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ABSTRACT

In this paper, we consider the problem of manifold approximation
with affine subspaces. Our objective is to discover a set of low di-
mensional affine subspaces that represents manifold data accurately
while preserving the manifold’s structure. For this purpose, we em-
ploy a greedy technique that partitions manifold samples into groups
that can be well approximated by low dimensional subspaces. We
start with considering each manifold sample as a different group and
we use the difference of tangents to determine advantageous group
mergings. We repeat this procedure until we reach the desired num-
ber of significant groups. At the end, the best low dimensional affine
subspaces corresponding to the final groups constitute the manifold
representation. Our experiments verify the effectiveness of the pro-
posed scheme and show its superior performance compared to state-
of-the-art methods for manifold approximation.

Index Terms— manifold, tangent space, affine subspaces, flats,
greedy

1. INTRODUCTION

Signals often undergo transformations that appear to alter them crit-
ically. As a result, two transformed versions of a signal can appear
significantly distinct, especially to they “eyes” of a computer. They
are however representations of essentially the same entity. Invari-
ance to transformations becomes crucial for effectively categoriz-
ing and recognizing signals correctly. Manifolds are often employed
to achieve a signal description that is transformation invariant. Ac-
cording to the manifold model, the transformed versions of the same
N-dimensional signal lie on a low dimensional structure embedded
in %, whose dimensionality depends merely on the number of the
transformation parameters. For example, an object can appear quite
different depending on the image capture conditions. No matter how
much different its images may seem though, they all belong to the
manifold defined by the transformation parameters.

Eventhough manifolds seem appealing for transformation in-
variant applications, their unknown and usually strongly non-linear
structure makes their manipulation quite tricky. One way to deal
with this fact is to infer a global parametrization scheme, mapping
the manifold data from the original space to a low-dimensional para-
metric space. The problem of unveiling such a parametrization is
called manifold learning [1]. Usually, it is hard to discover a univer-
sal manifold representation that is always accurate as it demands that
all the non-linearities of the manifold are well represented by only
one mapping function. Therefore, instead of using just one global
scheme, it is often preferable to employ a set of simpler structures to
approximate manifold’s geometry.

In our case we use a set of affine subspaces (flats) for approxi-
mating a manifold. Our objective is to compute a set of low dimen-
sional flats that represents the data as accurately as possible and at
the same time preserves the geometry of the underlying manifold.
We relate the capability of a set of samples to be represented by a
flat with the dimensionality of its affine hull, and we connect it to
the samples’ tangent spaces. Then, we use the difference of tangents
to uncover groups of points that comply with the low dimensional-
ity of flats. The partitioning is done in a greedy, bottom-up man-
ner where each manifold sample is considered a different group at
the beginning; groups are then iteratively merged until their number
reduces to the desired value. The resulting scheme gives a promis-
ing performance compared to state-of-the-art manifold approxima-
tion techniques.

Manifold approximation with affine subspaces can be related to
subspace clustering which is the general problem of representing
data with flats. The proposed techniques usually use an iterative
scheme alternating between data segmentation and subspace estima-
tion [2], [3]. While being similar, the two problems are not identi-
cal, as in subspace clustering there is no guarantee that the manifold
structure will be preserved by the final flats. Such an example is
shown in Figure 1 where the Median k-flats algorithm [3] builds a
set of flats that is not consistent with the underlying manifold geom-
etry, as opposed to the outcome of our algorithm.

In manifold approximation the preservation of the manifold’s
structure is crucial. Works that manage to discover such flat-based
manifold approximations are presented in [4] and in [5]. In [4], the
authors introduce Hierarchical Divisive Clustering (HDC), a method
for hierarchically partitioning the data, by dividing highly non-linear
clusters. As a linearity measure they use the deviation between the
euclidean and geodesic distances. In [5], the clustering is performed
on a bottom-up manner, named Hierarchical Agglomerative Cluster-
ing (HAC), where again the geodesic distances are used to express
the underlying manifold structure. Both methods are however shown
to be inferior to our scheme, as the use of tangent spaces is proven
to be more effective than the geodesic-distance based measures for
manifold approximation.

The rest of the paper is organized as follows. In section 2, we
give the problem formulation and in section 3, we present our algo-
rithm in detail. In section 4, we describe the experimental setup and
the results of our tests. Finally, in section 5, we discuss our conclu-
sions.

2. PROBLEM FORMULATION

We consider the problem of approximating a d-dimensional mani-
fold M, embedded into R, with a set of d-dimensional flats. The
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Fig. 1. Example of a case where the minimization of the recon-
struction error leads to a set of flats that does not follow manifold’s
geometry (a) as opposed to the outcome of our approach (b).

manifold is represented by the set of samples D = {z, € RV, k €
[1,m]} and the corresponding undirected and symmetric neighbor-
hood graph G(D, E). The objective is to partition D into [ groups
Si, i € [1,1], each with corresponding affine hull A;, representative
d-dimensional flat P; and subgraph G; = G(S;, E;) where E; =
{awqg € E : x4, € Si}, such that

S* = arg min Z dif(Ai, P;) 8))
S s;es
subject to:
Uiy Si =D ?)
SiNSi=0,Vi#j A3)
G, is connected, V4 4)

The function di f (A;, P;) measures the quality of the d-dimensional
approximation of the A;’s by the P;’s. The additional constraints
refer to the form of the final groups S;, demanding that each sample
belongs to exactly one group and that each S; is connected in terms
of the neighborhood graph G(D, E).

The affine hull of a set of points is the lowest dimensional linear
manifold that includes all the points in the set and is formally defined

as: A, = {z|z = ZLS‘II aj * xj, o € R, Z\JS:HI a; = 1}
Ideally we would like to end up with d-dimensional A;’s. In such a
case, each A; would coincide with the tangent space T at each of
the samples x; in S;, since the tangent space is naturally the best
local d-dimensional affine approximation. Therefore, sets with such
affine hulls contain samples with equal or similar tangents and are
well represented by flats close to the “mean” tangent space over the
samples of the group. As a result, we can measure the quality of a
d-dimensional approximation of a group’s affine hull (di f (A;, P;))
by computing the sum of differences between the individual tangent
spaces of the samples in the group and the “mean” tangent.

In particular, the tangent space 7 at a manifold sample z; is a
linear subspace of % located at the sample. Tangents live hence, in
the Grassman manifold G 4 [6], the space of d-dimensional linear
subspaces of V. Therefore, the distance of two tangents T} and T}
with bases Br; € RV*4 and Br, € RNVX can be expressed as:

D*(T,Tj) = d — tr(Bz, Br; Bt,Br,), Ti,T; € Gna  (5)

where D?(T;, T;) is the projection metric, a commonly employed
distance measure in G ,q [7]. The “mean” tangent P; € Gn,q of

a group S;, the Karcher mean [8] of tangents, is then the flat that
minimizes the sum of square distances from the tangents 7}, Vx; €
Sl' i.e.,
P, =argmin »  D’(P,T}) (6)
PEGNa '8,
The sum of differences between the individual tangent spaces of the
samples in a group and the mean tangent of the group, dif(A;, P;),
can then be expressed as:

dif(Ai, ;) = Y D*(T},P)

z;€S;

where P; is given from equation (6) and D?*(T}, P;) is as in (5).
Finally, we can rewrite the approximation problem of equation (1)

as :
S* :argsmin Z Z DQ(I},PZ') (7

S;€S w;€8;

3. GREEDY MERGING BASED ON THE DIFFERENCE OF
TANGENTS

Our approximation algorithm is based on grouping the samples ac-
cording to their tangent spaces to minimize the cost function in (7).
The method is divided in two main steps. At the first step, the goal is
to compute the tangent spaces for every sample in the dataset. At the
second step, the objective is to combine the samples into groups and
estimate their representative flats until reaching the desired number
of groups. The block diagram of the method is shown in figure 2 .

sample set D
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number of flats |
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Local Tangent Planes Tangent spaces
Smoothing
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Fig. 2. The block diagram of the system

3.1. Tangent space

The first step of the algorithm consists of 3 distinct sub-steps:



1. Neighborhood graph construction
2. Tangent space computation
3. Smoothing

At first, we compute the undirected and symmetric neighborhood
graph G(D, E) by connecting every sample to its k nearest neigh-
bors. The tangent space of each sample is then formed by the d
eigenvectors that correspond to the d largest eigenvalues of the data
matrix representing its neighborhood.

Finally, it might be the case that for some samples the resulting
neighborhoods are not accurate enough, e.g., small k, noisy sam-
ples, outliers. We deal with this possible implication by adding a
smoothing step to the process of tangent space computation. The
smoothing is performed in the Gn,q and is formulated as a weighted
average tangent computation over each sample’s neighborhood, sim-
ilar to equation (6).

3.2. Greedy merging

Once the tangent spaces are computed, we proceed with solving the
optimization problem presented in (7). In order to minimize the cost
function we use a bottom-up technique: starting with m separate
groups (each sample corresponds to a group represented by its own
tangent space), we aim at reducing the total number of significant
groups ! to I by greedy merging. The optimal sequence of mergings
could be inferred by a dynamic programming strategy [9] . While
being straightforward, such an approach would be incompetent in
terms of time complexity, especially in case of large sample sets.
A greedy strategy [9] on the other hand, is an appealing alternative
as its local nature in making decisions decreases significantly the
computational time without large performance penalty.

In our case, we adopt a greedy scheme for deciding which
groups to merge. The algorithm performs several iterations. At
each iteration, there exists a set of possible mergings between the
neighboring groups, so that the final S;’s fulfill inevitably condi-
tion (4), and the choice of the one that is performed depends on
the additional cost that is introduced into (7). To be more spe-
cific, for a group S; all mergings with its neighbors, defined as
NG; = {Sy : Jzw € Si, g € Srst(zwry) € E}, are pos-
sible at each step. The cost introduced by a merging between S;
and S; € NG;, represented with flats P; and P;, is the difference
dF(Si, S;) between the cost of the merged group S;; and the sum
of the costs for .S; and S; before the merging:

dF(S:,8;) = dif (Aij, Pij) — dif (Ai, P) — dif (A;, Pj)

= Z DQ(Tk,Pi]‘)— Z D2(Tk7Pi)
T €S4j zRE€S;
- Z DQ(TIWPJ')
szSj
= Y [D*(Tx, Py) — D*(Ty, P2)]
TR €S,
+ Y [D(Ti, Py) — D*(Ti, ;)] ®)
TR €S;

where P;; is the flat representing the merged group S;;, computed
as the Karcher mean over the tangent spaces of the samples in S;;,
similar to equation (6):

I'A group is significant when it contains more than 2% of the total number
of samples.

P;; = argmin Z D2(P, Tx) 9)

PeGpn.q ©RESi;
Since P; and P; are also both optimal for representing S; and
S; in terms of minimizing the sum of square distances from the
corresponding samples’ tangents, dF(S;, S;) will always be non-
negative.

Unfortunately, it is too costly to compute all the new flats for
all possible mergings. We compute instead an upper bound for
dF(S;,S;) that does not depend on P;;. First, we substitute the
difference of squares by its product equivalent and we use the re-
verse triangle inequality to bound D(T%, P;;) — D(Tk, P;) and
D(Tk,PZ’j) — D(Tk,Pj) by D(PZ‘,P»L'J') and D(Pj,P»;j), respec-
tively. We have:

dF(Si,S;) < D(Pi, Pij) » . [D(Ti, Pij) + D(Tx, Py)]

xR €S,

+D(P;,Py) > [D(Tk, P;j) + D(Tx, P;)]

TR €S

By the triangle inequality, D(T}%, P;;) can be upper bounded by
D(Pi,Pij) + D(Tk,PZ) for xp € S; and by D(Pj,Pij) =+
D(Ty, P;) for x;, € S;. After some simple mathematical manipu-
lations and since D(P;, P;) is greater or equal to both D(P;, P;;)
and D(P;, P;;), we finally get that:

dF(Si, S;) < (1Si] +|S; ) D*(Ps, Py) (10)

+2D(P, Py) | > D(Tw, )+ > D(Tx, P))

T, €55 TR €S

The costs for all possible mergings at each iteration are com-
puted according to the formula in (10). The groups with the min-
imum estimated merging cost are then combined and the represen-
tative flat of the newly formed group is computed as in (9). The
procedure is then repeated until we reach the desired number of sig-
nificant flats.

At the end, we get the desired set of groups and their represen-
tative flats. However, these flats are the outcome of multiple opti-
mization problems, and as such, they accumulate errors. In order
to avoid this effect, we use as the final representative flats the sub-
spaces spanned by the eigenvectors corresponding to the d largest
eigenvalues of each group’s data matrix.

4. EXPERIMENTAL RESULTS

We compare our scheme with HDC [4], HAC [5] and Median k-
flats (MKF) [3] algorithms. For our experiments we use the Swiss
roll and the S-curve dataset. The training set for both cases consists
of 2000 points, randomly sampled from the manifolds. For testing,
we use a new, randomly selected set of 5000 samples. The regis-
tration of the testing samples to the flats is done by majority voting
over their k£ nearest neighbors in the training set. The neighborhood
size k is set equal to 15 in the experiments. It is preferable to use
low values for k, varying from 0.5% to 2% of the total number of
samples, in order to avoid “short-circuit” effects that would distort
manifold’s structure. For the smoothing, we use gaussian weights,

ar = (1/4/2m0%)exp(—|lz, — z;]|?/(207)) where o; is set equal

to the 50% of the mean distance in the neighborhood of z;. The
optimization problem in (6) is solved using the Newton method as
described in [6] for the Grassman manifold G n,q.
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Fig. 3. Mean squared reconstruction error (MSRE) versus the num-
ber of flats. The error on the y-axis is shown in logarithmic scale.

The mean squared reconstruction error (MSRE) versus the num-
ber of flats is presented in Figure 3 where we can see that our
scheme approximates better the manifold structure than the other
approaches. The performance is higher even for small number of
flats but the differences are more evident in the mid-range cases (
number of flats from 15 to 30). After a certain number of flats the
differences converge following the convergence of the individual
MSREs. The effectiveness of our method is mainly accredited to the
use of the difference of tangent spaces for measuring the linearity of
sample sets instead of the geodesic-based criteria used previously.
Moreover, an example of the final groups is shown in Figure 4 for
the case of 12 flats, where we see that the structure of the mani-
fold is correctly preserved by the proposed manifold approximation
algorithm.

(b) S-curve

(a) Swiss roll

Fig. 4. The final groups with 12 flats.
5. CONCLUSIONS

We have presented a greedy, bottom-up method for approximating
a manifold with low dimensional flats based on the difference of
tangent spaces. The greedy optimization technique, in combination
with the difference of tangents employed as a linearity measure, has
been proven to be quite powerful in manifold approximation, out-
performing existing manifold approximation approaches. The final
low-dimensional representation of signals belonging to the manifold,
can be used to achieve significant data compression. It can also be
employed as a model for signal classification as the projections to
the resulting flats can be considered a set of manifold based, class
specific features.
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