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SATISFIABILITY OF ELASTIC DEMAND IN THE SMART GRID

JEAN-YVES LE BOUDEC, DAN-CRISTIAN TOMOZEI

Abstract. We study a stochastic model of electricity production and consumption where appliances are
adaptive and adjust their consumption to the available production, by delaying their demand and possibly us-
ing batteries. The model incorporates production volatility due to renewables, ramp-up and ramp-down time,
uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation
to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain
theory on general state space.

Key words. Dynamical Systems, Smart Grids, Elastic Demand, Macroscopic Model, Stability

AMS subject classifications. 60J05, 93E15

1. Introduction. Recent results on modelling the future electricity markets [I1] suggest
that they may lead to highly undesirable equilibria for consumers, producers or both. A central
reason for such an outcome might be the combination of volatility in supply and demand, the
delays required for any unplanned capacity increase, and the inflexibility of demand which leads
to high dis-utility costs of blackouts. Further, the use of renewable energy sources such as wind
and solar increases volatility and worsens these effects [§].

Flexible load is advocated in [5] as a mechanism to reduce ramp-up requirements and adapt
to the volatility of electricity supply that is typical of renewable sources. A deployments report
[3] shows the feasibility of delaying air conditioners using signals from the distributor. Adaptive
appliances combined with simple, distributed adaptation algorithms were advocated in [4] [7];
they are assumed to reduce, or delay, their demand when the grid is not able to satisfy them.
Some examples might be: e-cars, which may have some flexibility regarding the time and the
rate at which their batteries can be loaded; heating systems or air conditioners, which can delay
their demand if instructed to; hybrid appliances which use alternative sources in replacement for
the energy that the grid cannot supply. If the alternative energy source is a battery, then it will
need to be replenished at a later point in time, which will eventually lead to later demand.

The presence of adaptive appliances may help address the volatility of renewable energy
supply, however, backlogged demand is likely to be merely delayed, rather than canceled; this
introduces a feedback loop into the global system of consumers and producers. Potentially, one
might increase the backlogged demand to a point where future demand becomes excessive. In
other words, one key question is whether it is possible to stabilize the system. This is the question
we address in this paper.

To address this fundamental question, we consider a macroscopic model, inspired by the
model in [8]. We assume that electricity supply follows a two-step allocation process: first, in
a forecast step (day ahead market) demand and renewable supply are forecast, and the total
supply is planned; second, (real time market) the actual, volatile demand and renewable supply
are matched as possible. We assume, as in [I], that the rate at which supply can be increased
in the real time step is subject to ramp-up and ramp-down constraints. Indeed, it is shown in
this reference that it is an essential feature of the real time market. We modify the model in [§]
and assume that the whole demand is adaptive. While this is clearly an exaggerate assumption,
we do it for simplicity and as a first step, leaving the combination of adaptive and non-adaptive
demand to a later research. We are interested in simple, distributed algorithms, as suggested
in [], therefore, we assume that the suppliers cannot directly observe the backlogged demand;
in contrast, they see only the effective instantaneous demand; at any point in time where the
supply cannot match the effective demand, the backlogged demand increases.
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Our model is macroscopic, so we do not model in detail the mechanism by which appliances
adapt to the available capacity; several possible directions for achieving this are described in [4].
However we do consider two essential parameters of the adaptation process. First, the delay 1/A
is the average delay after which frustrated demand is expressed again. Second, the evaporation u
is the fraction of backlogged demand that disappears and will not be resubmitted per time unit.
The inverse delay ) is clearly positive; in contrast, as discussed in Section Pl and in Appendix [A]
it is reasonable to assume that some adaptive appliances naturally lead to a positive evaporation
(this is the case for a simple model of heating systems), but it is not excluded that inefficiencies
in some appliances lead to negative evaporation.

Within these modelling assumptions, the electricity suppliers are confronted with a schedul-
ing issue: how much capacity should be bought in the real time market to match the adaptive
demand. The effect of adaptation is to increase the latent demand, due to backlogged demand
returning into the system. This is the mechanism by which the system might become unstable.
We consider a threshold based mechanism as in [8]. It consists in targeting some fixed supply
reserve at any point in time; the target reserve might not be met, due to volatility of renewable
supply and of demand, and due to the ramp-up and ramp-down constraints.

Our contribution is to show that if evaporation is positive, then any such threshold policy
does stabilize the system. In contrast, if evaporation is negative, then there exists no threshold
policy which stabilizes the system. The case where evaporation is exactly equal to 0 remains
unsolved.

Our results suggest that evaporation plays a central role. Simple adaptation mechanisms
as described in this paper might work if evaporation is positive (as one may perhaps generally
expect), but will not work if evaporation is negative, i.e. if the fact that demand is backlogged
implies that a higher fraction of demand returns into the system. This suggests that future
research be done in order to gain a deeper understanding of evaporation, whether it can truly
be assumed to be positive, and if not, how to control it.

We use discrete time, for tractability. We use the theory of Markov chains on general state
spaces in [9]. In Section [2 we describe the assumptions and the model, and relate our model to
prior work. In Section [3] we study the stability of the system under threshold policies. Proofs
are given in Section [l The appendix discusses whether evaporation can be positive or negative
when the appliance is a heating system, including heat pumps.

2. Model and Assumptions.

2.1. Assumptions and Notation. We use a discrete model, where ¢ € IN represents the
time elapsed since the beginning of this day. The time unit represents the time scale at which
scheduling decisions are done, and is of the order of the second.

The supply is made of two parts: the planned supply G7 (), forecast in the day-ahead market,
and the actual supply G°(t), which may differ, due to two causes. First, the forecasted supply
may not be met, due to fluctuations, for example in wind and sunshine. Second, the suppliers
attempt to match the demand by adding (or subtracting) some supply, bought in the real time
market. We assume that this latter term is limited by the ramp-up and ramp-down constraints.
We model the actual supply as

Gt) = G(t — 1) + GT(t) + M(t) (2.1)

where M (t) is the random deviation from the planned supply due to renewables, G(t — 1) is
the supply decision in the real time market. We view G%(t) as deterministic and given(it was
computed yesterday in the day-ahead market), M (t) as an exogenous stochastic process, imposed
by nature, and G(t — 1) as a control variable.
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We call D?(t) the “natural” demand. It is the total electricity demand that would exist if
the supply would be sufficient. In addition, there is, at every time ¢, the backlogged demand B(t),
which results from adaptation: B(¢) is the demand that is expressed at time ¢ due to a previous
demand being backlogged. The total effective demand, or expressed demand, is

E°(t) = D(t) + B(t) (2.2)

We model the effect of demand adaptation as follows.

B(t) = \Z(t) (2.3)
Z(t+1) = Z(t) — B(t) — pZ(t) + F(t) (2.4)
F(t)=[E(t) - G*(t)]* (2.5)

In the above equations, F(t) is the frustrated demand, i.e. that is denied satisfaction at
time ¢. Eq. (ZI) expresses that, through adaptation, the demand that is served is equal to
the minimum of the actual demand and the supply. The variable Z(t) is the latent backlogged
demand; it is the demand that was delayed, and might later be expressed. It is incremented by
the frustrated demand.

The frustrated demand is expressed with some delay; we model this with Eq. (Z3]), where
A~ ! is the average delay, in time slots.

The evolution of latent backlogged demand is expressed by Eq. [24]). The expressed demand
B(t) is removed from the backlog (some of it may return to the backlog, by means of Eq. (23]
at some later time). The remaining backlog may evaporate at a rate u, which captures the effect
on total demand of delaying some demand. Delaying a demand may indeed result in a decreased
backlogged demand, in which case the evaporation factor is positive. For example this occurs if
we delay heating in a building with a heating system that has a constant energy efficiency (as we
discuss in Appendix [AT]); such a heating system will request more energy in the future, but the
integral of the energy consumed over time is less whenever some heating requests are delayed. In
this case, positive evaporation comes at the expense of a (hopefully slight) decrease in comfort
(measured by room temperature). In other cases, though, we may not exclude that evaporation
be negative. This may occur for example with heat pumps, as discussed in Appendix

As in [8], we assume that the natural demand can be forecast with some error, so that

D(t) = D(t) + D7 (t) (2.6)

where the forecasted demand DY (t) is deterministic and D(t), the deviation from the forecast,
is modelled as an exogenous stochastic process. We assume that the day ahead forecast is done
with some fixed safety margin rg, so that

G/ (t) = DI (t) +ro 2.7)

2.2. The Stochastic Model. We model the fluctuations in demand D(¢) and renewable
supply M (t) as stochastic processes such that their difference M (t) — D(t) is an ARIMA(0, 1,0)
Gaussian process, i.e.

(M(t+1)— D(t+1)) — (M(t) — D(t)) = N(t + 1) (2.8)

where N(t) is white Gaussian noise, with variance o>

Brownian motion, as in [g].
Let R(t) be the reserve, i.e the difference between the actual production and the expressed
demand, defined by

. This is the discrete time equivalent of

R(t) = G(t) — E°(t) (2.9)
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and let H(t) be the increment in supply bought on the real time market, i.e.
H(it)=G(t)—Gt—1) (2.10)
Putting all the above equations together, we obtain the system equations:

R(t+1)=R(t)+ H(t)+ N(t +1) — MN(Z(t+ 1) — Z(1)), (2.11)
Z@t+1) =10 =XA=p)Zt) + Lire<op|R()], (2.12)

Thus we can describe our system by a two-dimensional stochastic process X (t) = (R(t), Z(t)),
with ¢ € IN.

The sequence H(t) is the control sequence. It satisfies the ramp-up and ramp-down con-
straints:

—§<H(t) <,

where ¢ and £ are some positive constants.
We assume a simple, threshold based control, which attempts to make the reserve equal to
some threshold value r* > (; therefore

H(t) = max (min (¢, 7" — R(t)), —£) . (2.13)
In summary, we have as model the stochastic sequence X = (X (¢))ien defined by

R(t+1) =R(t) = Mygy<oy|R()] + AN+ p) Z(t)
+ (AT =RM)) V(= + N({t+1), (2.14)
Z(t+1) =lirey<oy | RE)| + (1 = A — ) Z(1), (2.15)

where N is an iid white Gaussian noise sequence. Note that X is a Markov chain on the state
space S =R x RT.

2.3. Related Models. Let us now discuss some similar models which have been considered
in the literature.

In [9], the authors consider the so-called Linear State Space model (LSS), which introduces
an n-dimensional stochastic process X = {Xy}r, with X € R™ For matrices F € R"*",
G € R™*P and for a sequence of i.i.d. random variables of finite mean taking values in R?, the
process evolves as

X =FXp1+GWg, k> 1. (2.16)

Our model ZI4)-IH) is in fact a superposition of three such LSS models, depending on the
current state of the Markov chain. The challenge of showing that our model is stable comes from
the fact that in the part of the state space in which R(t) < 0, the corresponding LSS does not
satisfy the stability condition (LSS5) of [9] (which requires that the eigenvalues of F' be contained
in the open unit disk of C).

In [10] a slightly different model for capturing elasticity of demand is proposed. More specif-
ically, the authors consider a scenario in which a deterministically bounded amount of demand
arrives at each time step, while the supplier decides whether to buy an additional amount of
energy from an external source at a certain cost. Unsatisfied demand is backlogged. A threshold
policy is analyzed and found to be stable (the size of the backlog is found to be deterministically
bounded) and optimal. Pricing decisions are also explored. The main differences with the present
work are the following:
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e Additional parameters which model delay and loss of backlogged demand (i.e. A and p)
enrich our model’s expressivity.

e We consider potentially unbounded demand, modeled as a 0-mean Gaussian random
variable, which makes proving stability more challenging.

e No results on pricing and cost-optimality are included in the present work.

The continuous time model used in [2] seeks to capture the presence of two types of energy
sources, primary and ancillary, the latter being less desirable (i.e. more costly) than the former,
both subject to (different) ramp-up constraints. A threshold policy is again discussed in the
context of rigid demand, which is simply dropped if not enough energy is available. The analyzed
Markov chain is a two-dimensional process having on the first coordinate the quantity of energy
used from the ancillary source in order to satisfy as much demand as possible, and on the second
coordinate the reserve (i.e. energy surplus).

3. System Stability under a Threshold Policy. Let us study how the system stability
of (ZI4)-(2I3) depends on the evaporation parameter f.
Define the following four domains:

Dli(*O0,0)XR+, D2:[Oar*7C)XR+5 D3:[T*7<7T*+§)XR+5 D4: [T*+§7OO)XR+'

Then the process (ZI4)-(2I5) rewrites in matrix form:

4
X(t+1)= Z TixwepyAiX () + Lix)ep,upsio + Lix)eps17o — Lix@eparéo + No(t + 1),
i—1
(3.1)
where
| R(t | N(®) | ¢ £ . |
X(t>|:2(t):|aN0(t>|: 0 :|a<0|:0:|7§0|:0 yTo = 0 5
and

TN A+ oA+ o AA+w)
Al_[ -1 1-X—p Az=da=1 1-A—p Az =1 g 1—-X—pu |”

The main reason for which the analysis of system stability is challenging is the fact that both
A; and Ay = A, admit 1 as an eigenvalue.

The first result of this section can be stated in the form of the following

THEOREM 3.1. If u > 0, the Markov chain (2-IJHZI7) is positive Harris and ergodic. For
any wnitial distribution p, the chain converges to its unique invariant probability measure in total
variation norm, i.e.

H/p(dx)IP"(:E, - 7r(-)H SN

The proof uses the theory of general state space Markov chains. The following Lemmas are
instrumental in proving the result. The proofs are found in Section F

LEMMA 3.2. If1—A—p < 1, then there exists a measure @ such that the Markov chain (214}
[Z13) is p-irreducible.

A set C is said to be vp-small for some non-trivial measure vy and a positive integer T, if
for all 2 € C, the probability of reaching any measurable B is P (x, B) > vr(B).



Furthermore, a set C' is petite if there exists a distribution h on the positive integers and a
non-trivial measure vy, such that for any x € C, and for any Borel set B, the transition kernel
of the sampled chain has the following property:

Kn(x,B) =Y h(t)P'(z, B) > vu(B).

t>0

A vp-small set is implicitly dp-petite, where dr is the Dirac distribution.

LEMMA 3.3. For any set C = J x [0,b], with J a finite closed interval and b > 0, there exists
To > 0 and non-trivial measures (Z/T)TET0 such that C' is vp-small for all T > Ty.

Two direct consequences follow:

COROLLARY 3.4. The Markov chain (2. 17H213) is aperiodic.

COROLLARY 3.5. Any compact subset of the state space is petite.

In our proof of Theorem B.I] we exhibit a Lyapunov function for the system, which has
negative drift outside of a compact set surrounding the origin. The existence of such a function
along with the previous results, enable us to apply Theorem 13.0.1 of [9], by which we conclude.

A second result is stated below:

THEOREM 3.6. If 1 < 0, the Markov chain (2.1JH213) is non-positive.

In the proof, we find a function which has finite increments and which is such that outside
a certain level set its drift is negative. By Theorem 11.5.2 from [9] we reach the conclusion.

We sum up these results in the following

COROLLARY 3.7. If a positive fraction of latent jobs disappear during each time slot (u > 0),
then any threshold policy stabilizes the system. On the other hand, if delaying any job results
in an increase of its requirement/workload by a positive fraction (u < 0), then there exists no
threshold policy that stabilizes the system.

4. Proofs. Let v:=1— XA — p and note that v < 1 whenever p > 0.

4.1. Proof of Lemma Fix some finite closed interval I and some a > 0, and consider
the set E =1 x [0,q].
Consider the measure ¢ defined as follows: for any Borel set A,

vr(A) =v(ANE), (4.1)

where v denotes the Lebesgue measure on R?. Take a measurable set B C E. We denote the
support sets of B on the two dimensions by

By :={reR:(r,z) € B},
By :={z € Ry : (r,z) € B}.

We further denote the cross-section of B at some z € Ry by
B i={r e R:(r,z2) € B}.

Consider any initial point * = (r,z). We wish to show that whenever ¢g(B) is strictly
positive, there exists a finite 7" such that the probability of hitting B in T steps starting from z
is also strictly positive. Then, by Proposition 4.2.1 (ii) from [9], we can conclude.

Let us thus consider pg(B) > 0. For any 0 < € < 1, there exists a 6 > 0, such that the
Lebesgue measure of the set B’ := {(r,2) € BNE :2 >0} = BNEN (R x [§,00)) is strictly
positive and, furthermore,

ep(B%)  v(BY)

- (PE(B) - ‘PE(B). (4.2)




For every 0 < a < 1, we define the sets B°(a) := {(r, 2) : (r,az) € B’}. Clearly,

V(B (a)) = ”(fa) = G‘PEQ(B), (4.3)

and, furthermore,
W[Z]B6(a6) = W[ﬁZ]Bé(CY), VO<a,fB<1. (4.4)

We consider an initial point = = (r, z) € D;.
In the following we consider a specific trajectory from = to B (more specifically to B°) and
we assess the probability of this trajectory. Let thus (R(0), Z(0)) = (r, z) and denote

r(1) = 1 +Xr + A1 =)z +¢,
2(1) = —r +vz.

We have that R(1) = 7(1) + N(1) and Z(2) = vz(1) — r(1) — N(1).

We wish to select a large enough T' such that the event w; = {N(1) < —r(1)} includes
the event wy = {Z(2) € B3(yT)}. We have that we C {y2z(1) — sup B3(rv7) < (1) + N(1) <
vz(1) — inf B3 (yT)}. Since inf BY(yT) > %, it is sufficient to consider some 7" such that

1)
o7 > yz(1).

We namely pick a T such that T' > Ty(B, €, 2) A0, where

1 o
To(B =|—Ilog—|. 4.5
o.0.) = e ) )
For such T, if we consider N (1) such that wy occurs, then necessarily w; occurs, and R(1) < 0.
In other words, at the beginning of time step 2 the process is still in region D;.
Fort =2,...,T+ 1, we consider N(t) such that R(t) € L(¢), where

L) = (r" = ¢ r" + 4]

for a fixed £ > £ A(. Since for such ¢ the process evolves in domains D3 and Dy, the evolution of
Z(t) will be purely deterministic and can be written explicitly after 2 < ¢ < T+2 steps as Z(t) =
vt=2Z(2). By definition, since Z(2) € B3(y"), we have that Z(T + 2) € BS. We subsequently
consider N (T'+2) such that (R(T+2), Z(T+2)) € B°. Equivalently, (R(T+2), Z(2)) € B°(yT).

Let us now compute a lower bound of the probability of this trajectory. For some set A C R
and some real number b € R, we denote —A:={-a:a€ A} and A+b:={a+b:ac A}.

We can now characterize the probability of hitting B in T + 2 steps following the trajectory
that we just described:

PT+2(z, B) > / P(z, dz1) / P(a1, das) / Py, das)
(vz(1)=B3(vT))x{z(1)} L(£)xB3(vT) L(£)x B3 (yT~1)
. / P(zT,dzTJrl)]P(xTJrl,Bé).
L(€)xB3(v)

Denote the density of a normal variable of mean 0 and standard deviation o by V.
The probability that N(1) is such that Z(2) € B3(y7) (i.e., event ws) can be written as

IP{W2} = N(dnl)

yz(1)=r(1)=B3(yT)



We can lower bound the probability that N(2) is such that R(2) € L(¢) as

p2(T, B¢, x) := inf
re€yz(1)=B3(yT)

r* Hl—C—(14+N)r—=A(1—7)z(1)
/ N(dng) > 0,

*=20—= (14N r=A(1=7)z(1)

since the infimum is taken over a bounded set.
Similarly, after 2 < ¢ < T'+1 steps, the process will remain in D3U(DsN{(r,2z) : r < r*+L})
with probability at least

p+(T, B,e) := irnge) P{R(t) e L) | Rt—-1)=r,Z(t—1)==z}.
re
zeBJ (7 T—1+3)

Note that R(t) has a different expression, depending on whether r < 7* + ¢, or r > r* + . We
introduce the following notation:

D(r,2) = L) —r* — A1 —7)z, if r <r*+¢,
L L) - (r=8) = A1 =)z, ifr>rt4&.
Then, we can rewrite
T,B,e) = inf N(dn) >0
pt( 6) TEHLl(é) D(r,z) ( nt)

2€BY(yT )

The strict positiveness of the lower bound follows from the fact that L(¢) and B are bounded.
In the last step we want to ensure that R(T + 2) belongs to the corresponding cross-section

W[WT('yz(l)fr(l)fnl)]BJa which by (M) is identical to W[yz(1)—r(1)—n1]Bé(VT)-
Let us denote

a1 BO(YT) = = A1 =)z ifr <r*+¢
D _ [v2(1)—r(1)—n1] v ) = ’
O(T’ Z’nl) { W[yz(l)—r(l)—nl]B(S('YT) — (7“ — f) — )\(1 — 'y)z, if r>r*+¢&.

Then, we can finally write:

T+1

PT+2(z, B) H Dt / N (dny) inf / N(dnria).
v2(1)—r(1)—B§(T) reL(f) Do (r,z,m1)

2=y T (y2(1)=r(1)=n1)

Since L(¢) is bounded, there exists a large enough ¢ such that

inf / N(dnria) > / N(dnria).
rel () Do(r,z,n1) Tlyz(1)—r(1)—nq1 B2 (YT)—q=A(1-7)z

z=yT=1(vz(1)=r(1)=n1)
We make the following coordinate change:
vi=7z(1) —r(l) —ng
wi=nrie — ¢ — ML=y Hyz(1) = r(1) = na).
Then, we can write:

T+1

]PT+2SCB ) > | // ) dv dw,
<H 5(7T)



where

1 1
_ b 1) — r(1) — )2 N1 =TTy — 21 b
v, 0) = gz exp { =5 51050 < 1(0) = 0P+ (w0 = A=) o = 0))
Now since B°(y7T) is a bounded set, there exists = n(T, B, ¢, x) > 0 such that h, (v, w) > n, for
all (v,w) € B%(yT). We can then conclude by (E3):

pT+2 €n HtT:gl bt

z
P B
T~ | in
— |
——XT+1n | B
5 i A (T +2
D : r
r*—¢ rr4& r 4+ 4

Fia. 4.1. Typical trajectory

The trajectory is sketched in Figure 1]
When the initial point z is in Do or D3 we just need to consider N (1), such that (R(1), Z(1)) €
Dy and Z(2) = 22z —7r(1) = N(1) € B(y7), for some T greater than a suitably chosen T, where

r+(+A1—7)z, forxz € D,
r(l) =< ™+ A1—-7)z, for x € Ds,
r—&+ M1 —7)z, foraxze Dy.

The rest of the analysis follows. O

4.2. Proof of Lemma Assume without loss of generality that C' N Dy has positive
Lebesgue measure. Let us show that the set C7 = C' N D; satisfies the “smallness” property in
the statement.

In Lemma we essentially proved that we can reach any bounded Lebesgue-measurable
set B of positive measure from any state z in a finite number of steps. However, in order to
give an upper bound on the required number of steps, we defined the set £ = I x [0, a] and we
introduced the measure ¢g, which is defined as the Lebesgue measure of the set obtained via
intersection with E. We obtained that for any 0 < € < 1, for any B such that ¢g(B) > 0, and
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for any x, there exists To(B, €, z) > 0, such that for any T' > Ty(B, €, x), there exists a strictly
positive constant K = K(T, B,z) > 0 such that

PT(z,B) > K(T, B,z)epr(B). (4.7)

In order to prove smallness, we need to eliminate the dependence on the specific starting
point z and on the destination B of K and Tj.

The dependence on z can easily be dealt with. Fix some destination set B. Since the set C}
is bounded, we can prove that both

To(B,e,C) := sup To(B,e,x) and K (T, B,Cy) := iné K(T, B, z).
zeCy reCy

are finite. Indeed, revisiting the proof of Lemma 3.2, we have

1 B 1 b
To(B,e,Cy) = log — | = ] i < 0. 4.8
(B, e, 1) e [bgv o8 Z(l)w [bgv Ogb+7lmelw > (48)

Furthermore, in ([@6]) we have that

p2(T, B,e,Cy) := iné p2(T, B,e,x) >0
el

by the fact that C is bounded. For 2 < ¢ < T + 1, the p; > 0 do not depend on the starting
point. Again, via the boundedness of C7, we have that there exists a constant 17 > 0 such that
for all x € Cy, we have h,(v,w) > n for all (v,w) € B(y7).

The dependence on the destination set B is more tricky. The highest inconvenience is the
dependence on B of the proposed value for Ty, which, as seen in ([A8]), depends logarithmically
on §. Hence, for any €, one can always find a set B which is such that § needs to be arbitrarily
close to 0 in order to satisfy ([@2)). This in turn leads to Ty being arbitrarily large (whereas we
would like it to be constant). This is due to the deterministic geometric convergence of Z(t)
towards 0 in region Ds. In other words, if starting from a strictly positive value, Z(t) cannot
reach 0 in a finite time following the trajectory we considered.

Let us instead pick a finite closed interval I and constants A > § > 0 and let us define the
set A:=1I x [§,A]. Clearly, v(A%) = v(A), so in this case we are allowed to pick ¢ = 1. We also
define n(T, A, C1) := inf e, (ww)eaym) ha(v,w) >0 and

T):= inf
p2(T) mf,
relyz(1)—AyT,yz(1)—5vT]

P l—C— (1427 =A(1—7)2(1)
/ N (dns).

*—=20—(14XN)r—A(1—7)z(1)

With Ty, = To(A,1,C1) given by (&), but for the chosen § > 0 (no dependence on any
specific destination set), for all ' > Tj we define

T+1
L nHt:2 Dt
vp = 20y,
v
where @4 is defined in (I]). By (6] we can conclude that Cy is vp-small.
In a similar fashion, we can prove that the entire set C' is small. O
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4.3. Proof of Theorem [B.] In the following we define a Lyapunov function V' which is
unbounded off petite sets, that is for any n < oo the sublevel set Cy(n) := {y : V(y) < n} is
small. We show that there exist constants a,b,c > 0 and a set C' = [—a,a] x [0, ] such that the
drift satisfies

DV (2) = E,V(X(1) = V(x) < —1+ clc.

A consequence of this result is that, by Theorem 9.1.8 of [9] and by Corollary B.5, which shows
that the set C is small, the chain is Harris recurent. Furthermore, by Theorem 10.0.1 of [9], it
admits a unique invariant measure 7. Finally, by Theorem 13.0.1 of [9] and by Corollary B4 we
get the finiteness of 7 and we conclude.

Let us now delve into the details:

We prove that the function H : R x Ry — Ry,

z = [ i } o H(z) = (r+X2)2 4 (r + (A + p)2)? (4.9)

is a Lyapunov function for the system (ZI4HZTH).
Since p # 0, matrix A; can be diagonalized as A; = MlAlMl_l, where:

S T PR N S 10
e IR B | e I R

Then, for X (t) € Dy, we can write
X(t+1) = MA M X () + Co + No(t +1).
Via the change of variable Y (t) = M ' X (t), we have that
Y(t4+1) = MY () + M (Co + No(t+1)).

Denote

and A; := {y € R? : My € D;} or, more explicitly,
Ay ={(u,v) :u4+v>0, (A4 p)u+ v > 0}. (4.10)

Then, for Y (t) € Ay, the system can be rewritten as:

(4.11)

U(t+1) = Ut) = L(N(t+1)+0),
{ V(t+1) = (1 pV() + LV +1) + ).

1
m
Hence, for a point = (r,z) € D;, the Lyapunov function can be rewritten in the new
variable y = M; 'z = (u,v) € Ay, u = f%(r + Az) and v = %(T + (A +p)z) as
Wi Ay = Ry, Wily) := H(Myy) = ,u2(u2 + ’U2). (4.12)
Let us compute the drift of H in x € Dy, DH(x) = DW1(y):

DWi(y) = Ey(Wi(Y (1)) = Wi(y) = —p° (2 — p)v* + 2¢u(1 — p)o — 2(pu + 2(¢ + 0?).
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Since p > 0, the set Sy of y € Ay for which DW;(y) < —1 is given by the hypergraph of the
second degree polynomial function
2 2 2
R 2A¢ +07) +1
91(v) = ————v + (L —p)v+ ——F—",
2¢ 2Qp
namely S; = hyp+(gl) NA; = {(u,v) € Ay : u > g1(v)}. The complementary set S; on which
DWi(y) > —11is S; = hyp™ (¢1) N Ay. We represent both sets in Figure |4.2(a)l In the original
coordinates, we denote the corresponding set by C; = M151 = {Myy:y € S1}.

u

utv=0 u=+r7r"—(
Ay A
2
S
g1(v)
r*—¢ S, u=A\v

v

A+ p)u+ v =0

(a) St (b) S2
z
D, Dy
u .
vl CZ
e
\ , r
v e
(C) Sa (d) CiuCyUC3UCy

Fia. 4.2. Positive drift sets

Next, consider the case X (t) € Dg. The eigenvalues of Ay are {1,1—X— u}. Let us consider
the diagonalization A, = MgAgM{l, where

R oo [1 oA [ 0
Ma = [() 1 ]’ M, “[ 0 1 ]’ A2 = [ 0 1A;L]'

Let us apply the coordinate change Y (t) = M, ' X (t). For Y (t) € Ay = {y : Myy € Dy} we get
Y(t+1) =AY (t) + No(t + 1) + (. Explicitly, the domain is

Ay ={(u,v): 0<u—dv<r*—¢ v>0}
Equivalently, denoting U(t) = R(t) + A\Z(t) and V(t) = Z(¢), for (U(t),V(t)) € Az, we have

{U@+UIKO+N@+D+Q

V(E+1) = (1— A — V(). (4.13)
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We write the Lyapunov function (4.9) in the new coordinates:
Wa: Ay — Ry, Wa(y) := H(May) = u* + (u+ pv)?.

Then, the drift of H in a point 2 € Dy can be written as DH (x) = DWs(y), where y = (u,v) =
M{lx. Thus,

DWa(y) = Ey(W2(Y (1)) = Waly) = 2Cu+ ¢ +0° — (2 = (A + p)) (A + p)?
—2u(\ + p)uv + 2Cu + 2u(1 — X — p)Cv + ¢ + o2
Since \v < u < \v +r* — (, we have that
DWa(y) < 20% — 2C% + 40" + 220 + p(1 = A — )] — p(A + p)* (2 — p)v?

Hence, there exists a v* such that DWa(y) < —1 for v > v™. Denote by Sy = {y = (u,v) €
As : v < v} (which we represent in Figure [4.2(b))) and the corresponding set in the original
coordinates by Co = MSy = {May : y € Sa}.

Since Ay = As, let us consider the case X (t) € D4 and the same coordinate change Y'(¢) =
M;lX(f) For Y(t) c Ay = {y : ng S D4} we get Y(f + 1) = AgY(t) + No(t + 1) — Eo.
Explicitly, the domain is

Ag={(u,v) 7" +E<u— v, v >0}

Equivalently, denoting again U(t) = R(t) + AZ(t) and V (t) = Z(t), for (U(t),V(t)) € A4, we
have

V(t+1)=(1-X=p)V (). (4.14)

{ Ut+1)=U@l)+N(Et+1)-¢,
We write the Lyapunov function (@3] in the new coordinates:
Wi Ay — Ry, Wy(y) := H(May) = u* + (u+ pv)?.

Then, the drift of H in a point € D4 can be written as DH(x) = DWy(y), where y = (u,v) =
Mz, Thus,

DWay(y) = By (Wa(Y (1)) = Waly) = —26u + & + 0% — p?(2 — (A + p)) (A + p)v?
—2u(\ + p)uv — 26u — 2u(1 — X — p)év + €2 4 o2

Since u > v + r* + £, we have that
DWa(y) < 20% + 267 — 4€u — 2u(A + p)r* + 26p)v — p(A + p)*(2 — p)v®.

Then, we have that DW,(y) < —1 for points y = (u,v) in the hypergraph of the second degree
concave polynomial function

ga(v) = % [20% + 26 + 1 — (A + p)r* + 28p)v — p(A + p)*(2 — p)o?] .

In Figure [4.2(c)| we represent the set Sy on which DWy(y) > —1, namely Sy = hyp™ (g4) N Ay.
In the original coordinates, we denote the corresponding set by Cy = MsSy = {Moy : y € S4}.
Finally, write the drift of the Lyapunov function in a point z = (r, z) € Ds:

DH(z) =FEXz +r* + N2+ E(1 —p)A+p)z+7* + N)2 = (r+X2)% — (r + (A + p)2)%
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We have that
DH(x) <2(r** + 0% =) + 20" (A + (A + ) (1 — )z — (A + p)*p(2 — p)2°.
Thus, DH(z) < —1 holds for points = (r, z) € D3 found outside the ellipse defined by
E={(rz2):2r+az—pPa" )2 =1+ 2r*? 4 202 + Bra~ 1,

where we denoted a = (A + p)?u(2 — p) and 8 = 7*(A + (A + p)(1 — p)). We denote by
Cs = int(é') N Ds.

We have found that DH < —1 outside the bounded compact set C; U Co U C3 U Cy, which
concludes the proof. O

4.4. Proof of Theorem Notice that if u < —\, then the Z coordinate of the Markov
chain cannot decrease. Hence the chain is trivially unstable (it is not even v-irreducible).

In the case —\ < p < 0, we turn again to [9] for proving the claim. In this case the Markov
chain ZI4H2.TH) is ¢-irreducible. We need to find a function H which satisfies the hypothesis of
Theorem 11.5.2 from [9] to show non-positivity.

Like in the proof of Theorem B} consider the change of coordinates Y (t) = M; ' X (t), which
yields evolution [@II)) for Y (t) = (U(t),V(t)) € Ay defined in (£I0). The state space under
these new coordinates becomes A = {(u,v) : u + v > 0}.

Define H : A — Ry,

_ | v | log(v) ifwv>1,
v [ v ] — Hy) = { 0 otherwise. (4.15)

Let us show that H(Y") has finite increments in any point of the state space, namely that

sup E,|H(Y (1)) — H(y)| < +o0. (4.16)
yEA
Consider y = (u,v) € A such that v > 1. Then, since 0 < A + p < A, we have that necessarily
y € A1. We obtain:

51(U)

E,[H(Y (1)) - H(y)| = /

— 00

log <1u+ G—n>‘N(dn)+ N (dn)logv,
Hv £y (v)
where ¢1(v) = p— ¢ — p(1 — p)v. If N(1) > ¢1(v), then by the definition of H we have that
H(Y (1)) = 0, in which case we are left with the second term (since v > 1 implies logv > 0).
For a given v, the argument of the logarithm in the integral of the first term is less than 1
for n comprised between £o(v) := p?v — ¢ and 1 (v). Furthermore, it is lower bounded by %, and,
since loga < a — 1 for a > 0, we can write

eo(U) %_
B, 1) - ) < [ tog (120 21 ) wan)
£1(v) )
+ N (dn)logv + N (dn)logwv
eo(U) 51(U)

¢ Lo(v) 4, oo
< —p+—= +/ —N(dn) + N (dn)logw.
Hv —o0o MY Lo(v)

All the terms in the sum above are bounded for v > 1. The last term converges to 0 as v goes
to infinity, via two applications of the L’Hopital-Bernoulli rule.
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Next consider y = (u,v) € A such that v < 1. Thus H(y) = 0. We distinguish 4 cases:
My € D1, Myy € Do, Myy € D3, or My € D4. Equivalently, the 4 cases write as

ye A =={(u,v):u+v>0, A+ p)u+Iv>0v<1},

y €Ay i={(u,v) :u+v>0, =" +{ < (A + p)u+ v <0},

ye Ay :={(u,v) :u+v>0, —r* — &< A+ p)u+ v < —r* + (Y,
ye Ay :={(u,v) :u+v>0, A+ p)u+ v < —r* ¢}

In the case y € Al, we have

41 (v)
Ey|H(Y (1)) - H(y)| = / log[(1 — p)v + p~ (¢ +n) N (dn)

— 00

£y (v)
< / (1= p)v+p (¢ +n) — 1)N(dn)

EI(U) 01 (v 2
= N(dn)((1 = v+ p~2¢ = 1) — o(2m) "2 Le™ 50

— 00

Both terms are bounded and converge to 0 as v goes to —oo (the first term again by application
of L’Hopital-Bernoulli, the second one trivially).

In the case y € Ao, it is straightforward to check that we necessarily have v < 0. Define
lo(y) = — ¢+ p(\+ p)(u+v) — po. We have that if N(1) > la(y), then H(Y (1)) = 0 by
definition of H(-). Now since u +v > 0 and A + p > 0, it must be that

—A+p)(u+v)+0v<0.

Then

)

E,|H(Y (1))

£2(y)
/ log[— (A + ) (u + v) + v + p~ (¢ + n) N (dn)

IN

42(y)
/ ¢ 4+ n) — 1N (dn)

) -1 —1j2, -1 —t2@?
= [ N (e - 1) - o(2m) 2 te 5

which is clearly bounded.

The case y € Ay is closely related: Define £4(y) := p + & + (A + p)(u + v) — pv. We have
that if N(1) > £4(y), then H(Y (1)) = 0 by definition of H(-). Then, just like above,

tav) La(y)?
EJHY W)~ Ho)l < — [ Ndn) (e +1) - o(2m) 245

— 00

which is again bounded.

In the case y € As, it again holds that v < 0. Define £3(y) := pu — ¢ — (A + p)(1 — p)(u +v).
We have that if N(1) > ¢3(y), then H(Y (1)) = 0 by definition of H(-). Now since u+ v > 0 and
A+ p > 0, it must be that

p = )N+ p)(u+v) + v <0,
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Then,
23(y)
E,[H(Y(1)) - H(y)| = [ log (1 — ) (X + p)(u +v) + ¢ + nN (dn)
t3(y) 3w)?
< N(dn)p='¢ —o(2m)"2p~te™ 202

which is again bounded.
Let us now examine the drift DH(y) = E,(H(Y (1)) — H(y) in some point y € Ay N {v > 1},
which we denote by DH (v) by abuse of notation:

DH(U):/ZI(U)log (1—M+C+—n)/\/(dn)—/;o N (dn)logv

—o0 Hv 1(v)

21(71) 21(71) C+n
= n N(dn)log(1l —p) + [m log (1 + m) N (dn)

- N (dn)logw.
él (’U)

Taking the limit as v goes to infinity, we find that lim, .. DH(v) = log(l — p) > 0. Indeed,
each of the last two terms converge to 0. In other words, for any ¢ > 0, there exists a vg(e) > 1
which is such that for all v > vg, |DH(v) — log(1l — p)| < e. Taking a sufficiently small €, say
€0 = 3 log(1 — 1), we get that

Vv > vg(eo), DH(v) > 0. (4.17)

~ Define the set C := {y = (u,v) : v < vo(eo)} N A. Then any y in the complementary
C = C°N A is such that H(y) > sup, ¢c H(y1) and DH(y) > 0. Using [@I6) and {@LIT) we
can apply Theorem 11.5.2 from [9] and conclude. O

REFERENCES

[1] I.-K. Cho and S. P. Meyn. Efficiency and marginal cost pricing in dynamic competitive markets. To appear
in J. Theo. Economics, 2006.

[2] In-Koo Cho and Sean P. Meyn. Optimization and the price of anarchy in a dynamic newsboy model. In
Stochastic Networks, invited session at the INFORMS Annual Meeting, pages 13-16, 2005.

[3] J.H. Eto, J. Nelson-Hoffman, C. Torres, S. Hirth, B. Yinger, J. Kueck, B. Kirby, C. Bernier, R. Wright,
A. Barat, et al. Demand response spinning reserve demonstration. 2007.

[4] S. Keshav and C. Rosenberg. How Internet Concepts and Technologies Can Help Green and Smarten the
Electrical Grid. In Proc. ACM SIGCOMM Green Networking Workshop, August 2010.

[5] J.D. Kueck, B.J. Kirby, T. Laughner, and K. Morris. Spinning Reserve from Responsive Load. Technical
report, Oak Ridge National Laboratory (ORNL), 2009.

[6] D.J.C. MacKay, D. Hafemeister, et al. Sustainable Energywithout the hot air. American Journal of Physics,
78:222, 2010.

[7] Nicholas F. Maxemchuk. Communicating appliances. 2nd IMDEA Networks Annual International Workshop
Energy Efficiency and Networking (Madrid), May-June 2010.

[8] S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieepoorfard. The value of volatile resources
in electricity markets. Submitted to the 49th Conf. on Dec. and Control, 2010.

[9] S.P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability (2nd edition). Cambridge University
Press, 2009.

[10] Michael J Neely, Arash Saber Tehrani, and Alexandros G Dimakis. Efficient algorithms for renewable energy
allocation to delay tolerant consumers. Technical Report arXiv:1006.4649, Jun 2010. Comments: 10
pages, 4 figures.

[11] G. Wang, A. Kowli, M. Negrete-Pincetic, E. Shafieepoorfard, and S. Meyn. A control theorist’s perspective on
dynamic competitive equilibria in electricity markets. In Proc. 18th World Congress of the International
Federation of Automatic Control (IFAC), Milano, Italy, 2011.



17

Appendix A. Impact of Delayed Heating.

A.1. With Constant Coefficient of Performance. Assume the appliance is a heating
system, which is used to maintain the temperature of a building at temperature T'(t). We use
the model in [6l Chapter III-E]. Let € be the coefficient of performance of the appliance, T'(¢) the
room temperature, and 0(t) the outside temperature. Assume in this section that the coefficient
of performance is constant. Assume the heating appliance consumes an amount of energy energy
equal to d(t) at time slot ¢; the obtained room temperature T'(t) is defined by the following
equation

dt)e=K(T(t)—0(t)+C(T(t)—-T(t—-1)) (A1)
where K is the building’s leakiness and C' its thermal inertia. Note that this equation is valid if
we assume that the appliance is used for heating only and not for cooling. We make no particular
assumption on d(t), which typically depends on thermostat regulation by the building occupants.

Consider two scenarios. In the first scenario, there is always enough supply and the appliance

does not need to adapt. The energy consumed by the appliance is D?(t), the naturally occurring
demand. Let T*(t) be the temperature obtained. Thus

D*(t)e = K(T*(t) — 0(t)) + C(T*(t) - T*(t—1)) t=1...7 (A.2)

In the second scenario, energy supply is not sufficient at times 1,...,7 — 1 and is sufficient at
time 7. The energy consumed at times 1,...,7 — 1 is D*(t) — F(t) where F(t) is the frustrated
demand. The accumulated frustrated demand at time 7 — 1 is

Z(r—1) = z_: F(t) (A.3)

The obtained temperature is T'(t) < T*(t) for t = 1,...,7 — 1. We assume that 7'(0) = 77*(0).
Assume that at time 7, we use the energy required to obtain the same temperature as in the
first scenario; let D(7) + Z(7) be this amount of energy, i.e. Z(7) is the amount of backlogged
demand that remains at time 7. We have thus

(D(t) — F(t))e = K(T(t) — 0(t)) + C(T(t) = T(t—1)) t=1...7—1 (A4)
(D(r) + Z())e = K(T*(r) — 0(r)) + C(T*(r) — T(r — 1)) (A.5)

By summation of the last two equalities it comes:
(Z D)+ Z(71)— Z(1T — 1)) €
t=1

=K (i(T(t) —0(t)) + (T"(1) — 9(r))> +C(T*(1) — T*(0)) (A.6)

t=1
and by summation of Eq. (A2,

(Z D“(t)) e=K <Z(T*(t) — 9(15))) + C (T* (1) — T*(0)) (A7)

thus, by subtraction:

Z(t)—Z(t—1)= K (Z(T*(t) - T(t))) <0 (A.8)

€
t=1
Therefore, for this simple model, the backlogged demand diminishes, i.e. the total energy con-
sumption is reduced if heating is delayed. In other words, there is positive evaporation.
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A.2. With Heat Pumps. The model above assumes that the coefficient of performance € is
constant. For some systems, this does not hold as it might depend on the initial room temperature
T(t), the target room temperature T*(¢) and the outside temperature 6(¢). In particular, for
heat pumps, the coefficient of performance is reduced when the differences T*(t) — T'(t) and
T*(t) — 0(t) are large. To understand what happens with such systems, we revisit the second
scenario above and, for simplicity, consider the simpler case where all demand is frustrated at
times 1 to 7 — 1. Equations (Ad]) and (A:5) are now replaced by

0= K(T(t) — 0(t) + C(T(t) = T(t—1)) t=1...t1—1  (A.9)
(D*(1) + Z(1))é (1) = K(T*(7) — 0(7)) + C(T*(7) = T'(1 — 1)) (A.10)

and D*(t) = F(t) fort = 1,...,7—1. Here we assume for simplicity that € is maintained constant
in scenario 1 but the coefficient of performance is smaller for scenario 2, i.e. €(7) < e. This is
because the heat pump needs to produce warmer water at time 7 than in scenario 1 to be able to
reach the target room temperature, and if the outside temperature is low, the efficiency is less.
Summing these equations and combining with Eq. (A7) gives

20— 2(r—1) = -~ <Z(T*(t) - T(t))) + (1 - 6(—7)) (D) + Z(1) (A1)

€ €
t=1

Compare with Eq. (AR): the last term is positive, and if large, it may well be that Z(7) >
Z(t —1). i.e. there may be some negative evaporation.



