algorithm de-

clared the initial position as the solution. However values seem to be correct,

according to the presence of coupled axial disc stretching.

4.3.4 Compression

Under compression, the algorithm converged to α0 = 64.6 ◦,∇rα = 10.3 ◦ and

∇tα = 0 ◦. During the optimisation, RMS was forced to decrease. However,

a decreased MSE value was obtained. There was no time to validate the

minimum. Before a minimum around α0 = 80 ◦, ∇rα = 0 ◦ and ∇tα = 0 ◦

was found and during the verification discovered to be local.



54 of 109 4.3 Complete L4-L5 segment model

62 64 66 68 70

9.8

10

10.2

10.4

10.6

10.8

11

α
0
 [º]

gr
ad

r α
 [º

]

•  ← (1)

•  ← (6) •  ← (11)•  ← (16)
•  ← (21)(26 − 50)→

(a) Evolution of α0/∇rα

62 64 66 68 70
−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−4

α
0
 [º]

gr
ad

t α
 [º

]

•  ← (1)

•  ← (6)

•  ← (11)

•  ← (16)

•  ← (21)
•  ← (26)
← (31 − 50)

(b) Evolution of α0/∇tα

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# of iterations

R
ea

la
tiv

e 
va

lu
e

 

 

RMS
RSD
MSE
FCQ
fontsize

(c) Parameter evolution

Figure 21. Tracking of an optimization - L4-L5 under compression (0.38
MPa). a) and b) evolution of the optimization in the three
different directions. Black points indicate some function
evaluations (one simulation) and the blue line the final path. c)
evolution of RMS, RSD, MSE and FCQ.
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5 General discussion

5.1 Geometry and simulations

With respect to the cuboid geometry, results clearly showed that several

elements are necessary (in radial and tangential direction) to explore fibre

orientations changes. Therefore, the cuboid could only serve for program

construction and verification purposes.

Concerning the semi-cylinder model, the probably most important issue is

up to which extend the geometries used for the FCQ evaluation were the

right choice. Under traction practically all obtained results were physically

coherent (e.g. the stress distribution fig. 14). As long as α0 was constant

stress distribution through tissue thickness was also constant. When a gra-

dient was introduced also the distribution becomes non-uniform.

More complicated to interpret are the results under compression (Fig. 15).

Due to the internal pressure at any fibre angle or distribution, the inner fi-

bres were more stressed than the outer. Yet, the outer fibres were completely

unstressed in practically any position. This indicates that strains in the t

direction (the plane the fibres are orientated) were still insufficient to gener-

ate stresses in the non-linear elastic fibres. This will be taken up again and

further explained in section 5.6.

In the complete L4-L5 lumbar spine segment model a bizarre result with

respect to fibre stress distribution occurred at three pairs of consecutive in-

tegration points, where stress values remained constant (Fig. 22). Such a

stress distribution was thought to be caused by the irregular criss-cross pat-

tern. Yet, as this pattern was always respected the result could not be ex-
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plained. It could be due to the internal fibre stress calculation implemented

in Marc Mentat.

5.2 Fibre Contribution Quality

In Table 4 the implemented FCQ changes over time of the different param-

eters are presented.

# Improvement Justification

1 RMS, MSE and RSD parameter All parameters have the same

scaling between 0 and 1 weight in the FCQ formulation (Eq. 8)

2 RSD = ∑
t

√
4a2

t + b2
t∑

σt
⇒ ∑

t

√
4a2

t + b2
t∑

σt + 1 Avoid division by zero

3 MSE = ∑ |εij|, i 6= j ⇒ ∑ | εI−εIII

2 | Respects objectivity

4 RSD = ∑
t

√
4a2

t + b2
t∑

σt + 1 ⇒
∑
t

√
4a2

t + b2
t Attribute a higher importance

to absolute than to relative values

5 F (σi,element, r) (Eq. 5) ⇒ F (σi,fibre, r) increase accuracy

Table 4. Historical overview of introduced enhancements

In the beginning, the parameters had to be averaged to have the same

weight within the FCQ formulation. This was simply done introducing the

maximum and minimum values (Eq. 7) for a given geometrical model. It

was tried to set maxima and minima as close as possible to the their real

global maxima or minima parameters (for one load case). However, if using

minima and maxima of only a predefined zone of interest (e.g. only biologi-

cally admissible orientations 10 ◦ < α < 70 ◦) results would be different. An
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other possibility would also be to use minima and maxima values of all load

cases. Yet, for example in case of a torsion a RMSmin = 0 (no stress in any

fibre) can never occur. Therefore, the the last option was not considered to

be valid.

RMS and MSE values were quite simple to model and explore. However

the RSD parameter was more difficult to treat and to model correctly. Sev-

eral problems occurred and had to be addressed during the FCQ parameter

benchmarking part (4.2.2). An other important enhancement was the use

of each fibre stress value and not fibre stress averaged over an element (in

the table above improvement # 5). Instead of fitting a curve to a number

of values equal to the number of elements in the r direction, one value per

fibre layer was used which permitted to get a much better idea about the

real radial fibre stress distribution in the AF and obtain better quality of

parameter ”a” and ”b” (Eq. 3).

Despite the improvements the final results for RSD are still not very satis-

fying. When comparing values form Figure 14 and 16 the results could be

correctly correlated on a mathematical base. Yet, for example when com-

paring stress distributions in the case of a changing gradient (Fig. 14 b) and

their RSD values (Fig. 16 b), intuitively or out of the cell’s perspective the

distribution with a 60 degree radial gradient is ”worse” than the one with 0

degree, but the 60 degree gradient led to better RSD evaluation. This over

or under evaluation of certain orientations is due to the four times higher

weight of parameter ”a” in respect to ”b” (Eq. 4).

However, as the RSD parameter was designed to equilibrate local fibre stress

distribution in the real AF, it is probable that those mainly complex distri-
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butions could not be simulated by the simple semi-cylinder model. Therefore

further evaluation is necessary.

An other formulation for RSD could be the variance or r of each tangential

section var(r)t (Fig. 24). This would take into account all local deviations,

but still give penalties to ”bad” global evaluations.
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Figure 22. Latera AF segment under torsion: Fibre stress distribution from
the outer to the inner AF.

A second option would be to simply leave away the RSD parameter. This

could be justified by the fact that a ”bad” distribution will induce higher

matrix shear strains and therefore MSE values. Thus, the RSD parameter

could somehow be included into MSE, but should first be verified using the

real lumbar spine model.
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Figure 23. FCQ values in function of α0 and ∇rα a) and b): Modified
FCQ used for all simulations (RSD = ∑

t

√
4a2

t + b2
t ) c) and d):

Introducing the variance. RSD = ∑
t var(σt). where σt is the

variance over a tangential segment e) and f): FCQ without
RSD only in function of RMS and MSE.



60 of 109 5.3 Methods

0 20 40 60 80 100
−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

Angle [°]

F
C

Q
 [−

]

 

 

α
0

grad
r
 α

grad
t
 α

(a) Compression

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Angle [°]

F
C

Q
 [−

]

 

 

α
0

grad
r
 α

grad
t
 α

(b) Traction

Figure 24. FCQ using the variance of each tangential segment as RSD
value.

Nevertheless, both proposed enhancements were first evaluated on the

semi-cylinder (Fig. 23). The FCQ without RSD was the only formulation

to explain properly the expected FCQ maximum under compression and

traction (Fig. 23e,f). The variance FCQ-version showed good performance

(Fig. 24), but could only explain the maximum under traction (Fig. 23c,d).

Therefore, taking into account the somehow strange distribution under com-

pression, the variance-based FCQ could be a good candidate to be explored.

5.3 Methods

In order to optimize the FE simulation convergence and computational cost,

direct integration was chosen. There, one issue arose: Direct integration

techniques are imprecise; this is true regardless of the discretisation tech-

nique is used. Each technique exhibits at least one of the following problems:

conditional stability, artificial damping, and phase errors. Two computa-
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tional drawbacks of the Houbolt operator are the requirement of a special

starting procedure and the restriction to fixed time steps. Using Single Step

Houbolt the algorithm is computationally more convenient compared to the

standard Houbolt method, but because of its damping properties, the time

steps have to be chosen carefully [43]. The increment number was decreased

from originally 5000 to 50 increments. Therefore three simulations were run,

two using Houbolt (50 and 500 increments) and one using Newmark (1000

increments without damping). Fibre stress and matrix strain values were

compared and a mean deviation of 1-2% was found from the model using 50

increment to the model using 1000 with deviation peaks rising up to 10 or

15%. A deviation of 2% is admissible. The peak deviations of 10 to 15%

are high, but as every fibre value was averaged over 32 integration points

(four per fibre layer over eight elements in z direction), the probability of a

deviation of 10% or 15% decreases significantly.

5.4 Comparison and benchmarking

5.4.1 Fibre angles

The following orientations were found in the literature:

(a) α0 = 32 ◦,∇rα = 0 ◦,∇tα = 0 ◦[12, 22]

(b) α0 = 28 ◦,∇rα = 17 ◦,∇tα = 0 ◦[23]

(c) α0 = 67.3 ◦,∇rα = 0 ◦,∇tα = −43.8 ◦[24]

Moreover Zhu [25]who used a similar sectioning as in this study (five sections

going from anterior to posterior) measured fibre angles over seventeen fibre
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layer. The data was linearly interpolated over each section and finally for each

of them a linear equation was presented. As the exact measured values were

not mentioned and could not be obtained on enquiry, using the linear radial

equations, the value of the extreme inner and outer layers were calculated.

Positive and negative fibre layers were averaged and a plane was fitted to the

data using the least squares method 5. The result was the following:

• α0 = 52.3 ◦,∇rα = 14.1 ◦,∇tα = −39.0 ◦

Thus, Zhu’s results practically unify both diverging propositions of either

only a radial gradient or only a tangential gradient, which is quite remarkable.

Still, Zhu compared them only to the results of Holzapfel [32] and concluded

that, the dimension of the used specimen is smaller than in the study of

Holzapfel and thus, it is more representative of the mechanical property

and fibre orientation of each point [25]. Moreover Zhu found the lowest

angles in the right lateral segment. First this suggests that specimens are

not symmetrical and second, although this is only a speculation, could be

induced by coupled flexion and torsion to the right, occurring more often

than the same movement to the left6.

The orientations which resulted out of the simulations were:

(a) α0 = 32.2 ◦,∇rα = 0 ◦,∇tα = 0 ◦ (flexion)

(b) α0 = 52.5 ◦,∇rα = 0 ◦,∇tα = 0 ◦ (extension)
5For the over-defined systemAx = b the sum of the least square error ((b−Ax)T (b−Ax))

was minimized[34]. Ax = b is equal to α0 +∇rα ∗ ri +∇tα ∗ ti = αi and therefore ai1 = 1,
ai2 and ai3 are the radial and tangential relative position of the measurement, bi is the
measurement value and x is the solution vector [α0,∇rα,∇tα].

6As for the majority of populations left section of the brain is dominant, the probability
that an individual looks back over the right shoulder is higher than the opposite
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(c) α0 = 64.5 ◦,∇rα = 10.3 ◦,∇tα = 0 ◦ (compression)

(d) α0 = −2.0 ◦,∇rα = 23.0 ◦,∇tα = 0 ◦ (torsion)

Except torsion all of the encountered values are in the range of orientations

found in the literature. The angle found under flexion is similar to those

reported by Marchand, Ahmend and Galante[12, 22]. The result under com-

pression is similar to the maximal angle measured by Eberlein[24]. Torsion

and compression show a similar radial gradient to those found in literature.

However, when put together, our current results can not explain the most

recent results of Zhu, nor those of Cassidy[23] or Eberlein[24]. It should be

highlighted that tangential gradients were never found, though such gradi-

ents were expected, at least under flexion and extension. More important is

to mention that in the case of compression, a local FCQ maxima was found,

which would support the FCQ result obtained from the semi-cylinder model.

The optimal fibre orientations were only in function of α0 and can there-

fore only be compared to constant fibre orientations in the AF. However, time

was short and the results presented before were obtained after 50 iterations

only. When running optimizations on the simplified models, FCQ always

converged firs in direction of α0t, and then in direction of ∇rα and ∇tα.

5.4.2 Algorithm

As presented in the state of the art, to our knowledge, the only groups having

proposed collagen fibre orientation algorithms are Driessen et al. and Hari-

ton et al.[28]. The difference between the FCQ evaluation function and the

preferred fibre direction algorithm (Eq. 1)is that FCQ judges a global ori-
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entation in function of fibre stress and matrix strain and the preferred fibre

direction suggests a preferred direction for each element in function of either

element strain (Driessen) or elements stress (Hariton). As the preferred fi-

bre direction algorithm was made for remodelling, a way had to be found to

compare them with the results of the FCQ function. Due to implementation

reasons (on the Matlab level the local element’s fibre orientation is unknown)

the benchmarking was only done in function of α0. To compare in each el-

ement preferred fibre direction vector ~ep,i with the actual fibre orientation
~fi (f1 = g(α) and f2 = g(−α)) over all elements, the following sum of dot

products was calculated: ∑
jminj(〈f1, ~ep,1〉 + 〈f2, ~ep,2〉, 〈f1, ~ep,2〉 + 〈f2, ~ep,1〉),

which was stated to represent the correlation between actual fibre orienta-

tion, ~fi and preferred fibre orientation, ~ep,i. Although around 0◦ degree the

errors due to approximation of vecfi should be negligible. With increas-

ing or decreasing fibre angle the accuracy fades, and comparisons were not

representative any more.
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Figure 25. Sum over all iteration points of the dot product between fibre
vector and proposed fibre vector ~ep,i (Eq. 1).
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Under compression Driessen’s algorithm could predict the expected op-

timal angle of ±90 ◦ (Fig. 25) and under traction, it gave an optimal fibre

orientation of ±12 ◦. As matrix element’s principal stresses (in the code fi-

bre stress and matrix stress are separated) were used, the evaluation and

the results of Hariton’s algorithm are not meaningful. However, as principal

strain and stress directions were the same Hariton’s algorithm should lead

to the same results as Driessen’s algorithm. Comparing with the results of

the current FCQ formulation Driessen obtain results, closer to the expected

values. However, as Driessen’s algorithm was written and tested in case of

cartilage and arterial wall modelling, it it probable that it can explain a sim-

ple model like the semi-cylinder model under traction and compression. Yet,

as Driessens formulation is close to the MSE formulation and close to the

obtained results (Fig. 13), it should be emphasized that its performance in

case of the AF first needed to be tested using the real lumbar spine model

and is not expected to be strongly different to an formulation only using the

MSE parameter.

5.5 Criticism and limitations

Probably, the main weakness of the study are the non anatomical fibre ori-

entation which are allowed. In the nature a constant fibre orientation of 0 ◦

does not occur.

Also in terms of maximal stress or strains, some values were not realistic. For

example, when the small model is under traction (10% deformation which is



66 of 109 5.5 Criticism and limitations

realistic for the AF) and the fibre angle is set to 0 ◦ fibre stresses may rise up

to 110 Mpa which is not a biologically relevant stress level. It could be argued

that instead of using constant deformations, constant forces could be applied.

Yet, if setting external stress to a constant value, at an optimal fibre orien-

tation, strains also led to deformations that were bellow a realistic biological

deformation. Also for the big model with constant biologically admissible

fibre orientations and load, non-biological local fibre stresses were found (up

to 350 Mpa!). It is difficult to say whether this may influence the RMS values

which are in any case relative with a minimum of zero and a maximum of

one. However, it shows some of the limitations of the implementation of the

rebar formulation in Marc Mentat, respectively the ”back-calculation” from

an ordinary stress tensor to rebar stresses. Moreover, it has to be taken in

account that wrong calculated stresses also could be due to a wrong imple-

mentation.

The limitations with respect to FCQ validation are mainly that it is difficult

to verify what is really the ”best” fibre orientation under a given load. For

example under pure traction it is almost evident that the best fibre orienta-

tion is aligned with the principal strain/stress direction. But what happens

if beside the traction a lateral load is applied? Cells may prefer a crossed

collagen orientation which will give more lateral stability or a different ori-

entation better adapted to obtain oxygen.

If taking into account matrix strain and fibre stress, which was the case in

this study, how should they be weighted? It is possible that for a cell in the

matrix a MSE value is more important then an RMS value.

Finally, there are several parameters and properties which was not accounted
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for in our model. The effect of water in the AF, its visco-elasticity or non-

symmetric geometry (in respect to the sagital plane) could be mentioned.

Moreover, it was found that interlamellar connections [39, 40], which were

not modelled, may involve greater numbers of molecular interactions than

previously thought.

5.6 Pre-stress

As discussed previously, the radial stress distribution found under compres-

sion in the semi-cylinder model shows low or even no fibre stress in the outer

part of the AF. Also for the real L4-L5 model the same behaviour was ob-

served (e.g. under flexion ⇒ anterior AF is compressed ⇒ outer fibres are

more stressed - Appendix A.0.4). Comparing this results to the aorta, zero fi-

bre stresses (which is the aorta model are equal to negative stresses) or lower

stresses in the outer annulus could indicate that it should be pre-stressed

(Fig. 26). The fact that there is a constant internal pressure in the AF,

which is 15 times higher than in the aorta underlines this fact. Pre-stress in

the aorta is assumed to be only due to geometry. It has to be considered that

in case of the AF it is probably more complicated because not only geome-

try dependant pre-stress could intervene but also pre-stress due to swelling.

To our knowledge no experimental quantitative studies were reported about

pre-stressed conditions in the AF fibres. Yet, if it is really pre-stressed this

would completely change the whole concept of evaluation optimal fibre dis-

tributions in the AF fibre orientations and probably also of FE AF fibre

modelling itself.
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Figure 26. Stress and strain in absence of pre-stress in the case of the aorta
(100mmHg = 13.3 kPa). Ordinarily under loaded conditions the
stress distribution in the aorta is constant. Adapted from [41].

5.7 Optimization vs. remodelling

The logic deduction of the previous findings is to contrast optimization and

remodelling. They are almost the same: Seeking the optimal properties in

function of loads or other parameters. So what is the difference between

remodelling and a structural optimization?

Remodelling, for example in case of a bone, changes the local element prop-

erty using local information. The element does not know directly, what hap-

pens in remote elements and information is transmitted only by the neighbour

elements. The evolution of element i is described by φnew,i = f(ψi,k) where

φnew,i is the new, adapted property and ψi,k are k current or historical load-

ings, deformations or properties of element i [42]. A structural optimization

procedure, in the way it was implemented, changes the local properties in

function of global information. Elements receive direct information trans-

mitted from some or all other elements through the implementation of a

global objective function. Element’s i evolution can be described as follow-
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ing: φnew,i = F (ψi,k,
∑Nk
j ψj,k) where φnew,i is the new property, ψj,k are k

current or historical loadings, deformations or properties of any element j,

Nk is a given number of element or their total number and F a function of

Nk and k.

During remodelling, every single element will adapt to local ”external” con-

ditions. During a structural optimization, a single element does not a adapt,

but the global structure of elements is adapted due to the global output.

New properties are imposed from outside. This may be a disadvantage when

exact local adaptation is more important and advantage when a global struc-

ture is required. Moreover, if the optimal position, composition, structure or

result is a global trade-off between several parameters, it can probably only

be achieved by an optimization procedure. At least it is difficult to imagine a

reasonable solution if one element adapts to one condition and its neighbour

to an other.

To link the comparison to other fields, at the level of information flow, an

optimisation could be compared to swarm intelligence (bio-inspired artificial

intelligence7) or wisdom of crowds (economics or sociology8) and remodelling

as individual intelligence.

6 Conclusion

In general it can be concluded that a general computational framework to

optimize annulus fibrosus (AF) orientations could be implemented and ver-
7One bird is unable to find food, where a swarm of birds using the information at every

point of space ”converges” faster to place where the food is situated.
8For example in case of Wikipedia the output of the crowd is higher than of the single

individual.
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ified. The necessary programs could be linked and their interaction work

properly. Fibre orientation angle optimizations (50 iterations) were run on

a complete L4-L5 model using the Fibre Contribution Quality (Eq. 3 to 8).

The algorithm converged in all tested cases (flexion, extension, compression

and torsion) and constant fibre angles between 32 and 68 and radial gradients

between 10 and 17 degree were found. They could partly be compared with

the literature, but finally it has to be concluded that due to local maxima

and the FCQ function, which was not correct at the time the results are not

valid.

A critical fibre angle of ∼ 56.6 ◦ (traction) and ∼ 33.4 ◦ (compression) was

discovered. Over this angle under uni-axial compression or bellow this angle

traction fibres are not stressed any more.

A one element structure is insufficient in terms of convergence.The Houbolt

discretisation using 50 iterations showed an average error of ∼ 1-2% and peak

deviation of 10 to 15%. Due to the averaging, over 32 nodes it was assumed

that it does not affect the results significantly.

However, with respect to convergence, biological imitation or the validation

procedure, the non-linearity of the AF tissue, its fibres and ground substance,

still leads to challenging and complicated solutions. The evaluation of the

FCQ function turned out to be more complex as expected. At many steps

of the work, new issues arose and had to be handled or taken into considera-

tion. Values needed to be averaged, singularity avoided and accuracy had to

be increased while keeping reasonable computational cost. Several different

FCQ versions could be assessed using the semi-cylinder model. The FCQ

function turn out to be valid, when using it without its RSD parameter.
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In Any case this can be justified by the use of the MSE parameter, which

somehow is also a uniformity measurement of stress or strain distribution.

For more complex problems the use of an algorithm taking into account fi-

bre stress and matrix shear strain only should be further explored. Also the

version using the variance of the radial stress distribution shall be further

assessed.

Optimization can be compared to modelling remodelling. It is proposed

according to the required information flow one maybe more suitable than

the other: Remodelling in case of one single local parameter to optimize and

optimization in case of several local parameters influenced by global variables

or constraints.

Using Zhu’s data it was possible to solve one of the main issues of collagen

fibre orientations in the AF and to bring together the two hypotheses of ei-

ther only radial or only tangential fibre orientation gradient. The orientation

found was α0 = 52.3 ◦,∇rα = 14.1 ◦,∇tα = −39.0 ◦.

Pre-stress is an important and non-negligible factor. Under the assump-

tion an optimal stress distribution in the AF is uniform, they have to be

implemented as initial conditions in the finite element models.

6.1 Recommendations

• Currently optimization dimensions are α0, ∇rα and ∇rα. As most

optimisation only converged in the direction of α, it is recommended to
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change the position of α0 from the outer anterior AF to the middle of

the domain (between middle(1) and middle(2) respectively lateral and

posteo-lateral segment). Moreover it is necessary to run optimisation

with more than 50 iterations.

• Run optimizations using FCQ = f(RMS,MSE)

• Non-biological fibre stress output (Fig. 22) have to be addressed and

the used implementations further validated.

• As there is at least one multilamellar bridge per 20 ◦ anterior segment[40]

(and probably also other segments), their influence should be evaluated

in the FCQ function.

• Then AF model fibres should be pre-stressed.

6.1.1 Technical recommendations

Most of the technically important aspects are mentioned in section 3.3. More-

over, every section of new code is commented. Still, for some of the coding

it may take some time to understand how things were exactly implemented.

Marc Mentat 2005 and 2007 are not totally compatible. Thus, it is strongly

recommended to erase all materials in the model, renew and re-attribute

them, when passing form one version to the other. Errors may arise at a

very late state and take a long time to localize. Do not duplicate material

properties. Be aware of irregularities, which may be induced by duplicating

elements.
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Figure 27. Interpolation of all solutions exploration by a genetic algorithm
- crossover fraction: 0.8, population size: 80, generations: 90,
Elitism: One individual. On a strongly simplified geometry the
algorithm converged (FCQ tolerance of < 106) the 4321 FCQ
function evaluations. Interpolating a hyper-surfaces the result
was used to get an idea of the initial solution space. The figure
represents FCQ values varying in function of alpha0 and ∇rα.
At that time the algorithm was still strongly underdeveloped.
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Figure 28. MSE benchmarking. Deviation form optimal position in
directions α0, ∇rα and ∇tα. a) and b): Final MSE (Eq. 6) c)
and d): MSE = ∑ |εij|, i 6= j e) and f) MSE = ∑ |ε13|.
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Figure 29. Example of all stress distributions in the AF under flexion. In
case of ∇rα and ∇tα α0 was kept at 35 ◦ and the gradients were
changed around it.
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B Matlab coding

The essential M-files are:

(a) Run file

(b) Opti fmin

(c) F eval

(d) FCQ eval

These files are presented bellow in there shortest version. The rest of the

files, plotting, GA, ets. won’t be presented in the report.

B.1 Run file

1 % Reset maximal and minimal value

2 if 0==0

3 RMS max=0;

4 RSD max=0;

5 MSE max=0;

6 save('FCQ max file','RMS max','RSD max','MSE max')

7 RMS min=10000;

8 RSD min=1000;

9 MSE min=1000;

10 save('FCQ min file','RMS min','RSD min','MSE min')

11 end

12

13 % Evluate points / run iterations around alpha0 = 90 and grad r = 0
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14 iter=[];

15 iter FCQ.val=[];

16 iter FCQ.max=[];

17 iter FCQ.min=[];

18 iter FCQ.par=[];

19 save iter file iter

20 save iter FCQ file iter FCQ

21

22 for i=−90:5:90

23 for j=−90:5:90

24 F eval([i+90−j/2,j,0]);

25 end

26 end

27

28 % Run an optimization − optimisation name, inital value, number of maximal

29 % function evaluation, continue old iteration? (leave it 0), run

30 % optimisations for minima or maxima (leave it 0.5), chose optimisation

31 % parameter 0=FCQ

32 opti fmin big('The Queens royal FCQ optimisation',[33,10,−35],100,1,0.5,0)

33

34 load iter file

35 load iter FCQ file

B.2 Opti fmin

1 function [history]=opti fmin(optimization name,

2 ...Input,max fun eval,i continue, calc init,opti parameter)

3

4 % Inital values
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5 if i continue==0

6 alpha 0 = 35;

7 grad alpha r = 10;

8 grad alpha t = 10;

9 else %conintue using a previous calculated input value

10 alpha 0 = Input(size(Input,1),1);

11 grad alpha r = Input(size(Input,1),2);

12 grad alpha t = Input(size(Input,1),3);

13 end

14

15 % Constants (case, geometry & load specific variables)

16 n r=4;

17 n t=4;

18 n m=3;

19

20 % M defines the "dimensions" of the output of a Marc Mentat simulation.

21 % The values of M must be entered maually. The material number is saved

22 % in M(i,1), the lines per block (see F eval) in M(i,2),the number of tensor

23 % lines (see F eval) inM(i,3) and the number of elements in the material

24 % (in the set) in M(i,4).

25 M = [17 13 6 160

26 18 13 6 320

27 19 13 6 160

28 1 3 1 48

29 2 3 1 48

30 3 3 1 48

31 4 3 1 48

32 5 3 1 48

33 6 3 1 48

34 7 3 1 48
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35 8 3 1 48

36 9 3 1 32

37 10 3 1 32

38 11 3 1 32

39 12 3 1 32

40 13 3 1 32

41 14 3 1 32

42 15 3 1 32

43 16 3 1 32

44 ];

45

46 subroutine name = ['subroutine big 45'];

47 M M name = ['l4 l5 new ROTATION R 15.0'];

48 save('input file','n r','n t','n m','M','M M name',

49 ...'subroutine name','opti parameter')

50

51 % Matrix initalization

52 iter=[];

53 iter FCQ.val=[];

54 iter FCQ.max=[];

55 iter FCQ.min=[];

56 iter FCQ.par=[];

57 save iter file iter

58 save iter FCQ file iter FCQ

59 history.x = [];

60 history.fval = [];

61

62 % Calculate maximal values for MSE RSD and RMS

63 if calc init == 1;

64 F eval inital;
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65 elseif calc init == 0;

66 RMS max=0;

67 RSD max=0;

68 MSE max=0;

69 save('FCQ max file','RMS max','RSD max','MSE max')

70 RMS min=100000;

71 RSD min=1000;

72 MSE min=1000;

73 save('FCQ min file','RMS min','RSD min','MSE min')

74 else

75 %use the existent values in the max & min file

76 end

77

78 % Calling the optimization function

79 options = optimset('outputfcn',@outfun,'TolX',1e−6,

80 ...'MaxFunEvals',max fun eval,'Display','iter');

81 [x,fval,exitflag,output] = fminsearch(@F eval,

82 ...[alpha 0,grad alpha r,grad alpha t],options)

83

84 load iter file iter

85 load iter FCQ file iter FCQ

86

87 % Plot the results

88 % ...

89 %

90

91 % Save the the created optimization and data & files

92 dos(['md ',optimization name]);

93 dos(['copy output file.mat H:\Proyectistas\Andreas

94 ...\Run11 tors\',optimization name,' /y ']);
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95 % ...

96 %

97

98 % Internal function used during the iteration to write down the

99 % historical evolution of the algorithm

100 function stop = outfun(x,optimValues,state)

101 stop = false;

102 switch state

103 case 'init'

104 hold on

105 case 'iter'

106 % Concatenate current point and objective function

107 history.fval = [history.fval; optimValues.fval];

108 history.x = [history.x; x];

109 case 'done'

110 hold off

111 otherwise

112 end

113 end

114

115 end

B.3 F eval

1 function F=F eval(a);%(alpha 0,grad alpha r);%

2 tic

3 alpha 0=a(1);

4 grad alpha r=a(2);

5 grad alpha t=a(3);
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6

7 load input file M M name

8

9 tensor name = ['Tensors (',M M name,') ['...

10 ,sprintf('%d',alpha 0),' '...

11 ,sprintf('%d',grad alpha r),' '...

12 ,sprintf('%d',grad alpha t),'].mat'];

13

14 % Check wheater this loadcase already exists

15 if exist(tensor name,'file') == 0

16 % Save the values for the Marc Mentat simulation in a file

17 simu file = fopen('COMMON VAR', 'w');

18 fprintf(simu file, '\t alpha 0 = %8.10f \n \t grad alpha r =

19 ...%8.10f \n \t grad alpha t = %8.10f \n',

20 ...[alpha 0*pi/180,grad alpha r*pi/180,grad alpha t*pi/180]);

21 fclose(simu file);

22

23 % Sall Marc Mentat which will access to the file saved previously

24 load input file M M name subroutine name

25 dos(['run marc −j ',M M name,' −u ',subroutine name,' −v no']);

26

27 %***********************************************************************

28 % The simulation (Marc Mentat) is finished − Read in the results.

29 %

30 % C in contains the values calculated by Marc Mentat is a matrix of the

31 % following type:

32 %

33 % 314 2 5 |header |

34 % 0.0012 | |

35 % 0.015 |one tensor |
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36 % 0.0065 | |one block

37 % 23.25 |

38 % 85.25 |

39 % 31.45 |

40 % . (next block)

41 % .

42 %

43 % Remark: No strings are allowed in the header.

44 %

45 % Stress(i,j,k) and Strain(i,j,k) contain stress and strain information of

46 % all elements of one simulation. i is the integration point number, j the

47 % tensor value (e.g j=1 == C11, j=2 == C22 or j=4 == C12, j=5 == C23, etc)

48 % and k the material.

49 %

50 % M defines the "dimensions" of the output of a Marc Mentat simulation. The

51 % values of M must be entered maually. The material number is saved in

52 % M(i,1), the lines per block in M(i,2),the number of tensor lines in

53 % M(i,3) (e.g for the example above M(i,2)=7 and M(i,3)=3) and the number

54 % of elements in the materias (in the set) in M(i,4).

55 %**********************************************************************

56 load input file M

57

58 Strain=zeros(1,1,1);

59 Stress=zeros(1,1,1);

60

61 for k=1:size(M,1)

62 lines per block=M(k,2);

63 lines per tensor=M(k,3);

64 C in = dlmread(['simu results ' sprintf('%d',M(k,1)) '.txt']);

65 for i=1:lines per block:size(C in,1)
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66 for j=1:lines per tensor

67 Strain((i−1)/lines per block+1,j,k) = C in(i+j,1);

68 Stress((i−1)/lines per block+1,j,k) = C in(i+j+lines per tensor,1);

69 end

70 end

71 end

72 save(tensor name,'Strain','Stress')

73 else

74 load(tensor name, 'Stress', 'Strain')

75 end

76

77 % Evaluate the quality of the Simulation by calculating a objective or

78 % fitness function. Write the output F.

79 F=FCQ eval(Strain,Stress);

80

81 % Save ther relevant values in a file

82 load iter file iter

83 t=toc;

84 iter=[iter;[alpha 0,grad alpha r,grad alpha t,F,t]];

85 save iter file iter

86

87 % Write the current state of the optimization to the command window

88 [alpha 0,grad alpha r,grad alpha t,F];

89 n = size(iter,1);

90 end

B.4 FCQ eval

1 function F=FCQ eval(Strain,Stress)
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2 load input file M n r n t n m opti parameter

3 load FCQ max file RMS max RSD max MSE max

4 load FCQ min file RMS min RSD min MSE min

5 load angle a

6 %*************************************************************************

7 % FCQ returns the value of the objective function FCQ

8 %

9 % Input:

10 % Stress(i,j,k) and Strain(i,j,k) contain stress and strain information of

11 % all elements of one simulation. i the integration point number, j the

12 % tensor value (e.g j=1 == C11, j=2 == C22 or j=4 == C12, j=5 == C13, etc)

13 % and k the material.

14 %*************************************************************************

15

16 %Inizialisation

17 FCQ 1 = 0;

18 FCQ 2 = 0;

19 MSE = 0;

20 s 31=0;

21 RSD = 0;

22 RMS = 0;

23 RMS Q = zeros(size(Strain,3),5);

24

25 % Iterate over all fibre materials, n m: # of matrix materials, n t: # of

26 % tangential subsection, n r: # number of radial subsections, a: current

27 % angle alpha

28 for k=n m+1:size(Strain,3)

29 for i=1:20*M(k,4)

30 % Calculate RMS

31 RMS=RMS+Stress(i,1,k)/(M(k,4)*20);
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32 end

33 % Every fibre element consist of 20 integration points, iterate over all

34 % elements

35 for i=1:20:20*M(k,4)

36 % Five layer

37 for j=0:4:19

38 % In each layer four integration point

39 for n=0:3

40 % Creat a matrix RMS Q(q,p) where q is one material and p

41 % the layer number

42 RMS Q(k−n m,j/4+1)=RMS Q(k−n m,j/4+1)+Stress(i+j+n,1,k)/(M(k,4)*5);

43 end

44 end

45 end

46 end

47

48 %Iterate over all ground substance materials

49 for k=1:n m

50 for i=1:size(Strain,1);

51 for j=4:6

52 % Sum over all shear strain components

53 % MSE=MSE+abs(Strain(i,j,1));

54 end

55 % Calculate eigenvalues, principal strain directions, MSE and eigen

56 % vectors

57 lamba=eig([Strain(i,1,k) Strain(i,4,k) Strain(i,6,k);

58 Strain(i,4,k) Strain(i,2,k) Strain(i,5,k);

59 Strain(i,6,k) Strain(i,5,k) Strain(i,3,k)]);

60 MSE=MSE+abs((lamba(1)−lamba(3))/2)/M(k,4);

61 [V,D]=eig([Strain(i,1,k) Strain(i,4,k) Strain(i,6,k);
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62 Strain(i,4,k) Strain(i,2,k) Strain(i,5,k);

63 Strain(i,6,k) Strain(i,5,k) Strain(i,3,k)]);

64 V1=V*D;

65

66 % Driessen et al. −> equations in the repot

67 v3=V1(:,3);

68 v3=v3/norm(v3);

69 if lamba(2)>0

70 v2=V1(:,2);

71 v2=v2/norm(v2);

72 else

73 v2=[0;0;0];

74 lamba(2)=0;

75 end

76 % Preferd fibre direction

77 ep1=(lamba(3).*v3+lamba(2).*v2)/sqrt(lamba(3)ˆ2+lamba(2)ˆ2);

78 ep2=(lamba(3).*v3−lamba(2).*v2)/sqrt(lamba(3)ˆ2+lamba(2)ˆ2);

79 % Actual fibre direction

80 f1=sin(a(1)/180*pi)*[0;0;1]+cos(a(1)/180*pi)*[0;1;0];

81 f2=sin(a(1)/180*pi)*[0;0;1]−cos(a(1)/180*pi)*[0;1;0];

82 % Use the cos() of the two vector pairs, which are closer

83 Dris=Dris+min(abs(dot(ep1,f1))+abs(dot(ep2,f2)),abs(dot(ep1,f2))

84 ...+abs(dot(ep2,f1)));

85 end

86 end

87 % Calculate RSD

88 x=1/(2*n r*5):1/(n r*5):1;

89 % Iterate over tangential sections

90 for i=1:n t

91 RMS Qr=0;
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92 y=[];

93 % Iterate over radial section

94 for j=1:n r

95 % Iterate over the five layers

96 for k=1:5

97 % Place fibrestresses of each layer in a consecutive radial

98 % vector. Sum over each the radial section

99 y=[y,RMS Q((i−1)*n r+j,6−k)]; % inverting direction: 6−k = 5,4,3,2,1

100 RMS Qr=RMS Qr+RMS Q((i−1)*n r+j,6−k);

101 end

102 end

103 % Average the vector in respect to the subsection

104 % y=y./(RMS Qr+1);

105 % Fit a second order polynom to radial vector or calculate its variance

106 P(i,:) = polyfit(x,y,2);

107 VAR = var(y);

108 % Plot the stress distribution

109 if 0==1

110 figure(i+1000)

111 funcy funcy = @(x) P(i,1)*x.ˆ2+P(i,2)*x+P(i,3); %P(i,1)*x+P(i,2);

112 plot(x,y)

113 legend('stress');

114 hold on;

115 x1=0:0.02:1;

116 plot(x1,funcy funcy(x1),'r'); hold on;

117 title name=['Anterior ';...

118 'Lateral ';...

119 'Posteolateral';...

120 'Posterior ';];

121 title(title name(i,:))
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122 legend('original','interpolation'); hold on;

123 xlabel('x relative');ylabel('MPa');

124 load i j

125 text(x(9),y(9),['\bullet (' sprintf('%d',(j−1)*15) ' )'])

126 if i==4

127 j=j+1;

128 end

129 save i j

130 end

131 % Calcualte the final value of RSD

132 RSD=RSD+sqrt(4*P(i,1)ˆ2+P(i,2)ˆ2);

133 % RSD=RSD+abs(4*P(i,1)ˆ2+P(i,2)ˆ2)/(RMS Qr+1);

134 % RSD=RSD+VAR;

135 % RSD=RSD+abs(4*P(i,1)ˆ2+P(i,2)ˆ2)*RMS Qr;

136 end

137

138 % Reset maximal or minamal values if necessary

139 if RMS>RMS max

140 RMS max=RMS

141 save('FCQ max file','RMS max','RSD max','MSE max')

142 end

143 if RSD>RSD max

144 RSD max=RSD

145 save('FCQ max file','RMS max','RSD max','MSE max')

146 end

147 if MSE>MSE max

148 MSE max=MSE

149 save('FCQ max file','RMS max','RSD max','MSE max')

150 end

151 if RMS<RMS min
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152 RMS min=RMS

153 save('FCQ min file','RMS min','RSD min','MSE min')

154 end

155 if RSD<RSD min

156 RSD min=RSD

157 save('FCQ min file','RMS min','RSD min','MSE min')

158 end

159 if MSE<MSE min

160 MSE min=MSE

161 save('FCQ min file','RMS min','RSD min','MSE min')

162 end

163 % Calculate FCQ

164 FCQ = −1/log(1+exp(1)−exp(−2))*log(1−exp(−2)+exp(...

165 (RMS−RMS min)/(RMS max−RMS min)...

166 −(RSD−RSD min)/(RSD max−RSD min)...

167 −(MSE−MSE min)/(MSE max−MSE min))); % "−log(...)" will maximise

168 %RMS and minimize MSE resp. RSD, "log(...)" the inverse

169 % Optimize in respect to ... −> normally case 0. Return the value.

170 switch opti parameter

171 case 0

172 F=FCQ;

173 case 1 %maximize RSM

174 F = −RMS;

175 case 2 %minimize RSM

176 F = RMS;

177 case 3 %maximize RSD

178 F = −RSD;

179 case 4 %minimize RSD

180 F = RSD;

181 case 5 %maximize MSE
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182 F = −MSE;

183 case 6 %minimize MSE

184 F = MSE;

185 case 7 %other case or variation

186 F = s 31;

187 FCQ 3 = [(RMS/RMS max)ˆ2;(MSE/MSE max)ˆ2];%lsqnonlin

188 end

189 % Write tracking files

190 load iter FCQ file iter FCQ

191 iter FCQ.val=[iter FCQ.val;(RMS−RMS min)/(RMS max−RMS min),

192 ...(RSD−RSD min)/(RSD max−RSD min),

193 ...(MSE−MSE min)/(MSE max−MSE min),

194 ...RMS,RSD,MSE,FCQ];

195 iter FCQ.max=[iter FCQ.max;RMS max,RSD max,MSE max];

196 iter FCQ.min=[iter FCQ.min;RMS min,RSD min,MSE min];

197 iter FCQ.par=[iter FCQ.par;P(i,1),P(i,2),lamba(1),lamba(3)];

198 save iter FCQ file iter FCQ

199 end

C Fortran subroutine

1 c The code was strongly shortened

2

3 Subroutine Hypela2(...)

4

5 if (mats.eq.49) then

6 c set Property ...

7 endif
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8

9 return

10 end

11

12

13 c* * * * * *

14 c REBAR

15 c

16 c Input:

17 c N is the element number.

18 c NN(1) is the integration point number.

19 c NN(2) is the layer number.

20 c NN(3) is the integration point number in this layer.

21 c T,PR,TR,A are to be defined by the user.

22 c Required Output:

23 c T is the nominal size in thickness direction.

24 c PR is the relative position of rebar layer with respect to T.

25 c MSC.Marc uses the ratio PR/T to position the rebar layer in the

26 c thickness direction.

27 c TR is the equivalent thickness of rebar.

28 c A is the direction cosines of the rebar.

29 c* * * * * *

30

31 SUBROUTINE REBAR (N,NN,T,PR,TR,A)

32

33 c*********************************************************************

34 c Initaialization of the variables

35 c

36 c The COMMOM VAR file contains the values alpha 0, grad alpha r and

37 c grad alpha t
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38 c*********************************************************************

39

40 DIMENSION A(3),NN(3),Coord No(3,8),Disp No(3,8),Lext(8),

41 c e1(3),e2(3),e3(3),X(3),Y(3),Z(3),R(3,3),A in(3), A in 2(3),

42 c ∆ r(4),∆ t(4),R1(3,3)

43

44 REAL *8 X A,Y A,Z A,PI,alpha 0, grad alpha r, grad alpha t,

45 c n r, n t, a one

46

47 Integer i cross,i direct,n matus re

48 PI = 6*asin(0.5)

49

50 INCLUDE 'H:\PROYECTISTAS\Andreas\Run11 tors\COMMON VAR'

51

52 c*********************************************************************

53 c Local Axis & Rotation Matrix

54 c

55 c In this section the local axis of each element in global coordinates

56 c is calculated. Then using this three vectros a the rotation matrix can

57 c be set up to turn vectors from a global to a local coordinates system.

58 c

59 c Where:

60 c X, Y, Z are the axis vectors of the element

61 c LEXT is the external node number

62 c Coord No is the array with the coordinates of the element's nodes

63 c X A, Y A, Z A are the norms of the axis vectors

64 c R is rotation matrix (global to local coordinate system)

65 c*********************************************************************

66 c Coordinates

67 ICOD = 0
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68 DO i = 1,8

69 LEXT(i) = NODEXT(LM(i))

70 CALL NODVAR(ICOD,LEXT(i),Coord No(:,i),NQNCOMP,NQDATATYPE)

71 CALL NODVAR(ICOD D,LEXT(i),Disp No(:,i),NQNCOMP,NQDATATYPE)

72 DO j=1,3

73 Coord No(j,i)=Coord No(j,i)+Disp No(j,i)

74 ENDDO

75 ENDDO

76

77 c Calculate Axis, normalisation

78 DO i=1,3

79 X(i) = (Coord No(i,5)+Coord No(i,6)+Coord No(i,7)+Coord No(i,8))/4

80 c −(Coord No(i,1)+Coord No(i,2)+Coord No(i,3)+Coord No(i,4))/4

81 ENDDO

82

83 DO i=1,3

84 y(i) = (Coord No(i,1)+Coord No(i,2)+Coord No(i,5)+Coord No(i,6))/4

85 c −(Coord No(i,3)+Coord No(i,4)+Coord No(i,7)+Coord No(i,8))/4

86 ENDDO

87

88 DO i=1,3

89 Z(i) = (Coord No(i,2)+Coord No(i,3)+Coord No(i,6)+Coord No(i,7))/4

90 c −(Coord No(i,1)+Coord No(i,4)+Coord No(i,5)+Coord No(i,8))/4

91 ENDDO

92

93 X A=ABS(sqrt(DOT PRODUCT(X,X)))

94 Y A=ABS(sqrt(DOT PRODUCT(Y,Y)))

95 Z A=ABS(sqrt(DOT PRODUCT(Z,Z)))

96 DO i=1,3

97 X(i)=X(i)/X A
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98 Y(i)=Y(i)/Y A

99 Z(i)=Z(i)/Z A

100 ENDDO

101

102 c Correct wrong orientated element using Eularian rotations

103 R = RESHAPE( (/X(1),Y(1),Z(1),

104 c X(2),Y(2),Z(2),

105 c X(3),Y(3),Z(3) /), (/ 3, 3 /) )

106

107 if ((N.ge.4096).and.(N.le.4413)) then

108 a one=1.0

109 R1 = RESHAPE( (/a one,0,0,

110 c 0,cos(PI/2),−sin(PI/2),

111 c 0,sin(PI/2), cos(PI/2)/), (/ 3, 3 /) )

112

113 endif

114 c*********************************************************************

115 c Fibre Distribution in the Annulus Fibrosus

116 c

117 c Where:

118 c n r is the number of subdomains in the radial direction

119 c n t is the number of subdomains in the tangential direction

120 c ∆ r/ t is a vector conating the ....

121 c A 1, A 2, ... are the directive vectors of one rebar layer

122 c*********************************************************************

123

124 n r=4

125 n t=4

126 n matus re=0

127
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128 do i = 1,n r

129 ∆ r(i)=1−i/n r

130 end do

131

132 do i = 1,n t

133 ∆ t(i)=(i−1)/(n t−1)

134 end do

135

136 c ANT

137 c ****

138 if (matus(2).eq.(1+n matus re)) then

139 d r = ∆ r(4)

140 d t = ∆ t(1)

141 i dir e = 1

142 TR = 0.211115026

143 else if (matus(2).eq.(2+n matus re)) then

144 d r = ∆ r(3)

145 d t = ∆ t(1)

146 i dir e = −1

147 TR = 0.277088472

148 else if (matus(2).eq.(3+n matus re)) then

149 d r = ∆ r(2)

150 d t = ∆ t(1)

151 i dir e = 1

152 TR = 0.277088472

153 else if (matus(2).eq.(4+n matus re)) then

154 d r = ∆ r(1)

155 d t = ∆ t(1)

156 i dir e = −1

157 TR = 0.356256607
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158

159

160 c LAT

161 c ****

162 else if (matus(2).eq.(5+n matus re)) then

163 d r = ∆ r(4)

164 d t = ∆ t(2)

165 i dir e = 1

166 TR = 0.237504405

167 else if (matus(2).eq.(6+n matus re)) then

168 d r = ∆ r(3)

169 d t = ∆ t(2)

170 i dir e = −1

171 TR = 0.237504405

172 else if (matus(2).eq.(7+n matus re)) then

173 d r = ∆ r(2)

174 d t = ∆ t(2)

175 i dir e = 1

176 TR = 0.237504405

177 c ...

178 c

179 c Always start with the outer anterior section.

180 endif

181

182 c Set layer properties

183 T = 1

184 if (NN(2).eq.1) then

185 PR = 0.1

186 i dir=1

187 else if (NN(2).eq.2) then
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188 PR = 0.3

189 i dir=−1

190 else if (NN(2).eq.3) then

191 PR = 0.5

192 i dir=1

193 else if (NN(2).eq.4) then

194 PR = 0.7

195 i dir=−1

196 else if (NN(2).eq.5) then

197 PR = 0.9

198 i dir=1

199 endif

200

201 c Orientate fibres

202 A in(1)=0

203 A in(2)=i dir e*i dir*sin(alpha 0+grad alpha r*(d r+PR/n r)+

204 c grad alpha t*d t)

205 A in(3)=cos(alpha 0+grad alpha r*(d r+PR/n r)+grad alpha t*d t)

206

207

208 c*********************************************************************

209 c Output

210 c

211 c Rotate the vector into the local coordinates system (element)

212 c*********************************************************************

213

214 A= MATMUL(A in,R)

215 A=A/ABS(sqrt(DOT PRODUCT(A,A)))

216

217 RETURN
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218 END

219

220 c*********************************************************************

221 c

222 c Write Output files

223 c

224 c*********************************************************************

225

226 SUBROUTINE ELEVAR(...)

227

228 c Decide when to write the ouput file!!!

229 if (inc.eq.48) then

230

231 c A Marix file

232 if (Matus(1).eq.17) then

233 open (unit=21,status='old',file='simu results 17.txt',

234 c access='sequential')

235 WRITE(21,*) N1, NN1, KCUS1

236 do i = 1,6

237 WRITE(21,*) Gstran1(i)

238 enddo

239 do i = 11,16

240 WRITE(21,*) Gstres1(i)

241 enddo

242 endif

243

244 c A Rebar file

245 if (Matus(1).eq.9) then

246 open (unit=22,status='old',file='simu results 9.txt',

247 c access='sequential')
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248 WRITE(22,*) N1, NN1, KCUS1

249 WRITE(22,*) Gstran1

250 WRITE(22,*) Gstres1

251 endif

252

253 endif

254 RETURN

255 END
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