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Abstract—Limits on the storage space or the computation time ~ This work aims at enlarging the possibilities to tradeoff
restrict the applicability of model predictive controllers (MPC) in  golution properties through the combination of these two
many real problems. Currently available methods either conpute methods. It aims at an existent gap of problem sizes and

the optimal controller online or derive an explicit control law. . . . ..
In this paper we introduce a new approach combining the types, which are either intractable for explicit MPC or

two paradigms of explicit and online MPC to overcome their the complexity of the explicit solution exceeds the storage
individual limitations. The algorithm computes a piecewi® affine capacity, but where an online MPC solution cannot meet the
approximation of the optimal solution that is used to warm-sart  required online computation times. Specifically, ideasrfro
an active set linear programming procedure. A preprocessig  nnroximation are combined with warm-start techniques.
method is introduced that provides hard real-time executio, . . . .
stability and performance guarantees for the proposed combller. In this paper We use a PWA appI‘OXImatI(?n of the optimal
By choosing a combination of the quality of the approximatim control law, which has been ComputEd offline, to warm-start
and the number of online active set iterations the presented the online optimization. The optimization executes a finite
procedure offers a tradeoff between the warm-start and onlie  number of active set iterations before returning a feagsible
computational effort. We show how the problem of identifying suboptimal control action, which is then applied to the

the optimal combination for a given set of requirements on .
online computation time, storage and performance can be seéd. system. The goal is to choose a good tradeoff between

Finally, we demonstrate the potential of the proposed warmstart ~ the complexity of the PWA approximation and the number
procedure on numerical examples. of active set iterations required in order to satisfy system

constraints in terms of online computation, storage and
performance. Conditions are derived which guarantee that
|. INTRODUCTION the suboptimal solution is closed-loop stabilizing, febesi
and has a bounded performance deterioration. The provided
It is well-known that computation of a model predictiveanalysis has the important benefit that it is not based on the
controller (MPC), under certain assumptions on the problesptimal parametric solution to the MPC problem which might
structure, amounts to the solution of a linear or a quadrafe prohibitively complex.
program at each sampling instant. Whereas classicallgethe
optimization problems are solved online, it has been shownWe also raise the question of an optimal combination of
in recent years that the optimal solution to this type afarm-start and online computational effort, with respext t
problem is a piecewise affine function (PWA) defined ovetertain requirements on the solution. Considering contjmuta
a polyhedral partition of the feasible states. This soectll time and performance as two exemplifying requirements,
explicit solution can then be used as a control look-up tabiikis can be informally stated in the form of the following
online, enabling MPC to be used for fast sampled systeragtimization problems:
(see e.g. [1], [2], [3] and the references therein). 1. Minimize online computation time while respecting a
bound on the performance deterioration
However, both the offine and online method have 2. Maximize the performance within available computation
limitations. The main disadvantage of the online method time
is that it is in general only applicable for controlling slow
processes. In the case of the explicit solution, the numberThis paper extends the main ideas that have been introduced
of state-space regions over which the control law is definad,[9] with both theoretical and numerical results. The matl
the so-called complexity of the partition, grows in the worof the paper is as follows: In Section IV we present the main
case exponentially due to the combinatorial nature of theea of using an offline approximation to warm-start an &ctiv
problem [1]. This has given rise to an increasing interest get linear programming procedure. An explicit represémmat
the development of new methods to either improve onlired the proposed control law is derived in Section V. In
optimization or to approximate explicit solutions (e.g], 6], Section VI a preprocessing method is introduced that allows
[6], [7], [8])- Depending on the particular problem propest the analysis of the properties of the control input that will
and implementation restrictions, the user then has to decige applied online. The question of an optimal combination
for one of the two approaches. between warm-start and online computation is discussed in
Section VII. Finally, numerical examples illustrating tpeo-



posed method and ideas are given in Section VIII and wehere N is the control horizonX,U and X; are polytopic

briefly conclude in Section IX . constraints on the states and inputs and the stage costngdefi
asi(z;,u;) = ||Qzi||p + || Ruil|p with p € {1, 00}, where@
I1. NOTATION and R are positive definite weights penalizing the states and

inputs. V¢ is the terminal penalty function andy C X is
a compact terminal target set. The MPC problem implicitly
]defines the set of feasible initial statés

If G € R™*": andZ C {1,---,m}, thenGz € RIZIx": is
the matrix formed by the rows daF indexed byZ. If ¢ € R™
is a vector thercz is the vector formed by the elements o
c indexed byZ. A polyhedronis the intersection of a finite
number of halfspace® = {z | Gz < f} and apolytopeis a
bounded polyhedrorR := {Pj}j-V:l with NV € N is called a

Definition 111.3. [Feasibility of a control law] A control
law u(z) is called feasible forz if the input sequence

polyhedral partition oft C R”= if all P; are full-dimensional uo (o), - ’uNfl(xN*_lt)h and ihe corrdespondlig jtate se-
polyhedra,uN ,P; = X andint P, Nint P = @ Vi # j d-oncero,-,xn, WM xo = & @nd Ziyy = AL +

andi,j € {1,---,N}. A PWA function f(z) defined over Bu,(x;),i=1,...,N, generated by applying the control law
the p’olyhedr:all p:;lrtitionDN is denoted asf(x) i= Ciz + over N time steps, satisfy all state and input constraints in

Diif ze P,V P, e PN, (4b).
A function v : R>o — R> is of classK if it is continuous, |f the normp is taken to be thé— or the co—norm, we can

strictly increasing andy(0) = 0 [10]. write (4) as a parametric Linear Program (pLP) of the form:
I1l. PRELIMINARIES 2*(z) = arginin Tz (5)
Consider the discrete-time linear system subjectto Gzz < fr ,
:CJr — AI+BU , (1) ng = Fgl’ s

wherez € R™ is the statex € R" is the control input and yvherez € R™= is a vector containing the sequence of control

A and B are the dynamic matrices. If system (1) is controlleffPuts {uo, ..., un-1}, states{zy,...,zx} and appropriate
by the control lawu = #(z) then the closed-loop system iss_lack van_ables introduced to rewrite the st_ate and inpoape
denoted by ties as a linear cost. The current state R"= is the parameter,

2t = Az + Br(z) = Aq(2) ) G e lexn.z, Ec{l---,m} é-ll"ldI ={1,---,m} \5.. For .

a description of how the optimal control problem in (4) is
transformed into the pLP (5), i.e. how the state and input
constraints, the dynamics and the cost are converted into
Gz,Gg, fr,Fe and ¢, see e.g. [3]. (Note that for simplicity
we use the same indexing fgrand F' as for G although we

Theorem 11I.2 (Asymptotic stability, [10]). Let X be a PI distinguish the vectof from the matrixF' in order to account

set for systen(2) with 0 € int X and leta(-), a(+), andg(+) O the different dimension).

be IC-class functions. If there exists a functibh: X — Rxg . . . .
with V(0) = 0, such that Definition Ill.4. Let z be the vector of decision variables in

allzl) < V() <a|z]), vz € X (5). We definer : R"= — R"« to be a linear mapping that

returns the first control input, contained as a component in
V(a®) = V() < —B(lzl), Ve e X, z.

Definition 11l.1 (Positively invariant (PI) set). A set S C
R™ is a positively invariant (PI) set of system (2)4f.(z) € S
forall x € S.

then the equilibrium at =0 is asymptotically stablén X. By so|ving the pLP (5) the 0ptima| SO|UtiOB*($) can be

In the following, (asymptotic) stability of a system is used computed for each feasible value of the state. The implicit

mean that the system has an (asymptotically) stable equilfPtima! MPE control |3W is then given in a receding horizon
rium at the origin. fashion byu*(z) = = (2" (z)).

Assumption 1I1.5. In the following it is assumed that(-)
is a Lyapunov function in¥y and Xy is a Pl set under the
In this paper, we consider the following formulation of theontrol lawr ¢(x), given by the following conditions:

Model Predictive Control

MPC problem: AL: A+ Bry(z) € X andrp(z) e UV z € X;
N-1 A2: Vi((Az+Brg(a) - Vi () < ~l(a, ry(2)) ¥ o € X .
J(r)=  min  Vi(zn)+ Z eI (4a)
{1} i= Remark 111.6. Note that in this work the — or co—norm is
subject to z;41 =Ar;+Bu; , i=0,...,N -1, chosen to penalize the states and inputs in the cost function
(ri,u;)) €XxU,i=0,....N—1, (4a) instead of the commonly used 2-norm, as the resulting
TN € Xy, pLP (5) allows for an exact analysis of the control law obgdin
To =z, by the proposed procedure, as will be shown in Section V.

(4b)



Theorem II.7 (Solution to the MPC problem, [1], [11]). (see e.g. [5], [7])- In explicit MPC, approximation methods
Consider Problen(4) fulfilling Assumption 111.5. The optimal have been proposed that either modify the original MPC
MPC control law u*(x) is a continuous PWA function andproblem (4), retrieve a suboptimal solution or postprocess
the optimal value functionJ*(x) is a continuous PWA the computed optimal solution, with the goal of reducing the
Lyapunov function of the state defined over a polyhedral complexity of the explicit controller, cf. e.g. [15], [6]18],
partition of the feasible setY. The closed-loop system[16]. All of the cited explicit approximation methods prde
xt = Az + Bu*(z) is asymptotically stable with region ofa feasible control law and allow verification of closed-loop
attraction X. stability by means of Theorem IIl.11 for some minimally
required complexity. All currently available online MPC
Remark 111.8. Note that even in the case of dual degeneraayiethods however lack the possibility of giving guarantees
there always exists a polyhedral partition such that thé- oppbn the suboptimal solution, e.g. closed-loop stability or
mizer z*(x) in (5) and thereby the optimal control lawf(x) feasibility, in a real-time setting.
is unique and continuous & [1]. Continuity of u*(z) is
however not a required assumption for the proposed methodThe strategy proposed in this paper combines the idea
of offline approximation with warm-start techniques from
online optimization with the goal of providing hard reaht,
stability and performance guarantees. Warm-start teci@siq
We first define an approximation of the MPC problem (43im at identifying advanced starting points for the optiatian
and some useful properties that will be used in Section Y order to reduce the number of iterations required to reach
in order to give guarantees on the control law proposed fRe optimum. They often try to make use of the information
this paper. Let:"(x) be the optimizer of the optimal controlgained during the solution of one problem to solve the
problem (5) andJ*(x) = c’z*(z) be the corresponding next one in a sequence of closely related problems. When
optimal cost and a Lyapunov function. solving MPC problems in a receding horizon fashion an LP
is computed for every measured state. However in practice,
Definition 111.9 (Approximation error). Let Z(z) be a sub- the optimal control input from a previous measurement might
optimal solution to (5). A functioni(z) = m(z(z)) is called pe an infeasible solution to (4) at the current instance, due
an approximate control lawfor (4) if u(z) is feasible for to gisturbances acting on the system. We therefore propose a
all z € X. The approximate control lawi(z) is an e- warm-start strategy that utilizes a PWA approximate cdntro

approximation if for allz € X' the condition/(z) —J*(x) < ¢ |aw of (4) to provide a good and feasible starting point. The
is satisfied, wherd/(z) := ¢"Z(x) ande is the smallest value pre-knowledge of the initial solution for all feasible vakl
satisfying this inequality. of 2 allows us to analyze the solution obtained by the online

optimization.

A. Approximation of the MPC problem

Remark 111.10. Note that the approximation errerdenotes

the worst accuracy over the feasible sétand is_hence  The following two parameters are used to classify the warm-
uniform while the accuracy of the approximate costr) is  start solution: the complexit, (number of regions) and its

varying with z. approximation errok, given by Definition 111.9.

A standard condition to test if an approximate solution is ) )

stabilizingis given by the following theorem: Def|n|t|on_ IV.1 (Warm-start Solut|on)_. A _ function
v(z, Np) is called a warm-start solution of (4)if(v(x, Np))

Theorem I11.11 (Stability under a(z),[12], [13]). is a feasible, PWA approximate control law of (5) defined

Let u(x) be an approximate control law of(4). The over Np polytopic regions.

approximate value function/(x) is a Lyapunov function
if J(z) — J*(x) < Il(z,u(z)) for all z € X, where
l:R" x R" — R is the stage cost (4a) and the closed-loo
systemet = Az + Bii(z) is asymptotically stable with region * \*/
of attraction X. solution to(5).

Lemma IV.2 (Convergence ofv(-,-)). There exists a func-
Bon v(z,Np,, ) of finite complexityNp,,, € N, such that

(z) = V(I,ONP ) forall x € X', wherez*(z) is the optimal

opt

Proof: Result follows directly from the fact that the
1V. PROPOSED CONTROL LAW approximation is PWA and Theorem IIl.7. |

In order to overcome the limitations of the offline andy means of the parameté¥p, requirements can be set on
online methods mentioned in the introduction, severtie complexity of the warm-start solution(-, Np) that is
authors recently proposed new approaches to speed up ontiamputed and stored in an offline preprocessing step.
optimization or to reduce the complexity of explicit sotuts
by means of approximation. The authors in [14], [8] foRemark IV.3. As was shown in [12] there exists an analytical
example utilize new developments in interior-point methodelation between the approximation erecand the complexity
and show how these can be applied to efficiently solve thér of a PWA offline approximation. Requirements on the
optimal control problem. Another paradigm that is freqlientapproximation error can therefore also be imposed using the
applied to improve online optimization is warm-startingparametertNp.



In the online control procedure, the warm-start solution #®lgorithm 1 Warm-start linear programming procedure
evaluated for the measured state and used to initialize tmgut: warm-start solutionr(-, Np) and current measured state
online optimization. A standard active set method (ASM) iSmeas

applied to compute the control action since it allows us ke ta Output: approximate control inpuion

advantage of a feasible starting point that is not necegsarii: run point location algorithmz = v(2Zmeas Np)

located at a vertex. Active set methods generate a sequénce o [23], [24], [25], [26]
feasible iterates that converge to the optimal solutione@th 2. for k =1,.-- , K do
iteratez, the active setis given W4 = £U{i € Z|G;z = fi}. 3. perform an active set iteration [17], [18]

In an active set iteration, a subset of the active set is ¢hose. update iterate:
as the working setiW C Z4 using standard heuristics. 5. end for

From the current iterate, the maximal step in the steepest g ¢, = m(2)
descent direction is then computed, which is the directia t
minimizes the objective in (5) while keeping the constrsint
in W active, defining the next iterate. See e.g. [17], [18] for
more details on active set methods.

The above described procedure of using an approximation
to warm-start an online optimization offers the possipilit
Assumption V.4 (Non-degeneracy) It is assumed that the .t CC2 °0 |15 MRS 20C SRS B AR BT
gctwe s-et is non-degenerate, i.e. the active constrairets the degree of approximation realized by the warm-start and
linearly independent. the effort expended in online optimization. The goal is to
Note that it is possible to extend the approach to degenergtentify a good if not optimal combination that achieves the
cases by using one of the standard approaches for antigyclest properties of the online control input applied to the
(e.g. [19], [20], [21]) or lexicographic perturbation (e[g2]) system for given requirements on the approximation error
in active set methods. and/or limitations on the online computation time or sterag

Whereas in standard active set methods iterations are perfhe proposed procedure and algorithms are detailed in the
formed until the optimality conditions are met, the onlindollowing sections.
optimization procedure is stopped early after exaéfhactive

set iterations and the current suboptimal control input i¥, PARAMETRIC CALCULATION OF THE ONLINE CONTROL
applied to the system. LAW

Our goal is to give guarantees on the proposed suboptimal
control law (6). Apart from feasibility, which is guarantke
by Lemma IV.7, we want to ensure stability and a certain
bound on the approximation error. In order to analyze the
solution properties, we need an explicit representatiothef
approximate control input(-, -) for the entire feasible set'.

We will show that starting from the warm-start solution, the
iterative path taken by the active set method is a function of
x, defined over a polyhedral subdivision &f

Definition V.5 (Warm-start optimization). Let z be a fea-
sible solution of (5) for the parameter We definex(z, K) to
be the decision variable of (5) aftéf iterations of the linear
programming active set method starting from the feasibietpo
Z.

Definition 1V.6 (Proposed control law). Let v(-, Np) be a
warm-start solution to (5) and(-, K) be as defined in IV.5.
The proposed control law is

uon(x) = m(k(v(z, Np), K)), forx € X . (6) Remark V.1 (Offline Complexity). Note that the complexity
(number of regions) of this subdivision does not affect the
Lemma IV.7 (Properties of x(-,-)). The proposed control actual optimization carried out online, since the paraimetr
law (6) is feasible for allz € X, and for eachVp there exists solution is only used for offline analysis.

a finite Ko € N, such thatu”(z) = 7 (s(v(2, Np), Kopt)) - The operations performed during an active set iteration can
Proof: Feasibility is ensured by the procedure of the ASNbe formulated as functions of the parameterLet z*(x) be

and the fact thav(xz, Np) is feasible for allz € X. The the iterate and¥ the working set at thé-th iteration step.

existence of a finitéy,,; is guaranteed by the convergence oh search direction\z from z*(z) is computed that maintains

the ASM in finite time [18]. m activity of the constraints if¥. In this work, we use the

. . .steepest descent direction corresponding to the projectio
The warm-start linear programming procedure for a flxec} b b g profe

. : X : . .~ ~c onto the subspace defined by the constraints in the working
complexity Np and number of iteration&” is summarized in et given by:
Algorithm 1. In Section VI an offline analysis is introducec? 9 y:
providing guarantees for the proposed control law(x) Az = argmin{c’ Az |GwAz = 0,A2T Az = 6} @)
in (6) to be closed-loop stabilizing, feasible and to have a Az
bounded performance deterioration compared to the optiméiered € R>( is a scaling parameter.
solution. The steps performed during one active set iteration are
outlined in the following (cf. e.g. [17], [18]):



1. Compute step direction by solving the KKT conditionsedundant and can be disregarded, the irredundant ha#fspac

of (7) form the PWA parametric solution of (9). Redundancy elimi-
[ I GC{;V] [AZ} _ [—C] @8 nation problems can be easily solved by computing one linear
Gw 0 A 0]~ program per constraint.

wherel denotes the identity matrix of size, x n, and

) are the Lagrange multipliers. Corollary V.5. The proposed control lawon(z) is a PWA

If Az = 0 and A > 0: Stop with optimal solution function ofz defined over a polyhedral partitio®”= of the

2*(z) = 2F(2) . feasible sett'.

If Az =0 and at least on@; < 0: Remove constraint  Theorem V.3 enables us to compute an explicit PWA rep-
from W, i.e. W = W\{a}, wherea = argmin;{i |i € resentation of the approximate control lavjv(z, Np), K)

W NZ}. Recompute (8). _ ~ for a fixed complexityNp and number of iteration& using
2. Compute maximum step length for which all constrainig|gorithm 2.

are satisfied:

fi — GizF(x) Algorithm 2 Offline Analysis

|Gidz >0} . (9) Input: warm-start solution

tV(x,Np) =vj(x)if x € P; V P; € PNP

Output: Explicit representation of the proposed contreV la

7(z) = min {

ieT\W G;Az

3. UpdatelW: W = W Ue, where the new active constrain
e is the optimizer of (9).

4. Update iterate: uo”(fg). o
1 . 1: initialize stackS =0
2 (x) = 2" (x) + 7(x)Az . (10)  2: for all P; € PN* do push(v,(z), P;) onto S
3: end for
Remark V.2 (ASM). A similar parametric formulation can g4 for all k € {1,---, K} do [K active set iterations]
also be obtained using a different search direction or any of.  jnitialize stackS = 0
the other standard implementations found in the literatilie ¢, \while S £ 0 do [subdivide each region]
simplex-type algorithm in [27] for instance. For simpligit . pop (zp(z), P) from S
the strategy of adding or removing at most one inequalitys. computeA
constraint in each iteration to or from the working set isg, computea;, b; for zp(z), = € P, (8),(9)
considered. Note that C W, since the equality constrainfs such thatr(z) = ajz+b; if t € R; VR € R
always have to remain in the working set. [R is a polyhedral partition oP]
_ _ 10: for all R; € R do

Theorem V.3. At every iterationk € {1,---,K}, the step ;. push(zp(z) + (a;z + b;)Az, R;) onto §
length 7(z) in (9) and the current iteratez"(z) are PWA . end for ! e
functions ofz defined over a polyhedral partitioR™V* of the 13: end while
feasible sett. 14 2F(x) = z(a)if w € PV (2(x),P;) € 8

Proof: Assume that the statement is true forand that 15: P := {P;}i™ [P; form polyhedral partitior>™V:]
M) = Clz+ DV if x € G; V G; € PN*. For one 160 S=S5
region P; € PNr the line search (9) determining the nexti7: end for
constraint to become active is given by the pkPr) = 18 wuon(z) = 7(2%(2))

min;{a;(z)}, with o;(x) = 7CjiAc;jx + 'fgﬁfj, 1 € Teand
and Z.ang = {i € I\Z4|G;Az > 0}. This shows that(z)

is @ PWA function ofz, since the optimal cost of a pLP isRemark V.6. The parametric calculation of the proposed
PWA [28], [1]. With 7(z) andz*(z) being PWA, thek + 1-th  control law in (6) using Algorithm 2 requires the iterative
iterate (10) is as well a PWA function af. Since the initial solution of a parametric program. Although the computation
solution isz°(z) = v(z, Np), the statement is true fdr=1 complexity depends on the properties of the consideredaiont
and hence foralk € {1,--- , K} . B problem it grows significantly with the problem size. This

With z*(z) being a PWA function, equation (9) results inc_urrently limits the execution of the offline analysis in pra

a parametric LP. The approximate control law at iteratio ce, where in our experience a system of ordewas the
K is obtained by solving (8) and (9) iteratively for aliPiggest problem to be computed. Note that the warm-start

ke {l,---,K)}. With each iteration, the parametric solutiorlinear programming procedure is however not affected by thi

of (9) causes a further refinement of the polyhedral partitig®MPlexity and could still be applied without the rigorous
PNk guarantees provided by the analysis.

VI. ANALYSIS OF THE PROPOSED CONTROL LAW

Remark V.4. Note that the computation of the PWA function ACCORDING TO STABILITY, SUBOPTIMALITY, STORAGE

7(z) in (9) can be reduced to redundancy elimination of

he half o 5=Gi*@) Al half with SPACE AND COMPUTATION TIME
tf eG ak(sgaacesz(x) - Gidz " alfspaces; wit We introduce a preprocessing analysis that investigates th
i—uiz (X))

. 'Zk T . . . . . . .
Az 2 - ngz( Wi # j,i e I\W, G;Az > 0 are following properties of the approximate control law,(z) in




(6): stability, approximation error, storage space andnenl Bjuon(x;) is asymptotically stable with region of attractict

computation time. for all control lawsuon(z) = w(k(-, k)) for k > K if
Lemma VI.1 (Approximation error of wuon(x)). If senax, (8 < 0, with (14)
k(,K) == Clz + Di if z € P, ¥ P; € PN« and R T N
uon(z) = m(k(-, K)) is the proposed control law i(6), then 8 = max ¢ (72 + D7) = ¢z~ Imin(2)
the approximation error defined in Definition 111.9 is giveg b st Grz<fr, Gez=Fex, 2 €P; |

K :je{{?éﬁvx} dj , with (11) wherelmin(z) = min, {l(z,u) | u € U}.

T j j T
dj = max ¢ (Ve + D) —c 2 (12) Proof: Follows from Theorem VI.2 and the fact that
st Grz < fI, Gez = Fex, x € Pj . lmin(I) S Z(I’UOH(I))' u

Proof: We first proof that equation (12) computes the . L . .
largest distance between the approximate and the optifRgmark V1.4. Note that if the origin is contained it, then
cost. We taker = z fixed and show by contradiction that!min(z) = [|Q]|,-

equation (12) computes the distance to the optimal cost at -
z. Assumez*(z) is the optimal solution to (5) and® the Remark V1.5 (Stability/Performance test). Note that equa-

optimal solution to (12) for: = z. If 2°(z) is not the optimal tions (13) and (14) compute the maximum distance to the
solution to (5), i.e.cTz° > ¢T2%(z), then it follows that optimal cost plus the stage cost without computation of

T(CIz+DI)—cT20 < T(Ciz + DI) — T 2*(z). Therefore the par_ametric optimal §0Iution to problem (4), which can
2% cannot be the optimal solution to (12) atwhich proves b€ easily shown following the first part of the proof of
that2° also has to be the optimal solution to (5) at the state Lemma VI.1. Using Theorem VI.2 or Corollary VI.3 stab|_l|ty
Now letting = vary and simultaneously taking the maximunf the proposed control law (6) can hence be tested without
over allz € P; gives the worst case distancef. Finally, the the need to compute the optimal and potentially complex
biggest error over al € X and hence over alil the regions inParametric solution to problem (4).

PNk is the smallest that fulfills the condition in Definition Storage space is determined by the complexity (number

1.9 for all = € X. B of regions) Np of the warm-start solution since only the
Stability can be easily tested using the conditions of Taeor Warm-start has to be stored.
1.11:

Online computation time will be estimated in terms of

Theorem VI.2 (Stability of uen(x)). If s(-, K) := Clz + floating point operations (flops) for the calculations thavda
Diif x € P; ¥V P; € PNx and uon(z) = m(k(-, K)) is the to performed online. First the region of the current state is
proposed control law ir(6) at iteration K, then the closed- identified using a point location algorithm (e.g. [23], [2/25],
loop systenx; 1 = Aqx;+ Bauon(z;) is asymptotically stable [26]), then the corresponding affine control law is evaldate

with region of attractionX if and finally K online iterations are executed.
e g S 0, with (13)  Remark V1.6 (Sparsity of the MPC problem). In the case
s; = max 7 (CVz + D) — Tz — Uz, uon(x)) of thg MPC problem (4)_, the matrices an_dF in (5) have a
z,a special structure, resulting from the particular problestup.
st Grz<fr, Gez=Fex, z€P; . The matrices are extremely sparse and by reordering can be

shown to be in fact block diagonal or banded. We can exploit
the banded structure of the matrices to solve equationa(8) a
(9), achieving significant computational savings [29].

Proof: Condition (13) follows directly from Theorem
[11.11. If the difference between the approximate céét) :=
c'(CVx+ D7) and the optimal cosf* (z) := c¢T'u is less than
the stage cod{(z, uon(x)) for all z € P; and for all the regions
P; in PNx then the condition in Theorem I11.11 is fulfilled
forall x € X.

Theorem VI.7 (Flop count). If the input and state dimen-
sions aren, andn, respectively, the number of constraints
on each state-input pair i, IV is the horizon in(4a) and
Whereas condition (13) is sufficient to prove stability oé ththe number of slack variables introduced for each statedinp
proposed control law at iteratiok’, it does not guarantee pair to write problem(4) as pLP(5) is n, then the number of
stability of the control laws at iteration’s> K. However, by flops to calculate the control actiofon(zmeag for a measured
using a more conservative condition instead of (13) we catatermeasCan be bounded by:

modify Theorem VI.2 in order to ensure stability not only at

iteration K but also at all subsequent active set iterations. fon = Npfus+ feval + K fasm , (15)
where  feva = 2n.(Nng + n, +ns)

Corollary VI.3. Letk(-,K):=Ciz+ D' ifx € P}V P; € fasm = N(n;(82n, + 26m,. + 68ns + 11)

PNK and uon(z) = 7(k(-, K)) be the proposed control law + ny (401, + 11610, + 561, + 20m. +9)

in (6) at iteration K. The closed-loop system., = Agx; + +ns(12m. + 3) — 3m,)



fws denotes the flop number for point location per regiffia We consider the problem of optimizing the online time
the flops for evaluation of a PWA warm-start solution giagy to compute a control law that guarantees stability, a aertai
the flops per active set iteration. performance bound,,,, and a limit on the storage space
Np maz. COmputation time is again measured in the form of

Proof: The flop counts for active set iterations use thﬁops (15), resulting in the following optimization problem

fact that the matrices in (5) have banded structure.IAn

factorization andLU updates as described in [29] and [30] Frin, = min Np fus + K faswm (16)
is considered, wherd, and U have half-bandwidtton, + Ne. K

4n,, +m.— 1. The worst case is taken in form of the maximal subject to ex < €maz

number of active constraints. The flop counts for calcuratib Np < Nrmax

the steepest descent direction, step length and the nexteite (13)/(14) .

follow directly from the equations (8), (9) and (10). B While the exact solution of this optimization problem is not
possible with currently available methods, it can be used as

Remark VI.8. The number of flops for point locatiortys quality measure to evaluate different combination poktés.

in Theorem V1.7 depends on the particular point locatiowe demonstrate in the following how the identification of

algorithm used in Algorithm 1, e.g. the one described in [23 good combination can be pursued for a particular offline

requires2n, flops. approximation method.

The worst-case estimates for the properties of the proposedhere are several approximation methods that can be used
control law (-, K) in terms of stability, approximation error,to create a PWA warm-start solution (e.g. [16], [6], [4]). In
storage space and online computation time can be calculatiis work the method introduced in [12] was chosen, which
For fixed parametersVp and K this allows us to give is based on the beneath/beyond (B/B) algorithm, a common
guarantees on the properties of the control law that is eppliapproach for convex hull calculation [31], [32]. An approxi
to the system. mation J(x) of J*(x) in (5) is constructed by computing the
convex hull of a subset of vertices of the epigraph/ofz).
Remark VI.9. In the case that one only wants to prov&he approximation can be iteratively improved by adding one
stability for a fixed K, the analysis can be stopped early aftarertex at a time and updating the convex hull. When all
stability is guaranteed for a certain iteratidfy, < K using vertices of the polytope are included, the optimal solutién
Corollary VI.3. In the actual warm-start procedure, theirmml (5) is reached. The approximate control law is obtained by
optimization can then be carried out 0 iterations while still interpolating between the optimal control inputs at theives.
guaranteeing stability of the proposed control law. The main advantage of the beneath/beyond method is that it
is an incremental approach, allowing one to set requiresnent
Remark VI.10 (Computational effort). Note that the com- on either the complexity or the error of the approximation
putational effort for Algorithm 2 can be reduced by applying(x). In addition, it is based on an implicit rather than on
ideas from tree search. A node in the tree representsamexplicit representation of the optimal solution and indee
single region and each depth level corresponds to an activet dependent on the computability of the optimal parametri
set iteration. Using depth-first-search, for instance, anre solution to pLP (5).
bound for theK -th active set iteration can be derived without
calculating the full parametric solution. Since in this @asTheorem VII.1 (B/B warm-start solution [12]). Given a
there are regions for which we infer the solution at thie parameterNp € N the B/B method returns a feasible PWA
th level from an earlier iteration, we have to employ the mom@pproximationv(-, Np) of (5).
conservative stability test using Corollary VI.3.
Remark VII.2. The approximate control law generated by the
VIl. OPTIMIZATION OVER THE PARAMETERS B/B method is not necessarily defined over the entire feasibl
. . . - set. For small dimensional problems the B/B algorithm can be
In this section we will now try to optimize over the:

parameters that determine the applied control input: thrgtlallzed with all the vertices of the boundary df, which

) . an be computed by projection of the feasible set defined by
complexity Np of the warm-start solution and the number o he constraints in (5) onto the x-space, in order to provide a
iterations K. The choice of the warm-start solutiori-, Np) pace, P

determines the computational effort for point locatigg in feasible control law for all: € X. For higher dimensional
(15) on the one hand and the quality of the warm-start roblems the method can be extended so that one can reduce

the other and therefore the number of active set iteration@.e complexity of the approximation by considering only a
This offers the possibility to trade off the amount of onlin('aSUbset of [12].
computation time spent on the warm-start with that spefihe error of a B/B approximation is related to its complexity
on online optimization. The challenge is to identify army the following Lemma VII.3.

optimal combination of explicit approximation and online

optimization that achieves the best properties of the adpliLemma VII.3 (Complexity/Approx. Error, [33], [34]).

control input. Let v(-, Np) be an approximation tq5) generated by the

B/B method, egg the approximation error as defined in



Definition 111.9 and Np its complexity. For everygg there
exists anNgg € N such that the approximation error of
v(-, Ngg) is less tharegg.

J(2)

Remark VII.4. Note that whereas the approximation error ¢
a B/B approximation is monotonically decreasing with ever
B/B improvement, the complexity might not be monotonic (se
[12]).

Using a B/B approach, problem (16) is a function of only
the complexity Np of the warm-start solution. This follows
from the fact that for each complexityp of the B/B warm- 5 .
start there exists exactly one minimal number of iteration™ s
K to achieve a certain approximation errgf,,.. For each 0
Np < Np ez the smallest number of optimization stefis
that satisfies the constraint on the approximation errorbean
computed using Algorithm 2. This is the case not only for
the B/B method, but for all offline approximation method§igure 1. Warm-start linear programming procedure for Eptemt. The
for which there exists a one-to-one relationship between t olid line represents the_cost aftéf online iterations starting from the B/B
proximation in (a) ai’ = 0 ande denotes the corresponding approximation
approximation errofe and the complexityNp of the PWA error. The lower dashed line is the optimal cost that togetitn the upper
warm-start solution. Since the calculation of B/B approaim dashed line represents the stability bound.
tions and the solution of Algorithm 2 can be computationally
expensive, we propose to solve a subproblem of (16), in order

to identify a good combination instead of the optimal onelaWs at K

-5

xT
(@) K =0, ¢ = 3.4373

\
350

\
30\ v

0

0

-5
o
(€ K =3,e3 = 1.1875

5

o
(d) K = 5, e5 = 0.5290

1,3 and 5 are shown in Fig. 1, as well

We use a subset of values f&fp < Npmax and compute
the minimal K for each of them. The best combination of
explicit approximation and online optimization is repnetsa

as the stability bound given by Theorem I111.11. Once the
approximate cost lies within this bound, stability of the
proposed control law is guaranteed. It can be seen in Fig. 1

by the solution with the minimum cost value. The samples cafd) that stability for this example is achieved after = 5

then be iteratively refined to improve the obtained resutt an
approach the optimal solution to problem (16).

Remark VII.5. The problem of identifying the optimal com-
bination of explicit approximation and online optimizatio

iterations. The procedure converges to the optimal salutio
after K = 8 iterations. Whereas the warm-start solution has
an approximation error of = 3.4373, the stable control law
at K = 5 with an approximation error o = 0.5290 is
already very close to optimality. In Fig. 1 (c) we can observe

to minimize the approximation error subject to constraintnother characteristic of the warm-start procedure, namel

on the online computation time and the storage space cd - U @ )
gontrol law is in general not convex although it is still a

be approached following the same procedure described f
problem (16).

VIII. N UMERICAL EXAMPLES

In this section we will illustrate the proposed warm-start

he fact that the approximate cost function for a proposed

Lyapunov function. Note that this small example problem can
be solved explicitly with an optimal partition aVp = 18
regions suggesting a pure offline solution using explicit®/1P
rather than a combined procedure.

linear programming procedure and demonstrate its advestageyample 2. After illustrating the procedure on a small prob-

using three numerical examples. The point location algorit
in [23] was used for Step 1 of Algorithm 1.

Example 1. We first exemplify the main procedure for a
small 1D randomly generated toy system:

Ti+1 = —0.969$i + 04940’111 , (17)

with a prediction horizonN 10 and the constraints
lulloo <1, ||z]lc < 5 on the input and state respectively.
The normp for the stage cost is taken as thenorm and
the weight matrices are taken @&=1 and R = 1.

lem we now exemplify the approach for assessing the optimal
combination problem (16) as discussed in Section VII. Con-
sider the randomly generated 3D-system:

-0.5 0.3 —1.0 —0.601 —0.890
Ti+1 — |: 0.2 -0.5 0. :|£CZ + |: 0.955 —0.715 | u; ,
1.0 0.6 —0.6 0.246 —0.184

with a prediction horizonN 5 and the constraints
lulloo < 1, ||2]|co < 5 on the input and state respectively.
The normp for the stage cost is taken as the-norm and
the weight matrices) and R are taken as identity matrices.

We first try to solve the problem with the two classic ap-

A warm-start solution withNp = 3 regions is computed proaches using online and explicit MPC. The explicit soluti
by means of the B/B approximation algorithm [12]. We could not be fully computed due to the high complexity of
investigate the proposed control law after each active seéhe example problem and the solution was terminated after
iteration until the optimum solution is reached. The cos4 hours at a complexity of4 x 10° regions which therefore
of the warm-start B/B solution and the proposed controfepresents a lower bound on the complexity or computation



time for the explicit solution. For the online solution, the ‘ : :
worst case in the number of iterations and the error was ter IR
taken over a large number of sample points. A cold start 1 e et acive sov. ||
simplex method as well as a warm-start active set method is

considered that uses the solution computed at the previous
measurement as an initial guess. In order to compare the
online warm-start approach, a worst-case additive distucb

xt = Az + Bu + w with ||w|| < 0.5 keeping the state
inside the feasible set is considered. The restricted @btim

NP:ZOOZ N Optimal |
solution
1 of the
,=10003 \ Simplex 1
\ method at

approximation error
«©

combination problem (16) was then solved for a set of warm- AV ' 2.99x10]
start solutions withVp € {2002,4005, 10003, 12003} and a % R osss e
maximum approximation errot,,,,, = 1 that corresponds #floating point operations x10°
to a performance deterioration of abdu®3%, taken over a (@ Warm-start procedure for Example 2  starting

large number of sample points. The performance deteriora- from four = different PWA ~B/B  approximations  with
i > Np € {2002, 4005, 10003, 12003}
tion is measured as the relative difference between the cost

of the closed loop trajectory using the optimal control inpu 18 . : : :
and the one using the suboptimal control input, given by " | T Smplexmetnod |
N N 1a |7 = onine warm st Actve et |
Z (l(xiv uOﬂ(xi)) - l(xiv U*(xl))) /Z l(xiv U*(xl)) : % 1 N,=7002 |
i=0 i=0 (18) § Lo “
£ 8} \
The results are shown in Fig. 2(a). The proposed control g ol i N
laws at an approximation error a¢f < 1 are additionally “ \\\N"'ZOOW |
guaranteed to be stabilizing (by Corollary VI.3). Ay :25/;\1(:\ e \
If there are no storage limitations, the best combination oz 4 S B o M6

# floating point operations x 10°

of approximation and online iterations is given by the lower ® W art J . £ e 3 st

f . arm-star procedure or Xample starting
envelope.of t.he curves, as it repregents_ the best online £/ “tu  different PWA B/B approximations _ with
computation time for a certain approximation error (or the N, € {7002, 20016, 25011, 35021}.
other way round). Additional limitations on the storage

: : _ : ure 2. The solid line represents the offline B/B approxiams. The
Space would restrict the pOSSIble warm-start solutions ﬁg?shed lines show the improvement by the active set methooh-started

a maximum number of region&/p. The online solution from the B/B approximations. The dash-dotted line is a sathplorst-case
using a simplex method starts at a comparably low errestimate of a pure online solution using the Simplex methudi the dotted

afer the frst feasible point is encountered, but as oflE L5, he onine warm it Acve et melhog, shouterate
mentioned in the literature, phase | already takes up a largg B/B approximation was interpolated, since the optinaitition could not
amount of computation time. In the worst case, the initidk computed due to its excessive complexity.

solution when using an online warm-start active set method

is infeasible requiring several iterations to reach falsib ) i i i i

It provides a significant improvement when compared tcanmple 3. We will now investigate the optimal combina-
the cold start method but always requires more computatiofi° Problem for the 4D randomly generated system:

7 i § _ —0.251 0.114 0.123 —0.433 —0.873 0.879

time th_an the comblned approach. The first two warm star;_ _ [ osto —oless 003 ois |, [ 0ees 0936 |,

approximations withNp = 2002 and Np = 4005 take i+l 0.459 —0.484 —0.175 —0.709 | ¢ T | —0.353 0.777 | “

. . . . . . . 0.016 0.116 —0.002 —0.505 0.268 —0.336

significantly more time to achieve a certain approximation . L ) )
with a prediction horizonN = 5 and the constraints

error in comparison with the pure B/B approximation. In ) X
contrast, the two solutions starting frodip = 10003 and [uflo <5, [#[lc <5 on the input and state respectively.
Np = 12003 achieve a clear improvement over the oI"fIineThe normp for j[he stage cost is taken as tbe—no_rm and_

approximation. the weight matriceg) and R are taken as the identity matrix

and two times the identity matrix.

For any error abové.2 a pure approximation by the B/B

method results in the fastest computation times. The best As in t_he previous example, the explicit solution for this
combination for any error below.2 is given by a combi- problem is highly complex and could not be fully computed

nation of a warm-start solution of complexifyp — 10003 within 24 hours, when it was terminated with a complexity

. . . . . of 16 x 10° regions. The online solution was computed as

with active set iterations. Note that a further refinemerthef . €9 . . pu
i : described in Example 2 witfw|| < 2. The restricted optimal

warm-start solution does not improve the results and hence”” .~~~

. . S . ) combination problem (16) was solved for a set of warm-start
this particular combination of warm-start and online siolt X :

L . . __.solutions with Np € {7002,20016,25011,35021} and a

represents the best combination to achieve an approximatio . L
error belowl 2 maximum approximation errat,,... = 1 that corresponds to

a performance deterioration (18) of ab@ou@3%, taken over
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I_@:'j_ﬁ_l loop performance deterioration taken over a large number of
T sampling points is calculated for all warm-start combioasi
I g D g D I using (18). The results are shown in Tables I(a) and I(b).

1 3J 44

: I . For the 6-dimensional problem we choose
Figure 3. Two systems ¢f and4 oscillating masses. The bold lines represent .
the spring-damper system, the dark blocks on the side repréise walls. Np € {3061,5080,7152}. The number of required

optimization steps to reach stability decreases with
the refinement of the warm-start solution, resulting in a

a large number of sample points. The results are shown idecreasing number of flops. The best combination is thexefor

Fig. 2. The proposed control laws at an approximation erropepresented by the warm-start solution consisting7 bj2

of € < 1 are again guaranteed to be stabilizing (by Corollary/€9i0ns, where stability can be guaranteed after 6rupline
V1.3). steps. The average closed loop performance deterioration f

this combination is0.63%. For the8-dimensional problem
L Lo a set of warm-start solution&p € {3202,5312,7164}
For an approximation error up %2, a pure approximation . . } )
. o7 is computed. While the first two warm-start combinations
by the B/B method results in the fastest computation times . oo -
require at leasti7 optimization steps to guarantee stability,
Yhe number of iterations is reduced1td online iterations for

error below3.2 a combination of a warm-start solution of . i
the more complex warm-start solution. Identifying the best

complexity Np = 25011 with active set iterations represents L . Lo
N . combination among thesg options, we see that it is given
the best combination. Note that a further improvement of th ; . . .
) . : y the warm-start solution 0f164 regions combined with

warm-start solution does not provide any benefit. In compar- L . . .
. ) ) . .15 online iterations having the lowest flop number, which
ison with a pure online solution, the warm-start procedare i .

. X is additionally supported by the low average performance
again always superior.

deterioration 0f0.82% observed for this combination.

Example 4. After illustrating the proposed procedures on The offl sis h id - tabilit
smaller examples we will now demonstrate their application € offine analysis hence provides a real-ime stabllity
to bigger problem dimensions. We consider the problem opuarantee in both test cases for a comparably small number

regulating a system of oscillating masses as described ﬁ’]f regions _that need to be stored and a smaI.I number
[8], one consisting o8 and the other ofi masses which are of optimization steps. The warm-start procedure is always

interconnected by spring-damper systems and connected §yperior to a pure pnllne optimization ?‘per)aCh' which sake
walls on the side, as shown in Fig. 3. The masses have val(jg°re _tha_n? or 4 times _the cqmputaﬂon t|me_ of th_e best
1, the springs constarit and the damping constant (s5. combination for t.heG-d|menS|0r!a_I or the8_—d|m.en5|0r1al
The MPC problem for th8-masses example hésstates and exam.ple’ respectively. An explicit apprommaﬂon W'th.a.
2 inputs, resulting in an LP wit0 optimization variables. stability guarante_e ca_mnot be cor_nputed in both cases within
The MPC problem for thel masses example consists &f 24 hours due to its high complexity.
states an@ inputs and the LP ha®) optimization variables.
The state and input constraints dfefl < 1, |z]l.c <4, While Examples 2 and 3 are small randomly generated
the horizon is chosen t&v = 5, the normp for the stage example systems which are generally observed to result in
cost is taken as theo-norm and the weight matricé3 and problems of high complexity, Example 4 represents a physica
R are taken as identity matrices. system model of higher dimension and average complexity
that is related to many applications involving spring-damp
We identify the best combination of explicit approximatiorsystems (e.g. active suspension). We hereby cover tes$ case
and online optimization for providing a hard real-timeeflecting the scope of the presented approach. Examples 2
stability guarantee for these two example problems out ofamd 3 show that the optimal strategy to achieve a certain set
selection of warm-start solutions by computing the minimalf solution properties is often not to compute the best warm-
number of optimization stepEmin as well as the number of start solution, but a particular combination of warm-start
floating point operations required to provide a suboptimahline optimization. Example 4 demonstrates that even for a
control law that is guaranteed to be stabilizing. While thieigher dimensional example the combined procedure clearly
optimal explicit solution is not computable for the consiete outperforms an online solution when minimizing the online
problem dimensions, we compare the flop numbers for tkemputation time and a hard real-time stability guarantse c
warm-start combinations to the computational effort fdoe provided. The optimal combination of explicit approxima
a pure online MPC solution. A lower bound on the flogion and online optimization does however highly depend on
number for computing the optimal solution using a simplethe particular problem structure and the given requiresient
method is estimated by taking the worst case number stbrage space and performance. For certain problems the bes
iterations over a large number of sampling points. Faolution procedure will be a particular combination of thet
the 6-dimensional example a worst case number 5af methods whereas for others it will as well be a pure offline or
iterations including phase | and for thg8-dimensional online approximation, e.g. in the case of extremely smadl an
example of61 iterations was observed. The average closesimple or large problems which can be identified by means of



Table |
SIMULATION RESULTS FOREXAMPLE 4

(a) 6D Oscillating Masses Example

11

(b) 8D Oscillating Masses Example

# Regions for B/B approximatiolNp | 3064 5080 7152 # Regions for B/B approximatiodNp | 3202 5312 7164
# Pivots to stability guarante&mn 15 8 5 # Pivots to stability guarante& min 17 17 15
Online computation time in kilo flops | 789 462 337 Online computation time in kilo flops | 1384 1418 1291
Closed loop performance deterioration 6.94% | 3.30% | 0.63% Closed loop performance deterioration 5.56% | 1.85% | 0.82%
Flops for simplex method in kilo flops| 2558 Flops for simplex method in kilo flops| 4779

the presented analysis.

IX. CONCLUSIONS

We presented a new approach that combines the t
paradigms of online and explicit MPC and hereby offers new
possibilities in the applicability of MPC to real problems
that often have limits on the storage space or the availablé

computation time. The proposed method computes a piecewise

(4]
(5]

B. Lincoln and A. Rantzer, “Relaxing dynamic programigin IEEE
Transactions on Automatic Contralol. 51, no. 8, pp. 1249-1260, 2006.
E. A. Yildirim and S. J. Wright, “Warm-Start Strategies Interior-Point
Methods For Linear ProgrammingSIAM Journal on Optimizatign
vol. 12, no. 3, pp. 782-810, 2002.

& A. Bemporad and C. Filippi, “An Algorithm for Approximat Mul-

affine approximation of the optimal solution offline that is[8]
stored and used to warm-start an active set method.
means of a preprocessing analysis hard real-time, stabili

and performance guarantees for the proposed controller are
provided. The analysis does not require the calculatiomef t 10

¥

]

optimal parametric solution to the MPC problem, since it may
be prohibitively complex and could restrict the applicapil [11]
of the method.
The warm-start procedure enlarges the possibilities ttetra )
off solution properties in order to satisfy constraints énnms

of online computation time, storage and performance. T
best solution method is dependent on the particular syst

i

as well as the given hardware and performance restrictions.
We show how the offline analysis can be utilized to compat!
different MPC methods and identify the best approach for a
considered application and set of requirements. In additi¢i5]
to the discussed aspects, desired implementation preperti
may affect the choice of the MPC method. By using A6
combination of offline approximation and online MPC, the
method inherits the properties of both paradigms and thezef
also the numerical and computational challenges of On|il[lle7]
MPC, such as the need for floating point computations qis]
software verification and maintenance.

The presented numerical examples illustrate the propoéé%]
procedures and confirm the fact that a warm-start solutiguo)
can often outperform either a pure offline or online method.
The warm-start procedure provides hard real-time guagant
on the applied suboptimal controller where an approximate
explicit or online approach is either intractable or canmegt
the given requirements.

(1]

(2]

(3]
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