IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Valence band structure of the Si(331)-(12 x 1) surface reconstruction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2011 J. Phys.: Condens. Matter 23 135003
(http://iopscience.iop.org/0953-8984/23/13/135003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 128.178.203.188
The article was downloaded on 15/03/2011 at 08:13

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/23/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING

JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 23 (2011) 135003 (5pp)

doi:10.1088/0953-8984/23/13/135003

Valence band structure of the
Si(331)-(12 x 1) surface reconstruction

Corsin Battaglia', Eike Fabian Schwier?, Claude Monney>*,
Clément Didiot?, Nicolas Mariotti’, Katalin Gaal-Nagy>-,
Giovanni Onida®, Michael Gunnar Garnier’ and Philipp Aebi’

! Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT),
Photovoltaics and Thin Film Electronics Laboratory, Rue A-L Breguet 2, 2000 Neuchatel,

Switzerland

2 Department of Physics and Fribourg Center for Nanomaterials, Université de Fribourg,

Chemin du Musée 3, 1700 Fribourg, Switzerland

3 Dipartimento di Fisica and European Theoretical Spectroscopy Facility (ETSF), Universita

degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
E-mail: corsin.battaglia@epfl.ch

Received 26 December 2010, in final form 31 January 2011
Published 14 March 2011
Online at stacks.iop.org/JPhysCM/23/135003

Abstract

Using angle-resolved photoelectron spectroscopy we investigate the electronic valence band
structure of the Si(331)-(12 x 1) surface reconstruction for which we recently proposed a
structural model containing silicon pentamers as elementary structural building blocks. We find
that this surface, reported to be metallic in a previous study, shows a clear band gap at the Fermi
energy, indicating semiconducting behavior. An occupied surface state, presumably containing
several spectral components, is found centered at —0.6 eV exhibiting a flat energy dispersion.
These results are confirmed by scanning tunneling spectroscopy and are consistent with recent

first-principles calculations for our structural model.

1. Introduction

Understanding the interplay between the structural and
electronic properties of silicon surfaces is interesting not only
from a fundamental point of view but it becomes increasingly
important for technological applications. Previous angle-
resolved photoelectron spectroscopy (ARPES) studies focused
on the valence band structure of the Si(100)-c(4 x 2) [1-3],
Si(111)-(7 x 7) [4-7] and Si(110)-(16 x 2) [8-10] surface
reconstructions and their relation to the atomic structure [11].

Here we report for the first time ARPES results for
the Si(331)-(12 x 1) surface reconstruction. Si(331) is of
particular importance because it is the only planar silicon
surface with a stable reconstruction located between the
(111) and (110) directions. Since its discovery 20 years
ago [12] several structural models containing dimers and
adatoms as elementary structural building blocks have been
proposed [13, 14]. We recently revealed the presence
of an additional building block on the Si(331)-(12 x 1)
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surface. Using scanning tunneling microscopy (STM) we
were able to resolve for the first time rows of pentagon
pairs running across the Si(331) surface [15]. Inspired by
the adatom—tetramer-interstitial (ATI) model for the Si(110)-
(16 x 2) surface [16, 17], we proposed a structural model
containing silicon pentamers and adatoms as elementary
structural building blocks [11, 15].

So far the electronic structure of the Si(331)-(12 x 1)
reconstruction has not yet been investigated in detail. Based on
the fact that they were able to image the Si(331) surface with
an STM bias of £50 meV or lower, Gai et al [14] concluded
that the surface must be metallic in nature. In contrast to
the metallic behavior reported by Gai et al, our valence band
spectra obtained from ARPES unambiguously reveal a band
gap indicating semiconducting behavior and a flat, almost non-
dispersing, surface state at —0.6 eV. This result is confirmed by
scanning tunneling spectroscopy (STS) and is consistent with
first-principles calculations for our structural model.

2. Experiment

Experiments were carried out on boron doped Si(331) samples
from Crystec with a resistivity of 0.1-30 € cm. Preparation

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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of high quality, atomically precise Si(331)-(12 x 1) surfaces
was described in detail in [18]. Experiments were performed
in an ultra-high vacuum chamber with a residual gas pressure
below 3 x 10~!" mbar equipped with an upgraded Scienta SES-
200 hemispherical analyzer with energy and angular resolution
set to 20 meV and 0.5°, respectively. Monochromatized, p-
polarized He I photons of energy 21.218 eV were used for all
measurements. The Fermi energy was calibrated by measuring
polycrystalline molybdenum from the Si(331) sample holder.
Samples were oriented using an Omicron low-energy electron
diffraction (LEED) setup. STM experiments were carried out
using an Omicron low-temperature STM. All measurements
were performed at room temperature unless otherwise stated.
Details of the calculations performed within first-principles
density functional theory were given in [19].

3. Results and discussion

Before presenting our experimental ARPES band maps, we
briefly review the geometry of the Si(331) surface. Figure 1(a)
presents an experimental STM image showing the double rows
of silicon pentamers running along the [116] direction. The
orientation of the surface with respect to the bulk is indicated
along with the unit cell of the (12 x 1) surface reconstruction
(dashed rectangle). The various features observed in the STM
image were discussed in detail in [15]. In figure 1(b) we
present the relationship between the real space Bravais lattice
and the reciprocal space of the Si(331) surface. The unit
cell in real space and the Brillouin zone in reciprocal space
for the unreconstructed bulk-terminated (1x 1) symmetry
of the Si(331) surface are drawn as continuous lines; the
corresponding entities for the reconstructed (12 x 1) surface
supercell are drawn as dashed lines. Although conventionally
called the (12 x 1) reconstruction, because of the 11 satellite
diffraction spots in between the integer spots along the
[110] direction observed in LEED patterns [15], the surface
supercell is more correctly described in matrix notation by

()= &) ()

Note also the shaded gray areas within the (12 x 1) unit cells
of figure 1(b), which indicate the glide plane symmetry in real
space, which reduces to a mirror symmetry in reciprocal space
as discussed in [15].

We now turn to our experimental ARPES data.
Figures 2(a) and (b) show photoelectron band maps along the
['A and ' B directions (see figure 1(b) for the position of the
high symmetry points I', A and B within the surface Brillouin
zone). Eg denotes the Fermi energy. Here we reference
locations in reciprocal space with respect to the (1 x 1) surface
Brillouin zone of the unreconstructed surface as we do not
observe a clear modulation in the experimental band structure,
which we could associate with the (12 x 1) geometry. The
band dispersion along T'A exhibits approximately a mirror
symmetry within the (1 x 1) unit cell with respect to T
(slightly broken by the p-polarization of the incident He I
photons), but no mirror symmetry is observed along ' B. This
can be expected from the symmetry of the bulk-terminated
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Figure 1. (a) High-resolution STM image with a (12 x 1) unit cell
(dashed line) indicated (see text for details of the unit cell). Bias
voltage 2.0 V, set-point current 0.06 nA, temperature 77 K. (b) A
sketch of the Bravais lattice of the Si(331) surface in real and
reciprocal space. The unit cell and Brillouin zone for the (1 x 1) and
(12 x 1) symmetries are drawn with continuous and dashed lines,
respectively.

(This figure is in colour only in the electronic version)

Si(331) surface (see for example page 5 of [11] for a balls-and-
sticks drawing). The solid white lines denote the calculated
valence band edge of the silicon bulk band structure projected
onto the Si(331) surface, computed within the local density
approximation (LDA). The top edge of the valence band was
placed at —0.6 eV in order to cover all dispersing bands close
to Er. Besides several strongly dispersing features (band width
>2 eV) within the projected bulk band structure, we find a
flat, almost non-dispersing, broad band centered at —0.6 eV
(band width of peak center <0.2 eV, outlined by gray lines),
which we identify as a surface state, since it reaches into the
bulk band gap. Close to I, this band turns into a surface
resonance as it intersects the bulk states (see also the energy
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Figure 2. Experimental band dispersion of the Si(331)-(12 x 1) surface. (a) and (b) gray-scale band maps with binding energy E—EF versus
parallel momentum kj; along the (1x 1) I'A and I" B directions, respectively. The edge of the surface projected bulk band structure is shown
by the solid white lines. The fitted positions of the surface state/resonance are indicated by gray lines; (c) and (d) the corresponding energy

dispersion curves extracted from the band maps in (a) and (b).

dispersion curves in figures 2(c) and (d) extracted from the
band maps in figures 2(a) and (b), respectively). We expect that
this surface state contains several spectral components, which
reflect the complexity of the atomic structure of this surface
reconstruction. In order to investigate further the spectral
composition of this state, a detailed study as a function of
photon energy would be desirable, allowing us to optimize
the ARPES cross section for individual surface states. A
surface state of the Si(331)-(12 x 1) reconstruction should
exhibit the (12 x 1) periodicity of the surface. However,
because of the small size of the (12 x 1) Brillouin zone
(see again figure 1(b)) and possibly localized nature of these
states, no clear modulation associated with the periodicity
of the supercell is observed in the experimental band maps.
This can be understood as follows: a single band with a
certain bandwidth within the (1 x 1) unit cell will, upon
(12 x 1) reconstruction, split into 12 subbands via backfolding
at the (12 x 1) Brillouin zone boundaries. The Brillouin
zone will therefore be filled with subbands over the previous
bandwidth. Thus the many subbands will form a large,
seemingly non-dispersing band, where the (12 x 1) periodicity

cannot be resolved anymore. This effect is more pronounced
the larger/smaller the unit cell/Brillouin zone of the surface
reconstruction. In contrast, the bulk bands should exhibit a
dominant (1 x 1) periodicity, since they are only very slightly
affected by the periodicity of the surface.

Focusing now on the energy dispersion curves in
figures 2(c) and (d), in particular on what happens close to the
Fermi energy (E — Er = 0), we see that for both directions,
no discernible photoelectron intensity is observed. This clearly
implies that the surface exhibits semiconducting behavior in
contrast to the earlier report by Gai et al [14]. In figure 3
we compare the photoemission spectra of Si(331)-(12 x 1)
and Si(111)-(7 x 7) measured at normal emission, i.e. for
I'. For comparison we also show a Fermi step measured on
polycrystalline molybdenum. Whereas Si(111)-(7 x 7) clearly
exhibits a finite spectral intensity at the Fermi energy similar
to the molybdenum polycrystal, we see a clear gap for Si(331)-
(12 x 1).

In figure 3 we also present a conductance d//dV spectrum
obtained via STS by recording the variation of the tunneling
current while varying the bias between the sample and the STM
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Figure 3. Comparison between the photoemission spectrum of
Si(331)-(12 x 1) and Si(111)-(7 x 7) at T". For reference purposes a
Fermi step measured on polycrystalline Mo is also shown. In
addition a d//dV curve obtained with the STM at room temperature
is also shown.

tip. The STS spectrum shows very nice agreement with the
ARPES spectrum, in particular, the occupied surface state with
a maximum at about —0.6 eV below the Fermi energy is nicely
reproduced, although its precise position slightly varies from
spectrum to spectrum depending on the location on the surface
and on the tip condition. Interestingly, a second clearly defined
state is seen exhibiting a maximum at 0.5 eV in the unoccupied
part of the spectrum.

From the positions of the two peak maxima we can derive
an upper limit for the gap of the Si(331)-(12 x 1) surface of
1.1 eV. Taking into account the broad character of the peaks,
a more realistic estimate is obtained by taking the positions of
the half-maximum of the two peaks. This gives an estimated
value for the gap between 0.5 and 0.6 eV. For a more accurate
value a more detailed knowledge of the spectral components of
the peaks centered at —0.6 and 0.5 eV is required.

In contrast, the calculated band gap for the structural
model we recently proposed for the Si(331)-(12 x 1) surface
in [15] is 0.25 eV.° However, it is well known that the LDA
underestimates the band gap energy of silicon. For bulk

6 The gap value of 0.25 eV is for model T4e in [19]. The gap values for the
other models discussed in this paper are 0.03 eV (pentagons only), 0.07 eV (T4
without pentagons), 0.11 eV (T4e without pentagons), 0.10 eV (T4), 0.11 eV
(H3), 0.12 eV (A3), 0.22 eV (T4a), 0.14 eV (T4b), 0.07 eV (T4c), 0.07 eV
(T4d), 0.23 eV (T4a + b).

silicon we obtain an LDA band gap of 0.55 eV, whereas
experimental values are in the range of 1.1-1.2 eV [20] for the
temperatures we are interested in here. So the LDA calculation
underestimates the bulk band gap by a factor of two. Applying
the same factor to the surface calculation yields a theoretical
band gap of about 0.5 eV, a value which is consistent with the
estimated value of 0.5-0.6 eV derived above from experiment.
It is instructive to compare our ARPES data for Si(331)-
(12 x 1) with data reported in the literature for Si(110)-
(16 x 2), a surface reconstruction, which we believe shares
the same structural building blocks as the Si(331)-(12 x 1)
surface, namely pentamers and adatoms. A very similar non-
dispersing surface state was observed at —0.4 eV by Kim
et al [9] in the bulk band gap of the Si(110)-(16 x 2) surface
accompanied by a second flat surface state at —0.9 eV. They
concluded that these states may be linked to the pentamers and
adatoms due to their spatially localized electronic character.
Even more recently, Sakamoto ef al [10] were able to resolve
each of these states into two distinct components located at
—0.2, —0.4 eV and —0.75, —1.0 eV, respectively. Similar
to the Si(331)-(12 x 1) surface reconstruction, the results of
both studies indicate semiconducting behavior for the Si(110)-
(16 x 2) reconstruction, as no spectral intensity is observed
at the Fermi energy. Further investigations will be required to
fully understand the link between the structural and electronic
properties of these highly complex surface reconstructions.

4. Conclusion

The wvalence band structure of the Si(331)-(12 x 1)
surface reconstruction was investigated by angle-resolved
photoelectron spectroscopy. From the ARPES spectra we
identify a distinct occupied surface state centered at —0.6 eV,
without significant dispersion. However, we cannot exclude
that this state is composed of several spectral components. This
state is also observed in STS spectra. In addition, using STS we
observe a further distinct state at 0.5 eV in the unoccupied part
of the spectrum. All experimental spectra are clearly gapped,
indicating unambiguous semiconducting behavior in contrast
to a previous report. A finite band gap is also consistent
with the LDA calculation for the structural model we recently
proposed for the Si(331)-(12 x 1) surface reconstruction.
Finally, similarities between the band structures of the Si(331)-
(12 x 1) reconstruction and the closely related Si(110)-(16 x 2)
reconstruction were discussed.
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