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Abstract

Spectral reflection prediction models, although effective, are impractical for certain indus-

trial applications such as self-calibrating devices and online monitoring because of the requi-

rements imposed by their calibration. The idea emerged to make the calibration more flexible.

Instead of requiring specific color-constant calibration patches, the calibration would rely on

the information contained in regular prints, e.g. on information found in printed color images.

Using the CMYK Ink Spreading enhanced Yule-Nielsen modified Spectral Neugebauer model

(IS-YNSN), the objective of this dissertation is to recover the Neugebauer primaries and ink

spreading curves from image tiles extracted from printed color images.

The IS-YNSN is first reviewed in the context of CMYK prints. Two sources of ambiguity

are identified and removed, yielding a more robust model better suited for a flexible calibration.

We then propose a gradient-descent method to acquire the ink spreading curves from image tiles

by relying on constraints based on a metric evaluating the relevance of each ink spreading curve

to the set of image calibration tiles. We optimize the algorithm which automatically selects the

image tiles to be extracted and show that 5 to 10 well-chosen image tiles are sufficient to

accurately acquire all the ink spreading curves.

The flexible calibration is then extended to recover the Neugebauer primaries from printed

color images. Again, a simple gradient-descent algorithm is not sufficient. Thanks to a set of

constraints based on Principal Component Analysis (PCA) and the relationships between com-

posed Neugebauer primaries and the ink transmittances, good approximations of the Neuge-

bauer primaries are achieved. These approximations are then optimized, yielding an accurately

calibrated IS-YNSN model comparable to one obtained by classical calibrations. A detailed

analysis of these calibrations shows that 25 well-chosen CMYK image calibration tiles are

sufficient to accurately recover both the Neugebauer primaries and the ink spreading curves.

Keywords : color prints, color reproduction, dot gain, halftones, ink spreading, prediction

model calibration, spectral reflection prediction, automatic selection, image tiles
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Résumé

Les modèles de prédiction de réflectances spectrales, bien qu’efficaces, ne sont pas utili-

sables pour certaines applications industrielles, telles que les systèmes auto-calibrants ou le

contrôle continu de systèmes de reproduction, à cause des restrictions imposées par leur ca-

libration. L’idée de rendre cette calibration plus flexible a donc germé. Au lieu d’utiliser des

échantillons de calibration de couleur constante, la calibration utiliserait l’information conte-

nue dans les pages imprimées, comme par exemple l’information contenue dans les images.

Basé sur le modèle spectral CMJN de Neugebauer modifié par Yule et Nielsen et étendu par un

modèle d’accroissement du point de trame (modèle IS-YNSN), la présente thèse a pour objectif

de déterminer les primaires de Neugebauer et les courbes d’accroissement du point de trame

à partir de tuiles image extraites d’images couleur imprimées et sans connaissances préalables

du système de reproduction.

Le modèle IS-YNSN est d’abord réexaminé dans le contexte des quatre encres cyan, ma-

genta, jaune et noire (CMJN). Deux sources d’ambiguïté sont identifiées et supprimées, rendant

le modèle plus robuste et mieux adapté à une calibration flexible. Nous proposons ensuite une

méthode de descente de gradient afin d’acquérir les courbes d’accroissement du point à par-

tir de tuiles image. Cette méthode utilise des contraintes basées sur une métrique évaluant la

pertinence des courbes d’accroissement du point de trame par rapport à l’ensemble des tuiles

de calibration. L’algorithme de sélection de tuiles à extraire des images est ensuite optimisé

et nous montrons que 5 à 10 tuiles de calibration soigneusement choisies sont suffisantes pour

déterminer les courbes d’accroissement du point de trame avec exactitude.

La calibration flexible est ensuite étendue à la détermination des spectres des primaires

de Neugebauer à partir d’images couleur imprimées. À nouveau, une simple descente de gra-

dient n’est pas suffisante. Grâce à plusieurs contraintes basées sur une analyse en composantes

principales (PCA) et à la relation entre les primaires de Neugebauer composées et la transmit-

tance des encres, de bonnes approximations des primaires de Neugebauer sont obtenues. Ces

approximations sont ensuite optimisées afin d’obtenir une calibration du modèle IS-YNSN pré-
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cise et comparable à une calibration classique. Une analyse détaillée de ces calibrations montre

que 25 tuiles de calibration CMJN soigneusement choisies sont suffisantes pour déterminer

précisément les primaires de Neugebauer et les courbes d’accroissement du point de trame.

Mots-clés : impressions couleur, reproduction couleur, accroissement du point de tra-
me, demi-tons, étalement d’encre, calibration de modèles de prédiction, prédiction de
réflectances spectrales, sélection automatique, tuiles image
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“The pursuit of truth and beauty is a sphere of activity in

which we are permitted to remain children all our lives.”

– Albert Einstein





Chapter 1

Introduction

1.1 Motivations

Printing technologies used to be a luxury only accessible to professionals. Since the 21st

century, advances in miniaturization and manufacturing processes have made devices such as

digital cameras, video cameras and desktop printers cheap and ubiquitous. By combining these

technologies with personal computers, anyone has access to powerful tools and can become an

artist, a designer, a publisher, etc. However, it is a difficult task to master these tools in order

to produce the desired results and non-professionals do not have the required knowledge to

overcome all the obstacles. Technology must be robust and flexible in order to assist them in

their tasks.

Another aspect of modern society having an impact on how technology evolves is that ev-

erything must go fast and costs be reduced to the minimum. This attitude puts a lot of pressure

on professionals, especially since technology keeps getting ever more complex and specialized.

It is difficult for them to meet the productivity targets while maintaining the expected high qual-

ity. In the printing industry, they increasingly rely on the new printing devices to automatically

manage many aspects of the reproduction process in, again, a robust and flexible way.

The need for robust and flexible tools has been called to our attention while working on

a project in collaboration with Wifag, a company building offset presses. A collaborator of

Wifag remarked that our solution to their problem, although effective, was rather impractical.

The solution was based on the Clapper-Yule spectral reflection prediction model. This theo-

retical model needs to be calibrated, i.e. tuned to the current working environment, and this

calibration requires patches of specific colors to be printed and measured. Due to the cost
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2 CHAPTER 1. INTRODUCTION

of printing the required colors, measuring them, and due to the number of different ink and

paper combinations, calibrating the theoretical model for all these combinations was not an

option. The idea emerged then to rethink the method used to calibrate such spectral reflection

prediction models.

1.2 Spectral reflection prediction models

The most important aspect about color printing are the colors. They must be pleasant and

faithful. Although faithful colors refer more to what people expect to see rather than what

people actually see, it is fundamental to accurately control the printing device in order to deliver

the desired colors. To achieve such color fidelity, printing devices must be both calibrated and

characterized [Bal03].

Device calibration ensures that the device has a known characteristic color response, i.e. the

device always prints the same color when given the same set of control values. Once a device

is calibrated, it is possible to control the printing process and to repeat given results. Control

and repeatability are two characteristics that are expected of any printing device.

Device characterization relates the characteristic color response achieved through the device

calibration to a device independent representation such as the CIE-XYZ or CIE-LAB color

spaces. It defines the gamut of the printing device, i.e. the set of printable colors. This step

enables the comparison of different devices as well as the conversion of colors from one device

to another.

Both device calibration and characterization can benefit from the use of a model predicting

the reflectance of color halftones as a function of their nominal surface coverages, i.e. of the

control values specifying the amount of inks to be printed. For device calibration, spectral

reflection prediction models are helpful in studying the influence of given factors on the range

of printable colors: the inks, the type of paper, the illumination conditions, and the halftones.

A spectral reflection prediction model is also useful for the characterization of a printing device

since it predicts the device-independent color values resulting from a set of nominal ink surface

coverages. It enables not only the creation of ICC profiles [GL96], but also new color separation

strategies, for example when printing with custom inks [TB01].

These spectral reflection prediction models also need to be calibrated. Classical model

calibration is performed by measuring the reflection spectra of specially printed calibration

patches. These special calibration patches comprise all the solid colorants (paper, solid inks

and superpositions of solid inks) and single ink halftones superposed with all combinations
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of solid ink superpositions. For CMYK prints, a minimum of 36 calibration patches are re-

quired [BBH08], but that number may be considerably larger to achieve even better accuracy,

e.g. several hundreds of patches may be used for the Cellular Yule-Nielsen model [RB93].

1.3 Scope and objective

There exist several different spectral reflection prediction models, but the most widely used

is the Yule-Nielsen modified Spectral Neugebauer model (YNSN) because of its simplicity

and its relatively good accuracy [WB00]. In order to improve its accuracy, the YNSN model

has been enhanced with an ink spreading model accounting for physical dot gain [HC05]. First

derived for 3 inks, the extension to 4 inks of this ink spreading model is presented in [HECC05].

The scope of this dissertation is limited to this 4 ink IS-YNSN model applied to CMYK prints,

which corresponds to many practical situations such as the one that arose in our collaboration

with Wifag. Note that alternative prediction models, e.g. the Clapper-Yule model mentioned

above, are discussed in Section 2.5.

The choice to limit ourselves to 4 inks is one often made in the literature [TB00]. The

first reason is that the YNSN model requires an exponential number of measurements for its

calibration with respect to the number of inks, which is time-consuming and expensive. The

second reason is the effect called ink-trapping limitation. When the total ink coverage exceeds

400% at a given location, the inks stop adhering to the substrate [TB00]. The paper begins to

crinkle and the inks to leak. To avoid this problem, the upper bound for total ink coverage is

usually set to 300%. With this limit, it is not possible to print too many different inks at the

same location. The third reason is that all the colors in the gamut of a printing device using

more than 4 inks can be achieved with a combination of at most 4 of the available inks.

Among all possible combinations of 4 inks, we have chosen to focus on cyan, magenta,

yellow, and black inks because this combination generates the largest gamut. It is also the

combination that is available in all printing devices providing a minimum of 4 inks. We also

consider the simpler CMY case when appropriate.

The objective of this dissertation is to propose a calibration method for the chosen spectral

reflection prediction model as flexible and robust as possible, i.e. a calibration method based

only on the information that can be obtained from produced prints without relying on specially

conceived calibration patches or prior knowledge of the printing device. The main problem of

the classical calibration procedure is to print the required and specially conceived calibration

patches. If they are too numerous, it is costly and time-consuming to print and measure them all.
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In other circumstances, they take valuable space on the printed product and must be removed.

For example, on offset presses, the special calibration patches are placed in the margins of the

printed pages and are cut off before assembling the final print product. Instead of relying on

these special calibration patches, we propose a calibration method based on measurements of

image tiles extracted from printed color images. This flexible calibration allows the use of the

IS-YNSN model in situations similar to the situation at Wifag described above and any printing

device can be monitored online.

1.4 Dissertation outline

Chapter 2 begins by introducing the different parts of the IS-YNSN model and how these

parts are calibrated. It then discusses different approaches to the problem of spectral reflection

prediction.

In Chapter 3, we focus on the robustness of the IS-YNSN model for CMYK prints. Com-

pared to the CMY case, the addition of the black ink introduces two sources of ambiguity for

the model. The first ambiguity follows from the two possibilities to create the color black, either

using the black ink or superposing cyan, magenta, and yellow. When the IS-YNSN model is

used to deduce the surface coverages of printed color halftone patches from their measured re-

flectance spectra, it cannot accurately distinguish between the two different blacks, introducing

inaccuracies in the deduced coverages. The second ambiguity is that printing solid black along

with other inks yields black. There is no possibility to detect the presence of the other inks

from measured spectra, generating instabilities when calibrating certain ink spreading curves.

We therefore propose solutions that remove these sources of errors. This more robust version

of the IS-YNSN model is used as basis for our calibration based on image tiles extracted from

printed color images.

In Chapters 2 and 3 and in the literature, the IS-YNSN model is used to predict the reflection

spectra of patches of a constant color. In Chapter 4, instead of these color-constant patches, we

investigate if tiles extracted from color images can be accurately predicted and how they can

be used to facilitate the calibration of the ink spreading curves.

Chapter 5 extends the calibration method described in Chapter 4 from the ink spreading

model to the entire IS-YNSN model. The proposed calibration method is able to accurately

calibrate the IS-YNSN model using exclusively tiles extracted from color images. No prior

knowledge about the printing device or the inks is necessary.

The conclusions are drawn in Chapter 6.
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1.5 Contributions

The detailed list of contributions is as follows:

– We show that the near-infrared wavelength range is useful when a pigment-based black

ink is used, removing the ambiguity between the black ink and the superposition of the

cyan, magenta, and yellow inks;

– We describe a new set of ink spreading equations specific to CMYK prints. We also

discuss how this new set of equations is derived and how the same reasoning can be

applied to other ink combinations;

– We show that tiles extracted from color images can be measured and accurately predicted

if the colors contained in the tiles are uniform enough. We also show that the accuracy of

the predicted spectra of color image tiles is well correlated with the uniformity of these

tiles;

– We propose an algorithm to calibrate the ink spreading curves based on tiles extracted

from color images. This calibration algorithm relies on a metric evaluating the relevance

of each ink spreading curve for predicting a given set of color image tiles;

– Instead of measuring the reflectances of the Neugebauer primaries, we describe a set of

constraints imposed on these Neugebauer primaries that enable their recovery based on

color image tiles;

– We propose a least-squares minimization algorithm to optimize the reflectances of the

Neugebauer primaries calibrated from color image tiles. This optimization relies on a

metric evaluating the relevance of each Neugebauer primary for predicting a given set of

color image tiles; and

– We describe algorithms that automatically select color image tiles best suited to the pro-

posed calibrations based on color image tiles.





Chapter 2

The Ink-Spreading Enhanced
Yule-Nielsen modified Spectral

Neugebauer model

2.1 Introduction

The Yule-Nielsen model is the most widely used spectral reflection prediction model for its

simplicity and accuracy. Based on the Neugebauer model, the Yule-Nielsen modified Spectral

Neugebauer model (YNSN) predicts the spectral reflectance of printed samples given their

nominal ink coverages, i.e. the relative surface covered by the inks and derived from the device

control values used to print the samples. However, predictions performed using nominal ink

coverages are not the most accurate since the YNSN model does not account for physical dot

gain.

When inks are printed on a substrate, they tend to spread out and cover an effective surface

larger than the intended nominal surface. In order to account for this phenomenon, an ink

spreading model must be used. Such a model computes effective ink surface coverages from

nominal ink surface coverages. The effective ink surface coverages are then used in the YNSN

model instead of the nominal ink surface coverages to improve the accuracy of the predictions.

This chapter first describes the Yule-Nielsen modified Spectral Neugebauer model (YNSN).

It follows by describing the ink spreading model on which this dissertation is based and com-

bines both the YNSN and ink spreading models to form the IS-YNSN model. The different

assumptions made by the two models are finally discussed and compared to the literature.
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8
CHAPTER 2. THE INK-SPREADING ENHANCED YULE-NIELSEN MODIFIED SPECTRAL
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2.2 The Yule-Nielsen modified Spectral Neugebauer

model (YNSN)

One of the first color prediction models is the Neugebauer model ([Neu37], translated into

English in [WK05]). In its original form, it predicts the RGB values of a color halftone patch

as the sum of the RGB values of their individual colorants weighted by their fractional area

coverages ai. By considering the reflection spectra Ri of colorants instead of their respective

RGB values, one obtains the spectral Neugebauer equations [Vig90]. They predict the reflec-

tion spectrum R of a printed color halftone patch as a function of the reflection spectra of its

individual colorants (also called Neugebauer primaries):

R (λ) =
∑
i

ai ·Ri (λ) (2.1)

With k inks, there are 2k colorants: white, the k single ink colorants and all the different

superpositions of solid inks. For example, the red colorant is the superposition of the magenta

and yellow inks. When the ink layers are printed independently one from another, the fractional

area coverages of the individual colorants are calculated from the surface coverages of the

inks by the Demichel equations ([WB00], originally published in [Dem24]). For 4 inks, the

Demichel equations are the following:

aw = (1− c) · (1−m) · (1− y) · (1− k) ak = (1− c) · (1−m) · (1− y) ·k
ac = c · (1−m) · (1− y) · (1− k) ack = c · (1−m) · (1− y) ·k
am = (1− c) · m · (1− y) · (1− k) amk = (1− c) · m · (1− y) ·k
acm = c · m · (1− y) · (1− k) acmk = c · m · (1− y) ·k
ay = (1− c) · (1−m) · y · (1− k) ayk = (1− c) · (1−m) · y ·k
acy = c · (1−m) · y · (1− k) acyk = c · (1−m) · y ·k
amy = (1− c) · m · y · (1− k) amyk = (1− c) · m · y ·k
acmy = c · m · y · (1− k) acmyk = c · m · y ·k

(2.2)

Since the Neugebauer model neither takes explicitly into account the lateral propagation of

light within the paper bulk nor the internal reflections (Fresnel reflections) at the paper-air inter-

face, its predictions are not accurate [Kan94]. Yule and Nielsen [YN51] modeled the non-linear

relationship between the reflectances of paper, single ink halftones, and the corresponding solid

ink prints by a power function whose exponent n can be optimized according to the reflectances
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of a limited set of halftone patches. Viggiano [Vig90] applied the Yule-Nielsen relationship to

the spectral Neugebauer equations, yielding the Yule-Nielsen modified Spectral Neugebauer

model (YNSN):

R (λ) =

(∑
i

ai ·Ri(λ)1/n
)n

(2.3)

When calibrated, i.e. when the reflection spectra of the colorants Ri and the Yule-Nielsen

n-value are known, the YNSN can be seen as a function taking the ink surface coverages of

a color halftone as input and yielding its reflection spectrum. It is possible to deduce ink

coverages from a given spectrum by minimizing a difference metric between predicted and

measured reflection spectra as follows:

covsopt = arg min
covs

[∑
k

(predSpectrum(λk, covs)−R(λk))
2

]
(2.4)

where covs = {c,m, y, k} are the nominal ink coverages, R(λ) the measured spectrum, and

predSpectrum the YNSN model predicting function combining Eqs. (2.2) and (2.3).

Ink coverages deduced using Eq. (2.4) are usually larger than the corresponding nominal

ink coverages because physical dot gain due to ink spreading is not accounted for in the YNSN

model. As a consequence, spectral predictions made from nominal ink coverages are not accu-

rate. We therefore enhance the YNSN model by adding an ink spreading model.

2.3 The Ink Spreading model

When a reproduction device reproduces a color with given nominal ink coverages by de-

positing inks on paper, the inks spread out on the paper, resulting in effective ink surface cov-

erages usually greater than the requested nominal ink surface coverages. This phenomenon is

known as physical or mechanical dot gain, as well as ink spreading. The amount of dot gain of

an ink depends on whether the ink halftone is printed alone on paper or in superposition with

one or more other inks [YC51, HECC05]. The goal of the ink spreading model is therefore to

compute the effective ink surface coverages from the nominal ink surface coverages in order to

use the effective ink surface coverages as input to the YNSN model.

Since the ink spreading model is based on ink spreading curves, this section first presents

the available ink spreading curves and the method used to calibrate them. It then describes how

the ink spreading model computes the effective surface coverages using these ink spreading
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Figure 2.1: (a) Example of a linearly interpolated ink spreading curve (thick solid line) characterized by
three calibration points (circles). The thin solid line indicates when there is no ink spreading. (b) Corre-
sponding dot gain curve, defined as the difference between effective and nominal surface coverages.

Table 2.1: List of the considered ink spreading curve indicia.

Cyan Magenta Yellow Black

c c/k m m/k y y/k k k/y
c/m c/mk m/c m/ck y/c y/ck k/c k/cy
c/y c/yk m/y m/yk y/m y/mk k/m k/my
c/my c/myk m/cy m/cyk y/cm y/cmk k/cm k/cmy

curves. Three different methods are proposed, further referred to as ink spreading directives,

each directive corresponding to given assumptions about how the inks influence each other.

2.3.1 Ink Spreading Curves

The ink spreading model relies on ink spreading curves. An ink spreading curve maps the

nominal surface coverages of an ink halftone into its effective surface coverages, i.e. to the

surface that the ink halftone effectively covers after being printed. For example in Figure 2.1a,

the 50% nominal surface coverage is mapped to effective surface coverage v. There is one ink

spreading curve for each ink halftone in each superposition condition. For example, a cyan

halftone may be printed alone, c; superposed with solid magenta, c/m; with solid yellow, c/y;

with solid black, c/k; with solid magenta and solid yellow, c/my; with solid magenta and solid

black, c/mk; with solid yellow and solid black, c/yk; and with solid magenta, yellow and

black, c/myk. There are 8 different ink spreading curves for each ink, yielding a total of 32

ink spreading curves. Table 2.1 lists the 32 possible ink spreading curves for CMYK prints.

Figure 2.1b shows the dot gain curve corresponding to the ink spreading curve of Fig-

ure 2.1a, where dot gain is defined as the difference between effective and nominal coverages.
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Figure 2.1 also shows that three calibration patches (the three circles) have been used to cali-

brate the ink spreading curve. The nominal ink coverages of these calibration patches are 0.25,

0.5, and 0.75, respectively. These nominal ink surface coverages determine the position on

the x-axis of the ink spreading curve. The corresponding effective surface coverages are fitted

using Eq. (2.4) and determine the position on the y-axis. The ink spreading curve is then lin-

early interpolated. Any number of calibration patches can be used. Each additional patch adds

another circle and refines the ink spreading curve. Ink spreading curves calibrated using this

method are further referred to as linearly interpolated ink spreading curves.

2.3.2 Ink Spreading Directives

When using more than one ink spreading curve per ink, there are many possible combi-

nations to compute the effective ink coverages. Each directive of the ink spreading model

specifies a different combination based on certain assumptions. Below, we describe the three

directives presented in [HECC05].

In the following equations, the cyan, magenta, yellow, and black nominal coverages are

designated using the variables c, m, y, and k, respectively, whereas the effective coverages are

designated using the variables c′, m′, y′, and k′.

Single ink dot gain

In the literature, ink spreading is often characterized by one dot gain curve per ink and

does not take superposition conditions into account [RB93, WB00]. In that case, the effective

coverage of an ink depends only on the nominal coverage of the ink and is computed from the

dot gain curve of the ink alone. This ink spreading directive is further referred to as the single

directive and yields the following equations:

c = fc (c) m = fm (m) y = fy (y) k = fk (k) (2.5)

The problem with the single directive is that it does not take superposition conditions into

consideration.

Ink spreading on top of solid inks

The next directive, further referred to as the top directive, assumes that an ink halftone is

influenced by the inks that are already printed. It is influenced by the underlying inks, but not
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by new ink layers printed on top of it.

The effective coverages are computed in order in which the inks are printed. Assuming that

the inks are printed in the order cyan, magenta, yellow, and black, we first compute the effective

coverage of cyan. As no other ink is present when cyan is printed, the effective coverage of

cyan is computed using the ink spreading curve of cyan alone, as in the single directive. Then,

we compute the effective coverage of magenta. Since the cyan ink covers a percentage c′ of

the surface, a percentage c′ of magenta is printed over solid cyan and a percentage (1 − c′) of

magenta is printed alone on paper. We therefore use these percentages to weight the effective

coverages returned by the ink spreading curve of magenta over solid cyan and of magenta

alone. For yellow, we weight the ink spreading curves of yellow alone, yellow on cyan, yellow

on magenta, and yellow on cyan and magenta according to the percentages of surface covered

respectively by paper, (1− c′) · (1−m′); cyan only, c′ · (1−m′); magenta only, (1− c′) ·m′;
and cyan and magenta, c′ ·m′.

We apply the same logic for the black ink halftone. We obtain a total of 15 ink spreading

curves weighted according to the following equations:

c′ = fc(c) k′ = (1− c′) · (1−m′) · (1− y′) ·fk(k)

+ c′ · (1−m′) · (1− y′) ·fk/c(k)
m′ = (1− c′) · fm(m)

+ (1− c′) · m′ · (1− y′) ·fk/m(k)
+ c′ · fm/c(m)

+ c′ · m′ · (1− y′) ·fk/cm(k)

y′ = (1− c′) · (1−m′) · fy(y) + (1− c′) · (1−m′) · y′ ·fk/y(k)

+ c′ · (1−m′) · fy/c(y) + c′ · (1−m′) · y′ ·fk/cy(k)

+ (1− c′) · m′ · fy/m(y) + (1− c′) · m′ · y′ ·fk/my(k)

+ c′ · m′ ·fy/cm(y) + c′ · m′ · y′ ·fk/cmy(k)

(2.6)

The top directive improves the predictions, but because of the speed of printing devices, the

inks that are already printed are not dry when the next layer is printed.

Ink spreading depending on solid inks printed on top or below the considered ink
halftone

Since a given ink halftone is influenced both by the inks already printed and by the inks

that are printed on top of it, a new directive, further referred to as the top or below directive, is
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required. The set of equations corresponding to this assumption is the following:

c′ = (1−m′)(1− y′)(1− k′)fc(c) y′ = (1− c′)(1−m′)(1− k′)fy(y)

+ m′ (1− y′)(1− k′)fc/m(c) + c′ (1−m′)(1− k′)fy/c(y)

+ (1−m′) y′ (1− k′)fc/y(c) + (1− c′) m′ (1− k′)fy/m(y)

+ m′ y′ (1− k′)fc/my(c) + c′ m′ (1− k′)fy/cm(y)

+ (1−m′)(1− y′) k′ fc/k(c) + (1− c′)(1−m′) k′ fy/k(y)

+ m′ (1− y′) k′ fc/mk(c) + c′ (1−m′) k′ fy/ck(y)

+ (1−m′) y′ k′ fc/yk(c) + (1− c′) m′ k′ fy/mk(y)

+ m′ y′ k′ fc/myk(c) + c′ m′ k′ fy/cmk(y)

m′ = (1− c′) (1− y′)(1− k′)fm(m) k′ = (1− c′)(1−m′)(1− y′)fk(k)

+ c′ (1− y′)(1− k′)fm/c(m) + c′ (1−m′)(1− y′)fk/c(k)

+ (1− c′) y′ (1− k′)fm/y(m) + (1− c′) m′ (1− y′)fk/m(k)

+ c′ y′ (1− k′)fm/cy(m) + c′ m′ (1− y′)fk/cm(k)

+ (1− c′) (1− y′) k′ fm/k(m) + (1− c′)(1−m′) y′ fk/y(k)

+ c′ (1− y′) k′ fm/ck(m) + c′ (1−m′) y′ fk/cy(k)

+ (1− c′) y′ k′ fm/yk(m) + (1− c′) m′ y′ fk/my(k)

+ c′ y′ k′ fm/cyk(m) + c′ m′ y′ fk/cmy(k)

(2.7)

As the top directive, the top or below directive weights the effective coverages returned by

the different ink spreading curves according to the colorant surface coverages in the different

superposition conditions. However, instead of considering only the inks already printed in the

possible superposition conditions, the top or below directive accounts for all possible superpo-

sition conditions. As there are 8 possible superposition conditions for each ink (see the list of

superposition conditions in Table 2.1), the effective coverage of an ink is the weighted average

of 8 different ink spreading curves. For example, if a patch with 50% cyan, 50% magenta,

and 50% yellow is printed, the superposition dependent colorant surface coverages weighting

the ink spreading curves of magenta are 25% unprinted paper, 25% cyan, 25% yellow, 25%

green and 0% for the 4 superposition conditions containing solid black. For four inks, 32 ink

spreading curves are required.

Eqs. (2.7) weight for each ink halftone its ink spreading curves according to the underlying

colorant surface coverages. However, computing the effective coverage of an ink requires the

effective coverages of the other inks, which are not available. Because of the non-linearity
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Figure 2.2: The ink spreading enhanced Yule-Nielsen modified Spectral Neugebauer model with nom-
inal ink surface coverages c, m, y, and k; ink spreading curves fi/jk of ink i superposed with solid inks
j and k; effective ink surface coverages c′, m′, y′, and k′; and effective colorant surface coverages aw to
acmyk.

of the equations, there is no analytical solution to the equation system. The effective cover-

ages must therefore be computed iteratively, starting with the nominal coverages. Usually, five

iterations ensure sufficient convergence to determine the effective ink coverages.

2.4 The Ink Spreading Enhanced YNSN Model

(IS-YNSN)

The spectral reflection prediction model used in the present contribution is the IS-YNSN

model. It is the combination of the YNSN model with the ink spreading model presented in the

previous section.

Spectral predictions using the IS-YNSN model are performed according to Figure 2.2. For

given nominal ink surface coverages c, m, y, k, we obtain effective surface coverages c′, m′, y′,

k′ by weighting the ink spreading curves fc(c) to fk/cmy(k) according to the surface coverages

of the colorants contributing to that color halftone [Equations (2.7)]. With the Demichel equa-

tions, we then compute the corresponding effective surface coverages of the colorants forming

that color halftone. With these effective colorant coverages, the YNSN model calculates the

predicted reflection spectrum.
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2.5 Review of the prior art

The YNSN model has been used by many researchers for the characterization of print-

ing systems. Iino and Berns have used to it to characterize inkjet printers [IB98a] and offset

presses [IB98b], while Taplin and Berns [TB01] or Chen et al. [CBT04] used it to characterize

a six-color inkjet printer. A cellular version of the Neugebauer model was first proposed by

Heuberger [HJP92]. Based on his approach, Agar and Allebach [AA98] proposed the cellu-

lar YNSN model (CYNSN) to improve the accuracy of the predictions, but at the cost of an

increased complexity and calibration effort. Rolleston [RB93] and Balasubramanian [Bal95]

have both reviewed this cellular approach. However, since the CYNSN model can be seen as

multiple instances of the basic YNSN model, our focus is on the basic YNSN model.

A few researchers have proposed different approaches to calibrate the YNSN model. Xia

et al. proposed a total least-squares optimization to account for the noise in the measurements

of the Neugebauer primaries [XSSMT99], but the drawback of this approach is that the Neuge-

bauer primaries must still be initially measured. Bala also proposed a similar approach in

which an additional optimization is performed on the Neugebauer primaries after an initial

calibration [Bal99]. Bala proposed yet another calibration method in which the Neugebauer

primaries are not measured, but obtained by a least-squares optimization [Bal96]. This method

requires a training set of measured calibration patches well distributed within the gamut of the

printing device. This contrasts to our approach in which no prior knowledge about the Neuge-

bauer primaries is necessary and no constraint on the calibration patches are imposed. Zuffi

et al. proposed a calibration method based on neural and genetic algorithms [ZSM03, ZSS06],

but they based their solution on an ink spreading model lacking consistency since thresholding

is applied to avoid having total surface coverages larger than 1.

Spectral reflection prediction models predict spectra or colors from nominal ink coverages,

but the inverse problem is a key component to many color management tasks. Mahy and De-

labatista [MD96] or Urban and Grigat [UG06] have both proposed optimization to accurately

solve this problem. The cellular approach is widely used in the literature for such color man-

agement tasks. Besides the works by Iino and Berns cited above, Tzeng and Berns [TB00]

followed by Chen et al. [CBTI03] used the CYNSN model to maximize color constancy and

minimize metamerism when printing with multiple inks. Urban later relaxed the metamerism

constraints to allow for better reproduction under several illuminants [Urb09].

The Yule-Nielsen n-value has also been the focus of many papers. In their seminal article,

Yule and Nielsen showed that the effect of light scattering in paper could be modeled using a
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non-linear relationship based on the n-value [YN51]. Ruckdeschel and Hauser demonstrated

that an n-value between 1 and 2 made physical sense within their framework and Pearson pro-

posed to use an n-value of 1.7 in general situations. However, Berns et al. [BBT96] showed

that large n-values regularly occur. Recently, Lewandowski et al. even proposed the use of

negative n-values [LLBD06] and Viggiano evaluated the physical significance of these nega-

tive n-values [Vig06, Vig10]. Iino and Berns also proposed spectral dependent n-values, again

in an attempt to improve the accuracy of the Yule-Nielsen model by increasing its complex-

ity [IB98a][IB98b]. Considering the n-value to be wavelength dependent or negative has not

gained much interest. We therefore only consider positive scalar n-values in this dissertation.

For any variation of the YNSN model to be reasonably accurate, it must take dot gain into

account. Most of the time, dot gain is accounted for each ink separately through the use of

tone reproduction curves [PP72], but Yule and Colt already mentioned that printing inks on top

of each other modifies how the inks spread on paper [YC51]. Hersch et al. proposed an ink

spreading model accounting for ink spreading in different superposition conditions [HECC05].

Although this ink spreading model uses more ink spreading curves than traditional approaches

based on tone reproduction curves, each ink spreading curve is determined independently.

Other approaches exist. For example, Bala et al. proposed 2D transforms to increase the amount

of control over given regions of the color space [BSMVdC05]. Instead of interpolating the tone

reproduction curves between calibration points or populating lookup tables, Viggiano [Vig83],

Zuffi and Schettini [ZS04], or Yang et al. [YLK01] used mathematical functions describing

the curves. In our case, starting from Chapter 4, we also describe ink spreading curves using

mathematical functions, but we choose simple parabolas having a single degree of freedom.

We have found that this approach yields sufficient accuracy and keeps the complexity of the

model low, which is critical when introducing flexibility in the calibration process.

The Yule-Nielsen model plays a significant role in building color management systems. Its

low complexity and high accuracy make it a highly practical approach in real-world settings.

However, it does not try to model physical phenomena as they occur in paper. There exist many

models describing these physical and optical phenomena. Kubelka and Munk described how

light travels within turbid media [KM31, Kub48]. This Kubelka-Munk theory is extensively

used in the textile or painting industry [Nob85]. Yang and Kruse proposed several enhance-

ments to the Kubelka-Munk model to widen its field of use [YK04]. Clapper and Yule [CY53]

or Williams and Clapper [WC53] described how light travels within paper and created models

tuned to their assumptions. Emmel and Hersch [EH00] or Hébert and Hersch [HH06] created

unified models whose particular cases are the Neugebauer, Kubelka-Munk, Clapper-Yule, or
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Williams-Clapper models. However, these models are either not as accurate as the IS-YNSN

model or too complex for our purpose.





Chapter 3

Improving the robustness of the
IS-YNSN model

3.1 Introduction

Before making the calibration of the IS-YNSN model more flexible, the model itself must

be stable and robust. If not, the introduced flexibility risks to exacerbate the instabilities of the

model. There can be different sources of instabilities in a model. In the case of the IS-YNSN

model, the 3 ink version has been extensively studied and no instability found. However, the

extension to 4 inks, especially in the case of CMYK, introduces two instabilities that are not

readily apparent.

The availability of the black ink creates two possibilities to print the color black, either

using the black ink or superposing cyan, magenta, and yellow. This redundancy has an impact

on the use of the inverted IS-YNSN model, i.e. when deducing the surface coverages of printed

color halftone patches from their measured reflectance spectra. Since the inverted IS-YNSN

model cannot accurately distinguish between the two different blacks, the deduced coverages

are inaccurate. The ability to accurately deduce coverages from spectra plays an important role

in color management. Section 3.2 shows how this first source of inaccuracies can be prevented

by extending the measurements from the visible domain to the near-infrared domain (NIR).

The black ink is used because of its strong absorbance of the light in all the visible spectrum.

This absorbtion creates a strong black color, whereas the superposition of cyan, magenta, and

yellow looks brownish or greyish. The gamut of CMYK printers is greatly enhanced thanks

to this new ink. However, printing any ink on top of solid black yields black. The spectral

19
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difference between the two colors is extremely small and the information contained in this

difference cannot be distinguished from noise. Since certain ink spreading curves attempt to

model this difference, their calibration is not stable. Moreover, since the difference they model

is not significant, they do not improve the prediction accuracy of the IS-YNSN model. Sec-

tion 3.3 proposes a simplified ink spreading directive and shows that the predictions performed

with this new directive are at least as accurate as predictions performed with the top or below

directive (Eq. (2.7)).

The flexible calibration of the IS-YNSN model presented in Chapters 4 and 5 rely on this

increased robustness. Thanks to the improved accuracy of the deduced coverages, the infor-

mation contained in the measurements performed on printed color images is more efficiently

extracted; and thanks to the simplified ink spreading directive, there is no useless parameter to

calibrate.

3.2 Model-Based Deduction of CMYK Surface

Coverages from Visible and Infrared Spectral

Measurements of Halftone Prints

The IS-YNSN model allows predicting reflectance spectra in function of the ink surface

coverages. Such predictions, further referred to as forward predictions, can be accurately per-

formed for four or more inks. Inverting the models, i.e. deducing the ink surface coverages

from a given printed color patch, is an important building stone for applications such as opti-

mizing GCR parameters or calibrating the ink spreading model. Working with the four cyan,

magenta, yellow, and black inks, the IS-YNSN model cannot easily perform inverse or back-

ward predictions, i.e. deduce the ink surface coverages from a given printed color patch. We

show why it is hard to perform inverse predictions with CMYK inks and how we can improve

such predictions using spectra spanning both the visible and infrared domain.

3.2.1 Measurement setup

The measurements used for the experiments are made on color patches printed on news-

paper using a web offset press. Classical rotated halftone screens are printed at 100 lpi. The

colors printed are all the combinations of cyan, magenta, and yellow inks at surface coverages

of 0%, 25%, 50%, 75%, or 100% and black ink at surface coverages of 0%, 10%, 30%, 50%,
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Figure 3.1: Reflection spectra of the chromatic and pure black printed colors.

80%, or 100%, creating a set of 750 different colors. The reflectance spectra are measured with

a Datacolor MF-45 spectrophotometer (geometry: 45°d:0°, i.e. 45° directed incident light and

capture at 0°) at 10 nm intervals between 380 nm and 850 nm.

3.2.2 Limitations of the visible domain

With the rods and cones, the human eye perceives light whose wavelength ranges from

400 nm to 700 nm. The cones are responsible for the perception of colors. There are three

types of cones: the L, M and S cones which have a high sensibility in the red, green and

blue wavelength ranges, respectively. Many printing systems therefore use cyan, magenta and

yellow inks to reproduce colors because they absorb red, green and blue, respectively. This

enables printing systems to reproduce a large part of the colors that the human visual system

can see. Since each ink absorbs in a different spectral region, it is relatively easy with the

IS-YNSN model to deduce the surface coverages of inks needed to reproduce a given color

[Eq. (2.4)].

In printed systems, the black ink is used to increase the gamut and to reduce the amounts

of superposed cyan, magenta, and yellow inks. By performing gray component replacement

(GCR), a given amount of black replaces the superposition of similar amounts of cyan, ma-

genta, and yellow inks. One may create the black color either by superposing the cyan, ma-

genta, and yellow inks, referred to as chromatic black, or by using the black ink, referred to as

pure black. The spectra of the two black colors are shown in Figure 3.1. We can see that the

two spectra do not yield the same color, i.e. the same black. For the considered web offset press

technology, pure black is darker than chromatic black. Moreover, its spectrum is flatter, which
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Figure 3.2: ∆E94 difference between the target 100% chromatic black and its closest color that can be
reproduced using a given amount of pure black and appropriate amounts of chromatic black. The ∆E94

difference is in function of the amount of pure black. The ∆E94≤3 redundancy window is also drawn.

ensures that it is really black and not slightly colored.

Spectral prediction models can easily predict the reflection spectrum and therefore the re-

sulting color given nominal ink surface coverages of the cyan, magenta, yellow and black inks.

On the other hand, reversing the model when cyan, magenta, yellow and black inks are used,

i.e. deducing the four effective ink surface coverages for a reflection spectrum, is much harder

because of the redundancy between pure and chromatic black. It is indeed possible to achieve

similar colors by replacing chromatic black with pure black and vice versa.

Let us show the redundancy between pure and chromatic black. In a first experiment,

we try to reproduce 100% chromatic black, given by the superposition of solid cyan, solid

magenta, and solid yellow, by using a given amount of pure black and appropriate amounts of

chromatic black. We first choose the amount of pure black and then use the IS-YNSN spectral

prediction model to deduce the amounts of cyan, magenta, and yellow inks reproducing the

closest possible color to the desired chromatic black. We use the ∆E94 difference metric to

evaluate the match [Gau03]. With a ∆E94 difference below 1, there is no noticeable difference

for the human visual system and the match is perfect. With a ∆E94 difference below 3, the color

match is reasonable and corresponds to the current practice in web offset printing. Figure 3.2

shows that chromatic black can be reproduced with up to 75% of pure black, i.e. black ink,

while keeping the ∆E94 difference below 1, i.e. without any noticeable difference for the human

visual system. Moreover, we can use between 0% and 80% of pure black and keep the ∆E94

difference below 3. This interval is called the ∆E94≤3 redundancy window. In this experiment,

the ∆E94≤3 redundancy window ranges from 0% to 80% and its width is 80%.
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Figure 3.3: ∆E94 difference between the target 60% pure black and its closest color that can be re-
produced using a given amount of pure black and appropriate amounts of chromatic black. The ∆E94

difference is in function of the amount of pure black. The ∆E94≤3 redundancy window is also drawn.

The next experiment is performed on a reference color patch composed of 60% pure black.

Again, we try to reproduce this color by first choosing the amount of pure black and then using

the IS-YNSN spectral prediction model to deduce the amounts of cyan, magenta, and yellow

inks that reproduce the closest possible color to 60% pure black. Figure 3.3 shows that we have

a ∆E94≤3 redundancy window ranging from 25% to 65% pure black. The color composed of

60% pure black can therefore be reproduced using only 25% pure black, which means that 35%

pure black has been replaced by chromatic black.

3.2.3 Patches respecting the gray component replacement (GCR) rule

Gray component replacement (GCR) is an important tool for color reproduction. It enables

reducing the amount of superposed inks and ensures an improved reproduction of gray shades.

Since GCR replaces given amounts of cyan, magenta and yellow inks by the black ink, only

a subset of the entire CMYK color space is used for printing. In this section, we therefore

perform the experiments both on the entire CMYK color space using the 750 colors selected

in Section 3.2.1 and on a subset of these colors respecting the GCR rule. Understanding if

the IS-YNSN model behaves differently when GCR is applied is important since the methods

described in Chapters 4 and 5 rely on information extracted from printed color images.

Gray component replacement (GCR) is based on the redundancy between pure and chro-

matic black. It replaces a certain amount of chromatic black by pure black in order to limit

the size of the areas covered by three superposed inks. GCR algorithms may replace all the

chromatic black by pure black or only part of it. When GCR is applied, a given amount of pure
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Figure 3.4: Percentage of colors in function of their ∆E94≤3 redundancy window.

black replaces a similar amount of chromatic black, i.e. similar amounts of cyan, magenta and

yellow inks. Assuming that maximum GCR is applied, the sum of the pure black ink surface

coverage and the maximum surface coverage of the cyan, magenta and yellow inks of any given

patch does not exceed 100%. Out of the 750 colors selected in Section 3.2.1, 245 colors match

this criterion.

Figure 3.4 shows the percentage of these 245 colors in function of the width of the ∆E94≤3

redundancy window. We can see that one color out of four have a ∆E94≤3 redundancy window

greater than 60% and one out of two a ∆E94≤3 redundancy window greater than 40%. When

the ∆E94≤3 redundancy window of a color is wide, the effective ink surface coverages deduced

by the IS-YNSN model for the given color are less accurate because the model is not able to

distinguish between pure and chromatic black. Even if the deduced ink surface coverages

reproduce the desired color for the human visual system, the low prediction accuracy prevents

recovering the exact ink surface coverages.

3.2.4 Extending the spectral prediction model to the infrared wavelength

range

The experiments performed in Section 3.2.2 show that it is not possible to accurately dis-

tinguish between chromatic and pure black in the visible wavelength range only, i.e. the wave-

length range between 380 nm and 730 nm. The goal is therefore to find a method that can

determine unambiguously the amount of black ink. Once this amount is known, one can then

infer the amounts of the cyan, magenta and yellow inks.

Experiments have shown that cyan, magenta, yellow, and dye-based black inks do not ab-
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Figure 3.5: Reflection spectra of chromatic black and pure black prints including the near-infrared
domain.

sorb outside the visible domain, whereas pigmented black inks do. This is interesting because,

in reproduction systems such as offset printing, the cyan, magenta, and yellow inks are based

on dyes whereas the black ink is based on pigments. The pigmented black ink is the only ink

that absorbs in the near-infrared wavelength range, i.e. from 730 nm to 1100 nm. Since the

measured reflection spectra remain flat between 800 nm and 1100 nm, we consider a wave-

length range between 380 nm and 850 nm, which includes the specific yellow (380-490 nm),

magenta (500-610 nm), cyan (620-730 nm) and pure black (740-850 nm) absorption zones.

Figure 3.1 shows the difference between chromatic and pure black in the visible domain

only. Figure 3.5 shows the same spectra, but extended to the near-infrared domain. The dif-

ference is obvious and allows us to clearly discriminate the two types of black. It is therefore

possible to determine the amount of pure black ink by also considering the near-infrared wave-

length region. After recovering the pure black surface coverage, the surface coverages of the

cyan, magenta, and yellow inks can be recovered by considering the visible region only.

Extending the model to the near-infrared domain does not require many modifications

since the YNSN equation, i.e. Eq. (2.3), is independent of the number of wavelength com-

ponents. The IS-YNSN model extended to the near-infrared domain is further referred to as the

ink spreading and near-infrared enhanced Yule-Nielsen modified Spectral Neugebauer model

(NIR-YNSN).

We evaluate the benefits brought by the near-infrared wavelength range as follows: Given

a measured spectrum, we fit the effective ink surface coverages that reproduce this spectrum as

closely as possible. These backward fitting predictions are performed using either the IS-YNSN

model or the NIR-YNSN model. Then, using the NIR-YNSN model, we predict the reflection
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Table 3.1: Average, maximum and standard deviation of the root mean square errors (RMSE) of the
750 colors selected in Section 3.2.1 when fitting surface coverages in the visible domain only or in the
visible and near-infrared domains.

RMSE

Mean Max Stdev

Test in visible domain only
IS-YNSN coverage fit 0.0097 0.0839 0.0101
NIR-YNSN coverage fit 0.0114 0.0788 0.0098

Test in visible and near-infrared domains
IS-YNSN coverage fit 0.0242 0.1700 0.0234
NIR-YNSN coverage fit 0.0104 0.0689 0.0086

spectrum from the deduced effective coverages. We finally compute two different root mean

square errors (RMSE) between the measured and predicted spectra. The first RMSE is com-

puted considering for the test set only the visible wavelength range, i.e. between 380 nm and

730 nm. The second RMSE is computed considering for the test set the visible and near-

infrared wavelength range, i.e. between 380 nm and 850 nm. Using this method for the 750

colors selected in Section 3.2.1, we collect two sets of 750 RMSE for each model. The results

are summarized in Table 3.1.

When computing the RMSE in the visible domain only, both the IS-YNSN and NIR-YNSN

coverage fits provide low errors, i.e. the measured and predicted spectra are closely matched.

When computing the RMSE in both the visible and near-infrared domains, the RMSE increases

by a factor of 2.4 for the IS-YNSN coverage fit and remains constant for the NIR-YNSN cov-

erage fit. The increase is caused by the lack of accuracy of the IS-YNSN surface coverage

fit when performing backward predictions. The effective ink surface coverages that it finds

match the measured spectrum in the visible domain, but are not accurate enough to match the

measured spectrum in the near-infrared domain. Extending the considered wavelength range

to the near-infrared domain by applying the NIR-YNSN surface coverage fit provides a greater

accuracy for backward predictions, which is confirmed by the low RMSE both in the visible

domain alone and in the visible and near-infrared domains.

We then perform the same experiment using only the 245 colors selected in Section 3.2.3

and summarize the results in Table 3.2. The considerations made for Table 3.1 also apply

to Table 3.2. The only difference is that the maximum and standard deviation values drop

significantly when considering only 245 colors. We explain this behavior in the next section in

the light of another experiment.
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Table 3.2: Average, maximum and standard deviation of the root mean square errors of the 245 colors
selected in Section 3.2.3 when fitting surface coverages in the visible domain only or in the visible and
near-infrared domains

RMSE

Mean Max Stdev

Test in visible domain only
IS-YNSN coverage fit 0.0083 0.0290 0.0038
NIR-YNSN coverage fit 0.0106 0.0325 0.0045

Test in visible and near-infrared domains
IS-YNSN coverage fit 0.0251 0.1685 0.0243
NIR-YNSN coverage fit 0.0098 0.0300 0.0043
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Figure 3.6: Comparison of the spectra resulting from backward coverage predictions using either the
IS-YNSN or NIR-YNSN coverage fit. The measured spectrum corresponds to a color composed of 75%
cyan, 25% magenta, 75% yellow, and 30% black nominal ink surface coverages.

In Figure 3.6, we show the resulting spectra when performing the above experiment with

a color composed of 75% cyan, 25% magenta, 75% yellow and 30% black. On the left-hand

side, the backward prediction is performed using the IS-YNSN model. We see that the pre-

dicted spectrum matches well the measured spectrum in the visible wavelength range, i.e. from

380 nm up to 730 nm, but diverges in the near-infrared wavelength range. Since only the black

ink absorbs in the near-infrared domain, the effective black ink surface coverage is not accurate.

On the other hand, if the backward coverage prediction is performed using the NIR-YNSN cov-

erage fit, the predicted spectrum matches well the measured spectrum for the full wavelength

range.
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Table 3.3: Coverage differences between fitted and effective surface coverages for the IS-YNSN model
and the NIR-YNSN model when considering the 750 colors selected in Section 3.2.1.

RMSE

Mean Max Stdev

IS-YNSN surface coverage fits
∆c 0.0254 0.2944 0.0394
∆m 0.0286 0.5227 0.0606
∆y 0.0536 0.7243 0.0813
∆k 0.0274 0.1912 0.0309

NIR-YNSN surface coverage fits
∆c 0.0112 0.1138 0.0152
∆m 0.0184 0.0961 0.0212
∆y 0.0521 0.7013 0.0906
∆k 0.0162 0.1026 0.0207

3.2.5 Comparing forward and backward predictions

In the preceding section, we have shown that extending the IS-YNSN model to the near-

infrared wavelength range yields more accurate backward surface coverage predictions. Such

predictions allow the deduction of effective ink surface coverages from measured spectra. We

now compare these backward predictions with forward predictions (see Figure 2.2). The com-

parison between forward and backward predictions is based on the differences between the

effective ink surface coverages computed by forward predictions, or simply effective cover-

ages, and the ones deduced by backward predictions, or fitted effective coverages.

We proceed as follows: First, the four fitted effective ink surface coverages of a given color

halftone patch are deduced from the measured reflection spectrum of this color. These fitted

coverages are then compared to the effective ink surface coverages computed by the ink spread-

ing model. Finally, the respective absolute difference between fitted and effective coverages of

cyan (∆c), magenta (∆m), yellow (∆y), and black (∆k) are computed. With the 750 colors

selected in Section 3.2.1, we have 750 sets of differences. The results are summarized in Ta-

ble 3.3 for the IS-YNSN and NIR-YNSN surface coverage fits. Note that the ink spreading

curves of the IS-YNSN model are calibrated in the visible domain only and the ones of the

NIR-YNSN model are calibrated in both the visible and near-infrared domains.

We can see that the effective ink surface coverage differences are lower when using the

NIR-YNSN model than when using the IS-YNSN model. The NIR-YNSN model is therefore

more consistent than the IS-YNSN model in regards to forward and backward predictions.
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Table 3.4: Coverage differences between fitted and effective surface coverages for the IS-YNSN model
and the IS-YNSN model when considering the 245 colors selected in Section 3.2.3.

RMSE

Mean Max Stdev

IS-YNSN surface coverage fits
∆c 0.0222 0.1854 0.0274
∆m 0.0191 0.1728 0.0258
∆y 0.0391 0.3363 0.0413
∆k 0.0240 0.1912 0.0330

NIR-YNSN surface coverage fits
∆c 0.0075 0.0404 0.0083
∆m 0.0133 0.0851 0.0168
∆y 0.0197 0.1522 0.0243
∆k 0.0069 0.0671 0.0094

Moreover, since forward predictions are known to yield good results for both the IS-YNSN and

the NIR-YNSN models, the fitted effective coverages deduced by the NIR-YNSN model are

more accurate than the fitted effective coverages deduced by the IS-YNSN model.

It is also interesting to note that the differences in yellow effective coverages are signifi-

cantly higher than the differences of the other inks. They also do not significantly decrease

when fitting the surface coverages in the near-infrared domain. Possible reasons include the

fact that yellow ink scatters light and that the superposition of yellow and other inks is not

consistent across different halftones.

We then compute the coverage differences only for the 245 colors selected in Section 3.2.3

and summarize the results in Table 3.4. Again, we see that the NIR-YNSN model is more con-

sistent than the IS-YNSN model since its coverage differences are lower. The yellow coverage

differences are still higher than the differences of the other inks, but extending the IS-YNSN

model to the near-infrared domain divides the yellow coverage differences by a factor of two.

This tends to confirm the assumption that the superposition of yellow and other inks is not

consistent across different halftones. The criterion used to select the 245 colors used in this ex-

periment indeed limits the amount of superposed inks and therefore the inconsistencies caused

by such superpositions.

Limiting the experiment to the 245 colors also affects the maximum and standard deviation

values, which significantly drop. This is another confirmation of the previous assumption.

Moreover, it explains why the maximum and standard deviation values in Table 3.2 are lower
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than in Table 3.1. Since the models handle the 245 color set better than the 750 color set, the

errors they make are more focused around the mean value.

3.2.6 Summary

Section 3.2 shows the difficulty in trying to deduce ink surface coverages due to the re-

dundancy between pure and chromatic black when using the visible wavelength range only.

Since the pigmented black ink absorbs in the near-infrared wavelength range whereas the cyan,

magenta, and yellow inks do not, we propose to extend the measurements to the near-infrared

domain. We then show that this extension improves the accuracy of the IS-YNSN model when

deducing effective ink surface coverages. Finally, we show that the fitted effective ink cover-

ages better agree with the effective ink surface coverages computed by the ink spreading model

when the measured spectra are extended to the near-infrared domain.

Although some inconsistencies remain, applications such as the recovery of the gray com-

ponent replacement strategies from halftone patches highly benefit from accurate backward sur-

face coverage predictions. This accuracy is also important for the flexible calibration proposed

in Chapters 4 and 5 in order to extract correct information directly from printed color images.

Eschbach et al. also used a similar extension in the near-infrared domain in order to build anti-

counterfeiting optical security features by taking advantage of the increased control provided

by these measurements on the ambiguity between pure and chromatic black [EBMZ09].

In the remaining part of this dissertation, we always use spectra extended to the near-

infrared domain for CMYK measurement sets. However, when working with CMY data, we

use spectra limited to the visible domain. In both cases, we refer to the spectral reflection

prediction model as the IS-YNSN model. The NIR-YNSN notation is strictly limited to Sec-

tion 3.2.

3.3 Simplified Ink Spreading Equations for CMYK

Halftone Prints

One of the fundamental aspects a spectral reflection prediction model has to consider is how

the inks spread on paper, a phenomenon also referred to as physical or mechanical dot gain.

With an ink spreading model accounting for physical dot gain, a spectral reflection prediction

model is able to accurately predict reflectance spectra in function of ink surface coverages for

three or four inks. In order to be effective, such an ink spreading model must take into account
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not only the interaction between an ink halftone and paper, but also the interaction between an

ink halftone and superposed inks.

One proposed solution is to use multiple ink spreading curves, as shown in Section 2.3, to

characterize the physical dot gain of the ink halftones on paper and in all solid ink superposition

conditions. For CMYK halftone prints, such an approach requires the characterization of 32

ink spreading curves. In this section, we evaluate the relevance of each ink spreading curve and

subsequently simplify the ink spreading model in order to use fewer curves. The relevance of

an ink spreading curve depends on its impact on the spectral prediction model accuracy as well

as how it is affected by noise.

3.3.1 Measurement setup

We use two different measurement sets for the experiments. The first set, further referred to

as the PIXMA set, is composed of the measurements of 625 patches printed on Canon MP-101

matte paper using the Canon PIXMA 4000 ink jet printer, classical rotated clustered dot screens

at 150 lpi, and a resolution of 600 dpi. The 625 patches are composed of all combinations of

cyan, magenta, yellow, and pigmented black at 0%, 25%, 50%, 75%, and 100% nominal surface

coverages.

The second set, further referred to as the CIEL set, is composed of the measurements of 750

patches printed on newspaper using a web-offset press, classical rotated clustered dot screens

at 100 lpi and a resolution of 1200 dpi. The 750 patches are composed of all combinations of

cyan, magenta, and yellow at 0%, 25%, 50%, 75%, and 100% nominal surface coverages and

black at 0%, 10%, 30%, 50%, 80%, and 100%.

The reflectance spectra are measured with a Datacolor MF-45 spectrophotometer (geom-

etry: 45°d:0°, i.e. 45° directed incident light and capture at 0°) at 10 nm intervals between

380 nm and 850 nm.

3.3.2 Relevance of the different ink spreading curves

Using the top or below directive for the ink spreading model requires 32 different ink

spreading curves (Section 2.3.2). Calibrating these ink spreading curves requires at least 32

spectral measurements. In order to reduce the number of ink spreading curves, we evaluate

their relevance. If a specific ink spreading curve does not improve the accuracy of the spectral

prediction model, we try to discard it.

The following experiment is performed both on the PIXMA and CIEL sets. It first calibrates
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the spectral prediction model, including the 32 ink spreading curves. Each ink spreading curve

is calibrated using a single calibration patch at 50% nominal ink surface coverage. Then, we

successively modify each ink spreading curve by setting the effective coverage at 50% to a

value between 0% and 100%. For each modification, we predict the spectra of the patches

in the measurement set and compute the average ∆E94 between the measured and predicted

spectra. Each modification is therefore associated to an average ∆E94. The resulting curves are

called surface coverage accuracy curves.

Figures 3.7 and 3.8 show the surface coverage accuracy curves for the PIXMA set (ink

jet) and CIEL set (offset), respectively. The circles indicate the calibration points, i.e. prior to

modifications, and the crosses indicate the effective coverages at 50% yielding the minimum

average ∆E94. All the surface coverage accuracy curves have the shape of convex parabolas,

but not all parabolas have similar curvatures. Some are nearly flat, especially the ink spreading

curves whose superposition condition includes solid black, i.e. the last four surface coverage

accuracy curves of the first three lines of Figures 3.7 and 3.8. We further refer to these 12 ink

spreading curves as the ink spreading curves on solid black.

When observing the surface coverage accuracy of ink spreading curves which do not include

solid black, we make the following observations. The effective coverages at 50% chosen during

calibration (circles) agree well with the minima (crosses). Moreover, the surface coverage

accuracy curves are highly relevant to the accuracy of the prediction model because of their

curvature. If the effective coverage at 50% of one of these ink spreading curves is set too

far off the minimum, the average ∆E94 becomes large. Finally, we can see that the effective

coverage at 50% of a given ink halftone yielding the minimum ∆E94 is different depending on

the superposition condition. This emphasizes the fact that the ink spreading of an ink halftone

depends on the presence of other inks.

The opposite analysis is true for the ink spreading curves on solid black. The calibrated

effective surface coverages do not agree well with the computed minima. They are not relevant

for the accuracy of the prediction model because the curvature of the parabolas is low, i.e. a

modification of an effective halftone surface coverage at 50% nominal coverage on solid black

does not deteriorate the accuracy of the prediction model. The system is underdetermined and

it seems preferable to discard the ink spreading curves on solid black.
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Figure 3.7: Surface coverage accuracy curves showing the impact of dot gain variations computed for
the PIXMA measurement set (inkjet, 150 lpi, Yule-Nielsen n-value = 10). The horizontal axis denotes
the effective surface coverage at 50% nominal surface coverage and the vertical axis the prediction
accuracy in terms of average ∆E94 difference between measured and predicted spectra.
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Figure 3.8: Surface coverage accuracy curves showing the impact of dot gain variations computed on
the CIEL measurement set (offset, 100 lpi, Yule-Nielsen n-value = 7.8). The horizontal axis denotes the
effective surface coverage at 50% nominal surface coverage and the vertical axis the prediction accuracy
in terms of average ∆E94 difference between measured and predicted spectra.
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3.3.3 Resilience of the ink spreading curves to noise

The ink spreading curves on black do not improve the accuracy of the spectral prediction

model. Let us further show that they are not only irrelevant, but also highly subject to noise.

There are indeed several possible origins of noise in measured spectra. Noise comes from

the printing device itself, from dirty patches, from variations in the intrinsic reflectance of the

substrate, from variations in the printing conditions, etc. These different sources produce each a

different kind of noise, making them difficult to separate and model. We therefore use Gaussian

noise and analyze its impact on the calibration of the ink spreading curves.

In the following experiment, we observe how stable the calibration of the ink spreading

curves is in the presence of Gaussian noise added to each wavelength of the measured re-

flectance with both average and standard deviation between 0 and 0.05. For each ink spreading

curve and each noise average, we calibrate 500 times the effective coverage of the 50% patch as

follows: We first choose randomly the standard deviation of the noise between 0 and 0.05. We

generate the noise independently for each wavelength and add it to the measured spectrum of

the 50% patch. The ink spreading curve is established using this measured noise augmented re-

flectance spectrum. For each ink spreading curve and each noise average, we have 500 different

fitted effective coverages.

Figures 3.9 and 3.10 show the results for the PIXMA (ink jet) and CIEL (offset) measure-

ment sets, respectively. Both figures present the same behavior: The effective surface coverages

superposed with solid black are very sensitive to noise, i.e. the same noise induces very large

effective surface coverage calibration variations. On the other hand, the other effective sur-

face coverages are mainly subject to the mean value of the Gaussian noise. As expected, when

adding noise with a positive mean, the measured spectra become more highlight, as if they were

printed with less ink. The IS-YNSN model compensates for this positive difference by using

lower effective surface coverages.

The problem caused by the ink spreading curves on solid black is underlined in Figures 3.11

and 3.12. In Figure 3.11, we focus on the ink spreading curve fm/ck of magenta over solid cyan

and solid black for the CIEL measurement set. The reflection spectrum without magenta cor-

responds to the beginning of the ink spreading curve (0% coverage of magenta). The spectrum

with solid magenta corresponds to the end of the ink spreading curve (100% coverage of ma-

genta). We see that the difference between the two spectra is not significant. Therefore, the ink

spreading curve of magenta over solid cyan and black has a negligible influence when predict-

ing reflection spectra. Moreover, noise has a large impact on the calibration of the ink spreading
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Figure 3.9: Impact of noise on the calibration of the ink spreading curves computed for the PIXMA
measurement set. The x–axis shows the average of the additive Gaussian noise and y–axis the average
and standard deviation of the effective coverage fitted at 50%.
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Figure 3.10: Impact of noise on the calibration of the ink spreading curves computed for the CIEL
measurement set. The x–axis shows the average of the additive Gaussian noise and y–axis the average
and standard deviation of the effective coverage fitted at 50%.



36 CHAPTER 3. IMPROVING THE ROBUSTNESS OF THE IS-YNSN MODEL

curve because small variations in the 50% magenta coverage spectrum must be compensated

by large variations in the ink spreading curve.

The same reasoning applies to Figure 3.12 when considering the ink spreading curve fm/k
of magenta of solid black (PIXMA set). The result of the calibration of the ink spreading

curves for the PIXMA measurement set is shown in Figure 3.13. This figure shows the dot gain

curves in function of nominal surface coverage. Dot gain is defined as the difference between

effective and nominal surface coverage. All the dot gain curves except those on solid black

show a consistent behavior. Conversely, we can see the effect of measurement noise on the dot

gain curves superposed with solid black: The curves behave randomly.

3.3.4 Removing the ink spreading curves on solid black

In the previous two sections, we have shown that the ink spreading curves on solid black

do not improve the accuracy of the spectral prediction model and are not resilient to noise.

We therefore propose a new directive for the ink spreading model called halftone black that

discards these 12 ink spreading curves, yielding the following set of equations:

c′ = (1−m′)(1− y′)fc(c) y′ = (1− c′)(1−m′)fy(y)

+ m′ (1− y′)fc/m(c) + c′ (1−m′)fy/c(y)

+ (1−m′) y′ fc/y(c) + (1− c′) m′ fy/m(y)

+ m′ y′ fc/my(c) + c′ m′ fy/cm(y)

m′ = (1− c′) (1− y′)fm(m) k′ = (1− c′)(1−m′) (1− y′) fk(k)

+ c′ (1− y′)fm/c(m) + c′ (1−m′) (1− y′) fk/c(k)

+ (1− c′) y′ fm/y(m) + (1− c′) m′ (1− y′) fk/m(k)

+ c′ y′ fm/cy(m) + c′ m′ (1− y′) fk/cm(k)

+ (1− c′)(1−m′) y′ fk/y(k)

+ c′ (1−m′) y′ fk/cy(k)

+ (1− c′) m′ y′ fk/my(k)

+ c′ m′ y′ fk/cmy(k)

(3.1)

Using the halftone black directive, it is possible to break the computation of the effective

coverages into two steps: First, we compute the effective coverages for cyan, magenta, and

yellow using the iterative method proposed for the top or below directive. Then, we directly

compute the black effective coverage using the effective coverages of the other inks.
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Figure 3.11: Spectra of solid cyan superposed
with solid black (continuous line) and of solid
cyan superposed with solid magenta and black
(dashed line) from the CIEL measurement set.
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Figure 3.12: Spectra of solid black (continuous
line) and of solid magenta superposed with solid
black (dashed line) from the PIXMA measure-
ment set.
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Figure 3.13: Dot gain curves, derived from the corresponding ink spreading curves, calibrated at 25%,
50%, and 75% nominal coverages on the PIXMA measurement set. The horizontal axis corresponds to
the nominal surface coverage of the ink halftone and the vertical axis to the dot gain.
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Table 3.5: Accuracy of the spectral prediction model on the PIXMA measurement set. For each of
the 625 patches of the measurement set, we compute the ∆E94 between the predicted and measured
spectra. The statistics show the average ∆E94, the corresponding standard deviation, 95% percentile,
and maximum ∆E94. The Yule-Nielsen n-value is n = 10.

Directive ∆E94

Avg Stdev 95% Max

No ink spreading 4.29 2.70 1.08 11.90
Single 3.16 2.00 6.31 9.62
Top 2.28 1.69 5.50 8.32
Top or below 2.10 1.40 4.59 7.10
Halftone black 1.58 1.08 3.57 5.65

Table 3.6: Accuracy of the spectral prediction model on the CIEL measurement set. For each of the 750
patches of the measurement set, we compute the ∆E94 between the predicted and measured spectra. The
statistics show the average ∆E94, the corresponding standard deviation, 95% percentile, and maximum
∆E94. The Yule-Nielsen n-value is n = 7.8.

Directive ∆E94

Avg Stdev 95% Max

No ink spreading 4.76 2.27 8.13 10.38
Single 2.20 1.11 4.03 5.27
Top 1.46 0.83 3.15 4.01
Top or below 1.47 0.82 3.03 3.99
Halftone black 1.44 0.83 3.08 3.98

The accuracy of the halftone black directive and the different ink spreading directives pro-

posed in Section 2.3.2 are compared in Table 3.5 for the PIXMA measurement set and in

Table 3.6 for the CIEL measurement set. On the PIXMA measurement set, the halftone black

directive yields the best accuracy while the top or below directive suffers from the measurement

noise as seen in Figure 3.13. Note that the top directive is shown even if it does not make sense

for Inkjet printers since all the inks are printed at the same time. On the CIEL measurement

set, both directives yield similar results. Considering that the patches are printed on newsprint

paper, which is non-coated and less uniform than traditional paper, the achieved accuracy is

remarkable. We still recommend using halftone black. It uses only 20 ink spreading curves in-

stead of 32, reduces the calibration effort and decreases the time required to perform a spectral

prediction.
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3.3.5 Case study: silver ink

The halftone black directive is specific to CMYK printing devices. When other inks are

used, each ink spreading curve must be analyzed to determine if it is relevant for the prediction

accuracy and if it is resilient to measurement noise. The ink spreading equations must then be

updated to include only the relevant ink spreading curves.

We apply this technique to the case of Offset printing with cyan, magenta, yellow, and

silver inks (CMYS). This combination of inks is used in the MetallicArt technology to hide

patterns in images [HCE03]. The silver ink behaves differently than the black ink. Because of

its light gray appearance, overprinting other inks on solid silver creates significantly different

shades. The ink spreading curves of inks on solid silver cannot be discarded as in the CMYK

case. In order to determine the relevance of each ink spreading curve, we examine their surface

coverage accuracy curves and their resilience to noise.

The surface coverage accuracy curves are shown in Figure 3.14. All the cyan, magenta,

and yellow ink spreading curves behave similarly. They are optimally calibrated, i.e. the circles

agree well with the crosses, and they are relevant to the prediction accuracy since the curvature

of the parabolas is significant. Not all these ink spreading curves have the same importance,

e.g. the fy/ms ink spreading curve is not perfectly calibrated and its surface coverage accuracy

curve is flatter than the others. However, it remains much more important than the silver ink

spreading curves. Except for the fs ink spreading curve, all the silver ink spreading curves

are nearly flat. They do not improve the prediction accuracy of the IS-YNSN model and are

therefore not relevant.

The resilience to noise of these ink spreading curves is shown in Figure 3.15. We see that

the silver ink spreading curves are not as resilient as the ink spreading curves of the other inks,

again at the exception of the fs ink spreading curve. The variance of silver ink spreading curves

is twice as large as the other curves. Note the behavior of the fs/cm and fs/cmy ink spreading

curves when adding a positive noise average. Due to the metallic particles composing the

silver ink, a small part of the specular reflection is measured by spectrophotometers, resulting

in the solid cyan and magenta spectrum being darker than the solid cyan, magenta, and silver

spectrum. This is observed only for the two darkest colorants, i.e. CM and CMY, because the

measured specular component is too small to impact the other colorants. The IS-YNSN model

therefore interprets the positive noise average raising the spectrum as an increase of the silver

effective coverage.

Since all the silver ink spreading curves at the exception of the fs ink spreading curve are
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Figure 3.14: Surface coverage accuracy curves showing the impact of dot gain variations computed for
the CMYS measurement set (offset, 150 lpi, Yule-Nielsen n-value = 1.5). The horizontal axis denotes
the effective surface coverage at 50% nominal surface coverage and the vertical axis the prediction
accuracy in terms of average ∆E94 between measured and predicted spectra.
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Figure 3.15: Impact of noise on the calibration of the ink spreading curves computed for the CMYS
measurement set. The x–axis shows the average of the additive Gaussian noise and y–axis the average
and standard deviation of the effective coverage fitted at 50%.
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Table 3.7: Accuracy of the spectral prediction model on the CMYS measurement set. For each of
the 750 patches of the measurement set, we compute the ∆E94 between the predicted and measured
spectra. The statistics show the average ∆E94, the corresponding standard deviation, 95% percentile,
and maximum ∆E94. The Yule-Nielsen n-value is n = 1.5.

Directive ∆E94

Avg Stdev 95% Max

No ink spreading 1.57 0.76 2.77 4.08
Single 1.20 0.68 2.53 3.92
Top 1.27 0.87 2.92 6.01
Top or below 1.11 0.71 2.59 3.85
Silver ink halftone 1.13 0.70 2.60 3.85

neither relevant for the prediction accuracy nor resilient to noise, we propose the following ink

spreading directive, further referred to as the silver ink halftone directive, that discards these

irrelevant ink spreading curves:

c′ = (1−m′)(1− y′)(1− s′)fc(c) y′ = (1− c′)(1−m′)(1− s′)fy(y)

+ m′ (1− y′)(1− s′)fc/m(c) + c′ (1−m′)(1− s′)fy/c(y)

+ (1−m′) y′ (1− s′)fc/y(c) + (1− c′) m′ (1− s′)fy/m(y)

+ m′ y′ (1− s′)fc/my(c) + c′ m′ (1− s′)fy/cm(y)

+ (1−m′)(1− y′) s′ fc/s(c) + (1− c′)(1−m′) s′ fy/s(y)

+ m′ (1− y′) s′ fc/ms(c) + c′ (1−m′) s′ fy/cs(y)

+ (1−m′) y′ s′ fc/ys(c) + (1− c′) m′ s′ fy/ms(y)

+ m′ y′ s′ fc/mys(c) + c′ m′ s′ fy/cms(y)

m′ = (1− c′) (1− y′)(1− s′)fm(m) s′ = fs(s)

+ c′ (1− y′)(1− s′)fm/c(m)

+ (1− c′) y′ (1− s′)fm/y(m)

+ c′ y′ (1− s′)fm/cy(m)

+ (1− c′) (1− y′) s′ fm/s(m)

+ c′ (1− y′) s′ fm/cs(m)

+ (1− c′) y′ s′ fm/ys(m)

+ c′ y′ s′ fm/cys(m)

(3.2)

The prediction accuracy of the silver ink halftone directive is shown in Table 3.7. The silver

ink halftone directive has the same excellent accuracy as the top or below directive not only for
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the average ∆E94 error, but also for the standard deviation, 95 percentile, and maximum ∆E94

error. This confirms the validity of the proposed approach to determine which ink spreading

curves are relevant.

3.3.6 Summary

We perform experiments to deduce the ink spreading curves that have a high impact on the

accuracy of the spectral prediction model and that are resilient to measurement noise. Based on

this in-depth analysis, we show that the ink spreading curves of ink halftones superposed with

solid black are neither relevant for the accuracy of the spectral prediction model nor resilient to

measurement noise. We therefore propose an improved ink spreading directive called halftone

black relying on a reduced set of ink spreading equations.

This new directive is compared with the other directives for two different measurement sets,

one from a consumer-grade inkjet printer and the other from a newspaper web-offset press. In

both cases the halftone black directive performs best on average. Depending on the printing

technology, the other directives may sometimes show similar performances, but since halftone

black requires only 20 ink spreading curves instead of 32, we recommend it for CMYK spectral

prediction models.

A similar analysis is conducted for the CMYS case. The silver ink spreading curves su-

perposed with one or more solid inks are shown to have a small impact on the accuracy of the

spectral prediction model. A new ink spreading directive called silver ink halftone is proposed,

requiring only 25 ink spreading curves instead of the initial 32. The silver ink halftone direc-

tive is shown to have the same prediction accuracy as the top or below directive, validating the

proposed approach of determining the relevant ink spreading curves.

In the remaining of this thesis, we always use the halftone black directive when performing

predictions of CMYK measurement sets. However, when working with CMY data, we use the

top or below directive.



Chapter 4

Calibrating the ink spreading model
using color image tiles

4.1 Introduction

The IS-YNSN model presented in Chapter 2 and refined in Chapter 3 must be calibrated by

measuring the reflection spectra of specially conceived color-constant calibration patches 1 and

by deducing the ink spreading curves mapping nominal ink surface coverages to effective ink

surface coverages. These special calibration patches comprise all solid colorants (paper, solid

inks and solid ink superpositions) and single ink halftones superposed with all combinations of

solid ink superpositions. However, these specially conceived calibration patches take valuable

space on the printed product and must be removed, or are simply not available. For example,

on offset presses, the special calibration patches are placed in the margins of the printed pages

and are cut off before assembling the final print product.

In this chapter, we focus on the calibration of the ink spreading model. Instead of cali-

brating the ink spreading curves using specially conceived color-constant calibration patches,

we propose a method based on image tiles extracted from printed images. Section 4.2 de-

scribes the calibration method and performs experiments based on the data used by Hersch et

al. [HBBH09]. In Section 4.3, we focus on the algorithm extracting image tiles from printed

color images and show that selecting image tiles specifically for the proposed calibration algo-

rithm improves the accuracy of the ink spreading curves and requires less image tiles.

1. We use the term color-constant to describe patches composed of a single unique color in order to differenti-
ate them from the uniform tiles extracted from images. This term is not a reference to the field of color constancy.

43
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In this chapter, the colorants (Neugebauer primaries) must still be measured and the Yule-

Nielsen n-value known. The calibration of entire IS-YNSN model is discussed in Chapter 5.

4.2 Constrained Acquisition of Ink Spreading Curves

from Printed Color Images

Spectral reflection prediction models are able to accurately predict the reflection spectrum

of any color-constant patch provided that the ink spreading curves are correctly calibrated. Such

calibrations usually require printing specific color-constant calibration patches in addition to the

printed content, patches that must be cut out from the final document.

In this section, we show how to calibrated the ink spreading curves using the measurements

of image tiles extracted from printed color images. By deducing the ink spreading curves

from image tiles, we eliminate the need of printing special color-constant halftone calibration

patches. However, the extracted image tiles may not always provide sufficient information

to accurately determine each ink spreading curve. To prevent the calibration procedure from

setting these ink spreading curves to artificially large values, we impose additional constraints

on the calibration procedure which rely on a relevance metric. We compare the predictions

of the new model calibrations to the predictions of the classical calibrations. Thanks to the

new calibration, the model predicts not only image tiles similar to the calibration tiles, but also

color-constant patches spanning the entire printing gamut. Moreover, the new predictions are

in some cases more accurate than classical predictions, suggesting that the patches used for

classical calibrations may not be the most relevant patches for model calibration.

All the experiments have been performed on an inkjet printer, i.e. a device that provides

a stable reproduction of colors across the entire page as well as from page to page. These

assumptions are not valid for all reproduction devices. For example, in offset printing, the

printable area is divided into several inking zones perpendicular to the printing direction. The

ink flow is specific to each zone and depends on the amount of ink used within that zone. Ink

spreading may therefore vary from zone to zone. The study of zone-dependent reproduction

systems is out of the scope of the present dissertation.

4.2.1 Parabolic Ink Spreading Curves

The ink spreading model proposed in Section 2.3 relies on linearly interpolated ink spread-

ing curves, which is standard in the literature and works well in practice, but they are not
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Figure 4.1: (a) Example of a parabolic ink spreading curve fi/jk characterized by its mid-point vi/jk.
(b) Corresponding dot gain curve, defined as the difference between effective and nominal surface cov-
erages, with the fitted dot gains of three calibration patches (circles), the linearly interpolated dot gain
curve (dashed line), and the corresponding least squares approximated parabolic dot gain curve (solid
line).

smooth at the calibration points. As seen in Figure 2.1b, the different linear sections of the

ink spreading curve do not smoothly connect, i.e. they are continuous, but not differentiable.

Moreover, due to printing artifacts or measurement noise, the calibration points may not always

define a monotonic increasing function, which is counterintuitive. Indeed, we can assume that

increasing the nominal surface coverage of an ink increases its effective surface coverage as

well.

Instead of linearly interpolated ink spreading curves, we propose to rely on parabolic ink

spreading curves. As shown in Figure 4.1a, parabolic ink spreading curve fi/jk of halftone ink

i superposed with solid inks j and k, is specified by a single parameter vi/jk. This parameter,

further referred to as the mid-point of the ink spreading curve, corresponds to the effective

coverage of the halftone at 50% nominal ink surface coverage. Based on vi/jk, ink spreading

curve fi/jk is analytically described as follows:

fi/jk(ui, vi/jk) = ui + (4vi/jk − 2)(1− ui)ui
= u2i (2− 4vi/jk) + ui(4vi/jk − 1)

(4.1)

where ui is the nominal surface coverage of ink i. An ink spreading curve can be calibrated by

measuring the halftone at 50% nominal surface coverage and deducing its effective coverage

using Eq. (2.4), but as shown in Figure 4.1b, we prefer 3 calibration patches per ink spreading

curve. The parabola is then fitted by minimizing the least-squares difference between the fitted

and predicted dot gains.

Compared to linearly interpolated ink spreading curves, parabolic ink spreading curves are
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differentiable, which is extremely important for optimization procedures. Moreover, they are

monotonic increasing if vi/jk is in the interval [0.25 0.75], a simple constraint to enforce.

Although slightly less accurate than their linearly interpolated counterparts, they play an sig-

nificant role in the success of the proposed method to calibrate the ink spreading model based

on image tiles extracted from printed color images.

4.2.2 Calibration of the ink spreading model using reflection spectra of image

tiles extracted from color images

We now present a method to calibrate the parabolic ink spreading curves used by the

IS-YNSN spectral prediction model, i.e. to set the mid-points of the 20 ink spreading curves

for CMYK prints using a set of reflection spectra of image tiles extracted from printed color

images, further referred to as image tiles, instead of the reflection spectra of specific color-

constant calibration patches. The set of image tiles used for calibration is further referred to as

the image calibration set, or image calibration tiles. The reflection spectra of specially con-

ceived color-constant calibration patches composed of one ink halftone superposed with paper

or superposed with other solid inks is further referred to as the classical calibration set, or clas-

sical calibration patches. The reflection spectra of the solid colorants (Neugebauer primaries)

and the Yule-Nielsen n-value are assumed to be known for the target printing process.

Definition of the ink spreading weights

The problem with image tiles is that not all superpositions of inks and halftones are neces-

sarily present. For example, if an image does not contain any cyan, it is not possible to calibrate

the ink spreading curves of the cyan ink. When the contribution of an ink to a given image cal-

ibration tile is weak, the minimization algorithm tends to induce large variations of the values

of the corresponding ink spreading curves in order to influence the difference metric. The con-

sequence is that the ink spreading curves are set to artificially large values that do not reflect

the actual dot gain. Such calibrations may be able to accurately predict image tiles similar to

the calibration set, but fail to correctly predict image tiles of other colors [HBBH09].

To avoid this problem, we introduce weights, one for each ink spreading curve. A weight

evaluates whether its ink spreading curve is relevant for predicting the image tiles of the cali-

bration set or not. If modifying a given ink spreading curve changes significantly some of the

predicted reflection spectra, its associated weight should be close to 1. If on the contrary the

predicted spectra do not significantly change, the weight should be close to 0. The weights are



CONSTRAINED ACQUISITION OF INK SPREADING CURVES FROM PRINTED COLOR

IMAGES 47

used to define upper and lower bounds for the mid-points of the ink spreading curves. As seen

in Section 4.2.1, the mid-points must be in the interval [0.25 0.75] in order to obtain monoton-

ically increasing ink spreading curves. We modify the definition of the bounds for a given ink

spreading curve as follows:

0.5− 0.25 · wi/jk ≤ vi/jk ≤ 0.5 + 0.25 · wi/jk (4.2)

where wi/jk represents the weight of ink halftone i superposed with solid inks j and k. When

the weight is equal to 1, the interval for the mid-point is not reduced. When the weight is equal

to 0, i.e. when modifying the ink spreading curve does not modify the predicted spectra, the

interval is reduced to a single mid-point, i.e. 0.5. When an ink spreading curve contributes only

slightly to the calibration set, its weight is low and the interval for its mid-point is reduced.

This prevents the fitting procedure from inducing large mid-point variations when minimizing

the metric expressing the distance between predicted and measured reflection spectra.

Calculation of the ink spreading weights

Given a tile p of the image calibration set, let the nominal and effective coverages of ink

i within tile p be respectively ui,p and u′i,p(vi, vi/j, vi/k, vi/jk). The weight associated to ink

spreading curve fi/jk of halftone ink i superposed with solid inks j and k is defined as the

following gradient:

wi/jk,p =
∂u′i,p
∂vi/jk

(4.3)

Since ink spreading curve fi/jk is fully determined by its mid-point vi/jk, the gradient in

Eq. (4.3) expresses the influence of ink spreading curve fi/jk on the resulting effective surface

coverage u′i,p of ink i within tile p.

Since a calibration set is composed of several tiles, we define the weight associated to ink

spreading curve fi/jk for the full image calibration set as the maximum of the weights of all the

tiles:

wi/jk = max
p

[wi/jk,p] = max
p

∂u′i,p
∂vi/jk

(4.4)

We take the maximum of the derivatives among all the tiles because the tiles with a high

weight have the largest influence on the metric minimized by the ink spreading curve mid-point

fitting algorithm, i.e. when there is at least one high weight tile and low weight tiles, the ink

spreading curve mid-point is mainly fitted by the high weight tile.
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Interval of the ink spreading weights

Let us show that the weights defined according to Eq. (4.4) are comprised between 0

and 1. We calculate the derivative of an ink spreading curve with respect to its mid-point

using Eq. (4.1):

∂fi/jk
∂vi/jk

=
∂

∂vi/jk
[ui + (4vi/jk − 2)(1− ui)ui] = 4(1− ui)ui (4.5)

Eq. (4.5) depends neither on the superposition condition nor on the mid-point value, but

only on the nominal surface coverage of the considered ink. Since ui is a nominal surface

coverage comprised between 0 and 1, the derivative reaches a maximum of 1 when ui = 0.5

and a minimum of 0 when ui = 0 or ui = 1.

Let us now calculate the derivative of the effective surface coverages with respect to the

mid-point of a given ink spreading curve. This derivative is 0 for all effective coverages except

for the effective coverage affected by the chosen ink spreading curve. Let us for example

consider the cyan ink. The effective coverage of cyan c′ is influenced by four ink spreading

curves: fc, fc/m, fc/y, and fc/my. With Eqs. (3.1) and (4.5), the derivatives of the cyan effective

coverage with respect to vc, vc/m, vc/y, and vc/my are:

∂c′

∂vc
= (1−m′)(1− y′)∂fc(c)

∂vc
= (1−m′)(1− y′) · 4c(1− c) (4.6)

∂c′

∂vc/m
= m′(1− y′)

∂fc/m(c)

∂vc/m
= m′(1− y′) · 4c(1− c) (4.7)

∂c′

∂vc/y
= (1−m′)y′

∂fc/y(c)

∂vc/y
= (1−m′)y′ · 4c(1− c) (4.8)

∂c′

∂vc/my
= m′y′

∂fc/my(c)

∂vc/my
= m′y′ · 4c(1− c) (4.9)

These derivatives represent the weights wc, wc/m, wc/y, and wc/my for tile p given by its

nominal surface coverages c, m, y, k. The nominal coverages are known from prepress image

data and the effective coverages are obtained with the YNSN model, i.e. the effective coverages

are found by minimizing the sum of square differences between the measured reflection spectra

components of the considered image tile and the ones predicted by the YNSN model [Eq. (2.4)].

Eqs. (4.6)–(4.9) are therefore fully determined. Moreover, all the variables are either nominal

or effective surface coverages which are comprised between 0 and 1. As shown above, 4c(1−c)
is also comprised between 0 and 1. Eqs. (4.6)–(4.9) are therefore also comprised between 0
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and 1. This demonstrates that the weights defined in Eq. (4.4) are indeed comprised between 0

and 1.

It is also interesting to observe the nominal surface coverages when a weight reaches its

maximum, i.e. when it is equal to 1. If we consider the weight ∂c′/∂vc associated with the ink

spreading curve fc(c) of cyan halftones printed on paper, expressed by Eq. (4.6), it reaches its

maximum when m′ = y′ = 0 and when c = 0.5. As m′ = 0 implies m = 0, a patch maximizes

the weight of the cyan fc(c) ink spreading curve only when its nominal surface coverages are

c = 0.5, m = 0 and y = 0. These surface coverages correspond to the nominal surface

coverages of the patch used to calibrate the cyan ink spreading curve in the classical calibration

set. In the case of cyan superposed with solid magenta, computed by Eq. (4.7), the maximal

weight is obtained with c = 0.5, m = 1 and y = 0. Similar statements are valid for the other

two superposition conditions. Therefore, the classical calibration set maximizes the weights of

all the ink spreading curves. Hence, when using the classical calibration set, the calibration of

the ink spreading model is not constrained, i.e. the weights are always 1.

Least-squares calibration procedure

Let us now present the complete calibration procedure. We propose a least-squares ap-

proach to calibrate the ink spreading curves given the reflection spectra of an image calibration

set. First, the effective surface coverages (c′,m′, y′, k′) of each image calibration tile are fit-

ted by using the YNSN model [Eq. (2.4)]. Then, the weights associated to the ink spreading

curves are computed using Eq. (4.4), with examples of the weights of a single tile given in

Eqs. (4.6)–(4.9). Each weight wi/jk defines the bounds for its associated ink spreading curve

mid-point vi/jk. Finally, the mid-points of the ink spreading curves are determined using a

constrained least-squares procedure where the constraints are the bounds of the different mid-

points. The constrained least-squares equations are derived from Eq. (3.1). There is one least-

squares equation per effective ink surface coverage. For example, let us take the equation

computing the cyan effective surface coverage. Substituting Eq. (4.1) in Eq. (3.1) yields:

c′ = (1−m′)(1− y′)(c+ (4vc − 2)(1− c)c)
+ m′ (1− y′)(c+ (4vc/m − 2)(1− c)c)
+ (1−m′) y′ (c+ (4vc/y − 2)(1− c)c)
+ m′ y′ (c+ (4vc/my − 2)(1− c)c)

(4.10)

Let ξ = [(1−m′)(1− y′) m′(1− y′) (1−m′)y′ m′y′]. Eq. (4.10) is rewritten in matrix
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form:

c′ + ξ


2(1− c)c− c
2(1− c)c− c
2(1− c)c− c
2(1− c)c− c

 = 4(1− c)c ξ


vc

vc/m

vc/y

vc/my

 (4.11)

Since the sum of all terms of ξ is one, Eq. (4.11) becomes:

c′ + 2(1− c)c− c = 4(1− c)c ξ
[
vc vc/m vc/y vc/my

]T
(4.12)

Eq. (4.12) has the form bp = Apx where Ap is the row vector 4(1 − c)cξ and x the vector

with the unknown ink spreading mid-point values. Knowing both nominal and effective surface

coverages, each tile of the calibration set forms one line of matrixA and one element of vector b.

Considering all the calibration tiles, we obtain the following constrained least-squares problem:

xmin = arg min
x

(‖b− Ax‖) such that

{
vi/jk ≤ 0.5 + 0.25 · wi/jk
vi/jk ≥ 0.5− 0.25 · wi/jk

(4.13)

where xmin is the vector containing the calibrated mid-points of the ink spreading curves. Such

problems are readily solved using existing algorithms [CL96, GMW81], possibly implemented

by computer programs such as Matlab. Note that it is also possible to perform the above

calibration procedure using a calibration set composed of a mixture of classical calibration

patches and image tiles, or even composed of classical calibration patches only.

4.2.3 Selection of image calibration and test tiles

Before verifying the accuracy of the proposed calibration on image tiles, we need to select

tiles as uniform as possible from the available images, well distributed across the color space.

For each image, we form two sets of tiles. The first set contains calibration tiles and the second

set test tiles.

The first step consists in scanning each image horizontally and vertically in 2 mm steps.

Successive 5 mm large square tiles form the candidate tiles from which calibration and test

tiles are selected. Each tile is associated a uniformity value. We define the uniformity of a

given color area as the RMS of the standard deviation of the CIELAB pixel values located

within the considered image tile:

s =
√(

σ(L∗)2 + σ(a∗)2 + σ(b∗)2
)
/3 (4.14)
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The calibration set associated with a given image contains approximately 50 of the most

uniform tiles, i.e. those with the smallest s value, with the additional condition that each tile

has no other tile within ∆Eab < 2 and no more than one other tile within ∆Eab < 6. The test set

associated with that image contains the most uniform 30 tiles that are not part of the calibration

set, and with the additional condition that each tile has no other tile within ∆Eab < 6.

We use the same images and the same image tile selections presented in [HBBH09] and

shown in Appendix B, where the ink spreading curves were fitted without considering their rel-

evance for a given image calibration set, i.e. without introducing constraints on the ink spread-

ing curve mid-points.

4.2.4 Setup of the experiments

The experiments are performed on a Canon PIXMA Pro 9500 printer, with color images

printed on Canon MP-101 matte paper with classical clustered dot halftoning, at a resolution of

600 dpi and a screen frequency of 100 lpi. The black ink is pigment based and absorbs in the

near infrared wavelength range (cartridge PGI-9MBK). Reflectance spectra are measured with

a Datacolor MF-45 spectrophotometer (geometry: 45°d:0°, i.e. 45° directed incident light and

capture at 0°) at 10 nm intervals between 380 nm and 850 nm.

The reflectances of the printed colorants (Neugebauer primaries) have been measured. The

Yule-Nielsen n-value is set to a suitable value according to the classical calibration, 7.8 in the

current case. Note that both the reflectances of the colorants and the Yule-Nielsen n-value can

be tabulated for each combination of inks and paper.

The fruits and textile images shown in Appendix B.1 are printed using 3 inks only (CMY)

and using 4 inks (CMYK). In each case, 4 different sets of tiles are measured: the calibration

and test sets of the fruits image (Appendix B.2), and the calibration and test sets of the textile

image (Appendix B.3). Since the selection algorithm is performed in the CIELAB color space,

the selected tiles are the same for CMY and CMYK.

4.2.5 Calibration of the ink spreading curves with spectra measured on the

selected image tiles

The algorithm presented in Section 4.2.2 aims at calibrating the ink spreading model, i.e. at

setting the ink spreading curves as accurately as possible, without printing specially conceived

halftone patches. According to Eq. (3.1), there are 12 ink spreading curves to fit for CMY

prints, and 20 ink spreading curves for CMYK prints. To each ink spreading curve fi/jk map-
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ping nominal to effective surface coverages in a given superposition condition, we associate a

dot gain curve gi/jk with the dot gain being defined as the effective surface coverage minus the

nominal surface coverage:

gi/jk(ui) = fi/jk(ui, vi/jk)− ui = (4vi/jk − 2)(1− ui)ui (4.15)

In the same way, the bounds associated with dot gain curve gi/jk are defined as follows

based on Eqs. (4.2) and (4.15):

−0.25 · wi/jk ≤ gi/jk(0.5) = vi/jk − 0.5 ≤ 0.25 · wi/jk (4.16)

In both the CMY and CMYK cases, we consider five different calibrations. The first case,

where all the ink spreading curves are arbitrarily set to 10% dot gain, is referred to as the

no calibration case. The second calibration is called the minimal classical calibration and is

calibrated using a single color-constant patch per ink spreading curve. This single patch yields

the effective surface coverage at 50% nominal surface coverage and is referred to as the 50%

patch. For example, the 50% patch of the fc/m ink spreading curve is 50% cyan superposed

with solid magenta. Therefore, the minimal classical calibration requires 12 calibration patches

for CMY prints, and 20 calibration patches for CMYK prints. The third calibration, referred to

as the extended classical calibration, includes the 25%, 50% and 75% color-constant patches

for the calibration of each ink spreading curve. Such a calibration requires 36 patches for CMY

prints and 60 patches for CMYK prints. The fourth and fifth calibrations use the fruits image

calibration set and the textile image calibration set, respectively. These last two calibrations are

also referred to as the image calibrations.

Figure 4.2 compares no calibration, minimal classical calibration and extended classical

calibration. The cyan and magenta dot gain curves are similar for the minimal and extended

classical calibrations. However, the yellow and black dot gain curves show significant varia-

tions. This indicates that the 50% patches are enough to characterize the cyan and magenta dot

gain curves, but not the yellow and black dot gain curves.

Figure 4.3 compares the extended classical, the fruits and the textile calibrations in the

CMYK case. The figure shows that half the dot gain curves of both image calibrations agree

well with the extended classical calibration. There are also a few cases where the dot gain

curves of the image calibrations reach their respective bounds computed using Eq. (4.16), es-

pecially the black ink spreading curves. However, this occurs only when the bounds are tight.
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Figure 4.2: CMYK dot gain curves of the minimal classical calibration, extended classical calibration
and no calibration.

When the bounds are loose, the fitted ink spreading curves are located close to the extended

classical calibration and away from the bounds, which is the expected behavior and confirms

that the bounds of a given ink spreading curve are loose only when the calibration set contains

at least one tile highly relevant for that ink spreading curve.

The effect of the constraints can be seen in Figure 4.4. When the constraints are not used,

five black and one yellow dot gain curves are set outside the defined bounds, with three of

them even reaching the original bound of ±25%. These dot gain curves are also the ones with

the strictest bounds, meaning that the calibration set does not contain tiles that are relevant

enough to calibrate these dot gain curves. The unconstrained calibration procedure sets the

ink spreading curves to extreme values in order to have a small gain of accuracy. This gain

improves only the accuracy of the image calibration set. When predicting another set of tiles,

all gains are lost and the predictions are poor.
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Figure 4.3: CMYK dot gain curves of the fruits, textile and extended classical calibrations. The upper
bounds of the fruits (FB) and textile (TB) dot gain curves are indicated as horizontal lines or with the
values {FB , TB} respectively.

4.2.6 Prediction accuracy

The different calibrations performed in Section 4.2.5 are tested by comparing the difference

between predicted and measured reflectances for different test sets. In the CMY case, we

predict the CMY test sets of the fruits and textile images and a set composed of 125 CMY

color-constant patches whose nominal surface coverages are all the CMY combinations at 0%,

25%, 50%, 75%, or 100%. In the CMYK case, we predict the CMYK test sets of the fruits and

textile images, a set composed of 625 CMYK patches whose nominal surface coverages are all

the CMYK combinations at 0%, 25%, 50%, 75%, or 100%, and a fourth set, further referred to

as the 125 UCR set, composed of 125 CMYK patches corresponding to the 125 CMY set, but

with nominal surface coverages obtained by converting the original CMY coverages to CMYK

using a standard under color removal algorithm.

The reflection spectrum of each image tile or color-constant patch of the selected sets is
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Figure 4.4: CMYK dot gain curves of the constrained fruits calibration, unconstrained fruits calibration,
and extended classical calibration. The bounds of the constrained fruits calibration are given as {FB}.

predicted and then compared to the corresponding measured reflection spectrum using the

∆E94 metric. For each measurement set, we compute the following statistics: average, 95

percentile and maximum ∆E94 between measured and predicted spectra. The results are shown

in Table 4.1 for the CMY tests and Table 4.2 for the CMYK tests. In Figures 4.5a–4.5c, the

prediction accuracy is defined as the inverse of the average ∆E94.

Figure 4.5a shows the accuracy of “no calibration”, minimal classical calibration and ex-

tended classical calibration for one CMY and two CMYK test sets. As expected the “no cali-

bration” case yields the worst results and the extended classical calibration yields significantly

better results than the minimal classical calibration, especially for the CMYK test sets, outlin-

ing the fact that, for the considered PIXMA Pro 9500 ink jet printer, the 25% and 75% surface

coverage patches are important for classical calibrations.

Figures 4.5b–4.5c show the accuracy difference between the extended classical, fruits, and

textile calibrations, as well as the fruits calibrations without constraints. These calibrations

are compared on the CMY fruits, CMY textile, and 125 CMY test sets in Figure 4.5b and



56 CHAPTER 4. CALIBRATING THE INK SPREADING MODEL USING COLOR IMAGE TILES

0.20

0.40

0.60

0.80

1.00

1.20

(a) Test sets
625 CMYK 125 UCR 125 CMY

No calibration
Minimal classical
Extended classical

accuracy = 1 / ∆E94 average ∆E94

Fruits Textile 125 CMY
(b) CMY test sets

Extended classical
Fruits constrained
Textile constrained
Fruits not constrained

Extended classical
Fruits constrained
Textile constrained
Fruits not constrained

Fruits Textile 625 CMYK 125 UCR
(c) CMYK test sets

5.00

2.50

1.66

1.25

1.00

0.83

Figure 4.5: Comparison of the accuracy of (a) “no calibration”, minimal classical calibration and ex-
tended classical calibration on the 625 CMYK, 125 UCR and 125 CMY test sets (b) extended classical,
constrained textile, constrained fruits, and unconstrained fruits calibrations on the CMY fruits and tex-
tile test tiles and on the 125 CMY test set (c) extended classical, constrained textile, constrained fruits,
and unconstrained fruits calibrations on the CMYK fruits and textile test tiles, and on the 625 CMYK
and 125 UCR test sets.

Table 4.1: Prediction accuracy for different cal-
ibrations and CMY test sets. The statistics show
the average, 95 percentile and maximum ∆E94.

3.16 4.49 4.92
1.57 2.72 2.98
1.32 2.51 2.81
1.02 1.84 1.88
1.12 2.40 2.62
1.02 1.74 1.87
1.14 2.61 2.95

3.34 5.29
1.98 3.49
1.68 3.28
1.15 2.02
0.98 2.24
1.28 3.40
0.90

5.11
3.41
2.94
2.01
1.82
3.26
1.75 1.90

2.51 4.31 4.48
1.07 2.79 3.43
0.91 1.81 2.36
1.16 2.76 3.95
1.33 3.18 4.23
1.41 3.85 4.51
1.71 4.42 5.62

CMY test set fruits
No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

CMY test set textile

125 CMY test set

CMY test sets
Calibrations

∆E94

avg 95% max

Table 4.2: Prediction accuracy for different cali-
brations and CMYK test sets. The statistics show
the average, 95 percentile and maximum ∆E94.

CMYK test set fruits
No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

No calibration
Minimal calibration
Extended calibration
Fruits with constraints
Textile with constraints
Fruits no constraints
Textile no constraints

1.66 3.53
1.61 2.85
1.22 2.40
1.38 2.55
1.27 2.62
1.35 2.54
1.32 2.93

CMYK test set textile

625 CMYK test set

125 UCR test set

1.56 3.31
1.50 2.50
1.14 1.72
1.21 2.11
0.86 1.38
1.19 2.07
0.81 1.46

2.41 3.48
1.35 2.50
1.01 1.87
0.93 1.99
0.98 2.23
1.91 6.07
1.99 5.69

2.16 3.63
1.73 3.17
1.31 2.30
0.99 1.83
1.10 2.11
1.56 4.06
2.03 5.24

4.12
3.26
3.34
4.67
4.26
4.59
4.18

3.37
2.95
2.55
2.17
1.57
2.24
1.49

3.94
3.21
2.43
3.62
3.56

10.37
8.34

4.20
3.69
2.79
2.56
2.40
6.03
6.99

CMYK test sets ∆E94
Calibrations avg 95% max



CONSTRAINED ACQUISITION OF INK SPREADING CURVES FROM PRINTED COLOR

IMAGES 57

on the CMYK fruits, CMYK textile, 625 CMYK, and 125 UCR test sets in Figure 4.5c. In

Figure 4.5b, the results are as expected: The fruits calibrations have the best accuracy on the

fruits test set, the textile calibration on the textile test set, and the extended classical calibration

on the 125 CMY test. Moreover, the constrained fruits calibration has a significantly higher

prediction accuracy on the 125 CMY test set than the unconstrained fruits calibration.

In Figure 4.5c, the extended classical and images calibrations, both with and without con-

straints, accurately predict both the CMYK textile and fruits test sets. The textile calibration is

particularly accurate on the textile test set. The fact that the fruits calibration does not display

such an accuracy on the fruits test set is due to the fact that the fruits test set is more different

from the fruits calibration set (average distance between each test tile and its nearest calibration

tile is ∆E94 = 2.94) than the textile test set from the textile calibration set (average distance

∆E94 = 1.60). The constraints are extremely important when predicting both the 625 CMYK

set and the 125 UCR set. Removing the constraints leads to a sharp drop of accuracy. This in-

dicates that the constraints considerably improve the accuracy of a calibration when predicting

the reflection spectra of a set of patches or tiles significantly different from the calibration tiles.

Surprisingly, the image calibrations with constraints have predictions as accurate as the ex-

tended classical calibration or even better predictions in the case of the 625 CMYK or 125 UCR

test sets. This indicates that calibrating the ink spreading model based on reflection spectra of

image halftones is a valid approach. Whereas the classical calibration uses artificially crafted

patches—there are at the macroscopic level few to no occurrences of superpositions of one

halftone and solid inks in a conventional image—relying on tiles directly taken from real im-

ages can achieve higher accuracy because these image tiles better represent the normal opera-

tional conditions of the reproduction device.

4.2.7 Summary

When correctly calibrated, today’s spectral reflection prediction models are able to accu-

rately predict the reflection spectra of printed color image tiles. However, the required cal-

ibration procedures remain difficult and cumbersome because they require printing specially

conceived color-constant calibration patches which use space and need to be removed from the

final product.

We have shown how to calibrate the ink spreading model using spectral data of image tiles

extracted from printed color images. Image tiles as uniform as possible are selected within

printed images and the ink spreading model is calibrated with the measurements of the selected
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calibration image tiles.

Depending on the available calibration image tiles, certain ink spreading curves cannot

be reliably calibrated because these ink spreading curves are not relevant in the prediction

of the calibration tiles. We therefore establish a simple relevance metric which relies on the

nominal surface coverages of the considered halftone and on the effective surface coverages of

the superposed other inks. Relying on this metric, we create bounds for the mid-points of the

fitted ink spreading curves. When the relevance is low, the effective surface coverages remain

close to the nominal surface coverages. This metric reaches its maximum relevance at 50%

halftone surface coverage on top of solid inks, which corresponds to the classical calibration

patches. Therefore, the classical calibration is a subset of the proposed constrained image tile

calibration approach.

The performed experiments demonstrate that the new constraint-based calibration proce-

dure is reliable when predicting patches significantly different from the calibration patches.

Moreover, the predictions of patches similar to the calibration patches remain as accurate with

the added constraints as without. Finally, the image calibration can be more accurate than a

classical calibration when predicting test sets composed of color-constant patches distributed

over the entire printing gamut of the reproduction device, suggesting that the classical calibra-

tion patches, despite incorporating the highest relevant patches formed by halftones superposed

with solid inks, are not necessarily the most adequate patches to calibrate the ink spreading

model.

4.3 Optimized selection of image tiles for ink

spreading calibration

Section 4.2 describes a method to calibrate the ink spreading model using image tiles ex-

tracted from printed color images, but does not discuss the impact of the method selecting

image tiles on the prediction accuracy.

The method to select image tiles is based on preliminary work by Hersch et al. [HBBH09].

However, the existing tile selection algorithm has a number of limitations. The first limitation

is that it is based on the CIELAB color space and therefore requires the conversion of the

images into CIELAB. The conversion is time-consuming, depends on a color profile and cannot

distinguish between two tiles of the same CIELAB color, but printed using different amounts of

cyan, magenta, yellow, and black inks. The second limitation is that it is not possible to select
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tiles according to a given goal in an optimal manner. For example, if the image tiles are used to

calibrate a cyan dot gain curve, we would like to choose halftone tiles with a predominance of

cyan.

In the present section, we first present an algorithm to automatically select image tiles from

color images based uniquely on the CMY or CMYK pixel values of these color images and

show that the reflectances of these image tiles can be accurately predicted by the IS-YNSN

model if they are uniform enough. This selection algorithm incorporates additional constraints

expressing the impact of a halftone on a given ink spreading curve. By relying on 6 different

color images from which we separately extract the calibration tiles, we show the calibration

performances of both a standard and an optimized calibration tile selection method according

to the number of image tiles used for the calibration.

4.3.1 Gradient-descent based calibration of the ink spreading model

The method to calibrate the ink spreading model based on image calibration tiles is de-

scribed in Section 4.2.2. However, since this method relies on solving a least-squares problem,

it requires a relatively large number of image calibration tiles to yield stable results and does

not work with a limited number of calibration tiles. When too little information about ink

spreading is available in the image calibration set, the least-squares problem becomes ill-posed

and the noise contained in the measurements of the image calibration tiles significantly impacts

the resulting calibrated model.

We therefore propose a variation based on a gradient-descent algorithm. The new method is

slower, but employs a starting point for the optimization corresponding to the IS-YNSN model

with all ink spreading curves set to 0.5 at 50% nominal surface coverage (no physical dot gain).

If the image calibration set contains very little information about the ink spreading of an ink

halftone, i.e. the calibration set contains few or no image tiles with the corresponding colorants,

the optimization does not significantly deviate from the starting point.

The aim of the calibration procedure is to find the best values for the mid-points of the

ink spreading curves. We group all the mid-points into a single vector ~v and use as objective

function the sum of square differences between the predicted and measured reflection spectra

of all the image calibration tiles for given ink spreading curve mid-points ~v:

f(~v) =
∑
p

∑
λ

[predSpectrum(λ, covsp, ~v)−measSpectrum(λ, p)]2 (4.17)
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where λ is the wavelength, p an image calibration tile, covsp its nominal ink surface coverages,

and ~v a vector whose elements are the mid-points of the ink spreading curves. The function

measSpectrum returns the measured spectrum of image calibration tile p and the function

predSpectrum uses the IS-YNSN model to predict the spectrum of the image calibration tile p.

The calibration procedure using Eq. (4.17) can be summarized as follows:

~vopt = arg min
~v

[f(~v)] such that

{
vi/jk ≤ 0.5 + 0.25 · wi/jk
vi/jk ≥ 0.5− 0.25 · wi/jk

(4.18)

where ~vopt is the vector containing the calibrated mid-points, i.e. the mid-points of the ink

spreading curves minimizing the sum of square differences between the measured and predicted

spectra, and wi/jk is the weight, comprised between 0 and 1 and defined in Section 4.2.2, used

to constrain vi/jk.

4.3.2 Selecting image tiles based on the CMYK color space only

In order to calibrate the ink spreading model with image tiles extracted from the color

images to be printed, we must first select such tiles. Our main assumption, verified in Sec-

tion 4.3.5, is that the best image tiles are the most uniform tiles. The non-uniformity value of a

tile located within a small sub-domain of the considered image is computed using its c, m, y,

and k pixel values as follows:

u =
√(

σ(c)2 + σ(m)2 + σ(y)2 + σ(k)2
)
/4 (4.19)

where u is the non-uniformity value; c, m, y, and k are the cyan, magenta, yellow, and black

pixel values of the considered image tile ranging from 0 to 1; and the σ function is the standard

deviation. If the values of the pixels of a given image tile are close to the average pixel value,

the standard deviations are low and u is low, i.e. the patch is considered uniform. However,

if many pixels have values distant from the average, the standard deviations are large and u is

large, i.e. the tile is considered non-uniform.

The aim of the selection algorithm is to select the most uniform tiles. However, in some

images, many uniform tiles are composed of similar amounts of inks. To prevent having two

tiles too close to each other, we use the Euclidian distance (norm) in the CMYK color space

to determine when a candidate tile is too close to currently selected tiles. The CMYK norm

indicates the proximity between two CMYK values. Two tiles can indeed have the same color,
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but be composed of radically different amounts of inks. As we are interested in selecting

tiles representing as many different reproduction situations as possible, the CMYK norm is an

appropriate metric to discriminate between uniform tiles.

The first step of the algorithm consists in scanning each image horizontally and vertically

in 2 mm steps. Successive 5 mm large square tiles form the candidate tiles from which the

tiles are selected. Each tile is associated with a non-uniformity value according to Eq. (4.19).

Assuming c, m, y, and k values between 0 and 1, tiles with a non-uniformity value above 0.1

are discarded.

Given a CMY image, the selection algorithm creates a set of 20 tiles composed of the most

uniform tiles, i.e. those with the smallest u values, with the additional condition that each tile

has no other tile within a CMY norm of 0.5 and no more than one other tile within a CMY norm

of 1.5. Given a CMYK image, the selection algorithm creates a set of the 30 most uniform tiles

so that each tile has no other tile within a CMYK norm of 0.3 and no more than one other tile

within a CMYK norm of 0.9. Such image tile sets are further referred to as standard image

calibration tile sets.

Each image tile has its associated nominal ink coverages. The nominal ink coverages of

an image tile are computed as the average of the CMY or CMYK values of the pixels located

within a radius of 1.5 mm from the center of the tile.

4.3.3 Adding constraints to the tile selection algorithm

The standard selection algorithm proposed in Section 4.3.2 selects the most uniform image

tiles under the constraint that these tiles are not too close to each other in the CMYK color

space. However, the best set of image tiles to calibrate the ink spreading model according to

the procedure detailed in Section 4.3.1 are the tiles maximizing the weights wi/jk associated to

the ink spreading curves in Eq. (4.4). Since the standard selection algorithm does not take this

aspect into account, we propose an optimized selection algorithm which also maximizes these

weights. This algorithm selects uniform enough image tiles maximizing the weights wi/jk.

Such a selection includes tiles highly relevant for the calibration of the ink spreading curves as

well as the most uniform tiles.

Since there are 12 or 20 ink spreading weights wi/jk in the CMY or CMYK case, respec-

tively, the strategy of the optimized algorithm is to maximize the sum of these weights by se-

lecting the image tiles yielding the highest sum. However, the image tiles must still be uniform

enough to be pertinent. In order to provide a flexible threshold ensuring a high enough unifor-
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Figure 4.6: Adjustment function z(x) inspired by the Weibull distribution.

mity, we use the following function inspired by the Weibull probability distribution [Wei]:

z(x) = e−(x/l)
4

(4.20)

Function z(x) is shown in Figure 4.6 and is used to adjust the ink spreading weights wi/jk
as follows:

w̃i/jk,p = wi/jk,pz(up) (4.21)

where w̃i/jk,p is the uniformity-adjusted weight of tile p, wi/jk,p is the weight of tile p computed

in Eq. (4.2), and up is the non-uniformity value of tile p computed in Eq. (4.19). If the given tile

is uniform, i.e. its non-uniformity value up is low, the adjustment function is close to unity and

the weight is not modified. If the tile is non-uniform, its non-uniformity value is high and the

adjustment function is close to 0. In that case, the tile is discarded. There is a sharp transition in

which the less uniform the tile, the more the criterion function is decreased, creating a “smooth

threshold”.

The function z(x) can be tailored to accommodate the available image tiles. The l value

positions the transition zone and the exponent, set to 4 in Eq. (4.20), can be increased or de-

creased to shrink or enlarge the transition zone. If the exponent is set to infinity, the distribution

becomes a step function and acts as a real threshold, discarding tiles with non-uniformity values

higher than l. We used a value of l = 0.10 in Section 4.3 and l = 0.05 in Chapter 5.

Given ink spreading curve fi/jk and candidate image tile p, uniformity-adjusted weight

w̃i/jk,p indicates if tile p is suitable to calibrate ink spreading curve fi/jk. By taking for each ink

spreading curve the image tile with the maximum uniformity-adjusted weight w̃i/jk,p, we create

an image calibration set containing the most suitable tiles to calibrate all the ink spreading
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curves. This set is further referred to as the adjusted calibration tile set. Since a given tile

can be the most suitable tile for more than one ink spreading curve, the adjusted calibration

set contains at most as many calibration tiles as ink spreading curves. This simple selection

algorithm creates therefore calibration sets with a fixed number of tiles.

If we want to create calibration sets containing fewer image tiles, we cannot select for each

ink spreading curve its most suitable image calibration tile. A second criterion must be used

to perform the selection. This second criterion is the sum s of the ink spreading weights wi/jk
computed as follows:

s =
∑
wi/jk

wi/jk =
∑
wi/jk

max
p

[wi/jk,p] (4.22)

where the weights wi/jk are computed according to Eq. (4.4). Since ink spreading weight wi/jk
indicates the amount of information the entire calibration set provides about ink spreading curve

fi/jk, the sum s of all ink spreading weights indicates the amount of information available to

calibrate all the ink spreading curves. In order to maximize s while selecting only suitable

image tiles, we first create for each ink spreading curve a list of the candidate image tiles

ordered from the most suitable tile to the least suitable tile. The ordering criterion is given by

w̃i/jk,p according to Eq. (4.21). The heads of the lists therefore correspond to the most suitable

tiles. The calibration set is then created by selecting one tile after another, each time selecting

the tile among the heads of the lists that yields the maximum sum s of the ink spreading weights

across all selected tiles. That tile is then removed from the lists. Note that as in Section 4.3.2,

for an image tile to be selected, its non-uniformity must be below 0.1 and it must not be too

close to the already selected tiles according to the CMYK norm. When no more tile increases

the sum s of the weights, we revert to the standard algorithm and complete the set with the most

uniform tiles that satisfy the CMYK norm constraint (Section 4.3.2). Image tile sets selected

using this algorithm are further referred to as optimized image calibration tile sets.

Figure 4.7 shows the difference in the sum of the 20 CMYK ink spreading weights between

the standard and optimized image tile sets. For all 6 test images shown in Appendix C.1 and

described in Section 4.3.4, the sum of the weights is larger using the optimized selection algo-

rithm than using the standard selection algorithm for any number of selected tiles. Moreover,

when the optimized image calibration tile sets are composed of the same number of tiles as the

adjusted calibration tile sets, the sum of the weights of the optimized sets are always equal to

or slightly higher than their corresponding adjusted calibration tile set.
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Figure 4.7: Sum of the 20 CMYK ink spreading curve weights for the six test images according to the
number of selected tiles using either the standard (dashed line) or optimized (solid lines) tile selection
algorithm. The crosses indicate the sum of the ink spreading weights of the adjusted calibration tile sets.

4.3.4 Setup of the experiments

In order to verify the accuracy of the spectral reflection predictions performed by the

IS-YNSN model, the image tiles need to be measured. The size and shapes of the image

tiles must be adapted according to the measurement geometry and aperture of the measurement

device. For the Datacolor MF45IR spectrophotometer, the tiles are conceived as disks with a

diameter of 3 mm. Since this device illuminates the sample using a directed source (45°d:0°

geometry), we measure each sample four different times, each time rotating it by 90° and tak-

ing the average. This reduces errors due to the positioning of the device and irregularities of

the illumination geometry. The non-uniformity value of a given patch is computed on an area

slightly larger than the actual tile, i.e. a 5 mm disk instead of a 3 mm disk. Ensuring that the

area surrounding the actual tile is also uniform further reduces positioning errors.

In order to analyze how the different selection algorithms perform, we use the 6 different

sRGB images shown in Appendix C.1. The first image comes from a digital camera and the

other five from different sources providing standard test images [Fra, Web, Lev]. The sizes of

the images have not been modified, but they have been resampled to 600 dpi. Moreover, they

have been converted to two different color spaces: CMY and CMYK. Both conversions have

been performed using Photoshop and the U.S Web coated (SWOP) v2 CMYK profile. The

conversion to CMYK has been performed with medium GCR (gray component replacement).

To verify the impact of the uniformity of the image tiles on the accuracy of the IS-YNSN

model when predicting these tiles, we print eight sets of 50 image tiles further referred to as

the uniformity test sets and shown in Appendix C.4. Each set contains tiles randomly selected

among the candidate tiles of the 6 images having a non-uniformity value u in a given range.
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Each set is referred to by the range of non-uniformity values of the tiles it contains, e.g. the

0.12–0.16 group contains 50 tiles with non-uniformity values between 0.12 and 0.16. Note that

these 8 sets were only created for the CMYK images.

The image calibration tiles selected using the algorithms detailed in Section 4.3.2 (standard

image calibration tile sets) and Section 4.3.3 (optimized image calibration tile sets) are shown

in Appendix C.2 for the CMY images and in Appendix C.3 for the CMYK images. They are

printed on a Canon PIXMA Pro 9500 inkjet printer at 600 dpi and 150 lpi using classical rotated

halftone screens. For CMY, the halftone screen angles are 75°, 15°, and 45°, respectively. For

CMYK, the halftone screen angles are 75°, 15°, 0° and 45°, respectively.

To compare the prediction accuracy of calibrations performed using different methods, we

use two test sets composed of color-constant patches. The first test set, further referred to as

the 125 CMY set, is composed of 125 color-constant patches with all possible combinations of

cyan, magenta, and yellow at 0%, 25%, 50%, 75%, and 100%. The second set, further referred

to as the 125 UCR set, is composed of 125 CMYK color-constant patches with nominal surface

coverages obtained by converting the 125 CMY set to CMYK using the standard under color

removal algorithm described above.

4.3.5 Prediction accuracy of the classical calibration relying on

color-constant patches

All spectral predictions are performed using the IS-YNSN model calibrated using the clas-

sical uniform calibration patches, i.e. the 16 solid colorants (Neugebauer primaries) and 20·3 =

60 color-constant patches composed of one halftone ink at 25%, 50%, or 75% superposed with

zero, one, or more solid inks. In both the CMY and CMYK cases, the Yule-Nielsen n-value

is set to 10. The first part of Tables 4.3, 4.5, and 4.6 shows the reference prediction accuracy

of the IS-YNSN model, i.e. the accuracy when predicting the color-constant patches of the 125

CMY set (Table 4.5) or the 125 UCR set (Tables 4.3 and 4.6).

Table 4.3 shows the accuracy when predicting the uniformity test sets. We can see that

the average ∆E94 prediction error, derived from the measured and predicted reflectances of the

different sets, consistently increases when the non-uniformity values of the image tiles increase.

This correlation also holds for the 95 percentile and maximum ∆E94.

An additional experiment shows that the information contained in non-uniform tiles cannot

be used to calibrate the ink spreading curves. With the classically calibrated IS-YNSN model,

we can either predict the effective coverages of a tile using the ink spreading model or de-
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duce these effective coverages by directly fitting them with the YNSN model using Eq. (2.4).

Table 4.4 shows that the classically calibrated IS-YNSN model is able to accurately predict

non-uniform image tiles using the deduced effective coverages. However, the effective cov-

erages predicted by the classically calibrated ink spreading model do not correspond to the

deduced effective surface coverages, i.e. the difference between predicted and deduced cover-

ages increases when the non-uniformity of the tiles increases.

When calibrating the ink spreading curves using image tiles, the deduced effective ink sur-

face coverages of the calibration tiles are implicitly computed in Eq. (4.17), i.e. the calibration

algorithm tries to set the ink spreading curves so that the predicted and deduced effective cover-

ages agree. However, when non-uniform image tiles are used, the calibration algorithm sets the

ink spreading curves to incorrect values to force the agreement between predicted and deduced

coverages and therefore reduces the prediction accuracy. This demonstrates the importance of

using image tiles as uniform as possible.

The second part of Tables 4.5 and 4.6 show the prediction accuracy of the classically cal-

ibrated IS-YNSN model when predicting the CMY and CMYK image calibration tile sets,

respectively. We can see that the IS-YNSN model is also able to accurately predict image tiles,

i.e. the average ∆E94 is either below or close to 2 and the 95 percentile is either below or close

to 3, which confirms our choice of limiting the non-uniformity of the selected image tiles to 0.1.

Note that there is no difference in the prediction accuracy of the standard and optimized image

tile sets since they are all composed of tiles whose non-uniformity is below 0.1.

4.3.6 Accuracy of the IS-YNSN image calibrations

In the previous section, we have demonstrated that image tiles can be accurately predicted

by an IS-YNSN model calibrated using the classical uniform calibration patches. We now com-

pare predictions performed on models calibrated according to the different methods. The first

method is the classical calibration detailed in Section 4.3.5. The other methods are based on

the optimized and standard image calibration tile sets selected from one of the six test images.

For each optimized or standard image calibration tile set, we perform a series of ink spreading

curve calibrations using the algorithm detailed in Section 4.3.1. The first calibration of the se-

ries is performed using only the first image tile of the set. The second calibration is performed

using the first two image tiles of the set, and so on. The last calibration is therefore performed

using all the image tiles of the set. In the CMY case, there are 20 tiles per calibration set, an

optimized and a standard calibration set for each image, and 6 separate images on which cali-
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Table 4.3: Prediction accuracy of the classi-
cally calibrated IS-YNSN model when predict-
ing the color-constant patches of the 125 UCR
set and sets of tiles grouped according to their
non-uniformity values. The statistics show the
average, 95 percentile, and maximum ∆E94.

Non-uniformity interval

∆E94

avg 95% max

0.00 - 0.04
0.04 - 0.08
0.08 - 0.12
0.12 - 0.16
0.16 - 0.20
0.20 - 0.24
0.24 - 0.28
0.28 - 0.32

1.46
1.69
2.12
3.04
4.11
6.31

10.37
16.38

2.75
2.95
3.70
5.26
7.53

10.25
15.82
21.35

3.77
4.04
4.88
5.65
8.47

11.46
16.94
24.94

Uniform patches
125 UCR set 1.16 1.94 2.54

Table 4.4: Average accuracy of predicting sets of
tiles grouped according to their non-uniformity
values using effective coverages either predicted
using the classically calibrated ink spreading
model (Predicted column) or deduced by direct
fitting of surface coverages according to Eq. (2.4)
(Deduced column). ∆Covs indicates the average
CMYK norm between predicted and deduced ef-
fective coverages.

Non-uniformity interval

Average ∆E94 ∆Covs

Predicted Deduced

0.00 - 0.04
0.04 - 0.08
0.08 - 0.12
0.12 - 0.16
0.16 - 0.20
0.20 - 0.24
0.24 - 0.28
0.28 - 0.32

0.29
0.23
0.21
0.25
0.24
0.27
0.33
0.67

1.46
1.69
2.12
3.04
4.16
6.31

10.37
16.38

0.0008
0.0005
0.0022
0.0021
0.0028
0.0045
0.0064
0.0123

Table 4.5: Prediction accuracy of the classically
calibrated IS-YNSN model when predicting the
125 CMY set and the different CMY image cali-
bration tile sets. The statistics show the average,
95 percentile, and maximum ∆E94.

Uniform patches
125 CMY set

CMY standard image tiles
Flower
House
Boat race
Sea
Parrots
Sailboat

CMY optimized image tiles
Flower
House
Boat race
Sea
Parrots
Sailboat

0.89

1.64
1.67
1.89
1.74
1.49
1.98

1.66
1.61
1.98
1.66
1.35
1.91

1.63

2.50
2.57
2.83
2.63
2.29
2.75

2.38
2.50
2.87
2.40
2.07
2.58

2.53

2.53
3.33
3.40
2.76
2.35
2.91

2.47
2.58
2.97
2.44
2.09
2.69

∆E94

avg 95% max

Table 4.6: Prediction accuracy of the classically
calibrated IS-YNSN model when predicting the
125 UCR set, and the different CMYK image cal-
ibration tile sets. The statistics show the average,
95 percentile, and maximum ∆E94.

Uniform patches
125 UCR set

CMYK standard image tiles
Flower
House
Boat race
Sea
Parrots
Sailboat

CMYK optimized image tiles
Flower
House
Boat race
Sea
Parrots
Sailboat

∆E94

avg 95% max

1.16

1.49
1.41
1.63
1.59
1.96
2.05

1.64
1.78
1.79
1.70
2.07
2.00

1.94

3.05
2.52
3.08
2.60
3.11
2.81

3.01
3.00
3.19
2.80
3.04
3.24

2.54

3.08
2.77
3.12
2.64
3.21
3.13

3.03
3.08
3.40
3.48
3.10
3.32
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brations are performed. In the CMYK case, there are 30 tiles per calibration set, an optimized

and a standard calibration set for each image, and 6 separate images on which calibrations are

performed. The classical calibration and all the image tile based calibrations are compared

against the reference YNSN model, i.e. the Yule-Nielsen model without ink spreading curves.

The comparison is performed by predicting the color-constant patches of the 125 CMY set,

respectively the 125 UCR set. The lower the average ∆E94, the higher the accuracy.

Figures 4.8 and 4.9 show the prediction results for the CMY and CMYK images, respec-

tively. In both cases, the IS-YNSN model with calibrated ink spreading curves is much more

accurate than the reference model without calibrated ink spreading curves as shown by the gap

between the two dotted lines. This difference outlines the importance of accounting for su-

perposition dependent physical dot gain. Moreover, all the different image calibrations have

a better accuracy than the reference model, indicating that even a single image tile provides

useful information about physical dot gain to the calibration procedure.

A deeper analysis of the standard image calibrations reveals that adding more image tiles to

the calibration set improves the prediction accuracy. A given additional image tile may slightly

degrade the prediction accuracy, but additional tiles will cancel the degradation. Degradations

may happen when the new added tile is too similar to previous tiles. For example, the 3rd

tile of the CMY Flower standard calibration set is a red tile similar to the 2nd tile of the set

(Appendix C.2). The 9th tile of the CMYK Parrots standard set is the 3rd dark brown tile of

the set (Appendix C.3). In such cases, the calibration procedure yields a model specialized

in predicting tiles occurring repeatedly in the calibration set and fails to accurately predict

rarely occurring tiles. Adding calibration tiles outside the specialized area quickly improves

the prediction accuracy. For example, the first 15 tiles of the CMYK Flower standard set are

red or dark brown, except the 9th and 13th tiles that are green (Appendix C.3). When the 1st and

2nd green tiles are added in the set, we observe a sharp decrease of the prediction error to 2.5

and 1.9, respectively. With enough image tiles in the calibration set, the prediction accuracy

stabilizes close to the prediction accuracy of the classical calibration. It is however difficult to

predict how many tiles are required to stabilize the standard image calibration. For the CMYK

Boat race image, less than 5 tiles are required. Conversely, for the CMY Flower image or the

CMYK Sailboat image, more than 20 image tiles are necessary.

In contrast, optimized image calibration tile sets offer a high prediction accuracy even with

sets composed of as few as 5 to 10 image tiles. Their accuracy is therefore always higher or,

when both calibrations are stable, equal to the accuracy of standard image calibrations. When

there is a large difference in the sum of the weights between the standard and optimized image
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Figure 4.8: Accuracy of different calibrated IS-YNSN models when predicting the color-constant
patches of the 125 CMY set. The following calibrations for six different CMY images are shown: no
ink spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), ink spreading
calibrations using standard image tile sets (dashed line), and ink spreading calibrations using optimized
image tile sets.
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Figure 4.9: Accuracy of different calibrated IS-YNSN models when predicting the CMYK color-
constant patches of the 125 UCR set. The following calibrations for six different CMYK images are
shown: no ink spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), ink
spreading calibrations using standard image tile sets (dashed line), and ink spreading calibrations using
optimized image tile sets.
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calibration sets (Figure 4.7, Flower image), there is also a large difference in the prediction

accuracy when the model is calibrated with a limited number of patches (Figures 4.8 and 4.9).

When the difference in the sum is small (Figure 4.7, Sea or Boat race images), the difference

in prediction accuracy is also small, i.e. the two curves in Figures 4.8 and 4.9 remain close.

Optimized image tile sets therefore ensure that the model achieves good prediction accuracy

with the fewest possible number of tiles. Moreover, the number of necessary tiles is lower than

the minimum required by a classical calibration. An optimized image tile based calibration

requires 5 to 10 image tiles in both CMY and CMYK cases, whereas a classical calibration

requires 12 and 20 patches in the CMY and CMYK cases, respectively.

The Parrot image is particularly interesting. It is a colorful image containing many uniform

image tiles. Because the standard selection algorithm selects tiles based on uniformity only and

although the tiles are selected not too close to each other, the first selected tiles of the standard

set are all different shades of green (Appendices C.2 and C.3). Yellow and red tiles appear

only later in the set and no blue tile is selected. Since many selected tiles have similar shades,

the sum of the weights only slowly increases each time a tile is added. This contrasts with

the optimized calibration set whose first selected tiles are well distributed in the color space

because the selection algorithm selects tiles maximizing the ink spreading weights. The sum of

the weights therefore quickly increases (Figure 4.7). As a consequence, the prediction accuracy

achieved by the standard algorithm only slowly improves compared to the accuracy achieved

by the optimized algorithm (Figures 4.8 and 4.9). In images with less color diversity or less

uniform tiles, e.g. the Sailboat image, the standard algorithm still requires more tiles, but is

eventually able to achieve the same accuracy as the optimized algorithm since the number of

candidate tiles not too close to each other is reduced and the selected tiles are forced to be well

distributed. In some cases such as the Sea or Boat race images, both algorithms have the same

performances.

4.3.7 Summary

To facilitate the calibration of the ink spreading curves, we propose a method based on tiles

extracted from color images. The detailed selection algorithm automatically selects tiles in an

image based on the CMYK pixel values of that image. Moreover, it ensures that the selected

image tiles are uniform and not too close to each other in the CMYK domain. We then propose

an optimized tile selection algorithm that selects the image tiles maximizing the ink spreading

weights, i.e. the tiles having the largest impact on the calibration of the ink spreading curves.



OPTIMIZED SELECTION OF IMAGE TILES FOR INK SPREADING CALIBRATION 71

The performed experiments show that an image tile can be accurately predicted only if

its non-uniformity is low. Image tiles selected by the optimized selection algorithm largely

improve the sum of the ink spreading weights compared to the tiles selected by the standard

selection algorithm. Since large ink spreading weights indicate a strong influence of the tiles

on the ink spreading curves, the ink spreading calibration is improved. An optimized image

calibration set composed of 5 to 10 image tiles is indeed sufficient to reliably calibrate the ink

spreading curves whereas it is not possible to provide an upper bound of image tiles for the

standard image calibration set. Finally, the number of required image tiles is lower than the

number of color-constant patches required for a classical calibration.





Chapter 5

Recovering Neugebauer colorant
reflectances and ink spreading curves

from printed color images

5.1 Introduction

The YNSN model incorporates parameters which must be learned for each combination

of paper, inks, and printing device. This step, known as the calibration of the model, con-

sists in determining the best values for the different model parameters. The calibration of the

YNSN model requires the spectral measurements of predetermined color patches representing

the Neugebauer primaries, i.e. the reflectances of paper, of the solid inks, and of superpositions

of the solid inks, as well as a few halftones to determine the Yule-Nielsen n-value. The YNSN

model actually performs a linear interpolation between the extremities of the space formed by

the reflectances of the Neugebauer primaries raised to the power of 1/n. In order to further

improve its accuracy, the YNSN model has been enhanced with an ink spreading model ac-

counting for physical dot gain (IS-YNSN, Chapter 2). The calibration of the IS-YNSN model

requires the spectral measurements of a set of predetermined halftone patches.

Using the improvements proposed in Chapter 3, 36 spectral measurements of predetermined

color-constant halftone and solid patches are required. Since these color-constant patches are

not present within normal printed images, they need to be added, for example in the margins

of printed pages. Once measured, they must be removed. Instead of calibrating the IS-YNSN

model with predetermined color-constant patches, we propose a calibration procedure relying

73
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on the measurements of image tiles extracted from printed color images. In Chapter 4, the

content of printed color images has already been used for the calibration of ink spreading, but

not for the YNSN model itself, i.e. the Neugebauer primaries still had to be measured and the

Yule-Nielsen n-value determined. Balasubramanian proposed to recalibrate the Neugebauer

primaries based on a training set of measured samples, but only as an optimization step based

on initially measured primary reflectances [Bal96].

In this chapter, we show how to recover the Neugebauer primaries from printed color im-

ages. We propose a two-step procedure to calibrate both the YNSN model and the ink spreading

model using tiles extracted from printed color images without relying on prior knowledge. In

the first step, constraints are imposed both on the ink spreading model and on the Neugebauer

primaries to prevent large variations when the information contained in the image calibration

tiles is not sufficient. In the second step, the Neugebauer primaries are refined to improve the

calibration accuracy. We then show how to determine the Yule-Nielsen n-value.

5.2 Unconstrained calibration of the IS-YNSN model

The IS-YNSN model must be calibrated for each combination of printer, halftone screens,

inks, and paper. Such a calibration consists in recovering the reflection spectra of the colorants

(Neugebauer primaries), fitting the mid-points of the ink spreading curves, and setting the Yule-

Nielsen n-value to a suitable scalar value. In a classical calibration, the colorant reflectances

are directly measured and the effective surface coverages used for creating the ink spreading

curves are fitted using a predetermined set of color-constant halftone calibration patches.

Instead of using predetermined color-constant patches, we show how the IS-YNSN model

can be calibrated using image calibration tiles extracted from color images and grouped in an

image calibration set. The selection of these tiles is described in Section 5.5. In this section,

we propose an unconstrained procedure to calibrate the IS-YNSN model using an image cal-

ibration set. This approach relies on a gradient-descent algorithm to find the optimal colorant

reflectances and the mid-points of the ink spreading curves. In the present setting, we assume

that the Yule-Nielsen n-value is known. Its calibration is discussed in Section 5.9.

The gradient-descent algorithm uses as objective function the sum of square differences

between the measured and predicted reflectance components of the image calibration tiles:

f(C,~v) =
∑
p

∑
k

[predSpectrum(λk, p, C,~v)−Rp(λk)]
2 (5.1)
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where λk is the wavelength, p an image calibration tile, C the 48x16 matrix whose columns

correspond to the 16 CMYK colorant reflectances sampled each 10 nm between 380 nm and

850 nm, ~v a vector containing the mid-points of the 20 CMYK ink spreading curves (see Sec-

tion 4.2.1), and Rp the measured reflection spectrum of image calibration tile p. Function

predSpectrum uses the IS-YNSN model to predict the spectrum of image calibration tile p.

The gradient-descent algorithm performs the following minimization using Eq. (5.1):

{Copt ~vopt} = arg min
C,~v

[f(C,~v)] such that

{
Rmin ≤ Ri ≤ Rw

0.25 ≤ vi/jk ≤ 0.75
(5.2)

where matrix Copt and vector ~vopt contain respectively the colorant reflectances and the mid-

points of the ink spreading curves minimizing the sum of square differences between the mea-

sured and predicted reflectance spectra of the image calibration tiles. The only constraints

imposed on the colorant reflectances and the mid-points of the ink spreading curves are their

intrinsic bounds. In respect to the ink spreading curve mid-points, 0.25 and 0.75 are the bounds

beyond which the quadratic ink spreading curves are not monotonic increasing functions any-

more [Eq. (4.1)]. In respect to the colorants reflectances, Rmin and Rw correspond respectively

to the minimal value allowed for a reflectance and the maximal value expressed by the mea-

sured paper reflectance. The lower bound for reflectances is actually 0, but Rmin is set to 0.001

to avoid searching for negative values. Moreover, on real prints, the darkest black has a re-

flectance larger than 0.001. At the start of the gradient-descent algorithm, the mid-points of the

ink spreading curves in ~v are set to 0.5 and the colorant reflectances in C to (Rmin +Rmax)/2.

For several reasons, calibrations of the IS-YNSN model using Eq. (5.2) are not reliable.

Because the colorant reflectances (Neugebauer primaries) are not constrained, they are set to

spectra that are not smooth and therefore do not look like real CMYK colorant reflectances. In

addition, the relationship between the reflectances of the inks and the reflectances of their su-

perpositions is not preserved. Finally, the image calibration tiles do not always provide enough

information to accurately calibrate the colorant reflectances. For example, if the image calibra-

tion tiles are primarily composed of cyan ink, it is not possible to calibrate the yellow colorant.

In such cases, unconstrained procedures such as Eq. (5.2) tend to induce large variations in

some spectral components in order to influence the difference metric of Eq. (5.1). As a con-

sequence, the fitted reflectances do not reflect real measurements. Examples of such fitted

reflectances are given in Section 5.7.
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5.3 Constrained calibration of the IS-YNSN model

In order to prevent the calibration procedure from setting the colorant reflectances and mid-

points of the ink spreading curves to extreme values, we impose constraints on these parame-

ters. For the ink spreading model, we use the constraints proposed in Section 4.2.2 that were

successful in calibrating the ink spreading model by relying on tiles extracted from color im-

ages. For the colorants, we propose a set of constraints that forces the calibration procedure to

set their reflectances to spectra that are similar to real reflection spectra.

5.3.1 Ink spreading constraints

The problem faced by the calibration procedure when fitting the mid-points of the ink

spreading curves is that the image calibration tiles do not always provide sufficient information

about each ink spreading curve in order to set it with high confidence to a sensible value. The

goal of the constraints imposed on the ink spreading curves is therefore to restrict the range

of values that can be assigned to the mid-points when there is not enough information. Since

we use the same constraints as in Section 4.2.2, i.e. Eqs. 5.3, 5.4, 5.5, and 5.6 are the same as

Eqs. 4.2, 4.3, 4.4, and 4.7, we only give a short summary of these constraints and discuss them

in the context of calibrating the entire IS-YNSN model.

Ink spreading weight wi/jk, associated to ink spreading curve fi/jk of halftone ink i super-

posed with solid inks j and k, indicates if there is enough information to fit the mid-point vi/jk
of ink spreading curve fi/jk. A weight equal to 0 indicates that no information is available.

In this case, the effective surface coverage is made equal to the nominal surface coverage and

the mid-point is set to 0.5, i.e. we assume that there is no ink spreading. A weight equal to 1

indicates that the mid-point vi/jk can be freely calibrated between 0.25 and 0.75, the bounds

beyond which the ink spreading curves are not monotonic increasing functions anymore. For a

weight wi/jk between 0 and 1, the mid-point vi/jk is constrained as follows:

0.5− 0.25 · wi/jk ≤ vi/jk ≤ 0.5 + 0.25 · wi/jk (5.3)

The ink spreading weights wi/jk are computed from the nominal ink coverages of the image

tiles as follows. Given a tile p of the image calibration set, let ui,p be the nominal surface

coverage and u′i,p(vi, vi/j, vi/k, vi/jk) be the effective surface coverage of ink i within tile p

computed using the ink spreading model. The weight associated to ink spreading curve fi/jk of
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halftone ink i superposed with solid inks j and k is defined as the following gradient:

wi/jk,p =
∂u′i,p
∂vi/jk

(5.4)

Since ink spreading curve fi/jk is fully determined by its mid-point vi/jk, the gradientwi/jk,p
in Eq. (5.4) expresses the influence of ink spreading curve fi/jk on the resulting effective surface

coverage u′i,p of ink i within tile p.

Since a calibration set is composed of several image tiles, we define the weight associated

to ink spreading curve fi/jk for the entire image calibration set as the maximum of the weights

of all the tiles:

wi/jk = max
p

[wi/jk,p] = max
p

∂u′i,p
∂vi/jk

(5.5)

We take the maximum of the derivatives across all the tiles because tiles with a high weight

have the largest influence on the metric minimized by the ink spreading curve mid-point fitting

algorithm Eq. (5.1), i.e. when there is at least one high weight tile and low weight tiles, the ink

spreading curve mid-point is mainly fitted by the high weight tile.

By inserting Eq. (4.1) into Eq. (3.1), we can compute the gradients of Eq. (5.4) for each

ink spreading curve. For example, the weight wc/m of the ink spreading curve fc/m of cyan

halftones printed on solid magenta is:

wc/m =
∂c′

∂vc/m
= m′(1− y′)

∂fc/m(c)

∂vc/m
= m′(1− y′) · 4c(1− c) (5.6)

where c′, m′ and y′ are the effective surface coverages of the cyan, magenta, and yellow

halftones, respectively, and c is the nominal surface coverage of the cyan halftone. Since neither

the colorant reflectances nor the ink spreading curves are calibrated yet, the effective coverages

m′ and y′ required in Eq. (5.6) cannot be computed. We use the nominal coverages m and

y instead. This modification influences the weights, but since the difference between effec-

tive and nominal coverages is usually small, the weights are not largely affected and the ink

spreading mid-point values can be accurately calibrated. This assertion is further discussed in

Section 5.10.4.

5.3.2 Constraints in respect to colorant reflectances

The constraints imposed on the ink spreading curves rely on the existence of a default value

for the mid-points vi/jk = 0.5 that can be used when no information is available. There is no
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such default value for the colorant reflectances. Instead, we make the distinction between the

following three groups of colorants: the paper, the inks, and the ink superpositions. We assume

that the paper reflectance representing the white colorant can be measured. The white colorant

is therefore known. We then impose different constraints on the ink reflectances and on the ink

superposition reflectances.

Ink reflectance constraints

The reflectance of an ink depends on the substrate it is printed on. The first constraint

imposed on ink reflectance Ri expresses this dependence by assuming that light reflected by

the print is attenuated twice by the ink layer and once by being reflected by the paper:

Ri = RwT
2
i (5.7)

where Ri is the reflectance of ink i on paper, Rw the paper reflectance, and Ti the transmittance

of ink i.

Using Eq. (5.7), ink reflectances are expressed by the corresponding ink transmittances.

We can therefore impose constraints on these transmittances. The spectrum of a transmittance

should be smooth and have a general shape given by the color of the ink. Using principal com-

ponent analysis (PCA [FB04, TB05]), we can constrain ink transmittances by limiting the num-

ber of principal components expressing these transmittances while retaining both smoothness

and general shape of their spectra. For each ink color, we assemble a list of ink transmittances

based on measurements coming from offset prints, ink jet prints, thermal transfer prints, etc.

We then extract the average transmittance as well as the first three principal vectors from these

ink transmittances. The principal vectors for ink i are stored in a matrix Wi. Wi has therefore

three columns. The transmittance of an ink is then:

Ti = Wi [ci,1 ci,2 ci,3]
T + Ti (5.8)

where Ti is the transmittance of ink i; Wi is the matrix holding the principal vectors for the

transmittances of ink i; Ti is the average transmittance of ink i; and ci,1 to ci,3 are three scalars,

further referred to as the principal components of ink i. Using Eqs. (5.7) and (5.8), the re-

flectance Ri of ink i can be expressed using only three principal components, i.e. ci,1 to ci,3.

The 12 principal components required for CMYK are listed in Table 5.1. Appendix A provides

more details about the accuracy of the implemented PCA.
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Table 5.1: List of the 12 principal components and 28 ink thickness variation factors required for CMYK
prints. All these parameters are scalar values.

Ink Principal Components Ink thickness variation factors

Cyan cc,1 cc,2 cc,3 dCm dCy dCk dCmy dCmk dCyk dCmyk
Magenta cm,1 cm,2 cm,3 dcM dMy dMk dcMy dcMk dMyk dcMyk

Yellow cy,1 cy,2 cy,3 dcY dmY dY k dcmY dcY k dmY k dcmY k
Black ck,1 ck,2 ck,3 dcK dmK dyK dcmK dcyK dmyK dcmyK

Ink superposition reflectance constraints

The reflectance of superposed inks depends on the substrate on which they are printed

as well as on the individual ink transmittances. However, a simple extension of Eq. (5.7) to

multiple inks is not appropriate. Hersch et al. have shown that the relative thickness of a printed

solid ink layer depends on the presence of other superposed inks [HBB+09]. Beer’s law enables

expressing these ink thickness variations. We adapt Eq. (5.7) to account for modified relative

ink thicknesses:

Rij = RwT
2dIj
i T 2diJ

j (5.9)

Rijk = RwT
2dIjk
i T 2diJk

j T
2dijK
k (5.10)

Rijkl = RwT
2dIjkl
i T 2diJkl

j T
2dijKl

k T
2dijkL
l (5.11)

where Rij , Rijk, and Rijkl are the reflectances of the superposition of 2, 3, and 4 solid inks,

respectively; Rw is the paper reflectance; Ti, Tj , Tk, and Tl are the transmittances of inks i, j, k,

and l computed by Eq. (5.8); and dIj and diJ are the scalar ink thickness variation factors of ink

i superposed with ink j and of ink j superposed with ink i. For four inks, we have 6 colorants

that are composed of two inks, 4 colorants composed of 3 inks, and a single colorant composed

of all 4 inks. Based on Eqs. (5.9) to (5.11), only the 28 scalar ink thickness variation factors

listed in Table 5.1 are required to model the 11 colorant reflectances composed of 2 or more

inks.

5.3.3 Constrained gradient-descent calibration of the IS-YNSN model

Using the constrained colorant reflectances expressed by Eqs. (5.7) to (5.11), we can modify

the objective function of Eq. (5.1) as follows:
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f(~v,~c, ~d) =
∑
p

∑
k

[predSpectrum(λk, p, ~v,~c, ~d)−Rp(λk)]
2

(5.12)

where we have added ~c the vector containing the principal components of the inks, and ~d

the vector containing the ink thickness variation factors of the ink superpositions.

Finally, using Eq. (5.2) and the ink spreading constraints of Eq. (5.3), the calibration pro-

cedure becomes:

{~vopt,~copt, ~dopt} = arg min
~v,~c,~d

[
f(~v,~c, ~d)

]
such that


vi/jk ≤ 0.5 + 0.25 · wi/jk
vi/jk ≥ 0.5− 0.25 · wi/jk
Rmin ≤ Ri ≤ Rw

(5.13)

where ~vopt, ~copt, and ~dopt are respectively the optimal mid-points of the ink spreading curves,

optimal principal components of the ink transmittances, and optimal ink thickness variation

factors. These optimal values minimize the sum of square differences between the measured

and predicted spectra. Note that we maintain the intrinsic bounds for the colorants expressed by

Rmin and Rw, i.e. the minimal value allowed for a reflectance and the maximal value expressed

by the paper white. At the start of the gradient-descent algorithm, the mid-points of the ink

spreading curves in ~v are set to 0.5, the principal components of the ink transmittances in ~c to

0, and the ink thickness variation factors in ~d to 1.

The colorant reflectances recovered from the optimal principal components and optimal ink

thickness variation factors fitted in Eq. (5.13) are close to the measured colorant reflectances

if there is enough information to fit them. However, these recovered colorant reflectances are

subject to strong constraints and cannot exactly match the measured colorant reflectances, even

when there would be enough information in the image calibration set to achieve such a match.

We therefore propose a second calibration step to improve the recovered colorant reflectances.

5.4 Surface coverage based optimization of the

colorant reflectances

The constraints imposed on the colorant reflectances in Eqs. (5.7) to (5.11) enable the first

calibration step in Eq. (5.13) to recover colorant reflectances similar to real reflectances even

when there is not enough information in the image calibration set. However, because of the
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PCA, the recovered colorant reflectances are restricted to a limited set of reflection spectra.

If the real reflectances lay outside of this set, it is not possible to optimally fit the colorant

reflectances to match these real reflectances and the IS-YNSN model will not be able to offer

the most accurate predictions. To improve the match between the recovered and real colorant

reflectances, we perform a second calibration step in which only the colorant reflectances are

modified. The mid-points of the ink spreading curves are considered to be accurately calibrated

by the minimization performed by Eq. (5.13) and are not modified in this second step.

5.4.1 Surface coverage based colorant reflectance constraints

Thanks to the first calibration step performed in Eq. (5.13), an approximation of the colorant

reflectances is available and we can use a similar approach as in Section 5.3.1. If no informa-

tion is available in the image calibration set to fit reflectance Ri of colorant i, the colorant

reflectance recovered in the first calibration step Rold
i is not modified. The more information is

available, the more freedom is given to fit colorant reflectance Ri. Colorant weight ωi, associ-

ated to colorant i, indicates the amount of information available to fit colorant reflectanceRi. A

weight equal to 0 indicates that no information is available. In this case, the colorant reflectance

is set to Rold
i , the spectrum recovered in Eq. (5.13). A weight equal to 1 indicates that the col-

orant reflectance can be freely calibrated between the minimal value allowed for a reflectance

and the paper reflectance. For colorant weight ωi between 0 and 1, colorant reflectance Ri is

constrained as follows: {
Ri(λ) ≤ (1− ωi)Rold

i (λ) + ωi ·Rw(λ)

Ri(λ) ≥ (1− ωi)Rold
i (λ) + ωi ·Rmin

(5.14)

where Ri is the considered colorant reflectance, Rold
i the corresponding colorant reflectance re-

covered in Eq. (5.13), Rw the measured paper reflectance, and Rmin the minimal value allowed

for a reflectance.

The colorant weights ωi are computed from the nominal ink coverages of the image tiles as

follows. For each tile p of the image calibration set, we compute the effective ink coverages

using Eq. (3.1). We then input these effective ink coverages to the Demichel equations to obtain

the effective colorant coverages [Eq. (2.2)]. An effective colorant coverage ai,p indicates the

area effectively covered by colorant i of reflectance Ri in tile p. The larger the area covered

by colorant i, the more information about that colorant is available. We therefore consider the

effective colorant coverage ai,p as a metric indicating the amount of information about colorant
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i contained in image tile p. We also define the weight ωi associated to colorant i for the entire

image calibration set as the maximum effective colorant coverage among the tiles:

ωi = max
p

[ai,p] (5.15)

Note that in contrast to the ink spreading weights, the colorant weights are computed from

effective coverages instead of nominal coverages. This is possible because the ink spreading

curves are calibrated in the first calibration step performed in Eq. (3.1). Moreover, a weight

ωi = 1 indicates that within the measured reflectances of the calibration set, there is also the

measured colorant reflectance Ri. This is always true for the white colorant since the paper

reflectance is measured. When a measured colorant reflectance is present, that colorant is

removed from the set of unknown colorant reflectances to be optimized.

The colorant weights ωi define the bounds within which the colorant reflectances can be set.

However, because each colorant reflectance is a spectrum composed of many elements, usually

36 or 48, the optimization procedure has a tendency to let not only high weight tiles influence

the fitted colorant reflectances, but also middle weight tiles. Since information contained in

middle weight tiles is not as relevant as information contained in high weight tiles, the influence

of middle weight tiles must be reduced. We achieve this by defining weights ωp associated to

the image tiles. An image tile is considered relevant for the calibration if at least one of its

effective colorant coverages is large. Image tile weight ωp associated to image tile p is set to

the maximum effective colorant surface coverage present:

ωp = max
{i|ωi 6=1}

[ai,p] (5.16)

Note that the maximum only considers the effective coverages of colorants that must be

optimized. Since the sum of the effective colorant coverages of a tile is equal to 1, a tile cannot

have both middle and high colorant coverages. Either it has a single large colorant coverage and

the remaining colorant coverages are small, or it has two or three middle colorant coverages

and the remaining colorant coverages are also small. In the first case, its associated image

tile weight ωp is large and the influence of this tile within the optimization procedure is not

reduced. In the second case, its associated image tile weight ωp is small and its influence on

the optimization procedure is reduced.

Using both image tile weights ωp and colorant weights ωi, we show in Section 5.4.2 how

to design an optimization procedure ensuring respectively that (1) an image tile contributes to
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Table 5.2: List of variables used to express matrix and vector sizes.

Variable Description Typical value

nc Number of colorants 16 in the case of CMYK
ni Number of colorants satisfying ωi 6= 1 15 if only paper is measured
np Number of calibration patches 50 in Sections 5.6 through 5.10
nk Number of wavelength components 48 when sampled every 10 nm

composing reflectances between 380 nm and 850 nm

the computation of the colorant reflectances only if it provides valuable information, and (2) a

given colorant reflectance is modified only when valuable information is available.

5.4.2 Least-squares method to optimize the colorant reflectances

The optimization procedure used for the second calibration step is based on a weighted and

constrained least-squares approach derived from Eq. (2.3). The matrix and vector sizes have

the values shown in Table 5.2. Let us first rewrite Eq. (2.3) in a linear form [UG06]:

Qp(λk) = Rp(λk)
1/n =

∑
i

ai,pRi(λk)
1/n =

∑
i

ai,pQi(λk) (5.17)

where Q = R1/n is a nk x 1 reflectance raised to the power 1/n, further referred to as an

n–modified reflectance. Since each wavelength λk is independent, we can rewrite Eq. (5.17) as

follows:

qp,k =
∑
i

ai,pqi,k = ~aTp
~θk (5.18)

where qp,k is the kth component of the n–modified reflectance of image tile p, ai,p the effective

coverage of colorant i for image tile p, qi,k the kth component of the n–modified reflectance of

colorant i, ~ap the nc x 1 vector containing the effective coverages of all the colorants for image

tile p, and θk the nc x 1 vector containing the kth components of all the colorant reflectances.

If some colorant reflectances are known, i.e. ωi = 1, we adjust Eq. (5.18) by determining the

reflectance part q̃p,k of the unknown colorant reflectances:

q̃p,k = qp,k −
∑
{i|ωi=1}

ai,pqi,k =
∑
{i|ωi 6=1}

ai,pqi,k = ~a′Tp
~θ′k (5.19)
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where ~a′p and ~θ′k are both ni x 1 vectors. Eq. (5.19) can be written for each of the p image

calibration tiles. By combining the equations of all the image calibration tiles, we obtain the

following equation:

~qk =


q̃1,k
...

q̃np,k

 =


~a′T1
...

~a′Tnp

 ~θ′k = A~θ′k (5.20)

where A is a np x ni matrix whose elements correspond to the effective colorant coverages ai,p.

Since the effective colorant coverages ai,p can be computed using the ink spreading curves and

since the reflectances Rp(λk) of the image calibration tiles are measured, colorant coverage

matrix A and vector ~qk of size np x 1 are known. Based on Eq. (5.20), we formulate the

following typical least-squares problem:

~θ′k = arg min
~θ

[
(~qk − A~θ)

T
(~qk − A~θ)

]
= LSQ(~qk, A) (5.21)

Let us now introduce the image tile weights ωp to weight the least-squares residuals and

reduce the influence of calibration tiles that do not provide valuable information. We first

construct a diagonal matrix W of size np x np with the following diagonal elements:

Wpp = ωp (5.22)

Using matrix W , we formulate the following weighted least-squares problem [Bjö96]:

~θ′k = WLSQ(~qk, A,W )

= arg min
~θ

[
(~qk − A~θ)

T
W (~qk − A~θ)

]
= arg min

~θ

[
(W 1/2~qk −W 1/2A~θ)

T
(W 1/2~qk −W 1/2A~θ)

]
= LSQ(W 1/2~qk,W

1/2A)

(5.23)

The final least-squares problem becomes:

~θ′k = LSQ(W 1/2~qk,W
1/2A)

such that

{
θi,k = Qi(λk) ≤

(
(1− ωi)Rold

i (λk) + ωi ·Rw(λk)
)1/n

θi,k = Qi(λk) ≥
(
(1− ωi)Rold

i (λk) + ωi ·Rmin

)1/n (5.24)
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whereQi(λk) is the kth component of the reflectance of the ith colorant raised to the power 1/n,

ωi the colorant weight associated to colorant reflectance Ri, Rold
i (λ) the reflection spectrum of

colorant i recovered in Eq. (5.13), Rw(λ) the reflection spectrum of the paper substrate, and

Rmin the minimum value allowed for a reflectance. This least-squares problem is solved for

each wavelength λk to obtain the entire optimized colorant reflectances.

5.5 Selection of image calibration tiles

As seen in Chapter 4 as well as in [HBBH09], we should use uniform image tiles to calibrate

the IS-YNSN model. The algorithm used in this chapter to extract such uniform tiles from color

images is similar to the optimized selection algorithm described in Section 4.3.3 and relies on

the same non-uniformity metric and adjustment function, i.e. Eqs. (5.25) and (5.26) correspond

to Eqs. (4.19) and (4.20). However, the algorithm creates two different sets of image tiles. The

first set, further referred to as the image calibration set, is used to calibrate the IS-YNSN model

and is composed of 50 image tiles. The second set, further referred to as the image test set, is

used to test the accuracy of the calibrated model and is composed of 30 image tiles.

Two concepts, non-uniformity and proximity in the CMYK color space, are used to select

tiles. The non-uniformity value of a tile located within a small sub-domain of the considered

color image is computed using its c, m, y, and k pixel values as follows:

u =
√(

σ(c)2 + σ(m)2 + σ(y)2 + σ(k)2
)
/4 (5.25)

where u is the non-uniformity value; c, m, y, and k are the cyan, magenta, yellow, and black

pixel values of the considered image tile ranging from 0 to 1; and the σ function is the standard

deviation. In addition to selecting uniform tiles, the algorithm ensures that the tiles are not

too close to other already selected tiles. We define not too close using the Euclidian distance

(norm) in the CMY or CMYK color space. For a CMY tile to be selected, it must not have any

tile within a CMY norm of 0.5 and no more than one other tile within a CMY norm of 1.5. For

a CMYK tile to be selected, it must not have any tile within a CMYK norm of 0.3 and no more

than one other tile within a CMYK norm of 0.9. When a tile respects these constraints, it is

said to be not too close to the already selected tiles.

The first phase of the algorithm consists in listing the candidate tiles from which calibration

and test tiles are selected. Each image is scanned horizontally and vertically in 2 mm steps.

Successive 5 mm large square tiles form the candidate tiles. Each tile is associated with a
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non-uniformity value according to Eq. (5.25). Tiles with a non-uniformity value above 0.1 are

discarded.

The second phase consists in the actual selection of tiles. The selection algorithm not

only selects uniform tiles, but also tiles best suited to calibrate the model. Because it is more

important to accurately calibrate the colorant reflectances than the ink spreading curves, we

define the best tiles as the tiles maximizing the colorant weights ωi computed in Eq. (5.25).

This is different from Section 4.3.3 in which the best tiles where defined as the tiles maximizing

the ink spreading weights wi/jk. To maximize the colorant weights ωi, the selection algorithm

needs to find among the candidate tiles the tiles that both have large effective colorant coverages

ai and are uniform. To account for both aspects, the effective colorant coverages are adjusted

according to their non-uniformity value u as follows:

ãi,p = ai,p · e−(up/0.05)
4

(5.26)

where ãi,p is the uniformity-adjusted effective colorant coverage of tile p, ai,p is the effective

colorant coverage of tile p, and up is the non-uniformity value of tile p computed in Eq. (5.25).

If the given tile is uniform, i.e. its non-uniformity value up is low, the adjustment function is

close to unity and the effective colorant coverage is not modified. If the tile is non-uniform, its

non-uniformity value is high and the adjustment function is close to 0. In that case, the tile is

discarded. For each colorant, the selection algorithm chooses the tiles (two for CMY images

and one for CMYK images) having the maximum uniformity-adjusted effective colorant cov-

erage ãi,p and that are not too close to already selected tiles according to the CMY or CMYK

norm. Since image tiles having a large maximum uniformity-adjusted effective colorant cov-

erage ãi,p also have a large colorant weight ωi, the proposed selection algorithm ensures that

the colorant weights ωi computed in Eq. (5.15) are optimal. Once the 16 tiles maximizing the

colorant weights ωi are selected, the algorithm completes the image calibration set by selecting

the 34 most uniform image calibration tiles that are not too close to already selected tiles. The

final calibration set is therefore composed of 50 image tiles. In Section 5.10, we examine if

smaller sets can be used.

The image test set created by the selection algorithm is composed of the 30 most uniform

tiles not part of the image calibration set and not too close to already selected test tiles according

to the CMY or CMYK norm.
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5.6 Setup of the experiments

In order to analyze how the different calibration procedures perform, we use the 21 different

sRGB images shown in Appendix D.1. The first three images come from a digital camera and

the other eighteen from different sources providing standard test images [Fra, Web, Lev]. The

sizes of the images have not been modified, but they have been resampled to 600 dpi. Moreover,

they have been converted to two different color spaces: CMY and CMYK. Both conversions

have been performed using Photoshop and the U.S. Web coated (SWOP) v2 CMYK profile.

The conversions to CMY and CMYK have been performed without GCR (Gray Component

Replacement) and with medium GCR, respectively.

The image calibration and test tiles selected using the algorithm described in Section 5.5 are

shown in Appendix D.2 for the CMY images and in Appendix D.3 for the CMYK images. They

are printed on a Canon PixmaPro 9500 inkjet printer at 600 dpi using classical rotated halftone

screens. The CMY images are printed at 150 lpi with CMY halftone screen angles at 75°, 15°,

and 45°, respectively. The CMYK images are printed at 100 lpi with CMYK halftone screen

angles at 75°, 15°, 0° and 45°, respectively. The size and shape of the image tiles are adapted to

the Datacolor MF45IR spectrophotometer. The tiles are conceived as disks with a diameter of

3 mm. Since this device illuminates the sample using a directed source (45°d:0° geometry), we

measure each sample four different times, each time rotating it by 90° and taking the average.

This reduces errors due to the positioning of the device and irregularities of the illumination

geometry. The non-uniformity value of a given tile is computed on an area slightly larger than

the actual tile, i.e. a 5 mm disk instead of a 3 mm disk. Ensuring that the area surrounding the

actual tile is also uniform further reduces positioning errors.

To compare the prediction accuracy of the different calibrations on color-constant patches

well distributed across the printable gamut, we use four test sets composed of color-constant

patches. The first test set, further referred to as the 117 CMY set, is composed of 125 color-

constant CMY patches with all possible combinations of cyan, magenta, and yellow at 0%,

25%, 50%, 75%, and 100% surface coverages from which we exclude the 8 CMY colorants.

The second set, further referred to as the 64 CMY halftone set, is composed of 64 color-constant

CMY patches with all possible combinations of cyan, magenta, and yellow at 20%, 40%, 60%,

and 80% surface coverages. The third and fourth sets, further referred to as the 117 UCR set and

64 UCR halftone set, respectively, are composed of 117 and 64 color-constant CMYK patches

with nominal surface coverages obtained by converting the 117 CMY set and 64 CMY set to

CMYK using the standard under color removal algorithm described above.
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5.7 Accuracy of the recovered colorant reflectances

For each of the 21 image calibration sets extracted from the 21 sRGB images, each com-

posed of 50 image tiles, we perform the following three calibrations: the unconstrained cali-

bration described in Section 5.2, the constrained calibration described in Section 5.3, and the

surface coverage based optimized image calibration described in Section 5.4. We then compare

the recovered colorant reflectances with the measured reflectances. Figures 5.1 to 5.5 focus on

five different cases: the yellow colorant in the Hats image (Figure 5.1), the red colorant in the

Yacht image (Figure 5.2), the blue colorant in the Hats image (Figure 5.3), the green colorant

in the Lighthouse II image (Figure 5.4), and the black colorant in the Handa Island image (Fig-

ure 5.5). In all the figures, the light gray region indicates the unconstrained colorant bounds

introduced in Eq. (5.2), i.e. the area between Rmin and Rw. The dark gray region indicates

the optimized colorant bounds determined by the colorant weights ωi in Eq. (5.14). The col-

orant reflectances recovered using the unconstrained (thin solid line) and constrained (dotted

line) image calibrations are restricted to the light gray region, whereas the colorant reflectances

recovered using the optimized image calibration (dashed line) are restricted to the dark gray

region. The measured colorant reflectances (thick solid line) are also shown.

As seen in Figures 5.1 to 5.5, the recovered unconstrained reflectances (thin solid lines) do

not match the measured reflectances (thick solid lines) and show a CIELAB ∆E94 error close

to or above 20. Moreover, the unconstrained red colorant in Figure 5.2 reaches the lower bound

of the light gray region, which creates acute angles in the spectrum, angles that are not found

in real reflectances. Such reflectances are not suitable for predictions and show the limits of the

unconstrained calibration procedure.

The recovered constrained reflectances (dotted lines) fit much better the measured reflec-

tances, but the shapes of the reflectances are not always accurate. For example, in Figure 5.1,

the transition at 500 nm is not as sharp as the transition of the measured reflectance. In Fig-

ure 5.2, the bump at 500 nm is not present. Conversely, in Figure 5.3, a hollow is present at

570 nm in the constrained reflectance and not in the measured reflectance. Although not always

perfectly aligned with the corresponding measured reflectances, the constrained reflectances

have shapes similar to the measured reflectances and display an average ∆E94 error of 5.79 as

shown in Table 5.3.

The largest ∆E94 errors occur for the recovered reflectances of colorants incorporating the

black ink, e.g. the colorant shown in Figure 5.5. Because the GCR algorithm uses the black ink

only to replace large percentages of cyan, magenta, and yellow, it is not possible for an image
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Figure 5.1: Measured reflectance (thick solid
line), unconstrained (thin solid line), constrained
(dotted line), and optimized (dashed line) recov-
ered reflectances for the yellow colorant of the
Hats image (colorant weight ωyellow = 0.80).
The ∆E94 error between the measured reflectance
and the unconstrained, constrained, and opti-
mized fitted reflectances are respectively 26.52,
2.66, and 0.56.
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Figure 5.2: Measured reflectance (thick solid
line), unconstrained (thin solid line), constrained
(dotted line), and optimized (dashed line) recov-
ered reflectances for the red colorant of the Yacht
image (colorant weight ωred = 0.46). The ∆E94

error between the measured reflectance and the
unconstrained, constrained, and optimized fit-
ted reflectances are respectively 25.42, 4.72, and
3.74.
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Figure 5.3: Measured reflectance (thick solid
line), unconstrained (thin solid line), constrained
(dotted line), and optimized (dashed line) recov-
ered reflectances for the blue colorant of the Hats
image (colorant weight ωblue = 0.35). The ∆E94

error between the measured reflectance and the
unconstrained, constrained, and optimized fit-
ted reflectances are respectively 34.82, 4.08, and
1.98.
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Figure 5.4: Measured reflectance (thick solid
line), unconstrained (thin solid line), constrained
(dotted line), and optimized (dashed line) recov-
ered reflectances for the green colorant of the
Lighthouse II image (colorant weight ωgreen =
0.17). The ∆E94 error between the measured
reflectance and the unconstrained, constrained,
and optimized fitted reflectances are respectively
19.95, 5.48, and 8.25.
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Figure 5.5: Measured reflectance (thick solid line), unconstrained (thin solid line), constrained (dotted
line), and optimized (dashed line) recovered reflectances for the black colorant (black ink) of the Handa
Island image (colorant weight ωblack = 0.02). The ∆E94 error between the measured reflectance and
the unconstrained, constrained, and optimized fitted reflectances are respectively 19.06, 7.23, and 8.23.
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Figure 5.6: Average reduction in ∆E94 error be-
tween recovered optimized and constrained col-
orant reflectances according to colorant weights
ωi. A reduction of 1 ∆E94 indicates that the opti-
mized reflectances are on average more accurate
than the constrained reflectances by 1 ∆E94.
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Figure 5.7: ∆E94 error between measured and
recovered optimized colorant reflectances ac-
cording to colorant weights ωi. The figure shows
that the higher colorant weight ωi, the more accu-
rate the recovered optimized colorant reflectance.
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Table 5.3: Average ∆E94 error between recov-
ered and measured colorant reflectances accord-
ing to different calibrations. For the constrained
and optimized calibrations, the average is com-
puted from the 21 different calibrations, each per-
formed using the 50 calibration tiles extracted
from one of the 21 images. The averages do not
include the white colorant which is measured.

Table 5.4: Average ∆E94 error between the mea-
sured and 21 recovered colorant reflectances for the
constrained and optimized image calibrations, as
well as the average and standard deviation of the
corresponding colorant weights.

Average ∆E94

CMY prints
7 CMY colorants

CMYK prints
15 CMYK colorants
7 CMY colorants

Optimized 
distributed
117 patches

1.34

3.83
2.19

Constrained

4.16

5.79
4.34

Optimized

3.63

5.61
4.02

Average ∆E94

Constrained
Optimized

Colorant weights

Colorants

Average
Std. dev.

3.46
2.44

0.45
0.26

4.42
4.12

0.32
0.11

2.59
1.62

0.45
0.19

4.46
4.99

0.18
0.10

3.54
3.10

0.16
0.12

3.45
4.72

0.27
0.10

8.45
7.14

0.20
0.05

MYCYYCMMC CMY

tile to have a large weight for a colorant including black. Since there is not much information

about these colorants, their fitted reflectances are less accurate than the reflectances of colorants

that do not include black. If we consider only the 7 CMY colorants, the average ∆E94 error

between the measured colorant reflectances and those recovered using the constrained calibra-

tion algorithm drops to 4.34. By comparison, the average ∆E94 error is 4.16 for CMY prints

(Table 5.3). It is slightly better than the 7 CMY colorant average in CMYK prints because the

GCR algorithm reduces the surface coverage of some colorants, especially the CMY colorant.

The detailed analysis of the 7 CMY colorants for CMYK prints is given in Table 5.4. It

confirms that the recovered reflectances that best match the measured reflectances are the op-

timized reflectances. However, this holds only when the colorant weights ωi are large enough.

When the weight is low, as in Figures 5.4 and 5.5, the optimized colorant reflectances may

show a larger ∆E94 error than the constrained colorant reflectances. In such cases, the dark

gray regions may not always entirely cover the measured spectra and prevent the optimization

algorithm from achieving better matches. However, the dark gray regions prevent the recov-

ered optimized colorant reflectances from deviating too much from the constrained colorant re-

flectances due to lack of information. For example, in Figure 5.4, the dark gray region prevents

a good match in the near-infrared region above 750 nm, but also prevents a larger deviation

between 550 nm and 600 nm.

According to Table 5.3, the average ∆E94 error between measured and optimized colorant

reflectances is 5.61, or respectively 4.02 if the colorants containing black are excluded. How-
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ever, as shown in Figure 5.6, colorants whose weights ωi are above 0.4 induce a large accuracy

improvement. When the colorant weight is lower, the accuracy remains stable, confirming that

the constraints imposed on the optimized colorant reflectances successfully prevent the opti-

mized calibration procedure from setting the colorant reflectances to spectra unrelated to the

measured spectra because of lack of information. Finally, Figure 5.7 shows that the higher the

colorant weight ωi, the lower the ∆E94 error between the measured and the recovered optimized

colorant reflectances.

The last column of Table 5.3 shows the average ∆E94 error between the fitted and measured

colorants for a calibration further referred to as the optimized distributed 117 patch calibration,

i.e. the optimized calibration according to Section 5.4 performed using the 117 UCR set in-

stead of an image calibration set. Such a calibration set is optimal since the tiles are evenly

distributed across the entire printer gamut and do not contain any colorant. In this case, the

average ∆E94 error is further reduced to 3.83 for CMYK prints, respectively to 2.19 when the

colorants containing black are excluded, and 1.34 for CMY prints. These averages show the

importance of measuring image tiles well distributed within the printer gamut.

5.8 Comparison of different model calibrations

Five different calibrations are compared. The first is the unconstrained calibration de-

scribed in Section 5.2. The second is the constrained calibration described in Section 5.3.

The third is the surface coverage based optimized image calibration described in Section 5.4.

These first three calibrations are performed for each of the 21 image calibration sets. There are

therefore 21 unconstrained calibrations, 21 constrained calibrations, and 21 optimized image

calibrations. The fourth calibration is the optimized distributed 117 patch calibration intro-

duced in Section 5.7. It is the optimized calibration described in Section 5.4, performed on

the 117 CMY or respectively for CMYK on the 117 UCR set instead of an image calibration

set. The fifth calibration, used as reference, is the classical calibration of the IS-YNSN model

relying on the measurements of the colorant reflectances and of predetermined color-constant

halftone patches.

Two test sets are used to compare the accuracy of the CMY calibrations: the 64 CMY

halftone set and the test set merging all the 21 CMY image test sets. Since each image test

set is composed of 30 image tiles, this merged test set is composed of 630 image tiles. The

following CMYK test sets are used to compare the accuracy of the CMYK calibrations: the

64 UCR set and the test set merging the 21 CMYK image test sets.
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Figure 5.8: Comparison of the accuracy of 5 different types of calibrations. For the first three types of
calibrations, the bar corresponds either to the average ∆E94 (above) or to the average root mean square
error (RMSE, below) and the error bar to the best and worst among the 21 calibrations. The test sets
predicted are (a) the 64 CMY test set, (b) the 21 merged CMY image test sets, (c) the 64 UCR test set,
and (d) the 21 merged CMYK image test sets.

In Figure 5.8, each calibration is used to predict each test set. We use the average ∆E94

as a measure of accuracy. A lower average ∆E94 prediction error implies a more accurate

calibration. Since there are 21 different calibrations for the first three types of calibrations,

the first three bars represent the mean average ∆E94 and the vertical lines indicate the mini-

mum and maximum average ∆E94. We first observe that the unconstrained calibration is not

able to accurately calibrate the IS-YNSN model. The average ∆E94 prediction error is 4 to 5

times larger in the CMY case (Figure 5.8a,b) and up to 20 times larger in the CMYK case

(Figure 5.8c,d) compared with the classical calibration based on color-constant patches. When

constraining the calibration, the average ∆E94 prediction error is on average reduced below 2.

Optimizing the colorant reflectances further reduces the average ∆E94 to the point where even

the worst optimized image calibration has an average ∆E94 of 2. The surface coverage based

optimized image calibration is therefore the best method to calibrate the IS-YNSN model using

tiles extracted from color images.
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By comparing the performance of the optimized image calibrations to the performance

of the optimized distributed 117 patch calibration, we see that the accuracy of the optimized

distributed 117 calibration corresponds to the best optimized image calibration. It is therefore

important for the image calibration tiles to be well distributed in the printer gamut to achieve

the most accurate calibration of the model. Moreover, a classical calibration may perform better

than an optimized image calibration when predicting color-constant patches (Figure 5.8a,c), but

not when predicting image tiles (Figure 5.8b,d). Classical calibrations are the most accurate

when predicting color-constant patches, but optimized image calibrations are on average more

accurate when predicting tiles extracted from color images.

The average ∆E94 error achieved by the optimized image calibrations may seem surpris-

ingly low when compared with the larger ∆E94 difference between the measured and fitted

colorant reflectances shown in Tables 5.3 and 5.4 of Section 5.7. This difference in prediction

accuracy is explained as follows. The IS-YNSN model performs predictions by interpolat-

ing between the colorants. The colorants are therefore the extreme points of the interpolation

domain. In a classical calibration, these extreme points are measured, but are not the best refer-

ences because they do not correspond to the normal halftoning operation of the printing device.

Conversely, by recovering the reflectances of the colorants from tiles extracted from color im-

ages, we rely on information that better represents these normal operational conditions. The

resulting IS-YNSN model may not be the most accurate when predicting reflectances close to

the colorants, but is highly accurate when predicting reflectances of halftones and image tiles.

5.9 Calibration of the Yule-Nielsen n-value

In the preceding sections, the Yule-Nielsen n-value is set to a fixed scalar value. Let us

investigate how to fit this n-value for both the constrained and the optimized image calibra-

tions. In a classical calibration, the n-value is fitted as follows. A list of candidate n-values is

established, for example between 1 and 10 in 0.5 steps. For each n, the IS-YNSN is calibrated

and used to predict the calibration set. The average root mean square error (RMSE) between

the predicted and measured calibration patch reflectances is recorded for each n. The chosen

n-value is the one yielding the lowest average RMSE. We apply the same selection procedure

for both the constrained and the optimized image calibrations.

The results are shown in Figure 5.9. The average RMSE of the classical calibration [line (1)]

decreases smoothly when n increases. n is therefore set to 10, but the difference is not signifi-

cant between n = 7 and higher values of n. When performing constrained image calibrations,
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Figure 5.9: Average RMSE between the measured and predicted calibration patches, or image cali-
bration tiles, according to different Yule-Nielsen n-values. Solid line (1) corresponds to the classical
calibration, the dashed lines in (a) to each of the 21 constrained image calibrations, solid line (2) to the
average of the dashed lines in (a), the dashed lines in (b) to each of the 21 optimized image calibrations,
and solid line (3) to the average of the dashed lines in (b). The circles correspond to the n-value along
each dotted line yielding the minimum average RMSE.

the n-value is usually set to 10, except for the Child, Peppers, and Sailboat III image calibra-

tions where n is set to 9.5 (circles on the left). Generally, the average RMSE of such calibrations

also decreases when n increases (dashed lines on the left), but some small local increases lead

to a few n-values being set to values lower than 10. However, since the average RMSE of

the 21 constrained image calibrations behaves on average in the same manner as the average

RMSE of the classical calibration [line (2)], the selected n-values correspond to the n-value

chosen for the classical calibration.

When optimized image calibrations are used to select n, the general shape of the average

RMSE is a sharp drop between 1 and 2 followed by a straight line [line (3)], providing no

useful information about the best n-value. As seen in Figure 5.9b, many different optimal

n-values are selected. However, since the lines are nearly flat, any n-value of 2 or above could

be chosen. The flexibility introduced by the optimal calibration seems to make the n-value a

redundant parameter. Nevertheless, we rely on the constrained image calibrations to choose the

best n-value since this n-value corresponds to the choice for the classical calibration. Once the

best n-value is chosen, we can optimize the colorants of the corresponding constrained image

calibration to obtain an IS-YNSN model fully calibrated from color printed images without

relying on prior knowledge about colorant reflectances or ink spreading parameters.
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5.10 Importance of accurately calibrating the colorant

reflectances

In the previous sections, we have shown how to calibrate the IS-YNSN model using a set

of 50 image calibration tiles maximizing the colorant weights ωi defined in Eq. (5.15). In

this section, we show the importance of maximizing the colorant weights ωi. We also provide

more insights about the required number of image calibration tiles and their most appropriate

location in the CMYK color space. We finally show that using nominal ink surface coverages

instead of effective coverages to compute the ink spreading weights wi/jk leads to more stable

calibrations.

5.10.1 Iterative image calibration tile sets

In order to study the influence of the colorant weights ωi, we perform the following experi-

ment. We first merge the 1050 available calibration tiles selected in the 21 different test images

(see Appendices D.2 and D.3). From this pool of image calibration tiles, we create calibration

sets by randomly selecting tiles one after another and adding the chosen tile to the calibration

set only if it increases the sum s of the colorant weights ωi:

s =
∑
i

ωi =
∑
i

max
p

[ai,p] (5.27)

where the colorant weights ωi are computed with the current calibration set according to

Eq. (5.15). Therefore, a tile is selected only if at least one of its colorant coverages is larger

than the corresponding colorant coverages of all the previously selected tiles. Since a colorant

weight ωi is computed as the maximum across all the p selected tiles, the addition of a new

tile replaces one or more tiles for the computation of the increased colorant weights. Once the

calibration set is composed of a sufficient number of tiles, some of these tiles do not contribute

to the computation of the sum s of the colorant weights anymore. However, they remain in the

calibration set. Such image calibration sets are further referred to as iterative calibration sets.

We create 100 different CMY iterative calibration sets containing each 25 image calibration

tiles and 100 different CMYK iterative calibration sets containing each 40 image calibration

tiles. Figure 5.10 shows how the sum s of the colorant weights ωi increases with each additional

calibration tile. The sum of the weights may slightly decrease when a tile is added because the

colorant weights are computed based on the effective colorant coverages [Eq. (5.15)], relying
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Figure 5.10: Sums of the CMYK colorant weights ωi according to the number of image tiles in the
iterative calibration sets. The bars represent the average sums over 100 different iterative calibration
sets. The error bars represent the highest and lowest sums among the 100 iterative calibration sets.

themselves on ink spreading curves recalibrated each time a new calibration tile is added. As a

reference, the CMYK image calibration sets created in Section 5.5 and shown in Appendix D.3

are composed each of 50 image tiles and have colorant weight sums between 3.14 (Sea image)

and 5.37 (Hats image) with an average of 4.0, which corresponds to CMYK iterative calibration

sets composed of 12 image tiles.

5.10.2 Prediction accuracy of calibrations based on iterative calibration sets

For each iterative calibration set, we perform as many optimized calibrations of IS-YNSN

model as tiles in the calibration set, optimized calibrations performed according to the algo-

rithm described in Section 5.4. The first calibration uses only the first tile of the set, the second

calibration the first 2 tiles, the third calibration the first 3 tiles, etc. The last calibration therefore

uses all the tiles of the calibration set.

The accuracy of the calibrations based on the iterative calibration sets is shown in Fig-

ure 5.11 when predicting the 64 CMY halftone set and the 21 merged CMY image test sets,

and in Figure 5.12 when predicting the 64 UCR halftone set and the 21 merged CMYK image

test sets. The image test sets are described in Section 5.5. The 64 CMY halftone set and 64 UCR

halftone set are described in Section 5.6. We compare these predictions with the predictions

performed in Section 5.8, i.e. with the average predictions of the 21 optimized calibrations (*)

and with the predictions of the classical calibration (‡) . For both the CMY and CMYK test

sets, the prediction error decreases with each additional calibration tile. This decrease cor-

relates perfectly with the increase of the sum of the colorant weights shown in Figure 5.10.

Sets composed of 10 CMY or 16 CMYK image calibration tiles are sufficient to achieve an
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Figure 5.11: Average ∆E94 between the measured and predicted image tiles of the 21 merged CMY
image test sets (light gray) and the CMY 64 halftone test set (dark gray) according to the number of tiles
in the iterative calibration sets. The iterative image calibrations are compared with the optimized image
calibration performed in Section 5.8 (*) and the classical calibration (‡). The bars indicate the mean
average ∆E94 of all the 100 iterative calibrations. The error bars indicate the average ∆E94 of the best
and worst calibrations among the 100 iterative calibrations performed. Since the error bars are similar
for both test sets, they are shown only once.

accuracy similar to the calibration sets used in Section 5.8 (*). The prediction error keeps de-

creasing slowly with each additional tile, but not significantly once the image calibration set

contains 20 CMY or 30 CMYK tiles. Calibrations using the iterative calibration sets therefore

show significant improvement over the optimized calibrations performed in Section 5.8 (*).

In respect to the classical calibration (‡), calibrations using the iterative calibration sets

are more accurate when predicting the image test tiles and almost as accurate when predicting

the CMY color-constant halftone patches. Iterative optimized image calibrations are however

not as accurate as a classical calibration when predicting the CMYK color-constant halftone

patches. These results show the importance of maximizing the colorant weights ωi. Since these

weights indicate the amount of information available to calibrate the colorant reflectances, large

colorant weights ωi improve the accuracy of the recovered colorant reflectances, and therefore

the accuracy of the resulting IS-YNSN model.

In order to ensure that the least-squares optimization of Section 5.4.2 is not rank deficient,

the number of image calibration tiles should not be less than the number of colorant reflectances

to calibrate. If the white colorant is the only measured colorant, there should be no less than 7

CMY or respectively 15 CMYK image calibration tiles. We can see in Figures 5.11 and 5.12

that calibrations using an insufficient number of calibration tiles are not stable and induce large
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Figure 5.12: Average ∆E94 between the measured and predicted image tiles of the 21 merged CMYK
image test sets (light gray) and the CMYK UCR 64 halftone test set (dark gray) according to the number
of tiles in the iterative calibration sets. The iterative image calibrations are compared with the optimized
image calibration performed in Section 5.8 (*) and the classical calibration (‡). The bars indicate the
mean average ∆E94 of all the 100 iterative calibrations. The error bars indicate the average ∆E94 of
the best and worst calibrations among the 100 iterative calibrations performed. Since the error bars are
similar for both test sets, they are shown only once.

variations in accuracy. In such cases, we advise using the constrained calibration (Section 5.3)

instead of the optimized calibration (Section 5.4).

5.10.3 Evaluating the importance of maximizing the colorant weights ωi

In Section 5.10.1, iterative calibration sets are created by adding randomly chosen image

tiles that keep increasing the sum s of the colorant weights ωi. We have seen in Section 5.10.2

that these iterative calibration sets yield more accurate calibrations. We now show that a cal-

ibration set entirely composed of tiles chosen to maximize the sum s of the colorant weights

does not yield the best calibration.

Instead of randomly choosing the image tiles, we create an iterative calibration set further

referred to as the maximum iterative set. Like in Section 5.10.1, this set is created by selecting

tiles one after another among the 1050 available calibration tiles. At each iteration, the selected

tile is the tile that maximizes the sum s. When no more tile is able to increase s, which happens

in our case after 18 image tiles are selected, s is reset to 0 and the process continues until the

40 image calibration tiles have been selected. The sum of the colorant weights ωi achieved by

the maximum iterative set is 6.51.
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Figure 5.13: Accuracy of the optimized calibrations based on the maximum and mixed iterative cal-
ibration sets when predicting the 64 UCR halftone test set (Section 5.6) according to the number of
calibration tiles. The dashed line is the accuracy of the maximum iterative set and the solid line the
accuracy of the mixed iterative set.

The maximum iterative set is compared to the mixed iterative set. This set is created using

two different strategies. The odd tiles are selected to maximize s like for the maximum iterative

set. The even tiles are randomly chosen among the 50 image calibration tiles closest to the

center of the CMYK color space. The sum of the colorant weights ωi achieved by the mixed

iterative set is the same as the sum achieved by the maximum iterative set, i.e. 6.51.

As shown in Figure 5.13, the optimized calibration based on the mixed iterative set is more

accurate at predicting the 64 UCR halftone test set than the optimized calibration based on the

maximum iterative set. It demonstrates that maximizing the colorant weights, which confines

the tiles at the periphery of the CMYK color space, is not the only criterion that should be

taken into considerations when selecting image calibration tiles. The selected tiles should also

be well-distributed in the CMYK color space in order to provide information about the entire

color space. In this way, the IS-YNSN model performs accurate predictions for all the color-

constant patches and uniform image tiles and is not specialized in smaller areas of the CMYK

color space.

5.10.4 Impact of using nominal ink coverages to compute the ink spreading

weights wi/jk

In Section 5.3.1, we mentioned that the ink spreading weights should theoretically be com-

puted using effective ink surface coverages. However, since these effective coverages are not

available when performing a constrained calibration, we have used nominal coverages instead.

In order to determine the impact of this modification, we perform the following experi-
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Figure 5.14: Average prediction accuracy of iterative calibrations according to two different methods to
compute the ink spreading weights wi/jk. The predicted test set is the CMYK UCR 64 halftone test set.
The light gray bars show the accuracy when only nominal ink surface coverages are used to compute the
ink spreading weights and the dark gray bars show the accuracy when effective coverages are used.

ment, based on the iterative image calibration sets created in Section 5.10.1. Instead of setting

the starting point of the gradient-descent algorithm to the default values, i.e. setting the mid-

points of the ink spreading curves to 0.5, the principal components of the ink transmittances

to 0, and the ink thickness variation factors to 1, we use the values obtained by the previous

calibration, i.e. the calibration performed with one calibration tile less. By using the values of

the previous calibration, the ink spreading curves are already partly calibrated and the effective

ink coverages can be computed to determine the ink spreading weights wi/jk.

The results are shown in Figure 5.14. When 15 CMYK image tiles or more are used, i.e.

when the least-squares problem has full rank, there is no difference between the two calibra-

tion methods. When the least-squares problem is rank deficient, using nominal coverages to

compute the ink spreading weights wi/jk is preferable since it yields more stable and accurate

calibrations. Using effective coverages to compute the ink spreading weights is more compli-

cated and does not improve the calibration accuracy. It is therefore not necessary.

5.11 Summary

Image tiles have been used in Chapter 4 to calibrate the ink spreading curves, but not to

recover the reflectances of the Neugebauer primaries. In this chapter, we propose a method

to recover the colorant reflectances (Neugebauer primaries), the ink spreading curves, and the
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Yule-Nielsen n-value using only tiles extracted from printed color images. There is no prior

knowledge about the reproduction device. The first calibration step introduces constraints for

colorant reflectances derived from the principal component analysis of a large number of ink

transmittances and surface coverage related constraints for the ink spreading curves. Such a

constrained calibration is performed for a list of candidate Yule-Nielsen n-values. The n-value

yielding the most accurate calibration is selected. In a second step, in order to improve the

accuracy of the calibration, the colorant reflectances are optimized by a weighted least-squares

approach where the weights are set according to the colorant surface coverages.

The proposed optimized image calibration is almost as accurate as a classical calibration

when predicting color-constant halftone patches and more accurate when predicting image tiles

extracted from color images. Moreover, this high accuracy is achieved with sets composed of

less than 25 well-chosen image calibration tiles. By entirely eliminating the need to print pre-

determined patches, these calibration procedures broaden the field of use of spectral reflection

prediction models. Such models can now be used when it is impossible or too expensive to

print extra patches or when the reproduction device is not available. It also enables the real-

time monitoring of printing devices without modifying their print jobs.
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Conclusion

Spectral reflection prediction models are important tools for the characterization of color

reproduction devices. Among such models, due to its simplicity and accuracy, the Yule-Nielsen

model is the most widely used. However, many calibration patches are required for its calibra-

tion, patches that are usually not available within the printed document. In order to simplify

the calibration of the prediction model and to prevent printing special halftone and solid, color-

constant calibration patches, we use image tiles extracted from printed color images. The model

used in this contribution, presented in Chapter 2, is the ink spreading enhanced Yule-Nielsen

modified Spectral Neugebauer model (IS-YNSN model), a variant of the Yule-Nielsen model

including an ink spreading model accounting for physical dot gain.

The IS-YNSN model is reviewed in the context of CMYK prints in Chapter 3. We show

that the fourth black ink introduces two sources of ambiguity. The first follows from the two

possibilities to create the color black, either using the black ink or superposing cyan, magenta,

and yellow. When the IS-YNSN model is used to deduce the surface coverages of printed color

halftone patches from their measured reflectance spectra, it cannot accurately distinguish be-

tween the two different blacks, introducing inaccuracies in the deduced coverages. The second

ambiguity follows from the fact that printing solid black along with other inks yields black.

There is no possibility to detect the presence of the other inks from measured spectra, generat-

ing instabilities when calibrating certain ink spreading curves. We therefore propose solutions

to remove these sources of errors. This more robust version of the IS-YNSN model is used as

basis for our revised calibration process.

The calibration of the IS-YNSN model consists in recovering the Neugebauer primaries

and acquiring the ink spreading curves. In Chapter 4, we propose a method to acquire the

103
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ink spreading curves from printed color images. A simple optimization like a gradient-descent

algorithm is not sufficient to acquire the ink spreading curves because the information contained

in the printed color images may be incomplete. We propose to rely on constraints based on a

metric evaluating the relevance of each ink spreading curve to the set of image tiles extracted

from printed color images. We optimize the algorithm automatically selecting the image tiles

to be extracted from the printed color images and show that 5 to 10 well-chosen image tiles are

sufficient to accurately acquire all the ink spreading curves.

The calibration of the entire IS-YNSN model from printed color images is demonstrated

in Chapter 5. Again, a simple gradient-descent algorithm is not sufficient. Thanks to a set of

constraints based on Principal Component Analysis (PCA) and the relationships between com-

posed Neugebauer primaries and the ink transmittances, good approximations of the Neuge-

bauer primaries are achieved. These approximations are then optimized, yielding an accurately

calibrated IS-YNSN model comparable to one obtained by classical calibrations. A detailed

analysis of these calibrations shows that 25 well-chosen CMYK image calibration tiles are

sufficient to accurately recover both the Neugebauer primaries and the ink spreading curves.

This dissertation opens a whole new field in color reproduction. From online monitoring

to self-calibrating devices via the extraction of device properties, many fields can benefit from

the flexibility of the proposed calibration. Moreover, since no prior knowledge is required, the

flexible calibration can be readily applied to new devices provided that the CMYK inks are not

too different from classical process inks.

Future work

For three reasons, the proposed calibration has only been tested for CMY or CMYK inks.

First, most color reproduction devices propose at least these four inks and can therefore benefit

from this work. Second, the gamut generated by CMYK inks is one of the largest 4 ink gamuts.

This increases the difficulty of calibrating the IS-YNSN with image tiles for such a large gamut.

Third, color reproduction with more than 4 inks can often be represented by several 4 ink

reproduction devices. The proposed calibration may therefore apply to a wide range of color

reproduction devices. In addition, the model can be extended beyond 4 inks. In that case, the

flexible calibration may further reduce the calibration effort.

Regarding image tiles, non-uniform tiles cannot be used because they are not accurately

predicted by the IS-YNSN model. A deeper analysis of the prediction errors for non-uniform

tiles may lead to a better understanding of the information contained in these image tiles, in-
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formation that could then be used in the calibration process. Having a larger choice of image

calibration tiles could further improve the accuracy of the calibrated IS-YNSN model.

When colorant reflectances are relaxed from their initial constraints and further optimized,

the Yule-Nielsen n-value seems to become a redundant parameter. Further research is needed

to establish the relationship between colorant reflectance optimization and n-value. The cali-

bration of the n-value could then be performed at the same time as the acquisition of the ink

spreading curves.

Finally, all the measurements have been performed spectrally. Instead of relying on spec-

tral measurements, we could use sensor responses to perform the calibration. Compared to

spectral acquisition devices, sensors are inexpensive and fast. However, the limited amount of

information provided by these sensor responses poses new challenges to the proposed flexible

calibration, especially in the last step when the colorant reflectances are optimized.





Appendix A

Accuracy of the reconstructed solid
ink spectral reflectances using PCA

In Section 5.3.2, principal component analysis (PCA) is used to constrain the transmittances

of the inks. Given a set of ink transmittances sampled at k different wavelengths, a PCA yields

a list of k principal components that allow the reconstruction of the ink transmittances such

that the first component accounts for as much of the variability in the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible.

By limiting the number of principal components to the first m components, only m scalars

are required to reconstruct a transmittance. Moreover, as the first m principal components ac-

count for most of the variability of the data, we ensure that the reconstructed transmittances

keep the intrinsic properties of real transmittances, i.e. their smoothness and characteristic

shape. Note that one PCA is performed separately for each of the 4 basic c, m, y, and k

inks.

The data used for the PCAs is composed of the spectral reflectance measurements of the

cyan, magenta, yellow, and black colorants as well as the substrate on which these colorants

are printed. We measured the ink reflectances of 25 CMY and 37 CMYK reproduction devices,

comprising a wide range of technologies such as ink jet, thermal transfer, and electrophoto-

graphic printers; offset presses; and proofing devices. Note that the Canon PixmaPro 9500

printer used in the present experiments was not used to build the principal vectors of the PCA.

Once the reflectance measurements are available, the transmittances of the inks are computed

using Eq. (5.7) and a PCA is performed on these transmittances. For different values of the

number of components m, we reconstruct the transmittances and compute the reconstructed

107
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APPENDIX A. ACCURACY OF THE RECONSTRUCTED SOLID INK SPECTRAL

REFLECTANCES USING PCA

colorant reflectances using Eq. (5.7). We then calculate the following error metrics between

the measured and reconstructed colorant reflectances: root mean square error (RMS), ∆E94 av-

erage, 95 percentile (95%), and maximum ∆E94. We also indicate the score of each principal

component, i.e. the percentage of variability explained by the considered principal component,

as well as the total percentage of variability explained by the m selected principal components.

Tables A.1 to A.4 show the accuracy of the reconstructed transmittances according to the

number m of retained principal components for the cyan, magenta, yellow, and black inks,

respectively. Except for yellow, the first two principal components already account for more

than 90% of the variance (score). Using three principal components, we are able to accurately

reconstruct all the colorants with a maximum ∆E94 of 2.97 and a 95 percentile ∆E94 of 0.89.

This accuracy is sufficient and provides us with a method to express the ink reflectances with

only 3 scalars per ink.
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Table A.1: Accuracy of the PCA for the cyan
transmittances according to the number of prin-
cipal components used (#PC).

Avg 95% Max Current Total

1
2
3
4
5
6
7
8
9

10

Score∆E94#PC RMS

0.012
0.007
0.005
0.003
0.003
0.001
0.001
0.001

0
0

0.59
0.53
0.49
0.42
0.42
0.28
0.04
0.04
0.02
0.02

1.08
0.96
0.89
0.83
0.85
0.65
0.09
0.08
0.05
0.05

3.78
2.96
2.97
2.87
2.75
1.75
0.11
0.10
0.08
0.06

69.32
24.31

3.99
1.02
0.75
0.43
0.14
0.02
0.01
0.01

69.32
93.63
97.62
98.64
99.39
99.81
99.95
99.97
99.98
99.99

Table A.2: Accuracy of the PCA for the ma-
genta transmittances according to the number of
principal components used (#PC).

Avg 95% Max Current Total

1
2
3
4
5
6
7
8
9

10

Score∆E94#PC RMS

0.010
0.006
0.004
0.003
0.002
0.001
0.001

0
0
0

1.08
1.03
0.37
0.25
0.11
0.09
0.04
0.03
0.02
0.01

2.19
2.09
0.91
0.54
0.24
0.23
0.09
0.07
0.04
0.02

4.60
4.96
1.86
0.64
0.49
0.45
0.13
0.08
0.08
0.02

88.13
6.13
3.84
1.27
0.36
0.16
0.09
0.01
0.01

0

88.13
94.26
98.09
99.36
99.72
99.88
99.97
99.98
99.99
99.99

Table A.3: Accuracy of the PCA for the yellow
transmittances according to the number of prin-
cipal components used (#PC).

Avg 95% Max Current Total

1
2
3
4
5
6
7
8
9

10

Score∆E94#PC RMS

0.014
0.008
0.004
0.003
0.002
0.001
0.001
0.001

0
0

0.83
0.69
0.32
0.28
0.23
0.07
0.04
0.02
0.02
0.01

2.34
2.11
0.84
0.80
0.56
0.18
0.09
0.05
0.05
0.03

4.54
4.14
1.71
1.60
1.13
0.28
0.11
0.07
0.07
0.04

61.94
24.92

9.18
2.08
1.23
0.44
0.11
0.04
0.03
0.01

61.94
86.86
96.05
98.13
99.36
99.80
99.90
99.95
99.97
99.98

Table A.4: Accuracy of the PCA for the black
transmittances according to the number of prin-
cipal components used (#PC).

Avg 95% Max Current Total

1
2
3
4
5
6
7
8
9

10

Score∆E94#PC RMS

0.008
0.001
0.001

0
0
0
0
0
0
0

1.11
0.36
0.34
0.13
0.08
0.07
0.04
0.02
0.02
0.01

2.78
0.79
0.73
0.28
0.21
0.12
0.09
0.06
0.05
0.02

17.98
1.65
1.40
0.89
0.28
0.29
0.16
0.07
0.07
0.03

74.63
24.74

0.59
0.03
0.01

0
0
0
0
0

74.63
99.37
99.96
99.99

100.00
100.00
100.00
100.00
100.00
100.00





Appendix B

Test images and selected tiles for the
original tile selection algorithm

B.1 Test images

Fruits image Textile image
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APPENDIX B. TEST IMAGES AND SELECTED TILES FOR THE ORIGINAL TILE SELECTION

ALGORITHM

B.2 Image tile sets of the fruits image

Image calibration tiles of the fruits image

Image test tiles of the fruits image

B.3 Image tile sets of the textile image

Image calibration tiles of the textile image

Image test tiles of the textile image
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Test images and selected tiles for the
optimized tile selection algorithm

C.1 Test images (scale 1:5)
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APPENDIX C. TEST IMAGES AND SELECTED TILES FOR THE OPTIMIZED TILE SELECTION

ALGORITHM

C.2 CMY standard and optimized image calibration

tile sets

N°1 Flower standard set

N°2 House standard set

N°3 Boat race standard set

N°4 Sea standard set

N°5 Parrots standard set

N°6 Sailboat standard set

N°2 House optimized set

N°3 Boat race optimized set

N°4 Sea optimized set

N°5 Parrots optimized set

N°6 Sailboat optimized set

N°1 Flower optimized set
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C.3 CMYK standard and optimized image calibration

tile sets

N°1 Flower standard set

N°2 House standard set

N°3 Boat race standard set

N°4 Sea standard set

N°5 Parrots standard set

N°6 Sailboat standard set

N°1 Flower optimized set

N°2 House optimized set

N°3 Boat race optimized set

N°4 Sea optimized set

N°5 Parrots optimized set

N°6 Sailboat optimized set
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APPENDIX C. TEST IMAGES AND SELECTED TILES FOR THE OPTIMIZED TILE SELECTION

ALGORITHM

C.4 CMYK uniformity test sets relying on Eq. (4.19)

Uniformity test set 1: 0.00 - 0.04

0.04 - 0.08

0.08 - 0.12

0.12 - 0.16

Uniformity test set 2: 

Uniformity test set 3: 

Uniformity test set 4: 

0.16 - 0.20

0.20 - 0.24

0.24 - 0.28

0.28 - 0.32

Uniformity test set 5: 

Uniformity test set 6: 

Uniformity test set 7: 

Uniformity test set 8: 
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Test images and selected tiles for the
recovery of the Neugebauer primaries

D.1 Test images (scale 1:5)
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APPENDIX D. TEST IMAGES AND SELECTED TILES FOR THE RECOVERY OF THE

NEUGEBAUER PRIMARIES
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D.2 CMY calibration and test image tiles
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APPENDIX D. TEST IMAGES AND SELECTED TILES FOR THE RECOVERY OF THE

NEUGEBAUER PRIMARIES
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APPENDIX D. TEST IMAGES AND SELECTED TILES FOR THE RECOVERY OF THE

NEUGEBAUER PRIMARIES
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D.3 CMYK calibration and test image tiles
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APPENDIX D. TEST IMAGES AND SELECTED TILES FOR THE RECOVERY OF THE

NEUGEBAUER PRIMARIES
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