
Model-Based Debugging
- Position Paper -

Salman Mirghasemi and Claude Petitpierre

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de
Lausanne, Switzerland

{salman.mirghasemi,claude.petitpierre}@epfl.ch

Abstract. Software Debugging is still one of the most challenging and
time consuming aspects of software development. Monitoring the soft-
ware behavior and finding the causes of this behavior are located at the
center of debugging process. Although many tools and techniques have
been introduced to support developers in this part, we still have a long
way from the ideal point. In this paper, we first give a detailed explana-
tion of the main issues in this domain and why the available techniques
and tools have been incapable of solving these issues completely. Then
we explain how employing models can be helpful in solving stated prob-
lems. Finally, a detailed sketch of our approach based on using runtime
models of executing software is described.

1 Introduction

Software Debugging has little changed during the past decades and has remained
one of the most challenging and time consuming aspects of software engineering
[1]. Debugging is much more an art and the predominant techniques for find-
ing bugs are still data gathering (e.g., print statements) and hand simulation.
Software developers spend huge amounts of time, up to half of their time, de-
bugging. Fixing and finding bugs faster and more effectively directly increases
productivity and can improve program quality by eliminating more defects with
available resources [2].

In a larger view, software debugging has been usually considered as part of
software testing and it has not been studied enough until recent years. Research
is quite young in this area and most studies has been done in the last decade.
Table 2 shows a big picture of different stages of software verification, testing
and debugging. Having this picture can help us to better understand the close
relation of debugging with testing and verification and how it differs from them.
All these stages deal with the behavior of the software and recognizing the ap-
propriate behavior from inappropriate one. But they are different in goals. As
it is written in the first row of the table, the main goal of software testing and
verification is finding software bugs or equivalently, answering to this question:”
Is there any bug in the software?”. Software verification tries to prove software
correctness but software testing tries to make program fails, different approaches



2

S
o
ftw

a
re

V
e
rifi

c
a
tio

n
,

T
e
stin

g
a
n
d

D
e
b
u
g
g
in

g

G
o
a
l

A
n
sw

rin
g

to
th

is
q
u
estio

n
:

Is
T

h
ere

A
n
y

B
u
g
?

F
ix

in
g

F
o
u
n
d

B
u
g
s

P
rov

in
g

C
o
rrectn

ess
F

in
d
in

g
B

u
g
s

R
ep

ro
d
u
cin

g
B

u
g
s

S
im

p
lify

in
g
/
Iso

la
tin

g
B

u
g
s

F
in

d
in

g
D

efects
F

ix
in

g
D

efects

A
p
p
ro

a
ch

F
o
rm

a
l

V
erifi

ca
tio

n
T

estin
g

R
ep

ro
d
u
cin

g
th

e
E

n
v
irn

o
m

en
t

R
em

ov
in

g
A

ll
Irreleva

n
t

C
ircu

m
sta

n
ces

S
cien

tifi
c

D
eb

u
g
g
in

g
A

lg
o
rith

m
R

ep
ro

d
u
cin

g
th

e
E

x
ecu

tio
n

T
e
ch

n
iq

u
e

M
o
d
el

C
h
eck

in
g

B
la

ck
B

ox
T

estin
g

D
elta

D
eb

u
g
g
in

g
M

o
n
ito

rin
g

S
o
ftw

a
re

B
eh

av
io

u
r

T
h
eo

rem
P

rov
in

g
W

h
ite

B
ox

T
estin

g
F

in
d
in

g
C

a
u
ses

D
o

M
o
d
e
ls

H
e
lp

?
Y

es
Y

es
?

?
?

?

T
a
b
le

1
.

U
sin

g
M

o
d
els

in
D

iff
eren

t
S
ta

g
es

o
f

S
o
ftw

a
re

V
erifi

ca
tio

n
,

T
estin

g
a
n
d

D
eb

u
g
g
in

g

Issu
e

D
e
sc

rip
tio

n
/

P
ro

b
le

m
s

R
e
la

te
d

W
o
rk

In
tera

ctiv
e

E
x
ecu

tio
n

T
h

e
a
b
ility

to
g
o

fo
rw

a
rd

a
n

d
b

a
ck

w
a
rd

in
a
n

ex
ecu

tio
n

.
C

a
p

tu
re

a
n

d
R

ep
lay

R
e-ex

ecu
tio

n
is

tim
e-co

n
su

m
in

g
a
n

d
p

a
in

fu
l,

E
v
ery

ex
ecu

tio
n

m
ig

h
t

ch
a
n

g
e

th
e

p
ro

g
ra

m
sta

te,
N

o
n

d
eterm

in
ism

C
o
n
tro

lled
E

x
ecu

tio
n

S
p

ecify
in

g
In

terestin
g

E
x
ecu

tio
n

B
efo

re
ev

ery
ex

ecu
tio

n
a

d
ev

elo
p

er
h

a
s

to
sp

ecify
ev

en
ts

th
a
t

h
e

in
ten

d
s

to
o
b

serv
e.

P
rin

tin
g

S
ta

tem
en

ts
A

va
ila

b
le

la
n

g
u

a
g
es

a
re

n
o
t

en
o
u

g
h

ex
p

ressiv
e,

R
eq

u
ires

co
m

p
ila

tio
n

a
n

d
ca

n
n

o
t

b
e

ch
a
n

g
ed

in
ru

n
tim

e,
A

d
ev

elo
p

er
B

rea
k
p

o
in

ts
E

v
en

ts
h

a
s

to
ex

a
ctly

d
ecla

re
w

h
ich

d
a
ta

sh
o
u

ld
b

e
co

llected
a
t

th
e

sp
ecifi

ed
m

o
m

en
t

(ex
cep

tin
g

b
rea

k
p

o
in

ts).
A

sp
ect

P
o
in

tcu
ts

Q
u

ery
in

g
P

ro
g
ra

m
E

x
ecu

tio
n

T
o

fi
n

d
th

e
p

o
ssib

le
o
rig

in
g
s

o
f

a
n

in
co

rrect
resu

lt,
a

d
ev

elo
p

er
h

a
s

to
sea

rch
in

sp
a
ce

a
n

d
tim

e.
A

lp
h

a
L

im
ited

su
p

p
o
rt

o
n
ly

a
t

co
d

e
lev

el,
n

o
su

p
p

o
rt

a
t

ru
n
tim

e.
J
IV

E

E
a
sy

to
U

se
In

terfa
ce

a
n

d
S

ca
la

b
le

A
d

eb
u

g
g
in

g
u

ser
in

terfa
ce

w
h

ich
p

rov
id

es
sca

la
b

le
d

a
ta

v
isu

a
liza

tio
n

a
n

d
a
b

les
th

e
d

ev
elo

p
er

to
ea

sily
n

av
ig

a
te

O
m

n
iscien

t
D

eb
u

g
g
er

th
ro

u
g
h

d
iff

eren
t

v
iew

s
ca

n
g
rea

tely
h

elp
th

e
d

ev
elo

p
er

in
o
b

serv
in

g
fa

cts.
W

h
y
L

in
e

D
a
ta

V
isu

a
liza

tio
n

J
IV

E

A
u

to
m

a
tio

n
A

u
to

m
a
tica

lly
reco

g
n

izin
g

w
h

ea
th

er
a

resu
lt

is
co

rrect
o
r

in
co

rrect,
W

h
y
L

in
e

A
u

to
m

a
tica

lly
fi

n
d

in
g

a
list

o
f

p
o
ssib

le
ca

u
ses

o
f

a
b

eh
av

io
r

T
a
b
le

2
.

M
a
in

Issu
es

in
F

in
d
in

g
D

efects



3

for answering the same question. On the other hand, the goal of debugging is
fixing the found bugs.

Debugging process can be separated to four stages. Reproducing the bug is
the first step in debugging.It is difficult to find and fix a software problem, and
to verify the solution, without the ability to reproduce it [3]. The next step is
simplifying the bug that each part of test case be relevant. This step is not nec-
essary but it can be very helpful. Delta-Debugging [4] is a technique introduced
for bug simplification. The main part of debugging is finding the defects. As is
well known among software engineers, most of the effort in debugging involves
locating the defects. Finally, the located defects should be fixed.

Employing models have always been useful in different stages of software de-
velopment including software testing. In recent years the greatest attention in
software testing has been turned to model-based testing [5]. We believe that sim-
ilar to other areas, debugging can also benefit from using models. In this paper,
we explore this idea and propose runtime models for describing an executing
program.

2 Problem Description

Once a developer knows how to reproduce a bug, he enters to the locating defects
phase. To better figure out the needs of a developer in this phase, we have to
reconsider the locating defects process. This process is a heuristic process, in
which a developer goes through a chain of act-observe steps and its goal is
locating the defect.

To model debugging process, we use scientific debugging algorithm intro-
duced by Zeller [2]. Based on this algorithm, at every step, a developer has
defined a set of possible origins for an incorrect result. For every origin, she
has to specify whether it is correct or incorrect. If an origin is incorrect, the
developer has to repeat the steps with this origin as the incorrect result. This
algorithm continues until the developer locates the main defects. Although not
all developers know this algorithm, they implicitly go trough the same process
for debugging.

According to this description, a developer has two kinds of problems in the
debugging process. Specifying a set of possible origins for an incorrect result
and specifying whether an origin is correct or incorrect. But how developers solve
these two problems? The main approach is the observation of program execution.
This is what makes reproducing bug a necessary step before debugging.

The first issue in locating defects arises here. For every step in the algorithm,
a developer needs to observe the program execution and therefore many observa-
tions are required for finding a defect. For every observation the program should
be executed another time. But re-executing the program can be time-consuming
and painful, because an execution might take a long time and require many ac-
tions from the developer. In addition, there are many cases that every program
execution changes the program’s data and the developer has to rollback the data
to the initial state, which is not usually an easy task. Moreover, because of many



4

non-deterministic conditions during the execution, the new execution might go
through another path and therefore developer observes a different execution.

To understand other issues we have to consider the observation activity. The
observation of program execution consists of observing software artifacts, run-
time and collected data of execution. Developers have to usually specify interest-
ing moments and events during an execution before the execution. For example
a developer defines breakpoints in a debugger or put printing statements in
parts of code to specify the interesting points for observation. Most of the cur-
rent methods require compilation and re-execution of software. In addition the
current methods aren’t enough powerful to let a developer to exactly define the
interesting moments. The second issue is specifying interesting parts of execution
and the data should be collected at these parts.

Once a developer sees an inappropriate behavior, she must then translate her
questions about the behavior into a series of queries about the programs code.
She has to search in space and time which becomes the more difficult the larger
the program state, and the distance between defect and failure. The third issue is
the need for querying the runtime state and the history of execution. During the
program execution, huge amount of data might be collected and analyzing this
amount of data and understanding the relation of each record to time and space
by a developer requires a well-designed user interface which supports scalable
data visualization. Finally, the last issue is debugging process automation and
how parts or the all steps of debugging process can be automated?

3 Related work

In this section, we explore related work in this area and how each one of the
mentioned issues are addressed in other works.

3.1 Interactive Execution

There are two approaches for attacking this problem. The first one is the con-
trolled execution of program. It means that we try to drive the program execution
through the same path executed before. This is mainly done by eliminating the
non-deterministic conditions (e.g., thread interleavings) during the execution.
This idea is used in CHESS [6] for finding and reproducing Heisenbugs in con-
current programs.

The next approach is named Capture and Replay. In this approach, numer-
ous events will be stored during the execution and later, these events can be
used for replaying the execution. For example Omniscient Debugger [7] works
by recording all state changes in the run of a program, and then allowing the
programmer to explore the history of that program going backwards in time.

Capturing and replaying interaction is not only a helpful tool for reproducing
failures, it can also be helpful for isolating those events that were relevant for the
failure by combining capture/replay with isolation of relevant events. JINSI [8]
is a tool which uses this approach. Unfortunately, capturing complete executions



5

is generally infeasible, for several reasons. First, there are practicality issues. To
capture a complete execution, we may need to record a large volume of data
and all the inputs to the application. Also, capturing the inputs provided to an
application can be difficult and may require custom mechanisms, depending on
the way the application interacts with its environment. Second, the environment
may have changed between capture and replay time [9].

3.2 Specifying Interesting Execution Events

Using print statements and breakpoints are two primary methods used by devel-
opers to specify a moment in the execution. Each one has its own characteristics.
In case of using print statements, the developer has to specify the data should
be written but in breakpoints this step is not required and the developer has
access to all data in memory. When a developer uses breakpoints he has to drive
the program execution herself and this is a tedious task for long time executions,
but in the other case she just define print statements. Using print statements,
a developer can observe all the history of execution in log files which is not
possible in the other case. Both methods requires compilation after any change
in the definition of interesting events. Finally when the huge amount of print
statements are executed understanding the log files is not an easy task.

The joinpoint concept in aspect oriented is very close to specifying event in
the execution. Aspect oriented is mainly built with idea of changing the behavior
of the system and therefore the pointcut concept is defined based on the structure
of a program instead of its execution state. Alpha [10] is introduced as a new tool
with an extended pointcut language in the form of logic queries over different
models of the program semantics. Using this language pointcuts can be defined
regarding to program runtime state that can facilitates specifying interesting
events during execution.

4 Ideal Debugging Environment

Figure 1 illustrates the characteristics of an ideal debugging environment. It is
similar to a media player which lets the user goes forward and backward and
observe different aspects of a captured execution. Also it supports querying on
the execution events. For example ”show me the last moment object X has bean
changed?” or ”find methods which have returened null value.”. In addition, it
should provide a user-friendly interface that let user to conveniently find and
view her interesting events among huge amount of collected data.

5 Approach

One of the vital features for any developing tool or technique is the adaptability
of its concepts to a developer’s mental concepts. Debugging tools and techniques
are not exceptions to this rule. In this regard, we belive that providing a higher



6

Fig. 1. Ideal Debugging Environment.

level view of program execution has a significant impact on the usability of a
debugging method. To support this fact, we propose using runtime models for
presenting the state of an executing program.

The basic model of an execution is a finite state machine which every node
is corresponding to a specified point of the execution by the developer. When a
program is executing, the program will be paused at every node and a method
written by the developer will be executed. This method can access any object in
memory and also checks the conditions and finally returns a pass or fail result.
In fact, developer will incrementally build an assistant observer which helps her
to avoid redoing checks.

To more clarify the idea, we explore an example. Suppose that there is a bug
in an email client. Once a user opens her address book (which has more than 50
contacts) and removes contacts one by one, the last item can not be removed.
The following code shows the assistant debugger for this bug. Figure 2 shows
the interface a developer gets when she debugs. Our approach attacks three is-
sues among five mentioned issues in problem description, specifying interesting
execution events by employing a more expressive language which considers run-
time program state, user interface and scalable data visualization by providing
a higher level view of execution which can be integrated to other views and au-
tomation by reducing a developer’s repeating checks. Moreover, after fixing any
bug, an artifact is available for the future, either if the same bug is reported
again or another bug with similar execution context is found.

Debugger Bug#Num{



7

Fig. 2. The Execution State Machine

// new ExecutionPoint(description, previous points, definition)
ExecutionPoint p1 = new ExecutionPoint("Window is opened" , null,

"Window.display() and Window.tilte = ’Address Book’");
ExecutionPoint p2 = new ExecutionPoint("More than two rows" , p1|p2,

"Table.removeRow() and Table.parentContainer.title="+
"’Address Book’ and Table.numberOfRows > 2");

ExecutionPoint p3 = new ExecutionPoint("Two rows" , p2, "Table.removeRow()"+
" and Table.parentContainer.title= ’Address Book’"+
" and Table.numberOfRows = 2");

ExecutionPoint p4 = new ExecutionPoint("One row" , p3|p4, "Table.removeRow()"+
" and Table.parentContainer.title= ’Address Book’"+
" and Table.numberOfRows = 1");

boolean p1Check(PointContext pc){
...

}
boolean p2Check(PointContext pc){

...
}
boolean p3Check(PointContext pc){

// Monitors all changes to this object until the next point.
Util.monitorAllChanges((Table)pc.getCurrentObject())

.getModel());



8

int backEndListSize = ((Table)pc.getCurrentObject())
.getModel().size();

if (size != 2)
return false;

}
boolean p4Check(PointContext pc){

if (Util.isKindOf (pc.previousPoint, p3)
{
...

}else
{
...

}
}

}

References

1. Ko, A.J., Myers, B.A.: Debugging reinvented: asking and answering why and
why not questions about program behavior. In: ICSE ’08: Proceedings of the
30th international conference on Software engineering, New York, NY, USA, ACM
(2008) 301–310

2. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann (10 2005)

3. Artzi, S., Kim, S., Ernst, M.: Recrash: Making software failures reproducible by
preserving object states. (2008) 542–565

4. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. 28(2)
(Feb. 2002) 183–200

5. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In:
Proc. Future of Software Engineering FOSE ’07. (2007) 85–103

6. Madanlal Musuvathi, S.Q., Thomas Ball, Microsoft Research; Gerard Basler,
E.Z.P.A.N.U.o.W.M.I.N.U.o.C.R.: Finding and reproducing heisenbugs in con-
current programs. In: OSDI 2008. (2008)

7. Lewis, B., Ducasse, M.: Using events to debug java programs backwards in time.
In: OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM (2003) 96–97

8. Burger, M., Zeller, A.: Replaying and isolating failing multi-object interactions. In:
WODA ’08: Proceedings of the 2008 international workshop on dynamic analysis,
New York, NY, USA, ACM (2008) 71–77

9. Orso, A., Kennedy, B.: Selective capture and replay of program executions. In:
WODA ’05: Proceedings of the third international workshop on Dynamic analysis,
New York, NY, USA, ACM (2005) 1–7

10. Ostermann, K., Mezini, M., Bockisch, C.: Expressive pointcuts for increased mod-
ularity. In: ECOOP. (2005) 214–240

11. Utting, M.: Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann
Publishers (2007)


