
Query-Point Debugging

Salman Mirghasemi
School of Computer and Communication Sciences,

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

salman.mirghasemi@epfl.ch

Abstract
Software Debugging is still one of the most challenging and
time consuming aspects of software development. Monitor-
ing the software behavior and finding the causes of this be-
havior are located at the center of debugging process. Al-
though many tools and techniques have been proposed to
support developers in this job, none of them could replace
or improve the traditional debugging methods. This paper
presents Query-Point debugging as a new debugging ap-
proach and explains how it can facilitate debugging for de-
velopers.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

General Terms Algorithms, Design, Human Factors, Lan-
guages

Keywords dynamic breakpoint assignment, execution mon-
itoring, locating defects, program traces, query

1. Problem Statement
Software Debugging has little changed during the past
decades and remained one of the most challenging and time
consuming aspects of software engineering. Today, debug-
ging is much more an art and the predominant techniques for
finding bugs are data gathering (e.g., print statements) and
hand simulation. Software developers spend huge amounts
of time, up to half of their time, debugging. Finding and fix-
ing bugs faster and more effectively directly increases pro-
ductivity and can improve program quality by eliminating
more defects with available resources [2].

Fixing a bug consists of three main stages, reproducing
the bug, locating the defects and finally fixing the defects.
The second stage, locating defects, located at the heart of

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

debugging process and is also the focus of this paper. Lo-
cating defects is mainly carried out by the examination of
buggy execution, therefore the bug should be reproducible.
In this paper, when we talk about debugging and bugs, we
mean locating defects and reproducible bugs respectively.

There are two traditional approaches to debugging: log-
based debugging and breakpoint-based debugging. The first
approach consists in inserting logging statements within the
source code, in order to produce an ad-hoc trace during pro-
gram execution. This technique exposes the actual history
of execution but (a) it requires cumbersome and widespread
modifications to the source code, and (b) it does not scale
because manual analysis of huge traces is hard. The second
approach consists in running the program under a dedicated
debugger which allows the programmer to pause the exe-
cution at determined points, inspect memory contents, and
then continue execution step-by-step. Although not subject
to the two issues of log-based debugging, breakpoint-based
debugging is limited: when execution is paused, the infor-
mation about the previous state and activity of the program
is limited to introspection of the current call stack [1].

Omniscient debuggers, which are built based on capture-
replay techniques, have been proposed to overcome men-
tioned issues. While the advantages of omniscient debug-
ging over traditional approaches are incredibly clear, it has
had a very limited impact in production environments, and
is still mostly seen as an unrealistic approach [1]. We can
briefly mention three main issues about omniscient debug-
gers. First, capturing the execution trace has a huge over-
head over normal execution. Second, the captured execution
is different with live execution and many useful data such as
GUI and memory heap states are not available to the devel-
oper. Third, querying the huge amount of collected data is
expensive.

This work provides two main contributions to debugging:
(a) Query-Point debugging, as a new debugging approach,
which provides a systematic method to debugging; and (b)
Techniques which let applying Query-Point debugging on
live executions instead of captured ones.

763



2. Query-Point Debugging
Before getting into the approach explanation, we need to
define a few concepts. We can suppose a hypothetical line,
execution trace line, corresponding to the program execution
trace. An execution point is a point on this line. A query
selects a set of points on the execution trace line.

Checking the correctness of program state, Check State
Problem (CSP), at a given point is the problem arises many
times during debugging and is one main source of debugging
complexity. A buggy point is an execution point with a data-
flow or control-flow problem in the program execution or
program state. Consider that the buggy point is determined
according to the developer’s expectation which can be de-
fined by a set of assertions. Therefore, at least one of the
defined assertions at a buggy point should be violated. This
definition might be inconsistent (due to defects in the devel-
oper’s mental model) or it might change during debugging.

Two basic approaches are used for the navigation on
buggy execution trace: forward and backward check-search.
Each one of these approaches has its own features and usu-
ally a mixture of both is used. Answering to CSP is easier in
forward check-search while backward check-search is more
natural for finding the cause of an error.

Query-Point debugging works based on a few simple
facts:

1. Locating defects problem can be reduced to locating the
first buggy point (defect point) on the buggy execution
trace line and providing an explanation of how the prob-
lem at the defect point eventually causes the bug.

2. From the defect point to the point the bug appears, all
points are buggy points. Consider that program state con-
sists of all data affect the program execution. For example
when a program stores data in a database table, the table
should also be considered as part of program state.

3. To answer to CSP at a point, a developer needs to know at
which stage of computation scenario the point is located.
Then the developer can use collected data to determine
expectations which become the basis for answering to
CSP at the point.

Query-Point debugging is an iterative process in which
the developer incrementally increase her knowledge about
the buggy execution. Execution trace line is the central ref-
erence view during debugging and, points on this line and
their associated assertions are the developer’s discoveries up
to now. In addition to keeping track of past steps, it helps de-
veloper to only focus on the interval from the last non-buggy
point to first buggy point. Queries are appropriate means for
specifying new points.

The Query-Point debugging process can be explained in
a few high-level steps:

Query-Point Debugging:
1) Convert the bug to a buggy point on the execution

trace line.
2) Start backward check-search from the first buggy point
or forward check-search from the last non-buggy point.
3) Answer to CSP at ’next point’. Go to step 2.

Forward Check-Search:
1) Define the next point.

Backward Check-Search:
1) If there is a data-flow problem:
1.1)A wrong value
next point: the last place the
variable has been changed.
2) If there is a control-flow problem:
2.1)A wrong instruction.
next point: last fork point.
2.2)A missed instruction.
next point: last fork point.

To start debugging, the developer should determine at
least one buggy point on the execution trace line. This point
is usually the point the bug appears. Sometimes the devel-
oper has some initial data (e.g., the error location in source
code) about this point, therefore the developer can use these
initial data to query the execution and find the point. Other-
wise the developer has to go through forward check-search
to find the first buggy point on the execution trace line. After
the first step, the developer continues by adding a new point
and therefore reducing the examination interval at every it-
eration.

3. Implementation Techniques
We briefly explain three main implementation techniques:
(a) Querying live execution; (b) Point fixation; and (c) Back-
ward movement. Once a bug is reproducible, the live buggy
execution can be used for examination. Querying the live ex-
ecution is carried out by dynamic breakpoints assignment. It
means that, the debugger determines places that might be in
the result set of query and checks all these points during the
execution. One advantage of querying the live execution is
that the developer can define more complex constraints in a
boolean method which can be called at every point.

Point fixation means recognizing the same points on the
trace line in the following executions. The primary technique
for point fixation is using the index of point in the query
result set. There are some cases (e.g., when two threads do
the same job) that the index in the result set is not enough
for finding the same point. In these cases additional data
around the point (e.g., a method parameter value) can be
used to uniquely define the point. Backward movement can
be managed by fixing the current point and re-execution.

Acknowledgments
I would like to thank Claude Petitpierre for advising me in
this research.

References
[1] G. Pothier, É. Tanter and J. Piquer. Scalable omniscient

debugging. In OOPSLA, 2007.

[2] A. Zeller. Why Programs Fail: A Guide to Systematic Debug-
ging. Morgan Kaufmann, 2005.

764


