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Abstract—Limits on the storage space or the computation time
restrict the applicability of model predictive controller s (MPC) in
many real problems. Currently available methods either compute
the optimal controller online or derive an explicit control law.
In this paper we introduce a new approach combining the
two paradigms of explicit and online MPC to overcome their
individual limitations. The algorithm computes a piecewise affine
approximation of the optimal solution that is used to warm-start
an active set linear programming procedure. A preprocessing
method is introduced that provides hard real-time execution,
stability and performance guarantees for the proposed controller.
By choosing a combination of the quality of the approximation
and the number of online active set iterations the presented
procedure offers a tradeoff between the warm-start and online
computational effort. We show how the problem of identifying
the optimal combination for a given set of requirements on
online computation time, storage and performance can be solved.
Finally, we demonstrate the potential of the proposed warm-start
procedure on numerical examples.

I. I NTRODUCTION

It is well-known that computation of a model predictive
controller (MPC), under certain assumptions on the problem
structure, amounts to the solution of a linear or a quadratic
program at each sampling instant. Whereas classically, these
optimization problems are solved online, it has been shown
in recent years that the optimal solution to this type of
problem is a piecewise affine function (PWA) defined over
a polyhedral partition of the feasible states. This so-called
explicit solution can then be used as a control look-up table
online, enabling MPC to be used for fast sampled systems
(see e.g. [1], [2], [3] and the references therein).

However, both the offline and online method have
limitations. The main disadvantage of the online method
is that it is in general only applicable for controlling slow
processes. In the case of the explicit solution, the number
of state-space regions over which the control law is defined,
the so-called complexity of the partition, grows in the worst
case exponentially due to the combinatorial nature of the
problem [1]. This has given rise to an increasing interest in
the development of new methods to either improve online
optimization or to approximate explicit solutions (e.g. [4], [5],
[6], [7], [8]). Depending on the particular problem properties
and implementation restrictions, the user then has to decide
for one of the two approaches.

This work aims at enlarging the possibilities to tradeoff
solution properties through the combination of these two
methods. It aims at an existent gap of problem sizes and
types, which are either intractable for explicit MPC or
the complexity of the explicit solution exceeds the storage
capacity, but where an online MPC solution cannot meet the
required online computation times. Specifically, ideas from
approximation are combined with warm-start techniques.
In this paper we use a PWA approximation of the optimal
control law, which has been computed offline, to warm-start
the online optimization. The optimization executes a finite
number of active set iterations before returning a feasible,
suboptimal control action, which is then applied to the
system. The goal is to choose a good tradeoff between
the complexity of the PWA approximation and the number
of active set iterations required in order to satisfy system
constraints in terms of online computation, storage and
performance. Conditions are derived which guarantee that
the suboptimal solution is closed-loop stabilizing, feasible
and has a bounded performance deterioration. The provided
analysis has the important benefit that it is not based on the
optimal parametric solution to the MPC problem which might
be prohibitively complex.

We also raise the question of an optimal combination of
warm-start and online computational effort, with respect to
certain requirements on the solution. Considering computation
time and performance as two exemplifying requirements,
this can be informally stated in the form of the following
optimization problems:

1. Minimize online computation time while respecting a
bound on the performance deterioration

2. Maximize the performance within available computation
time

This paper extends the main ideas that have been introduced
in [9] with both theoretical and numerical results. The outline
of the paper is as follows: In Section IV we present the main
idea of using an offline approximation to warm-start an active
set linear programming procedure. An explicit representation
of the proposed control law is derived in Section V. In
Section VI a preprocessing method is introduced that allows
the analysis of the properties of the control input that will
be applied online. The question of an optimal combination
between warm-start and online computation is discussed in
Section VII. Finally, numerical examples illustrating thepro-
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posed method and ideas are given in Section VIII and we
briefly conclude in Section IX .

II. N OTATION

If G ∈ R
m×nz andI ⊆ {1, · · · ,m}, thenGI ∈ R

|I|×nz is
the matrix formed by the rows ofG indexed byI. If c ∈ R

m

is a vector thencI is the vector formed by the elements of
c indexed byI. A polyhedronis the intersection of a finite
number of halfspacesP = {x | Gx ≤ f} and apolytopeis a
bounded polyhedron.PN := {Pj}

N
j=1 with N ∈ N is called a

polyhedral partition ofX ⊆ R
nx if all Pj are full-dimensional

polyhedra,∪N
j=1Pj = X and intPi ∩ intPj = ∅ ∀i 6= j

and i, j ∈ {1, · · · , N}. A PWA function f(x) defined over
the polyhedral partitionPN is denoted asf(x) := Cjx +
Dj if x ∈ Pj ∀Pj ∈ PN .
A function γ : R≥0 → R≥0 is of classK if it is continuous,
strictly increasing andγ(0) = 0 [10].

III. PRELIMINARIES

Consider the discrete-time linear system

x+ = Ax +Bu , (1)

wherex ∈ R
nx is the state,u ∈ R

nu is the control input and
A andB are the dynamic matrices. If system (1) is controlled
by the control lawu = κ(x) then the closed-loop system is
denoted by

x+ = Ax+Bκ(x) = Aκ(x) (2)

Definition III.1 (Positively invariant (PI) set). A set S ⊆
R

n is a positively invariant (PI) set of system (2), ifAκ(x) ∈ S
for all x ∈ S.

Theorem III.2 (Asymptotic stability, [10]). Let X be a PI
set for system(2) with 0 ∈ intX and letα(·), α(·), andβ(·)
beK-class functions. If there exists a functionV : X → R≥0

with V (0) = 0, such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖), ∀ x ∈ X ,

V (x+)− V (x) ≤ −β(‖x‖), ∀ x ∈ X ,

then the equilibrium atx = 0 is asymptotically stablein X .

In the following, (asymptotic) stability of a system is usedto
mean that the system has an (asymptotically) stable equilib-
rium at the origin.

Model Predictive Control

In this paper, we consider the following formulation of the
MPC problem:

J∗(x) = min
{u0,...,uN−1}

Vf (xN ) +

N−1∑

i=0

l(xi, ui) (4a)

subject to xi+1 = Axi +Bui , i = 0, . . . , N − 1 ,
(xi, ui) ∈ X× U , i = 0, . . . , N − 1 ,
xN ∈ Xf ,
x0 = x ,

(4b)

whereN is the control horizon,X,U andXf are polytopic
constraints on the states and inputs and the stage cost is defined
as l(xi, ui) := ‖Qxi‖p + ‖Rui‖p with p ∈ {1,∞}, whereQ
andR are positive definite weights penalizing the states and
inputs. Vf is the terminal penalty function andXf ⊆ X is
a compact terminal target set. The MPC problem implicitly
defines the set of feasible initial statesX .

Definition III.3. [Feasibility of a control law] A control
law u(x) is called feasible forx if the input sequence
u0(x0), . . . , uN−1(xN−1) and the corresponding state se-
quencex0, . . . , xN , with x0 = x and xi+1 = Axi +
Bui(xi), i = 1, . . . , N , generated by applying the control law
over N time steps, satisfy all state and input constraints in
(4b).

If the normp is taken to be the1− or the∞−norm, we can
write (4) as a parametric Linear Program (pLP) of the form:

z∗(x) = argmin
z

cT z (5)

subject to GIz ≤ fI ,
GEz = FEx ,

wherez ∈ R
nz is a vector containing the sequence of control

inputs {u0, . . . , uN−1}, states{x1, . . . , xN} and appropriate
slack variables introduced to rewrite the state and input penal-
ties as a linear cost. The current statex ∈ R

nx is the parameter,
G ∈ R

m×nz , E ⊂ {1, · · · ,m} andI = {1, · · · ,m} \ E . For
a description of how the optimal control problem in (4) is
transformed into the pLP (5), i.e. how the state and input
constraints, the dynamics and the cost are converted into
GI , GE , fI , FE and c, see e.g. [3]. (Note that for simplicity
we use the same indexing forf andF as forG although we
distinguish the vectorf from the matrixF in order to account
for the different dimension).

Definition III.4. Let z be the vector of decision variables in
(5). We defineπ : Rnz → R

nu to be a linear mapping that
returns the first control inputu0 contained as a component in
z.

By solving the pLP (5) the optimal solutionz∗(x) can be
computed for each feasible value of the state. The implicit
optimal MPC control law is then given in a receding horizon
fashion byu∗(x) = π(z∗(x)).

Assumption III.5. In the following it is assumed thatVf (·)
is a Lyapunov function inXf andXf is a PI set under the
control lawκf (x), given by the following conditions:

A1: A+Bκf (x) ∈ Xf andκf (x) ∈ U ∀ x ∈ Xf

A2: Vf ((Ax+Bκf (x))−Vf (x) ≤ −l(x, κf(x))∀ x ∈ Xf .

Remark III.6. Note that in this work the1− or ∞−norm is
chosen to penalize the states and inputs in the cost function
(4a) instead of the commonly used 2-norm, as the resulting
pLP (5) allows for an exact analysis of the control law obtained
by the proposed procedure, as will be shown in Section V.
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Theorem III.7 (Solution to the MPC problem, [1], [11]).
Consider Problem(4) fulfilling Assumption III.5. The optimal
MPC control law u∗(x) is a continuous PWA function and
the optimal value functionJ∗(x) is a continuous PWA
Lyapunov function of the statex defined over a polyhedral
partition of the feasible setX . The closed-loop system
x+ = Ax + Bu∗(x) is asymptotically stable with region of
attractionX .

Remark III.8. Note that even in the case of dual degeneracy,
there always exists a polyhedral partition such that the opti-
mizer z∗(x) in (5) and thereby the optimal control lawu∗(x)
is unique and continuous inX [1]. Continuity of u∗(x) is
however not a required assumption for the proposed method.

A. Approximation of the MPC problem

We first define an approximation of the MPC problem (4)
and some useful properties that will be used in Section VI
in order to give guarantees on the control law proposed in
this paper. Letz∗(x) be the optimizer of the optimal control
problem (5) andJ∗(x) = cT z∗(x) be the corresponding
optimal cost and a Lyapunov function.

Definition III.9 (Approximation error). Let z̃(x) be a sub-
optimal solution to (5). A functioñu(x) = π(z̃(x)) is called
an approximate control lawfor (4) if ũ(x) is feasible for
all x ∈ X . The approximate control law̃u(x) is an ǫ-
approximation if for allx ∈ X the conditionJ̃(x)−J∗(x) ≤ ǫ
is satisfied, wherẽJ(x) := cT z̃(x) andǫ is the smallest value
satisfying this inequality.

Remark III.10. Note that the approximation errorǫ denotes
the worst accuracy over the feasible setX and is hence
uniform while the accuracy of the approximate costJ̃(x) is
varying with x.

A standard condition to test if an approximate solution is
stabilizing is given by the following theorem:

Theorem III.11 (Stability under ũ(x),[12], [13]).
Let ũ(x) be an approximate control law of(4). The
approximate value functionJ̃(x) is a Lyapunov function
if J̃(x) − J∗(x) < l(x, ũ(x)) for all x ∈ X , where
l : Rnx ×R

nu → R is the stage cost (4a) and the closed-loop
systemx+ = Ax+Bũ(x) is asymptotically stable with region
of attractionX .

IV. PROPOSED CONTROL LAW

In order to overcome the limitations of the offline and
online methods mentioned in the introduction, several
authors recently proposed new approaches to speed up online
optimization or to reduce the complexity of explicit solutions
by means of approximation. The authors in [14], [8] for
example utilize new developments in interior-point methods
and show how these can be applied to efficiently solve the
optimal control problem. Another paradigm that is frequently
applied to improve online optimization is warm-starting

(see e.g. [5], [7]). In explicit MPC, approximation methods
have been proposed that either modify the original MPC
problem (4), retrieve a suboptimal solution or postprocess
the computed optimal solution, with the goal of reducing the
complexity of the explicit controller, cf. e.g. [15], [6], [12],
[16]. All of the cited explicit approximation methods provide
a feasible control law and allow verification of closed-loop
stability by means of Theorem III.11 for some minimally
required complexity. All currently available online MPC
methods however lack the possibility of giving guarantees
on the suboptimal solution, e.g. closed-loop stability or
feasibility, in a real-time setting.

The strategy proposed in this paper combines the idea
of offline approximation with warm-start techniques from
online optimization with the goal of providing hard real-time,
stability and performance guarantees. Warm-start techniques
aim at identifying advanced starting points for the optimization
in order to reduce the number of iterations required to reach
the optimum. They often try to make use of the information
gained during the solution of one problem to solve the
next one in a sequence of closely related problems. When
solving MPC problems in a receding horizon fashion an LP
is computed for every measured state. However in practice,
the optimal control input from a previous measurement might
be an infeasible solution to (4) at the current instance, due
to disturbances acting on the system. We therefore propose a
warm-start strategy that utilizes a PWA approximate control
law of (4) to provide a good and feasible starting point. The
pre-knowledge of the initial solution for all feasible values
of x allows us to analyze the solution obtained by the online
optimization.

The following two parameters are used to classify the warm-
start solution: the complexityNP (number of regions) and its
approximation errorǫ, given by Definition III.9.

Definition IV.1 (Warm-start Solution). A function
ν(x,NP ) is called a warm-start solution of (4) ifπ(ν(x,NP ))
is a feasible, PWA approximate control law of (5) defined
overNP polytopic regions.

Lemma IV.2 (Convergence ofν(·, ·)). There exists a func-
tion ν(x,NPopt

) of finite complexityNPopt
∈ N, such that

z∗(x) = ν(x,NPopt
) for all x ∈ X , wherez∗(x) is the optimal

solution to(5).

Proof: Result follows directly from the fact that the
approximation is PWA and Theorem III.7.

By means of the parameterNP requirements can be set on
the complexity of the warm-start solutionν(·, NP ) that is
computed and stored in an offline preprocessing step.

Remark IV.3. As was shown in [12] there exists an analytical
relation between the approximation errorǫ and the complexity
NP of a PWA offline approximation. Requirements on the
approximation error can therefore also be imposed using the
parameterNP .
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In the online control procedure, the warm-start solution is
evaluated for the measured state and used to initialize the
online optimization. A standard active set method (ASM) is
applied to compute the control action since it allows us to take
advantage of a feasible starting point that is not necessarily
located at a vertex. Active set methods generate a sequence of
feasible iterates that converge to the optimal solution. Ateach
iteratez, the active set is given byIA = E∪{i ∈ I|Giz = fi}.
In an active set iteration, a subset of the active set is chosen
as the working setW ⊆ IA using standard heuristics.
From the current iteratez, the maximal step in the steepest
descent direction is then computed, which is the direction that
minimizes the objective in (5) while keeping the constraints
in W active, defining the next iterate. See e.g. [17], [18] for
more details on active set methods.

Assumption IV.4 (Non-degeneracy).It is assumed that the
active set is non-degenerate, i.e. the active constraints are
linearly independent.

Note that it is possible to extend the approach to degenerate
cases by using one of the standard approaches for anti-cycling
(e.g. [19], [20], [21]) or lexicographic perturbation (e.g. [22])
in active set methods.

Whereas in standard active set methods iterations are per-
formed until the optimality conditions are met, the online
optimization procedure is stopped early after exactlyK active
set iterations and the current suboptimal control input is
applied to the system.

Definition IV.5 (Warm-start optimization). Let z be a fea-
sible solution of (5) for the parameterx. We defineκ(z,K) to
be the decision variable of (5) afterK iterations of the linear
programming active set method starting from the feasible point
z.

Definition IV.6 (Proposed control law). Let ν(·, NP ) be a
warm-start solution to (5) andκ(·,K) be as defined in IV.5.
The proposed control law is

uon(x) = π(κ(ν(x,NP ),K)), for x ∈ X . (6)

Lemma IV.7 (Properties of κ(·, ·)). The proposed control
law (6) is feasible for allx ∈ X , and for eachNP there exists
a finiteKopt ∈ N, such thatu∗(x) = π(κ(ν(x,NP ),Kopt)) .

Proof: Feasibility is ensured by the procedure of the ASM
and the fact thatν(x,NP ) is feasible for allx ∈ X . The
existence of a finiteKopt is guaranteed by the convergence of
the ASM in finite time [18].

The warm-start linear programming procedure for a fixed
complexityNP and number of iterationsK is summarized in
Algorithm 1. In Section VI an offline analysis is introduced
providing guarantees for the proposed control lawuon(x)
in (6) to be closed-loop stabilizing, feasible and to have a
bounded performance deterioration compared to the optimal
solution.

Algorithm 1 Warm-start linear programming procedure

Input: warm-start solutionν(·, NP ) and current measured state
xmeas

Output: approximate control inputuon

1: run point location algorithm:z = ν(xmeas, NP )
[23], [24], [25], [26]

2: for k = 1, · · · ,K do
3: perform an active set iteration [17], [18]
4: update iteratez
5: end for
6: uon = π(z)

The above described procedure of using an approximation
to warm-start an online optimization offers the possibility
to decide on the complexity and approximation error of the
warm-start solutionν(·, ·). A tradeoff can be made between
the degree of approximation realized by the warm-start and
the effort expended in online optimization. The goal is to
identify a good if not optimal combination that achieves the
best properties of the online control input applied to the
system for given requirements on the approximation error
and/or limitations on the online computation time or storage.

The proposed procedure and algorithms are detailed in the
following sections.

V. PARAMETRIC CALCULATION OF THE ONLINE CONTROL

LAW

Our goal is to give guarantees on the proposed suboptimal
control law (6). Apart from feasibility, which is guaranteed
by Lemma IV.7, we want to ensure stability and a certain
bound on the approximation error. In order to analyze the
solution properties, we need an explicit representation ofthe
approximate control inputκ(·, ·) for the entire feasible setX .
We will show that starting from the warm-start solution, the
iterative path taken by the active set method is a function of
x, defined over a polyhedral subdivision ofX .

Remark V.1 (Offline Complexity). Note that the complexity
(number of regions) of this subdivision does not affect the
actual optimization carried out online, since the parametric
solution is only used for offline analysis.

The operations performed during an active set iteration can
be formulated as functions of the parameterx. Let zk(x) be
the iterate andW the working set at thek-th iteration step.
A search direction∆z from zk(x) is computed that maintains
activity of the constraints inW . In this work, we use the
steepest descent direction corresponding to the projection of
c onto the subspace defined by the constraints in the working
set given by:

∆z = argmin
∆z

{cT∆z |GW∆z = 0,∆zT∆z = δ} (7)

whereδ ∈ R≥0 is a scaling parameter.
The steps performed during one active set iteration are

outlined in the following (cf. e.g. [17], [18]):
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1. Compute step direction by solving the KKT conditions
of (7) [

I GT
W

GW 0

] [
∆z
λ

]
=

[
−c
0

]
, (8)

whereI denotes the identity matrix of sizenz ×nz and
λ are the Lagrange multipliers.
If ∆z = 0 and λ ≥ 0: Stop with optimal solution
z∗(x) = zk(x) .
If ∆z = 0 and at least oneλi < 0: Remove constrainta
from W , i.e.W = W\{a}, wherea = argmini{λi | i ∈
W ∩ I}. Recompute (8).

2. Compute maximum step length for which all constraints
are satisfied:

τ(x) = min
i∈I\W

{
fi −Giz

k(x)

Gi∆z
|Gi∆z > 0} . (9)

3. UpdateW : W = W ∪e, where the new active constraint
e is the optimizer of (9).

4. Update iterate:

zk+1(x) = zk(x) + τ(x)∆z . (10)

Remark V.2 (ASM). A similar parametric formulation can
also be obtained using a different search direction or any of
the other standard implementations found in the literature; the
simplex-type algorithm in [27] for instance. For simplicity,
the strategy of adding or removing at most one inequality
constraint in each iteration to or from the working set is
considered. Note thatE ⊆ W , since the equality constraintsE
always have to remain in the working set.

Theorem V.3. At every iterationk ∈ {1, · · · ,K}, the step
length τ(x) in (9) and the current iteratezk(x) are PWA
functions ofx defined over a polyhedral partitionPNk of the
feasible setX .

Proof: Assume that the statement is true fork and that
zk(x) := Cjx + Dj if x ∈ Gj ∀ Gj ∈ PNk . For one
region Pj ∈ PNk the line search (9) determining the next
constraint to become active is given by the pLPτ(x) =

mini{αi(x)}, with αi(x) = −GiC
j

Ai∆z
x + fi−AiD

j

Ai∆z
, i ∈ Icand

and Icand = {i ∈ I\IA|Gi∆z > 0}. This shows thatτ(x)
is a PWA function ofx, since the optimal cost of a pLP is
PWA [28], [1]. With τ(x) andzk(x) being PWA, thek+1-th
iterate (10) is as well a PWA function ofx. Since the initial
solution isz0(x) = ν(x,NP ), the statement is true fork = 1
and hence for allk ∈ {1, · · · ,K} .

With zk(x) being a PWA function, equation (9) results in
a parametric LP. The approximate control law at iteration
K is obtained by solving (8) and (9) iteratively for all
k ∈ {1, · · · ,K}. With each iteration, the parametric solution
of (9) causes a further refinement of the polyhedral partition
PNk .

Remark V.4. Note that the computation of the PWA function
τ(x) in (9) can be reduced to redundancy elimination of
the halfspacesz(x) ≥ fi−Giz

k(x)
Gi∆z

. All halfspacesj with
fj−Gjz

k(x)
Gj∆z

≥ fi−Giz
k(x)

Gi∆z
∀ i 6= j, i ∈ I\W, Gi∆z > 0 are

redundant and can be disregarded, the irredundant halfspaces
form the PWA parametric solution of (9). Redundancy elimi-
nation problems can be easily solved by computing one linear
program per constraint.

Corollary V.5. The proposed control lawuon(x) is a PWA
function ofx defined over a polyhedral partitionPNK of the
feasible setX .

Theorem V.3 enables us to compute an explicit PWA rep-
resentation of the approximate control lawκ(ν(x,NP ),K)
for a fixed complexityNP and number of iterationsK using
Algorithm 2.

Algorithm 2 Offline Analysis
Input: warm-start solution
ν(x,NP ) = νj(x) if x ∈ Pj ∀ Pj ∈ PNP

Output: Explicit representation of the proposed control law
uon(x)

1: initialize stackS = ∅
2: for all Pj ∈ PNP do push(νj(x), Pj) ontoS
3: end for
4: for all k ∈ {1, · · · ,K} do [K active set iterations]
5: initialize stackŜ = ∅
6: while S 6= ∅ do [subdivide each region]
7: pop (zP (x), P ) from S
8: compute∆z
9: computeaj , bj for zP (x), x ∈ P , (8),(9)

such thatτ(x) = ajx+ bj if x ∈ Rj ∀ Rj ∈ R
[R is a polyhedral partition ofP ]

10: for all Rj ∈ R do
11: push(zP (x) + (ajx+ bj)∆z,Rj) onto Ŝ
12: end for
13: end while
14: zk(x) := zj(x) if x ∈ Pj ∀ (zj(x), Pj) ∈ Ŝ
15: PNk := {Pj}

Nk

j=1 [Pj form polyhedral partitionPNk ]
16: S = Ŝ
17: end for
18: uon(x) = π(zK(x))

Remark V.6. The parametric calculation of the proposed
control law in (6) using Algorithm 2 requires the iterative
solution of a parametric program. Although the computational
complexity depends on the properties of the considered control
problem it grows significantly with the problem size. This
currently limits the execution of the offline analysis in prac-
tice, where in our experience a system of order8 was the
biggest problem to be computed. Note that the warm-start
linear programming procedure is however not affected by this
complexity and could still be applied without the rigorous
guarantees provided by the analysis.

VI. A NALYSIS OF THE PROPOSED CONTROL LAW

ACCORDING TO STABILITY, SUBOPTIMALITY, STORAGE

SPACE AND COMPUTATION TIME

We introduce a preprocessing analysis that investigates the
following properties of the approximate control lawuon(x) in
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(6): stability, approximation error, storage space and online
computation time.

Lemma VI.1 (Approximation error of uon(x)). If
κ(·,K) := Cjx + Dj if x ∈ Pj ∀ Pj ∈ PNK and
uon(x) = π(κ(·,K)) is the proposed control law in(6), then
the approximation error defined in Definition III.9 is given by

ǫK = max
j∈{1,...,NK}

dj , with (11)

dj = max
z,x

cT (Cjx+Dj)− cT z (12)

s.t GIz ≤ fI , GEz = FEx, x ∈ Pj .

Proof: We first proof that equation (12) computes the
largest distance between the approximate and the optimal
cost. We takex = x̄ fixed and show by contradiction that
equation (12) computes the distance to the optimal cost at
x̄. Assumez∗(x̄) is the optimal solution to (5) andzo the
optimal solution to (12) forx = x̄. If zo(x̄) is not the optimal
solution to (5), i.e.cT zo ≥ cT z∗(x̄), then it follows that
cT (Cj x̄+Dj)− cT zo ≤ cT (Cj x̄+Dj)− cT z∗(x̄). Therefore
zo cannot be the optimal solution to (12) atx̄ which proves
thatzo also has to be the optimal solution to (5) at the statex̄.
Now letting x vary and simultaneously taking the maximum
over allx ∈ Pj gives the worst case distance inPj . Finally, the
biggest error over allx ∈ X and hence over all the regions in
PNK is the smallestǫ that fulfills the condition in Definition
III.9 for all x ∈ X .

Stability can be easily tested using the conditions of Theorem
III.11:

Theorem VI.2 (Stability of uon(x)). If κ(·,K) := Cjx +
Dj if x ∈ Pj ∀ Pj ∈ PNK and uon(x) = π(κ(·,K)) is the
proposed control law in(6) at iteration K, then the closed-
loop systemxi+1 = Adxi+Bduon(xi) is asymptotically stable
with region of attractionX if

max
j∈{1,...,NK}

sj < 0 , with (13)

sj = max
z,x

cT (Cjx+Dj)− cT z − l(x, uon(x))

s.t GIz ≤ fI , GEz = FEx, x ∈ Pj .

Proof: Condition (13) follows directly from Theorem
III.11. If the difference between the approximate costJ̃(x) :=
cT (Cjx+Dj) and the optimal costJ∗(x) := cTu is less than
the stage costl(x, uon(x)) for all x ∈ Pj and for all the regions
Pj in PNK , then the condition in Theorem III.11 is fulfilled
for all x ∈ X .

Whereas condition (13) is sufficient to prove stability of the
proposed control law at iterationK, it does not guarantee
stability of the control laws at iterationsk ≥ K. However, by
using a more conservative condition instead of (13) we can
modify Theorem VI.2 in order to ensure stability not only at
iterationK but also at all subsequent active set iterations.

Corollary VI.3. Let κ(·,K) := Cjx+Dj if x ∈ Pj ∀ Pj ∈
PNK and uon(x) = π(κ(·,K)) be the proposed control law
in (6) at iterationK. The closed-loop systemxi+1 = Adxi +

Bduon(xi) is asymptotically stable with region of attractionX
for all control lawsuon(x) = π(κ(·, k)) for k ≥ K if

max
j∈{1,...,NK}

sj < 0 , with (14)

sj = max
z,x

cT (Cjx+Dj)− cT z − lmin(x)

s.t GIz ≤ fI , GEz = FEx, x ∈ Pj ,

wherelmin(x) = minu{l(x, u) |u ∈ U}.

Proof: Follows from Theorem VI.2 and the fact that
lmin(x) ≤ l(x, uon(x)).

Remark VI.4. Note that if the origin is contained inU, then
lmin(x) = ‖Qx‖p.

Remark VI.5 (Stability/Performance test). Note that equa-
tions (13) and (14) compute the maximum distance to the
optimal cost plus the stage cost without computation of
the parametric optimal solution to problem (4), which can
be easily shown following the first part of the proof of
Lemma VI.1. Using Theorem VI.2 or Corollary VI.3 stability
of the proposed control law (6) can hence be tested without
the need to compute the optimal and potentially complex
parametric solution to problem (4).

Storage space is determined by the complexity (number
of regions) NP of the warm-start solution since only the
warm-start has to be stored.

Online computation time will be estimated in terms of
floating point operations (flops) for the calculations that have
to performed online. First the region of the current state is
identified using a point location algorithm (e.g. [23], [24], [25],
[26]), then the corresponding affine control law is evaluated
and finallyK online iterations are executed.

Remark VI.6 (Sparsity of the MPC problem). In the case
of the MPC problem (4), the matricesG andF in (5) have a
special structure, resulting from the particular problem setup.
The matrices are extremely sparse and by reordering can be
shown to be in fact block diagonal or banded. We can exploit
the banded structure of the matrices to solve equations (8) and
(9), achieving significant computational savings [29].

Theorem VI.7 (Flop count). If the input and state dimen-
sions arenu and nx respectively, the number of constraints
on each state-input pair ismc, N is the horizon in(4a) and
the number of slack variables introduced for each state-input
pair to write problem(4) as pLP(5) is ns then the number of
flops to calculate the control actionuon(xmeas) for a measured
statexmeas can be bounded by:

fon = NP fws+ feval+KfASM , (15)

where feval = 2nx(Nnx + nu + ns) ,
fASM = N(nx(82nx + 26mc + 68ns + 11)

+ nu(40nu + 116nx + 56ns + 20mc + 9)
+ ns(12mc + 3)− 3mc)
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fws denotes the flop number for point location per region,feval

the flops for evaluation of a PWA warm-start solution andfASM

the flops per active set iteration.

Proof: The flop counts for active set iterations use the
fact that the matrices in (5) have banded structure. AnLU
factorization andLU updates as described in [29] and [30]
is considered, whereL and U have half-bandwidth5nx +
4nu+mc−1. The worst case is taken in form of the maximal
number of active constraints. The flop counts for calculation of
the steepest descent direction, step length and the next iterate
follow directly from the equations (8), (9) and (10).

Remark VI.8. The number of flops for point locationfws

in Theorem VI.7 depends on the particular point location
algorithm used in Algorithm 1, e.g. the one described in [23]
requires2nx flops.

The worst-case estimates for the properties of the proposed
control lawκ(·,K) in terms of stability, approximation error,
storage space and online computation time can be calculated.
For fixed parametersNP and K this allows us to give
guarantees on the properties of the control law that is applied
to the system.

Remark VI.9. In the case that one only wants to prove
stability for a fixedK, the analysis can be stopped early after
stability is guaranteed for a certain iterationKs ≤ K using
Corollary VI.3. In the actual warm-start procedure, the online
optimization can then be carried out toK iterations while still
guaranteeing stability of the proposed control law.

Remark VI.10 (Computational effort). Note that the com-
putational effort for Algorithm 2 can be reduced by applying
ideas from tree search. A node in the tree represents a
single region and each depth level corresponds to an active
set iteration. Using depth-first-search, for instance, an error
bound for theK-th active set iteration can be derived without
calculating the full parametric solution. Since in this case
there are regions for which we infer the solution at theK-
th level from an earlier iteration, we have to employ the more
conservative stability test using Corollary VI.3.

VII. O PTIMIZATION OVER THE PARAMETERS

In this section we will now try to optimize over the
parameters that determine the applied control input: the
complexityNP of the warm-start solution and the number of
iterationsK. The choice of the warm-start solutionν(·, NP )
determines the computational effort for point locationfws in
(15) on the one hand and the quality of the warm-start on
the other and therefore the number of active set iterations.
This offers the possibility to trade off the amount of online
computation time spent on the warm-start with that spent
on online optimization. The challenge is to identify an
optimal combination of explicit approximation and online
optimization that achieves the best properties of the applied
control input.

We consider the problem of optimizing the online time
to compute a control law that guarantees stability, a certain
performance boundǫmax and a limit on the storage space
NP,max. Computation time is again measured in the form of
flops (15), resulting in the following optimization problem

Fmin = min
NP ,K

NP fws +KfASM (16)

subject to ǫK ≤ ǫmax ,
NP ≤ NP,max

(13)/(14) .

While the exact solution of this optimization problem is not
possible with currently available methods, it can be used asa
quality measure to evaluate different combination possibilities.
We demonstrate in the following how the identification of
a good combination can be pursued for a particular offline
approximation method.

There are several approximation methods that can be used
to create a PWA warm-start solution (e.g. [16], [6], [4]). In
this work the method introduced in [12] was chosen, which
is based on the beneath/beyond (B/B) algorithm, a common
approach for convex hull calculation [31], [32]. An approxi-
mation J̃(x) of J∗(x) in (5) is constructed by computing the
convex hull of a subset of vertices of the epigraph ofJ∗(x).
The approximation can be iteratively improved by adding one
vertex at a time and updating the convex hull. When all
vertices of the polytope are included, the optimal solutionof
(5) is reached. The approximate control law is obtained by
interpolating between the optimal control inputs at the vertices.
The main advantage of the beneath/beyond method is that it
is an incremental approach, allowing one to set requirements
on either the complexity or the error of the approximation
J̃(x). In addition, it is based on an implicit rather than on
an explicit representation of the optimal solution and is hence
not dependent on the computability of the optimal parametric
solution to pLP (5).

Theorem VII.1 (B/B warm-start solution [12]). Given a
parameterNP ∈ N the B/B method returns a feasible PWA
approximationν(·, NP ) of (5).

Remark VII.2. The approximate control law generated by the
B/B method is not necessarily defined over the entire feasible
set. For small dimensional problems the B/B algorithm can be
initialized with all the vertices of the boundary ofX , which
can be computed by projection of the feasible set defined by
the constraints in (5) onto the x-space, in order to provide a
feasible control law for allx ∈ X . For higher dimensional
problems the method can be extended so that one can reduce
the complexity of the approximation by considering only a
subset ofX [12].

The error of a B/B approximation is related to its complexity
by the following Lemma VII.3.

Lemma VII.3 (Complexity/Approx. Error, [33], [34]).
Let ν(·, NP ) be an approximation to(5) generated by the
B/B method, ǫBB the approximation error as defined in
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Definition III.9 and NP its complexity. For everyǫBB there
exists anNBB ∈ N such that the approximation error of
ν(·, NBB) is less thanǫBB.

Remark VII.4. Note that whereas the approximation error of
a B/B approximation is monotonically decreasing with every
B/B improvement, the complexity might not be monotonic (see
[12]).

Using a B/B approach, problem (16) is a function of only
the complexityNP of the warm-start solution. This follows
from the fact that for each complexityNP of the B/B warm-
start there exists exactly one minimal number of iterations
K to achieve a certain approximation errorǫmax. For each
NP ≤ NP,max the smallest number of optimization stepsK
that satisfies the constraint on the approximation error canbe
computed using Algorithm 2. This is the case not only for
the B/B method, but for all offline approximation methods
for which there exists a one-to-one relationship between the
approximation errorǫ and the complexityNP of the PWA
warm-start solution. Since the calculation of B/B approxima-
tions and the solution of Algorithm 2 can be computationally
expensive, we propose to solve a subproblem of (16), in order
to identify a good combination instead of the optimal one.
We use a subset of values forNP ≤ NP,max and compute
the minimalK for each of them. The best combination of
explicit approximation and online optimization is represented
by the solution with the minimum cost value. The samples can
then be iteratively refined to improve the obtained result and
approach the optimal solution to problem (16).

Remark VII.5. The problem of identifying the optimal com-
bination of explicit approximation and online optimization
to minimize the approximation error subject to constraints
on the online computation time and the storage space can
be approached following the same procedure described for
problem (16).

VIII. N UMERICAL EXAMPLES

In this section we will illustrate the proposed warm-start
linear programming procedure and demonstrate its advantages
using three numerical examples. The point location algorithm
in [23] was used for Step 1 of Algorithm 1.

Example 1. We first exemplify the main procedure for a
small 1D randomly generated toy system:

xi+1 = −0.969xi + 0.4940ui , (17)

with a prediction horizonN = 10 and the constraints
‖u‖∞ ≤ 1, ‖x‖∞ ≤ 5 on the input and state respectively.
The normp for the stage cost is taken as the1-norm and
the weight matrices are taken asQ = 1 andR = 1.

A warm-start solution withNP = 3 regions is computed
by means of the B/B approximation algorithm [12]. We
investigate the proposed control law after each active set
iteration until the optimum solution is reached. The cost
of the warm-start B/B solution and the proposed control
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Figure 1. Warm-start linear programming procedure for Example 1. The
solid line represents the cost afterK online iterations starting from the B/B
approximation in (a) atK = 0 andǫ denotes the corresponding approximation
error. The lower dashed line is the optimal cost that together with the upper
dashed line represents the stability bound.

laws at K = 1, 3 and 5 are shown in Fig. 1, as well
as the stability bound given by Theorem III.11. Once the
approximate cost lies within this bound, stability of the
proposed control law is guaranteed. It can be seen in Fig. 1
(d) that stability for this example is achieved afterK = 5
iterations. The procedure converges to the optimal solution
afterK = 8 iterations. Whereas the warm-start solution has
an approximation error ofǫ = 3.4373, the stable control law
at K = 5 with an approximation error ofǫ = 0.5290 is
already very close to optimality. In Fig. 1 (c) we can observe
another characteristic of the warm-start procedure, namely
the fact that the approximate cost function for a proposed
control law is in general not convex although it is still a
Lyapunov function. Note that this small example problem can
be solved explicitly with an optimal partition ofNP = 18
regions suggesting a pure offline solution using explicit MPC
rather than a combined procedure.

Example 2. After illustrating the procedure on a small prob-
lem we now exemplify the approach for assessing the optimal
combination problem (16) as discussed in Section VII. Con-
sider the randomly generated 3D-system:

xi+1 =
[
−0.5 0.3 −1.0
0.2 −0.5 0.6
1.0 0.6 −0.6

]
xi +

[
−0.601 −0.890
0.955 −0.715
0.246 −0.184

]
ui ,

with a prediction horizonN = 5 and the constraints
‖u‖∞ ≤ 1, ‖x‖∞ ≤ 5 on the input and state respectively.
The normp for the stage cost is taken as the∞-norm and
the weight matricesQ andR are taken as identity matrices.

We first try to solve the problem with the two classic ap-
proaches using online and explicit MPC. The explicit solution
could not be fully computed due to the high complexity of
the example problem and the solution was terminated after
24 hours at a complexity of14×105 regions which therefore
represents a lower bound on the complexity or computation
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time for the explicit solution. For the online solution, the
worst case in the number of iterations and the error was
taken over a large number of sample points. A cold start
simplex method as well as a warm-start active set method is
considered that uses the solution computed at the previous
measurement as an initial guess. In order to compare the
online warm-start approach, a worst-case additive disturbance
x+ = Ax + Bu + w with ‖w‖ ≤ 0.5 keeping the state
inside the feasible set is considered. The restricted optimal
combination problem (16) was then solved for a set of warm-
start solutions withNP ∈ {2002, 4005, 10003, 12003} and a
maximum approximation errorǫmax = 1 that corresponds
to a performance deterioration of about0.03%, taken over a
large number of sample points. The performance deteriora-
tion is measured as the relative difference between the cost
of the closed loop trajectory using the optimal control input
and the one using the suboptimal control input, given by

[
∞∑

i=0

(l(xi, uon(xi))− l(xi, u
∗(xi)))

]
/

∞∑

i=0

l(xi, u
∗(xi)) .

(18)
The results are shown in Fig. 2(a). The proposed control
laws at an approximation error ofǫ ≤ 1 are additionally
guaranteed to be stabilizing (by Corollary VI.3).

If there are no storage limitations, the best combination
of approximation and online iterations is given by the lower
envelope of the curves, as it represents the best online
computation time for a certain approximation error (or the
other way round). Additional limitations on the storage
space would restrict the possible warm-start solutions by
a maximum number of regionsNP . The online solution
using a simplex method starts at a comparably low error
after the first feasible point is encountered, but as often
mentioned in the literature, phase I already takes up a large
amount of computation time. In the worst case, the initial
solution when using an online warm-start active set method
is infeasible requiring several iterations to reach feasibility.
It provides a significant improvement when compared to
the cold start method but always requires more computation
time than the combined approach. The first two warm-start
approximations withNP = 2002 and NP = 4005 take
significantly more time to achieve a certain approximation
error in comparison with the pure B/B approximation. In
contrast, the two solutions starting fromNP = 10003 and
NP = 12003 achieve a clear improvement over the offline
approximation.

For any error above1.2 a pure approximation by the B/B
method results in the fastest computation times. The best
combination for any error below1.2 is given by a combi-
nation of a warm-start solution of complexityNP = 10003
with active set iterations. Note that a further refinement ofthe
warm-start solution does not improve the results and hence
this particular combination of warm-start and online solution
represents the best combination to achieve an approximation
error below1.2.
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(a) Warm-start procedure for Example 2 starting
from four different PWA B/B approximations with
NP ∈ {2002, 4005, 10003, 12003}.
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(b) Warm-start procedure for Example 3 starting
from four different PWA B/B approximations with
NP ∈ {7002, 20016, 25011, 35021}.

Figure 2. The solid line represents the offline B/B approximations. The
dashed lines show the improvement by the active set method warm-started
from the B/B approximations. The dash-dotted line is a sampled worst-case
estimate of a pure online solution using the Simplex method and the dotted
line using the online warm-start Active Set method, shown after the first
feasible solution is found. The flop number for zero approximation error of
the B/B approximation was interpolated, since the optimal solution could not
be computed due to its excessive complexity.

Example 3. We will now investigate the optimal combina-
tion problem for the 4D randomly generated system:

xi+1 =

[−0.251 0.114 0.123 −0.433
0.319 −0.658 0.905 0.118
0.459 −0.484 −0.175 −0.709
0.016 0.116 −0.002 −0.505

]
xi+

[
−0.873 0.879
0.669 0.936

−0.353 0.777
0.268 −0.336

]
ui

with a prediction horizonN = 5 and the constraints
‖u‖∞ ≤ 5, ‖x‖∞ ≤ 5 on the input and state respectively.
The normp for the stage cost is taken as the∞-norm and
the weight matricesQ andR are taken as the identity matrix
and two times the identity matrix.

As in the previous example, the explicit solution for this
problem is highly complex and could not be fully computed
within 24 hours, when it was terminated with a complexity
of 16 × 105 regions. The online solution was computed as
described in Example 2 with‖w‖ ≤ 2. The restricted optimal
combination problem (16) was solved for a set of warm-start
solutions with NP ∈ {7002, 20016, 25011, 35021} and a
maximum approximation errorǫmax = 1 that corresponds to
a performance deterioration (18) of about0.03%, taken over
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u1

u2

u3 u4

Figure 3. Two systems of3 and4 oscillating masses. The bold lines represent
the spring-damper system, the dark blocks on the side represent the walls.

a large number of sample points. The results are shown in
Fig. 2. The proposed control laws at an approximation error
of ǫ ≤ 1 are again guaranteed to be stabilizing (by Corollary
VI.3).

For an approximation error up to3.2, a pure approximation
by the B/B method results in the fastest computation times,
but the solution is not guaranteed to be stabilizing. For any
error below3.2 a combination of a warm-start solution of
complexityNP = 25011 with active set iterations represents
the best combination. Note that a further improvement of the
warm-start solution does not provide any benefit. In compar-
ison with a pure online solution, the warm-start procedure is
again always superior.

Example 4. After illustrating the proposed procedures on
smaller examples we will now demonstrate their application
to bigger problem dimensions. We consider the problem of
regulating a system of oscillating masses as described in
[8], one consisting of3 and the other of4 masses which are
interconnected by spring-damper systems and connected to
walls on the side, as shown in Fig. 3. The masses have value
1, the springs constant1 and the damping constant is0.5.
The MPC problem for the3-masses example has6 states and
2 inputs, resulting in an LP with50 optimization variables.
The MPC problem for the4 masses example consists of8
states and2 inputs and the LP has60 optimization variables.
The state and input constraints are‖u‖∞ ≤ 1, ‖x‖∞ ≤ 4,
the horizon is chosen toN = 5, the normp for the stage
cost is taken as the∞-norm and the weight matricesQ and
R are taken as identity matrices.

We identify the best combination of explicit approximation
and online optimization for providing a hard real-time
stability guarantee for these two example problems out of a
selection of warm-start solutions by computing the minimal
number of optimization stepsKmin as well as the number of
floating point operations required to provide a suboptimal
control law that is guaranteed to be stabilizing. While the
optimal explicit solution is not computable for the considered
problem dimensions, we compare the flop numbers for the
warm-start combinations to the computational effort for
a pure online MPC solution. A lower bound on the flop
number for computing the optimal solution using a simplex
method is estimated by taking the worst case number of
iterations over a large number of sampling points. For
the 6-dimensional example a worst case number of51
iterations including phase I and for the8-dimensional
example of61 iterations was observed. The average closed

loop performance deterioration taken over a large number of
sampling points is calculated for all warm-start combinations
using (18). The results are shown in Tables I(a) and I(b).

For the 6-dimensional problem we choose
NP ∈ {3061, 5080, 7152}. The number of required
optimization steps to reach stability decreases with
the refinement of the warm-start solution, resulting in a
decreasing number of flops. The best combination is therefore
represented by the warm-start solution consisting of7152
regions, where stability can be guaranteed after only5 online
steps. The average closed loop performance deterioration for
this combination is0.63%. For the8-dimensional problem
a set of warm-start solutionsNP ∈ {3202, 5312, 7164}
is computed. While the first two warm-start combinations
require at least17 optimization steps to guarantee stability,
the number of iterations is reduced to15 online iterations for
the more complex warm-start solution. Identifying the best
combination among these3 options, we see that it is given
by the warm-start solution of7164 regions combined with
15 online iterations having the lowest flop number, which
is additionally supported by the low average performance
deterioration of0.82% observed for this combination.

The offline analysis hence provides a real-time stability
guarantee in both test cases for a comparably small number
of regions that need to be stored and a small number
of optimization steps. The warm-start procedure is always
superior to a pure online optimization approach, which takes
more than7 or 4 times the computation time of the best
combination for the6-dimensional or the8-dimensional
example, respectively. An explicit approximation with a
stability guarantee cannot be computed in both cases within
24 hours due to its high complexity.

While Examples 2 and 3 are small randomly generated
example systems which are generally observed to result in
problems of high complexity, Example 4 represents a physical
system model of higher dimension and average complexity
that is related to many applications involving spring-damper
systems (e.g. active suspension). We hereby cover test cases
reflecting the scope of the presented approach. Examples 2
and 3 show that the optimal strategy to achieve a certain set
of solution properties is often not to compute the best warm-
start solution, but a particular combination of warm-startand
online optimization. Example 4 demonstrates that even for a
higher dimensional example the combined procedure clearly
outperforms an online solution when minimizing the online
computation time and a hard real-time stability guarantee can
be provided. The optimal combination of explicit approxima-
tion and online optimization does however highly depend on
the particular problem structure and the given requirements on
storage space and performance. For certain problems the best
solution procedure will be a particular combination of the two
methods whereas for others it will as well be a pure offline or
online approximation, e.g. in the case of extremely small and
simple or large problems which can be identified by means of
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Table I
SIMULATION RESULTS FOREXAMPLE 4

(a) 6D Oscillating Masses Example

# Regions for B/B approximationNP 3064 5080 7152

# Pivots to stability guaranteeKmin 15 8 5

Online computation time in kilo flops 789 462 337

Closed loop performance deterioration 6.94% 3.30% 0.63%

Flops for simplex method in kilo flops 2558

(b) 8D Oscillating Masses Example

# Regions for B/B approximationNP 3202 5312 7164

# Pivots to stability guaranteeKmin 17 17 15

Online computation time in kilo flops 1384 1418 1291

Closed loop performance deterioration 5.56% 1.85% 0.82%

Flops for simplex method in kilo flops 4779

the presented analysis.

IX. CONCLUSIONS

We presented a new approach that combines the two
paradigms of online and explicit MPC and hereby offers new
possibilities in the applicability of MPC to real problems
that often have limits on the storage space or the available
computation time. The proposed method computes a piecewise
affine approximation of the optimal solution offline that is
stored and used to warm-start an active set method. By
means of a preprocessing analysis hard real-time, stability
and performance guarantees for the proposed controller are
provided. The analysis does not require the calculation of the
optimal parametric solution to the MPC problem, since it may
be prohibitively complex and could restrict the applicability
of the method.

The warm-start procedure enlarges the possibilities to trade-
off solution properties in order to satisfy constraints in terms
of online computation time, storage and performance. The
best solution method is dependent on the particular system
as well as the given hardware and performance restrictions.
We show how the offline analysis can be utilized to compare
different MPC methods and identify the best approach for a
considered application and set of requirements. In addition
to the discussed aspects, desired implementation properties
may affect the choice of the MPC method. By using a
combination of offline approximation and online MPC, the
method inherits the properties of both paradigms and therefore
also the numerical and computational challenges of online
MPC, such as the need for floating point computations or
software verification and maintenance.

The presented numerical examples illustrate the proposed
procedures and confirm the fact that a warm-start solution
can often outperform either a pure offline or online method.
The warm-start procedure provides hard real-time guarantees
on the applied suboptimal controller where an approximate
explicit or online approach is either intractable or can notmeet
the given requirements.
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