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Abstract

This thesis tackles new challenges associated with the disaggregate modeling of the
human behavior. Decision-aid tools help in making decisions, by providing quantita-
tive insights on the decisions and associated consequences. They are useful in complex
situations where human actors are involved. Inside decision-aid tools, there is a need
for explicitly capturing and predicting the human behavior. The prediction of human
actions is done through models. Models are simplified representations of the reality,
which provide a better understanding of it and allow to predict its future state. They
are often too simplistic, with bad prediction capabilities. This is an issue as they gen-
erate the outcome of the decision-aid tools, which influence decisions. Good models
are required in order to adequately capture the complexity of human actions. Behav-
ioral models appear to be relevant. They allow to translate behavioral assumptions
into equations, which make their strength but also their complexity. They have been
mainly used in transportation and marketing.

Many advances have been recently achieved. On one hand, emerging technologies
allow to collect various and detailed data about the human behavior. On the other
hand, new modeling techniques have been proposed to handle complex behaviors.
Estimation softwares are now available for their estimation. The combination of
these advances open opportunities in the field of the behavioral modeling.

The motivations of the proposed work are the investigation of the challenges asso-
ciated with non-traditional applications of the behavioral modeling, the emphasis of
multi-disciplinarity, the handling of the behavioral complexity and the development
of operational models. Different applications are considered where these challenges
appear. The applications are the investors’ behavior, the walking behavior and the
dynamic facial expression recognition. Challenges are addressed in the different tasks
of the modeling framework, which are the data collection, the data processing, the
model specification, estimation and validation.

The modeling of the investors’ behavior consists in characterizing how individuals
are taking financial decisions. It is relevant for predicting monetary gains and reg-
ulating the market. We propose an hybrid discrete choice framework for modeling
decisions of investors performed on stock markets. We focus on the choice of action
(buy or sell) and the duration until the next action. The choice of action is handled
with a binary logit model with latent classes, while a Weibull regression model is used
for the duration until the next action. Both models account for the risk perception
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and the dynamics of the phenomenon. They are simultaneously estimated by maxi-
mum likelihood using real data. The predictive performance of the models are tested
by cross-validation. The forecasting accuracy of the action model is studied more in
details. Parameters of both models are interpretable and emphasize interesting be-
havioral mechanisms related to investors’ decisions. The good prediction capabilities
of the action model in a real context makes it operational.

The modeling of the walk apprehends how a person is choosing her next step. It
is useful to simulate the behavior of crowds, which is relevant for the urban plan-
ning and the design of infrastructures. We specify, estimate and validate a model for
pedestrian walking behavior, based on discrete choice modeling. Two main types of
behavior are identified: unconstrained and constrained. By unconstrained, we refer
to behavior patterns which are independent from other individuals. The constrained
patterns are captured by a leader-follower model and by a collision avoidance model.
The spatial correlation between the alternatives is captured by a cross nested logit
model. The model is estimated by maximum likelihood on a real data set of pedes-
trian trajectories, manually tracked from video sequences. The model is successfully
validated using another data set of bi-directional pedestrian flows.

The dynamic facial expression recognition consists in characterizing the facial
expression of a subject in a video. This is relevant in human machine interfaces.
We model it using a discrete choice framework. The originality is based on the
explicit modeling of causal effects between the facial features and the recognition of
the expression. Five models are proposed, based on different assumptions. The first
assumes that only the last frame of the video triggers the choice of the expression.
In the second model, one frame is supposed to trigger the choice. The third model
is an extension of the second model. It assumes that the choice of the expression
results from the average of expression perceptions within a group of frames. The
fourth and fifth models integrate the panel effect inherent to the estimation data and
are respectively based on the first and second models. The models are estimated by
maximum likelihood using facial videos. Parameters are interpretable. Labeling data
on the videos has been obtained using an internet survey. The prediction capabilities
of the models are studied and compared, by cross-validation using the estimation
data. The results are satisfactory, emphasizing the relevance of the models in a real
context.

The thesis contributes to fields. Challenges of the behavioral modeling have
been investigated in complex contexts. Original and multi-disciplinary modeling ap-
proaches have been successfully proposed for each application. Model specifications
have been developed to handle the behavioral complexity, allowing to quantify be-
havioral mechanisms. Operational models are proposed. Complex behavioral models
are used in a predictive context and a detailed validation methodology has been set.

Keywords: human behavior, discrete choice model, latent class , application, finance,
pedestrian, facial expression recognition , data collection, specification, validation,
computer vision , challenge, decision-aid tool, multi-disciplinarity, dynamics



Résumé

Cette thèse porte sur les nouveaux défis de la modélisation du comportement humain.
Les outils d’aide à la décision assistent les individus dans leurs choix, en fournissant
des informations quantitatives sur les alternatives possibles et leurs conséquences.
Ils sont utiles dans les situations complexes impliquant des acteurs humains. La
compréhension et la prédiction du comportement humain servent à l’élaboration
d’outils d’aide à la décision. La prédiction se fait par le biais de modèles qui sont
des représentations simplifiées de la réalité. En général, ces modèles sont simplistes
et caractérisés par un faible pouvoir prédictif. De bons modèles sont nécessaires pour
prendre en compte la complexité des actions humaines. Les modèles comportemen-
taux sont adaptés à ce contexte. Leur force provient du fait que les comportements
sont directement traduits en équations. Mais cela les rend également très complexes.
Ils ont montré leur potentiel dans le domaine du transport et du marketing.

De nombreuses avancées ont été récemment réalisées dans différents domaines.
D’une part, les nouvelles technologies permettent de collecter des informations détaillées
sur les actions humaines; d’autre part, de nouvelles techniques de modélisation ont
été proposées, ainsi que des logiciels permettant leur estimation. La combinaison des
deux génèrent de nouveaux défis dans le domaine de la modélisation du comportement
humain.

Ce travail est motivé par plusieurs objectifs: l’investigation des défis de la modélisation
du comportement dans les applications non traditionnelles, la mise en avant de la
multi-disciplinarité, la modélisation de phénomènes complexes ainsi que le développement
de modèles opérationnels. Nous considérons différentes applications où les nouveaux
défis de la modélisation du comportement se manifestent. Ils sont explorés dans
chacune des étapes du processus de modélisation. Les applications considérées sont
la finance, le mouvement des piétons et la reconnaissance dynamique d’expressions
faciales.

En finance, nous modélisons le comportement des investisseurs sur les marchés
d’actions. Ceci est utile pour la prédiction de gains ou la régulation des marchés.
Nous nous intéressons à la décision d’acheter ou de vendre, ainsi qu’ à la durée entre
deux décisions consécutives. Nous proposons une approche dans laquelle le processus
de décision est considéré dans son ensemble. Un modèle de choix à classes latentes est
utilisé pour le choix entre achat et vente, alors qu’une régression de Weibull s’avère
appropriée pour la durée. Les deux modèles prennent en compte la perception du
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risque, ainsi que la dynamique du phénomène. Ils sont estimés simultanément par
maximum de vraisemblance sur des données réelles. Le pouvoir de prédiction des
modèles est testé par validation croisée et le modèle de choix est étudié plus en
détails. Les paramètres des deux modèles sont interprétables et mettent en avant des
mécanismes comportementaux intéressants. Par sa qualité, le modèle de choix est
directement opérationnel.

La modélisation des mouvements de piétons consiste à analyser comment des
personnes choisissent leurs prochains pas. Ceci est utile dans la plannification ur-
baine et la conception d’infrastructures. Nous proposons, estimons et validons un
modèle de mouvement de piétons basé sur un modèle de choix discret. Deux types
de comportement sont pris en compte dans le modèle: contraint et non contraint.
Le comportement contraint est relatif aux interactions avec les autres piétons, au
contraire du non contraint. Un modèle cross nested logit est proposé pour prendre
en compte la corrélation spatiale entre les alternatives de pas. Le modèle est estimé
par maximum de vraisemblance en utilisant des trajectoires de piétons extraites de
vidéos. Il est ensuite validé avec succès en utilisant un second jeu de données.

La reconnaissance dynamique d’expressions faciales consiste à caractériser l’expression
faciale d’un sujet dans une vidéo. Ceci s’avère utile dans les interfaces homme-
machine. Nous la modélisons en utilisant des modèles de choix discret. L’originalité
de l’approche est basée sur la modélisation explicite des relations de causes à ef-
fets entre les mesures faciales et l’expression identifiée, ainsi que la prise en compte
de l’ambiguité des expressions. Cinq modèles sont proposés, basés sur différentes hy-
pothèses concernant la dynamique du processus de décision. Les modèles sont estimés
par maximum de vraisemblance en utilisant des vidéos de visages. La labélisation de
ces vidéos avec des expressions s’est faite par le biais d’une enquête internet. Les
paramètres des modèles sont interprétables et reflètent le jugement humain. Les
pouvoirs prédictifs des modèles sont étudiés et comparés par validation croisée. Les
résultats étant satisfaisants, les modèles sont utilisables dans des applications réelles.

Plusieurs contributions sont apportées dans cette thèse. De nouveaux défis de
la modélisation du comportement humain ont été investigués. Pour chaque applica-
tion, des approches originales et multi-disciplinaires ont été conduites. Des modèles
détaillés sont proposés, et les mécanismes comportementaux quantifiés. Les modèles
développés sont opérationnels. Des modèles complexes ont été utilisés dans un cadre
prédictif. Une méthode de validation détaillée est proposée et appliquée.

Mots-clés: modélisation du comportement humain, modèle de choix discret, appli-
cations, défis, modèle à classe latente, finance, piétons, reconnaissance dynamique
d’expressions faciales, collecte de données, spécification, vision assistée par ordina-
teur, validation, dynamique, outil d’aide à la décision, multi-disciplinarité.
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1. Introduction

1.1 Context

Decision making is difficult in complex situations, as many trade-offs are usually
considered. Consequences of decisions may be difficult to predict. Decision-aid tools
are relevant in these circumstances. They give insight into the decisions and their
impact, by providing quantitative information. They allow to forecast scenarios. The
forecasting often requires the prediction of human actions. Indeed, the majority of
complex decision contexts involve human actors. This is the case in markets, where
humans exchange goods and services. This is also the case in systems, where humans
interact with facilities, such as in transportation.

Models enable the prediction of human actions. They provide a simplified repre-
sentation of reality, a better understanding of it and allow to predict its future state.
Models embedded in decision-aid tools are often simplistic. This is due to three rea-
sons: simple models are the most tractable, they do not require advanced knowledge
and their development is not time-consuming. For example, aggregate methods are
commonly used, based on linear regressions or time series analysis. An issue is raised
for simplistic models, as their prediction capabilities are limited. This is problematic
as they directly influence the output of decision-aid tools.

Models with high prediction accuracy are necessary. Disaggregate behavioral mod-
els are relevant in this context. They have been developed since the late 50’s and are
designed to capture the behavior of single individuals. In these models, the behav-
ioral mechanisms are directly translated into equations, which is what makes their
strength but also their complexity.

On one hand, emerging technologies (e.g. smart phones, computers or video cam-
eras) enable the collection of various and detailed human behavioral data. The cost
of data storage has significantly decreased in the last decade. Huge databases are
easily stored and accessible. These data are highly relevant for characterizing human
behavior. On the other hand, new modeling techniques have been proposed to deal
with complex behaviors ( J.L.Walker (2001), Ben-Akiva et al. (2002) and Ben-Akiva
(2010)). They capture detailed causal effects, but their estimation involves the opti-
mization of complex mathematical functions. For many years, the estimation effort
has limited their development. This is no longer the case, and software is available
for estimating such models.

1
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The combination of new modeling techniques, software and data open the field of
behavioral modeling to new applications, but also challenges. Challenges have to be
identified in the behavioral modeling process, and solutions need to be proposed.

Traditionally, behavioral models have been developed in transportation for mod-
eling travel demand (Ben-Akiva and Lerman, 1985). They are key to the classical
transportation planning approach. Marketing is the other historical field (Louviere
et al., 2000). For obvious reasons, the understanding and prediction of the behavior
of consumers is crucial in economy.

This thesis is focused on the challenges of behavioral modeling for non-traditional
applications.

1.2 Motivation

The work is motivated by several objectives summarized in what follows.

• Identify challenges of non-traditional applications: Detailed knowledge
about human behavior has been acquired when conducting analysis in tradi-
tional applications. Moreover, accurate modeling methodologies have been pro-
posed in these circumstances. The transferability of this flourishing of literature
has to be investigated in the context of non-traditional applications. Adapta-
tions need to be done and new methods should be proposed. Challenges have
to be identified and addressed in every task of the modeling process.

• Emphasize multi-disciplinarity: Three types of knowledge should be com-
bined when developing an accurate model. First, application-specific knowledge
is needed to understand the behavioral context. Second, mathematical skills are
essential for the development of a rigorous model. Third, good judgment is re-
quired of the analyst in order to translate the behavioral understanding into
equations. The analyst’s judgment is also crucial for interpreting estimation
results of the model, as well as evaluating its prediction capabilities.

• Focus on behavioral complexity: Non traditional applications are charac-
terized by complex behaviors. For example, dynamic behaviors are common,
meaning that current decisions are influenced by previous decisions and infor-
mation. In addition, individuals often consider complex interactions between
information, when making decisions in these contexts. The translation of these
phenomena into equations is challenging and remains difficult. Innovative math-
ematical formulations have to be proposed. Their relevance has to be demon-
strated in real applications.

• Investigate non-traditional applications of behavioral modeling: Be-
havioral models have shown their relevance mainly in transportation and mar-
keting. New application fields have been identified, where the understanding
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and prediction of human behavior are important. It is now possible to consider
quantitative models thanks to new data collection technologies. The develop-
ment of behavioral models will allow to capture the complexity of the decision
process with regard to these applications.

• Develop operational models: New behavioral modeling techniques have
been proposed in the literature. So far, they have been mostly used to quantify
the behavioral understanding. Few attempts have been carried out to use them
for prediction. This is important, as forecasting is the finality of the modeling
process.

1.3 General framework

We now present the general modeling framework that we have adopted throughout
the thesis. It is displayed in Figure 1.1. Tasks are represented by squares. Ellipses
represent inputs or outputs to tasks. The analyst is involved in every task.

The analysis starts with the choice of an application. Experts of the applica-
tion field are contacted to help the analyst in understanding the application context.
Data are required to characterize the studied behavior. Experts help in setting a
data collection method and collecting data. Data collection consists of observing and
reporting actions performed by subjects in the application context. Raw data are
processed. For each observation, the decision variable is computed, as well as the ex-
planatory variables. Data are used to understand, specify, estimate and validate the
model. The specification of the model is the translation of the behavioral mechanisms
into equations. The estimation consists of fitting the parameters of the theoretical
model with real data. Tests are carried out to validate the estimation results: pa-
rameter interpretations are checked and statistical tests are performed to ensure the
significance of the parameters. If the results are good, the process goes to validation,
otherwise a new model specification is provided. Validation assesses the prediction
capabilities of the model and is carried out with a different dataset than that of the es-
timation. Measures are calculated and analyzed to judge the prediction capabilities of
the model. If results are satisfactory, the model is finalized, otherwise, it is respecified.

The focus on non-traditional applications raises challenges in the different tasks
of the modeling framework. In this thesis, we will address several of them. Data
collection involves the use of emerging technologies, leading to the development of
specific experimental designs. The collected data require specific and heterogeneous
data processing techniques. Regarding the specification, the behavioral complexity
should be accounted for in the model using precise mathematical formulations. For
this purpose, modeling insights from traditional applications have to be adapted, or
new formulations need to be proposed. The estimation should ensure the quality of
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Figure 1.1: The behavioral modeling framework adopted in this thesis

the proposed specification by checking the consistency of parameters. Concerning
the validation, proper methodologies have to be set up and applied. This task is
particularly important in proving that the developed model is operational.

In this thesis, we explore the challenges associated with behavioral modeling in
the context of three specific applications.

1.4 Applications

We consider three contexts where the human dimension plays an important role:
pedestrian and crowd management, automatic facial expression recognition, and fi-
nancial decisions. They have been selected among a long list of applications because
of the availability of real and relevant data. The three applications and their corre-
sponding challenges are presented in what follows.

The modeling of financial decisions consists in characterizing how individuals be-
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have in the financial market. From the point of view of investors, this model is
relevant for predicting monetary gains. From the point of view of authorities, the
model predictions can help to regulate the market. The evolution of the stock mar-
ket depends on decisions taken by several financial actors, including asset managers,
firms, long- and short-term investors, or non-professional individuals. The financial
actors base their decisions on eclectic information from heterogeneous sources. Infor-
mation is related to stocks and underlying companies, or to the market. News and
governmental announcements are considered. Information about the previous days is
also relevant. The stock market is a complex system, hard to understand and model.

We are interested in modeling financial decisions made by investors in stock mar-
kets. Data provided by a Swiss private bank are used to characterize their behavior.
We focus on the choice of action (buy or sell), and the duration between two actions.
The translation of behavioral complexity into a model is challenging. Numerous
explanatory variables are available and causalities have to be identified. We must
account for the market risk which has a large influence on the decisions. Moreover,
the process is dynamic, as investors account for previous actions when making deci-
sions. Estimation is challenging as well, due to the complexity of the model. Another
challenge concerns the prediction capabilities. In the literature, the proposed models
are often limited. There is room for improvement.

Pedestrian behavioral models describe how a person walks. It is an important
topic in various contexts. For the design of buildings, architects want to understand
how individuals move in order to design for optimal space. In transportation, engi-
neers conceive facilities with particular emphasis on the safety of pedestrians. Recent
dramatic events increased the interest for video surveillance systems able to monitor
pedestrians in public spaces, and detect suspicious behavior. Models also help in test-
ing evacuation scenarios. The walking behavior is composed of mainly three items:
choice of destination, choice of route and choice of step. The destination choice de-
termines where the pedestrian goes. The route choice concerns the path to reach the
destination. The step choice is related to the walk along the path. Pedestrian behav-
ior depends on several factors, such as density, interactions with other pedestrians,
or characteristics of the pedestrian.

We are interested in modeling the step choice. We use pedestrian trajectory data
extracted from videos to characterize pedestrian behavior. We start from the model
of Antonini, Bierlaire and Weber (2006), which is a discrete step choice model. The
model integrates various behavioral patterns, such as the destination’s attractiveness
and some pedestrian interactions (leader-follower and collision avoidance). The val-
idation of such a model is challenging. In the literature, few pedestrian models have
been quantitatively validated. Most of the time, there is no validation, or only a
qualitative validation. Two main reasons are involved. Data reflecting the dynamics
of pedestrians are difficult to collect, and no proper validation methodology has been
proposed.
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Automatic facial expression recognition consists in characterizing the expression
of a human face. Facial expressions are essential in conveying emotions and repre-
sent a powerful way for human beings to relate to one another. In human machine
interfaces, computers must account for human emotions. For example, it is useful
in the context of “aware vehicles”, for the development of systems managing interior
car features. Moreover, emotions influence numerous choice processes, making it an
important decision variable. This is the case in marketing or transportation, and
facial expression is one of the main indicators of emotion.

We model the dynamic facial expression recognition (DFER), which consists of
capturing how a person labels the facial expression of a subject in a video. We start
from the model of Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010) who
propose a discrete choice model for the recognition of facial expressions in images.
There are several challenges. We need to design an experiment for collecting data
which reflects the heterogeneity of the perception of expressions. Indeed, perception
of facial expressions is subjective, differing from one person to another. Computer
vision techniques must be used to extract information about the faces. Regarding the
model specification, accurate explanatory variables should be identified, requiring the
use of psychological concepts. Complex causal effects must be translated into equa-
tions. Explicit accounting for dynamics of the process is also challenging. Hypotheses
need to be set up and translated into equations. Estimation is intricate due to both
model and data complexity. Validation is not trivial, because both a quantitative and
a qualitative analysis are required. Indeed, even if parameter interpretations are ver-
ified after estimation, predictions related to the dynamic parts of the models should
be carefully studied.

We summarize the tasks performed for each application in Table 1.1.

Modeling task Investors’ behavior Walking behavior DFER
Contact experts × ×
Collect data ×
Process data × × ×
Specify a model × ×
Estimate a model × × ×
Validate a model × × ×

Table 1.1: Tasks performed for each application in the thesis

1.5 Contributions

This thesis contributes to various fields. These contributions are summarized as
follows.
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• Multi-disciplinarity: We propose a behavioral modeling framework where
knowledge related to different research fields is integrated. Relevance of the con-
cept is proved by conducting detailed analysis for three different applications.
In every analysis, methodologies associated with the discrete choice modeling
enter the picture. Regarding the behavior of investors, finance is considered.
For walking behavior, computer vision and pedestrian science are used. Con-
cerning the DFER, computer vision and psychology appear to be meaningful. In
each application, the knowledge combination added to the analyst’s judgment,
reinforce the proposed analysis.

• Quantification of behavioral mechanisms: Advanced models are proposed
to capture the complexity of behaviors under investigation. Specific mathemat-
ical formulations are proposed and estimated in each analysis. The parameters
are meaningful and emphasize complex behavioral mechanisms. In finance, an
integrated approach is developed to handle simultaneously two decision vari-
ables. Complex causalities are quantified, as well as process dynamics and risk
perception. Regarding walking behavior, the behavioral patterns considered are
relevant. For the DFER, the translation of psychological concepts into equa-
tions is meaningful. Moreover, the proposed models help in characterizing the
dynamics of the recognition process.

• Modeling of dynamic behaviors: Dynamics of the decision process are han-
dled with specific techniques. For the investors’ behavior, a specification is
proposed to account for the previous decisions, both in the action choice and
duration models. Concerning the DFER, discrete choice models with latent
classes are developed to capture it. The dynamics are also accounted for in
the utilities. The different formulations proposed in the thesis are relevant for
future behavioral analysis.

• Handling of ambiguities: For the DFER, the developed approach allows to
handle the ambiguity of facial expressions. Indeed, the perceptions of several
individuals are considered when estimating the models.

• Use of complex behavioral models in a predictive context: For the
investors’ behavior and the DFER, discrete choice models with latent classes
are proposed. The prediction capabilities of the models are studied in detail. In
the literature, few articles report the use of such models in a predictive context.

• Validation methodology: For the walking behavior, a complete validation
methodology of the model is proposed and performed. It can be reused in future
analysis.

• Applications: New approaches are developed in different application fields.
In each chapter, a detailed analysis is performed. The different tasks of the
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modeling framework are addressed with originality. The work helps in the
understanding of behavior. For researchers, it gives insights for future analysis.

For each application, the models are validated. Prediction capabilities are sat-
isfactory and emphasize the robustness of the models. As a consequence, they
can be implemented in decision-aid tools for real-life applications. The work is
useful for practitioners.

1.6 Thesis outline

This thesis is structured around three papers corresponding to the three chapters.
Each chapter corresponds to an application. The outline of the thesis is presented in
the following. For each chapter we make reference to the corresponding publication.

• Chapter 2 addresses the modeling of the investors’ behavior. We aim at mod-
eling financial decisions of investors on stock markets. This work has been
submitted to the International choice modelling conference 2011. This chapter
has been published as:

Robin, T., and Bierlaire, M. (2011). Modeling the behavior of investors. Tech-
nical report. Transport and Mobility Laboratory, ENAC, EPFL.

• Chapter 3 presents the modeling of pedestrian behavior. We model how a
person chooses her next step when walking. A detailed procedure is performed
to validate the model. This chapter has been published as:

Robin, T., Antonini, G., Bierlaire, M. and Cruz, J.(2009). Specification, esti-
mation and validation of a pedestrian walking behavior model, Transportation
Research Part B: Methodological 43(1): 36–56.

Ranked first in the TOP 25 hottest articles of Transportation Research Part B
for October-December 2008 as well as for January-March 2009.

• Chapter 4 focuses on the modeling of dynamic facial expression recognition.
We model a person who has to recognize the facial expression of a subject in
a video. This chapter is a follow-up on Sorci, Antonini, Cruz, Robin, Bierlaire
and Thiran (2010) and has been published as:

Robin, T., Bierlaire, M. and Cruz, J., (2010). Dynamic facial expression recog-
nition with a discrete choice model, Technical Report TRANSP-OR 100423,
Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

• Chapter 5 provides conclusions and future research perspectives.



2. The financial behavior:
modeling of investors’ decisions

2.1 Introduction

We propose an hybrid discrete choice framework for modeling decisions made by
investors on stock markets. We focus on the choice of action (buy or sell) and the
duration until the next action. The choice of action is handled with a binary logit
model with latent classes characterizing the perception of the risk, while a Weibull
regression model is used for the duration until the next action. The duration model
also accounts for the risk perception. Both models consider the dynamic nature of
the underlying phenomenon. They are merged in a single model called combined
model. It is estimated using data from a Swiss private bank consisting of 25989
observations of transactions performed between January 2005 and September 2010,
in 6 different funds. The predictive performance of the models are tested. A cross-
validation analysis is performed. The forecasting accuracy of the action model is
studied more in details. Parameters of both models are interpretable and emphasize
interesting behavioral mechanisms related to investors’ decisions. The good prediction
capabilities of the action model in a real context makes it operational.

This chapter contains mainly the developments proposed by Robin and Bierlaire
(2011). This work has been submitted to the international choice modelling confer-
ence 2011.

2.2 Motivation

The prediction of the evolution of the stock market is crucial for investors in order to
forecast their monetary gains. For authorities, this topic is important for regulating
the market. The evolution of the stock market depends on the decisions taken by
numerous financial actors, including asset managers, firms, long-term and short-term
investors, or unprofessional individuals. In addition, automatic trading based on
algorithms is also used for taking advantage of the instantaneous price variations of
stocks. A recent study done by the Aite Group (Aite, 2010) shows that in 2009,
slightly more than half of European equity volume is executed electronically. They

9
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forecast an increase of this share in a near future. The actors’ decisions are based on
information coming from very eclectic sources and vary across actors. Stocks price
play a key role as well as information associated with the underlying company and
the whole stock market. News and governmental announces are considered in these
decisions. As the process is dynamic, the past information are fully relevant. The
variations of the price of stocks reflect the interaction between the different actors’
decisions, according to the supply and demand rule , making the stock market an
extremely complex system difficult to model and predict.

Many financial problems have been analyzed in the literature. A major field
of research is the portfolio optimization. Perold (1984) develop an algorithm in
case of large-scale portfolio. Chang et al. (2000) present heuristics for optimizing
it. El-Ghaoui et al. (2003) work on the robust optimization using conic program-
ming. Dentcheva and Ruszczynski (2006) propose other methods for this optimiza-
tion. Equilibrium problem appear to be relevant in finance. Werner (1985) analyze
equilibrium in economies with particular financial markets. Basak and Cuoco (1998)
solve the price equilibrium problem in a pure-exchange, continuous-time economy in
which the financial actors face costs or other types of information preventing them
from investing in the stock market. Veronesi (1999) model the overreaction of finan-
cial actors toward different stimuli using a rational expectations equilibrium model of
prices. The prediction of return is another interesting problem. Lamoureux and Las-
trapes (1990) provide empirical support to autoregressive conditional heteroskedastic
(ARCH) models in predicting return of stocks. Campbell and Shiller (2001) study the
prediction capabilities of price earnings ratio on stock markets for long time periods.
The analysis of the risk is well studied. Blume (1971) examine the statistical prop-
erties of one measure of risk based on the returns. Bollerslev and Mikkelsen (1996)
use time series model to predict the volatility of the stock market, which characterize
the level of risk. McNeil and Frey (2000) propose a method to estimate the value at
risk (VaR) and related risk measures. Rockafellar and Uryasev (2000) optimize the
VaR. Artzner et al. (1999) review and study different measures of risk in financial and
non-financial fields. Frittelli and Gianin (2002), Acerbi (2002) develop several risk
measures. Another topic is the prediction of firm bankruptcies which helps financial
actor in taking decisions. Johnsen and Melicher (1994) uses logit models to predict
firm financial distress and bankruptcy. Hensher and Jones (2004) develop a mixed
logit model to predict firm financial distress. Shin et al. (2005), Min et al. (2006)
applicate machine learning methods (support vector machine (SVN) and genetic al-
gorithm) for predicting bankruptcy.

Since the early 90’s the behavioral finance has a growing interest. The evolution of
financial market is caused by the behavior of the underlying actors, which appears to
be highly heterogeneous. Shiller (2003) explain the transition between theories about
market efficiencies and the behavioral finance. Shiller (1999) discuss the different
human behaviors observed in financial systems. Cont and Bouchaud (1997) propose
a model to account for the herd behavior in financial markets. Lo (2004) present a
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framework for concilling market efficiency and behavioral alternatives using the evo-
lution theory. De Grauwe and Grimaldi (2004) develop a simple behavioral model in
which agents optimize their portfolio based on rules, accounting for the reaction to-
ward bubbles and crashes. Baker and Wurgler (2007) investigate the influence of the
investor sentiments about risk on the stock market. Some attempts have been made
to model the financial scenes. Arthur et al. (1996) propose a theory and simulate the
behavior of heterogeneous agents in an artificial stock market. Chen and Yeh (2001)
develop a genetic algorithm to model traders in an artificial stock markets. Barberis
and Thaler (2003) summarize applications of behavioral finance (including individual
trading behavior). Hommes (2006) review disaggregate and dynamic agent models in
economics and finance.

Different methodologies have been applied an developed. Specific time series tech-
niques are common. Bollerslev et al. (1992) review theory and applications of ARCH
model in finance. Mikosch and Stărică (2004) develop models in order to account
for non stationarity in financial time series. Rule-based models are largely used. Zo-
pounidis (1999) study the contribution of multicriteria analysis in solving financial
decision problems in a realistic context. Wagner et al. (2002) propose a guidance for
specifying rules of expert systems in the financial field. Operation research techniques
appear to be useful for optimization. El-Yaniv (1998) survey results concerning on-
line algorithms for solving problems related to the management of money. Machine
learning methods are well adapted to the financial context, due to the huge amount
of aggregate data available on financial markets. Giles et al. (2001) develop neural
networks (NN) for predicting noisy financial time series. Kim (2003) use SVN to
forecast financial time series. Huang et al. (2004) compare artificial intelligence tech-
niques for the credit rating analysis (SVN against NN). Other methods have been
used. For example, Fermanian and Scaillet (2004) discuss the use of copulas for mod-
eling cross-dependences in financial applications, or Embrechts and Schmidli (1994)
review methodologies used to model stochasticity in finance.

In this chapter, we investigate the development of behavioral models designed to
capture the behavior of specific actors in the financial sector. In that purpose, we
propose to use an hybrid discrete choice framework to model the behavior of investors.
Discrete choice models (DCM) are well adapted in the context of disaggregate mod-
eling (Ben-Akiva and Lerman, 1985). They have the advantage to explicitly capture
causal effects. Interestingly, few articles report the use of DCM in the financial con-
text. Johnsen and Melicher (1994) and Hensher and Jones (2004) developed DCM for
predicting the firm financial distress. de Palma et al. (2008) consider the inclusion of
the risk perception in random utility models, although they do not focus on finance
per se.

We are interested in modeling the behavior of professional investors. Each fund
is managed by a person called the fund manager, with the help of a dedicated team
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of analysts. The objective of the fund manager is to adjust his portfolio in order to
maximize the returns. For each stock present in his investment universe , he decides
to buy, sell or wait. In case of buying and selling, he has to decide the involved
quantity of money. Then, the order is passed to a trader in charge to implement this
decision. The trader translates the decision into transactions. Several transactions
can reflect the same decision as the trader chooses the right moments in the day for
taking advantage of the market, or even split the order over a few days to reduce the
impact of the decision on the market.

The decisions made by a fund manager are based on many heterogeneous informa-
tion like volatility and price of each stock, fundamental data reported by companies,
and the global state of the market often provided by global indices. Other information
such as news about politics, fusion of companies or governmental announcements are
also relevant. Another event triggers the decision made by a fund manager. When
a customer invests in a fund, an equivalent amount of money is transferred to the
fund and the fund manager needs to deploy this inflow buying some stocks. On the
contrary, if there is an outflow, meaning that a customer withdraw a certain amount
of money, the fund manager needs to sell some stocks to provide the necessary cash.

We focus on two behavioral aspects which are the choice of action (buy or sell)
and the duration between two actions. Regarding the choice of action, the developed
model is inspired from the work of J.L.Walker (2001) and Greene and Hensher (2003)
about DCM with latent classes. In our case, the latent classes account for the risk
perception. For the duration, we considered the models presented by den Berg (2001)
and Bauwens and Veredas (2004). A Weibull model appears to be appropriate. It
accounts for a different risk perception than the model of action choice.

This chapter is organized into various sections as follows. In Section 2.3, we present
the raw data, in Section 2.4 the notations, in Section 2.5 the time discretization, in
Section 2.6 the explanatory variables. Section 2.7 details the model. In Section 2.8,
the estimation results are shown. Section 2.9 validates the model.

2.3 Raw data

We have access to transactions related to six long-only funds of the Swiss private
bank Lombard Odier For confidentiality reasons, the data are anonymous and we
will called these funds 1,2,3,4,5 and 6.

The raw data consists in 25989 observations of transactions passed by traders. The
time period goes from 2005.01.03 to 2010.09.13. Each transaction is characterized by
a date, a company, a fund and an amount of money. The amount is positive if stocks
have been bought and negative if they have been sold. Stocks of 1236 companies are
considered. The number of observations and companies per fund are shown in Table
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2.1. Some companies appear in several funds. The shares between the transactions
buy and sell are also shown. The number of transactions are equally spread between
buy and sell for all the funds, except fund 3.

Fund Nb of transactions Nb of companies % buy % sell
1 4354 160 44.63 55.37
2 1189 64 55.82 47.18
3 6427 363 78.70 21.30
4 2018 560 54.21 45.79
5 6935 55 45.84 54.16
6 5066 185 57.26 42.74

Table 2.1: Number of transactions, number of companies and percentage of transac-
tions per fund in the raw data

The data are dynamic per nature. The evolution of the number of transactions
per fund is presented in Figure 2.1. The number of buy transactions is stable in av-
erage, but with strong fluctuations. Regarding sell transactions, two phases appear.
The first goes from 2005 to 2008, which is characterized by stability and weak fluctu-
ations. The second goes from 2008 to 2010, it is stable in average but with stronger
fluctuations compared to phase 1. The average in phase 2 is higher than in phase 1.
These two observations are linked to the fact that the starting of phase 2 coincides
with the financial crisis of 2008.

Five indicators are considered as explanatory variables. These indicators have
been designed and computed by a quantitative team of Lombard Odier. They are
called quality, sentiment, technic, value and price. Quality measures the fundamental
quality of a company by examining specific economic and financial data published by
the company. Sentiment is a number based on a combination of estimates of the ana-
lysts covering the company, as for example the next year earnings estimates. Technic
is a combination of indicators that analyze the company’s activity on the market by
identifying chart pattern of prices, as for example the momentum reversal. The mo-
mentum is defined by the difference between two prices of a same stock for a chosen
time horizon. Value is an objective value of a company based on classic valuation
metrics, like for example price to earning ratio. Price characterizes the price of the
stock associated to the company. Note that portfolio information is not available in
the data, neither data about fund managers.

For a certain company, we display the variations of the five indicators in Figure
2.2. These values are scores and have no unit. For the sake of reading, the values
have been normalized between 0 and 1 by adding the observed minimum per fund
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Figure 2.1: Evolution of the number of transactions buy and sell contained in the
raw data

and dividing by the observed maximum per fund. A correlation analysis performed
between the different indicators did not evidence strong links between them. This
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is logical because, they have been built to reflect complementary information about
the company. The quality and sentiment are constant over small time period by
definition, generating levels on their associated curves (see Figures 2.2(a) and 2.2(e)).
This is not the case for the other indicators which present continuous variations.
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Figure 2.2: Examples of the indicator variations for one company

The decision context depends on the state of the stock market. The VIX (symbol
for the Chicago board options exchange market volatility index) has been retained.
This is a popular measure of the implied volatility of the S&P 500 index. It repre-
sents one measure of the market’s expectation of the stock volatility and characterizes
quite well the market risk. It has been plotted for the considered period of time in
Figure 2.3. The financial crisis of the end 2008 appears clearly. It is characterized
by the highest pick on the curve. The horizontal line is set for the VIX equal to 25.
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This value, arbitrarily chosen following a discussion with a fund manager, defines a
limit between a high volatility market and a low volatility market, and consequently
generates two complementary decisional behaviors.
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Figure 2.3: Evolution of the VIX during the considered period of time

2.4 Notations

We introduce the notations that are used along the chapter, specially in Sections 2.5,
2.6 and 2.7. They are used and not redefined afterward. The modeling concepts are
defined specifically in Section 2.7.

• DCM: discrete choice models;

• i.i.d.: independent and identically distributed;

• EV(0, 1): standardized extreme value distribution;
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• N(0, 1): standardized normal distribution;

• c: company;

• C: the number of companies;

• t: day;

• T : the length of the entire time period;

• tH: time horizon in days;

• H: vector of considered tH, H = {1 . . . 5, 10, 15, 20, 25, 30, 60, 90, 180, 270, 360};

• f: fund, f ∈ F = {1, 2, 3, 4, 5, 6};

• F: vector of funds;

• g: group of funds, g = 1 groups funds 1, 2, 3, g = 2 groups funds 4, 5, 6;

• t ′ = t + D(c, t) + 5: the day of the action performed after A(c, t), A(c, t) and
D(c, t) are defined in Section 2.4.1;

• B: action buy ;

• S: action sell ;

• R: risky situation;

• N: normal situation, as opposed to R;

• e: experience of the cross-validation;

• t0,e: starting date of the simulation set of experience e;

• Te: ending date of the simulation set of experience e;

• R2
e: R2 predicted by the duration model on the simulation set of experience e;

• zc,t: standardized residual of the duration model.

Remaining notations are organized per thematics.



18 2. THE FINANCIAL BEHAVIOR: MODELING OF INVESTORS’ DECISIONS

2.4.1 Variables

Notations for dependent and explanatory variables are summarized below.

• O(c, t): transaction observed on t for c (money), if it is positive, stocks have
been bought; if it is negative, stocks have been sold;

• A(c, t): action decided on t for c, A(c, t) ∈ {B, S};

• D(c, t): time duration between A(c, t) and A(c, t ′) in weeks (5 days);

• D̂(c, t): predicted duration;

• D̄(c, t): duration mean calculated over t and c.

• rA: risk in the action model, rA ∈ {N, R};

• rD: risk in the duration model, rD ∈ {N, R};

• qualc,t: quality associated to c on t;

• techc,t: technic associated to c on t;

• sentc,t: sentiment associated to c on t;

• pricc,t: price associated to c on t;

• valuc,t: value associated to c on t;

• xc,t = {qualc,t, techc,t, sentc,t, pricc,t, valuc,t}: vector containing the 5 funda-
mental indicators for c on t;

• Kx: the length of xc,t

• VIXt: VIX on t;

• Perf(xc,t(k), tH): performance of xc,t(k), calculated on tH (Equation (2.1));

• Long(xc,t(k), tH): long-term value of xc,t(k), calculated on tH (Equation (2.2));

• Short(xc,t(k), tH): short-term value of xc,t(k), calculated on tH (Equation (2.3));

• Sigm(xc,t(k), tH): standard-error of xc,t(k), calculated on tH (Equation (2.4));

• Xc,t: vector of raw and transformed values of {xc,t(k)}k=1...KX
(Equation (2.5));

• Yt: vector of raw and transformed values of the VIXt (Equation (2.6)).
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2.4.2 Parameters

Two models are introduced in Section 2.7. The parameters of the models are denoted
as follows.

The action model

• β: vector of parameters (Equation (2.24));

• µf: scale of the random variables εB,rA ,c,f,t′ and εS,rA ,c,f,t′;

• ωA: vector of parameters associated to the risk perception (Equation (2.8));

• βB: vector of parameters associated to the explanatory variables;

• KB: size of βB;

• ASCB,rA
: constant parameter;

• αB,rA
: parameter associated to the deterministic utility of B in the previous

action;

• λB,rA
: parameter weighting the influence of the deterministic utility of B in the

previous action.

The duration model

• θ: vector of parameters (Equation (2.28));

• ηD: shape parameter of the Weibull distribution;

• θD: vector of parameters associated to the explanatory variables;

• KD: size of θD;

• ωD: vector of parameters associated to the risk perception (Equation (2.13));

• ASCD,rD,g: constant parameter;

• αD,rD,g: parameter capturing the effect of the previous duration;

• θB,rD
: parameter capturing the influence of the deterministic utility of B.
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2.5 Time discretization

In the raw data, we do not observe the investors’ decisions but direct consequences
of them. For a given stock, once the investor has decided an action and an associ-
ated amount of money, a trader implements the decision. Traders have a tendency
to split the investors’ decisions in several successive transactions in order to decrease
the influence of the decisions on the underlying stocks, in terms of price, due to the
supply and demand rule. These transactions constitute the data. As a consequence,
different transactions in the raw data could reflect the same decision. The date of
the decision and the date of the first transaction coincides. Transactions have to be
aggregated for each stock in order to represent the investors’ decisions.

For given stock, we group transactions in sets. A transaction belongs to a set if at
least one transaction inside the set is separated from the considered transaction from
less than five days. Then, the time period of each set is split in consecutive time win-
dows of five days. The transactions within the time windows of five days constitute
subsets. Within subsets, the transactions are aggregated by summing their associated
amounts of money. If the sum is positive, it is a buy action; if it is negative, a sell
action appears. The information of the first day of the subset are the explanatory
variables. Actions involving a small quantity of money have been discarded.

A time window of 5 days is used, because it corresponds to a working week. The
aggregation procedure starts the first day with an observation, which is the first work-
ing day of 2005 (2005.01.03). The 5 days period can cross week-ends in case of legal
holidays or market closures. Anyway, this period should be interpreted as a buffer,
where investors do not revise their decisions. These are major assumptions which
have been validated by the involved investors. In addition, other aggregation tech-
niques have been tested (on different time periods and with different rules) and the
results presented in Section 2.8 appeared to be stable, showing the robustness of the
approach. In practice, we observed that the summing of the actions always imply
transactions of the same sign, validating the choice of the 5 days period. Two situa-
tions appear when aggregating the transactions, they are illustrating in the following:

1. A transaction with no near neighbor. This means that the set contains
only one transaction. It is considered as an investor’s decision. An example of
this situation is presented in Figure 2.4. In that case, there is no aggregation.

2. A time period with neighboring transactions. This means that a set con-
tains at least two transactions. The time period is covered by non-overlapping
time windows of five days. Transactions are aggregated within each subset and
information about the first date of the subset are considered. An example is
shown in Figure 2.5.

Regarding this example, the starting of the aggregation on day t could be
conditioned by the first day of the collected data. This is the case between 2005
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days

Oc,t Oc,t+8

A(c, t) A(c, t + 8)

Figure 2.4: Aggregation of isolated transactions

days

Oc,t Oc,t+3 Oc,t+6 Oc,t+10

A(c, t) A(c, t + 5) A(c, t + 10)

Figure 2.5: Aggregation of neighboring observations

and 2007 (Figure 2.6 compared to Figure 2.1). As mentioned previously, this
has been validated with the involved investors and by performing aggregation
tests.

Note that a minimum of five days separate two actions. Actions with small quanti-
ties of money have been removed because they correspond to adjustments representing
noise in this modeling context. Following a discussion with a fund manager, it has
been decided to arbitrarily remove 25% of the actions (with the smallest associated
amounts of money). After processing the transactions, the data contains 9178 obser-
vations of actions performed on stocks of 1121 companies. The details are presented
in Table 2.2. The shares between actions are equally distributed and rather the same
than for the transactions presented in Table 2.1, except for the fund 3. For this fund,
the distribution is much more balanced between the actions, compared to the trans-
actions.

The repartition of the actions across time is presented in Figure 2.6. Compared
to Figure 2.1, the aggregation has been quite strong for the buy transactions from
2005 to 2007. Lots of situations 2 (periods with neighboring observations) appeared
(see Figure 2.5). Regarding other periods, the graphs are similar, showing the higher
propensity of situations 1 (transactions with no near neighbor, see Figure 2.4).



22 2. THE FINANCIAL BEHAVIOR: MODELING OF INVESTORS’ DECISIONS

Fund Nb of decisions Nb of companies % buy % sell
1 1461 145 54.96 45.04
2 913 58 53.34 46.66
3 508 50 59.45 40.55
4 3738 505 51.66 48.34
5 1659 316 43.40 56.60
6 899 175 45.05 54.95

Table 2.2: Number of actions, number of companies and percentages of actions per
fund in the processed data

2.6 Explanatory variables

Fund managers ofter base their decision on the dynamic of the variables (Figures 2.2
and 2.3 ) when taking decisions. New variables have been computed based on the
five fundamental indicators and the VIX for reflecting this dynamic. The framework
of the dynamic data calculation is presented in Figure 2.7. Two consecutive actions
are represented A(c, t) and A(c, t + 5). As explained in Section 2.5, two consecutive
actions are separated by a minimum of five days.

The dynamic variables are calculated as follows. We call performance the relative
variation

Perf(xc,t(k), tH) =
xc,t(k) − xc,t−tH

(k)

xc,t−tH
(k)

. (2.1)

The mean calculated over tH is called the long-term value

Long(xc,t(k), tH) =
1

tH

t
∑

l=t−tH

xc,l(k). (2.2)

The difference between the current value xc,t(k) and the long-term value Long(xc,t(k), tH)

is called the short-term value

Short(xc,t(k), tH) = xc,t(k) − Long(xc,t(k), tH). (2.3)

Finally, we define the standard-error as

Sigm(xc,t(k), tH) =

√

√

√

√

1

tH

t
∑

t=t−tH

(xc,t(k) − Long(xc,t(k), tH))2. (2.4)

It characterizes the variations of xc,t(k) within tH. We explicit
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Figure 2.6: Evolution of the number of actions buy and sell contained in the processed
data

Xc,t = {xc,t(k), Perf(xc,t(k), tH), Long(xc,t(k), tH), Short(xc,t(k), tH)

, Sigm(xc,t(k), tH)}tH∈H,k=1...Kx , (2.5)
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days
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VIXt−tH VIXt

Yt Yt+5

Figure 2.7: Calculation of the dynamic attributes

and

Yt = {VIXt, Perf(VIXt, tH), Long(VIXt, tH), Short(VIXt, tH), Sigm(VIXt, tH)}tH∈H,

(2.6)
Heterogeneous tH are considered, tH ∈ H = {1 . . . 5, 10, 15, 20, 25, 30, 60, 90, 180, 270, 360}.

This is motivated by the fact that investors consider short-term to long-term dynamic
of variables when making decisions. 366 variables are considered in total (5 indicators
and the VIX, 4 transformations, 15 time horizons, 366 = 6 × (1 + 4 × 15)).

The variables have been normalized per fund (except the VIX) by sequentially
subtracting the minimum and dividing by the maximum. Then the variables are in
[0, 1]. The normalization has been done per fund because fund managers are consider-
ing the entire fund when taking decisions. The VIX has not been normalized because
it is not fund specific, its interval of variation is manageable, and for interpretation
of the proposed models (see Section 2.7).

For the considered time period, examples of the evolution of the dynamic vari-
ables are presented in Figure 2.8. The raw indicator is the price shown in Figure
2.8(a), which is the same than in Figure 2.2(d). tH = 1 for the calculation of the
performance, long-term value and short-term value. The performance and short-term
value capture the immediate variations of the variable (Figures 2.8(b) and 2.8(d)),
whereas the long-term value is the smoothed version of the the raw variable (Figure
2.8(c)). Note that the smoothing degree is tH. Due to the small value of tH, it is
qualitatively similar to the variation of the raw variable (Figure 2.8(a) and Figure
2.8(c)). The evolution of the standard-error is the most regular, because tH = 60 for
its calculation. tH = 1 is used to illustrate the variables used in the action model
(Section 2.7.2), tH = 60 appeared to be relevant for the duration model (Section
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2.7.3).
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Figure 2.8: Transformation of the raw attributes

A correlation analysis has been performed between the action variable A(c, t)

and the explanatory variables. Results are summarized in Table 2.3. B is coded 0,
and S is coded 1. If the correlation is positive sell is favored, otherwise it is buy.
Note that a Pearson test has been performed for each correlation. Only significant
effects have been kept. The correlations are not very high, the highest value is 0.449

and is observed for the standard-error of the VIX for tH = 360, in fund 3. The
number of significant and generic correlations across funds is low, compared to the
number of variables (366). This points out the difference of financial management
between funds, and emphasizes the specificity of the fund managers’ behavior within
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each fund. Nevertheless, generic and significant correlations provide information. Re-
garding variables associated with the companies and stocks, time horizons are low,
showing the propensity of investors to account for immediate information in their
decisions. A difference of behavior appears between funds 1, 2, 3 and 4, 5, 6. Except
for the variables associated to the VIX, correlations have the same signs within the
two fund groups, and are opposed between the two groups. This difference is partly
explained by the fact that in the two fund groups, a team manage two funds (two
teams per groups of three funds). In each fund group, one team manages one fund,
and the other team manages the two remaining funds.

Transform Variable tH Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6
Perf() Price 1 0.065 0.139 0.127 −0.279 −0.238 −0.329

Short() Value 3 −0.090 −0.084 −0.099 0.227 0.170 0.277

Sigm() VIX 360 0.126 0.303 0.449 −0.062 −0.114 0.213

Short() Technic 1 −0.065 −0.110 −0.113 0.213 0.181 0.257

Table 2.3: Generic and significant correlations between the action variable and the
explanatory variables

A correlation analysis has been also performed by splitting the processed data
into two parts according to the level of VIX. This has been done in order to test if
there is a significant difference of behavior in volatile and non-volatile markets. The
considered threshold is 25 (see Figure 2.3). In case of low VIX, the significant and
generic correlations are the same than in Table 2.3. Interpretations remain the same.
In case of high VIX, only the variable Short(valuc,t, 60) stands out. This under-
lines the specificity of the investors’ behavior within each fund in risky situations.
Two reasons are evoked. First, the nature of the funds is different, which conducts
to specific managements in risky situations. Second, the financial styles of the fund
managers are emphasized and predominate over established rules. This is logical as in
panic situations, emotions tend to overcome conventions. Correlations are displayed
in Table 2.4. The difference between the two groups of fund appear and is consistent
with Table 2.3. The time horizon is higher (60 days compared to 3 days), which
is logical. In risky situations, investors have more tendency to consider long-term
information.

These correlation analysis help us to get intuition about the data, but are limited
due to their univariate nature.
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Transform Variable tH Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6
Short() Value 60 −0.210 −0.125 −0.200 0.206 0.095 0.232

Table 2.4: Generic and significant correlations between the action variable and the
explanatory variables, for a high level of VIX

2.7 Model specification

We aim at understanding and modeling the financial decisions of an investor in a given
time horizon (expressed in days), regarding a set of stocks. Given that an action is
performed on day t for stocks of company c, we assume that the investor decides the
type of action (buy or sell), and the duration until the next action performed on the
same stock. The decision about the duration is not supposed to be revised, once it
has been taken. An overview of the decision process is shown in Figure 2.9. D(c, t) is
the duration between A(c, t) and the next action A(c, t ′), with t ′ = t + D(c, t) + 5.
If D(c, t) = 0, the duration between the two consecutive actions is five days, which
is the minimum duration according to the aggregation presented in Section 2.5. We
model the decisions taken in t ′, A(c, t ′) and D(c, t ′), conditionally on A(c, t) and
D(c, t).

The hypothesis of non-revision of the duration is strong. Two reasons explain
it. First, this is necessary as important explanatory variables are not present in the
data for explaining this decision. They are money inflows and outflows. Second,
the hypothesis has been adopted to operationalize the model. The model is already
complicated and a revision hypothesis significantly complicates the formulation of the
likelihood function (see Section 2.7.4)

The model associated to A(c, t ′) is called action model. The model associated to
D(c, t ′) is called duration model. The combined model groups the action and duration
models. The general modeling framework is presented in Figure 2.10. Square shapes
represent observed variables, whereas round shapes are latent variables. Shapes with
dotted lines are for random variables, whereas plain lines are associated to deter-
ministic variables. Arrows stand for causal links between variables, each arrow is
associated to an equation. Plain arrows stand between variables of t ′, dotted arrows
link variables in t to variables in t ′. Note that some variables can be both latent and
deterministic, as the deterministic parts of utilities in a discrete choice model. We
define the modeling concepts of the scheme per models. For the action model, we
specify:

• VA(R, c, t ′|ωD): the measure for the risk R in the action model (Equation (2.7));

• WA(r, c, t ′|ωA): the randomized measure of the market risk rA (Equation (2.9));
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Figure 2.9: The process of investors’ decisions

• VB(c, t ′|rA, β): the deterministic utility associated with the alternative B (Equa-
tion (2.18));

• MB(c, t ′|rA, β): the term capturing the effect of the previous action on the
current choice of action (Equation (2.19));

• UB(c, t ′|rA, β): the random utility of the alternative B (Equation (2.17));

• US(c, t
′|rA, β): the utility of the alternative S (Equation (2.17));

• εA,rA ,c,t′: a random variable associated to the risk rA (Equation (2.10));

• εB,rA ,c,f,t′: a random variable associated to B, under rA (Equation (2.20));

• εS,rA ,c,f,t′: a random variable associated to S under rA (Equation (2.20)).

For the duration model we specify:

• VD(R, t ′|ωD): the measure for the risk R (Equation (2.12));

• WD(rD, t ′|ωD): the randomized measure of the market risk rD (Equation (2.14));

• mD(c, t ′|rD, θ, β): a utility (Equation (2.27));

• λD(c, t ′|θ, ωD, β): scale parameter of the Weibull distribution (Equation (2.29));

• εD,rD,t′ : a random variable associated to the risk rD in the duration model
(Equation (2.15));

• ǫD,t′ : a random variable, D(c, t) is assumed to be its mean (Equation (2.25)).
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Descriptive statistics shown in Table 2.3 allow to underline a significant difference
of behavior between investors managing funds 1, 2, 3 and 4, 5, 6. We account for
this difference in the specification of the models. In Section 2.7.1 the risk perception
in both models are detailed. In Section 2.7.2 the action model is presented, and in
Section 2.7.3 it is the duration model.

2.7.1 The risk perception

Day and Huang (1990) define three market types: bear, bull and sheep markets. A
bear market corresponds to a decreasing confidence of the investors in the market,
generating an increase of the risk in terms of returns. This is the contrary for the
bull market. The sheep market represents an intermediary position between the
bull and bear markets. In that case, the majority of the investors follow the market
tendencies. According to the investors implicated in the observed decisions, two types
of behavior occur depending on the market risk. The first behavior is called normal,
corresponding to the bull and sheep markets. The second is called risky corresponding
to the bear market. The risk perception is not directly observed, and has a strong
influence on the investors’ decisions. Two models for the risk perception have been
developed, one associated to the action model and one to the duration model. No
characteristics of the investors were available in the data, so the risk perception only
depends on attributes of the decision context.

The risk perception in the action model

The risk rA is a discrete variable. A model for risk classification is developed. A logit
function is used. The deterministic measure of the risk R is

VA(R, c, t ′|ωA) = ASCWA
+ ωA,1VIXt′Ic,g=1 + ωA,2VIXt′Ic,g=2

+ ωA,3Sigm(Sentc,t′, 5), (2.7)

where Ic,g is an indicator equal to 1 if c belongs to g, 0 otherwise. We explicit

ωA = {ASCWA
, ωA,1, ωA,2, ωA,3}, (2.8)

The randomized measure of risks N and R are

WA(N, c, t ′|ωA) = εA,N,c,t′ ,

WA(R, c, t ′|ωA) = VA(R, c, t ′|ωA) + εA,R,c,t′ , (2.9)

and assuming

εA,rA ,c,t′
i.i.d

∼ EV(0, 1), for rA ∈ {N, R}, (2.10)
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a binary logit model is derived where the alternatives are the risks N and R. The
associated probabilities are

PA(N, c, t ′|ωA) =
1

1 + eVA(R,c,t′|ωA)
,

PA(R, c, t ′|ωA) =
1

1 + e−VA(R,c,t′|ωA)
. (2.11)

We expect VA(R, c, t ′|ωA) (Equation (2.7)) to increase when the risk increases,
so ωA,1, ωA,2 and ωA,3 should be positively estimated. The risk perception depends
both on the market and on c, due to presence of the VIX and Sigm(Sentc,t′, 5)

(attribute described in equation 2.4). This specification is motivated by the fact that
the VIX can be seen as a risk measure as such. Sent reflects analyst opinions, and
the standard-deviation characterizes its variation level. It seems logical to expect
an increase of the risk perception, when analysts change frequently their mind. The
perception of the VIX is supposed to differ between the two fund groups (see the
correlation analysis in Section 2.6). Some tests have been performed to split other
parameters between the two fund groups, but the a priori perceptions of risk, as well
as the perception of Sigm(Sentc,t′, 5) appeared to be generic (Section 2.8.1).

The risk perception in the duration model

The risk rD is a discrete variable. A model for risk classification is developed. A logit
function is used. The deterministic measure of the risk R is

VD(R, t ′|ωD) = ASCWD,1Ic,g=1 + ASCWD,2Ic,g=2

+ ωD,1VIXt′Ic,g=1 + ωD,2VIXt′Ic,g=2, (2.12)

where Ic,g is an indicator equal to 1 if c belongs to g, 0 otherwise. We explicit

ωD = {ASCWD
, ωD,1, ωD,2} (2.13)

The randomized measure of the risks N and R are

WD(N, t ′|ωD) = εD,N,t′,

WD(R, t ′|ωD) = VD(R, t ′|ωD) + εD,R,t′ , (2.14)

and assuming

εD,rD ,t′
i.i.d

∼ EV(0, 1), for rD ∈ {N, R}, (2.15)
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a binary logit model is derived where the alternatives are the risks N and R. The
associated probabilities are

PD(N, t ′|ωD) =
1

1 + eVD(N,t′|ωD)
,

PD(R, t ′|ωD) =
1

1 + e−VD(R,t′|ωD)
. (2.16)

We expect VD(R, t ′|ωD) (Equation (2.12)) to increase when the risk increases, so
ωD,1, ωD,2 should be positively estimated . Contrary to rA, the risk perception
depends only on the market. Some tests have been performed with Sent, but the
results were not satisfactory (see Section 2.8.2). However, the difference between the
two fund groups was relevant for the a priori perceptions and for the VIX (see Section
2.8.2) .

2.7.2 The action model

The choice of action is a discrete choice situation. We develop a binary logit model
with two latent classes corresponding to the two risk situations. The random utilities
of the two alternatives B and S are

UB(c, t ′|rA, β) = VB(c, t ′|rA, β)

+ MB(c, t ′|rA, β)

+ εB,rA ,c,f,t′,

US(c, t
′|rA, β) = εS,rA ,c,f,t′, (2.17)

with

VB(c, t ′|rA, β) = ASCB,rA
+

∑

g∈{1,2}

Ig,c

KB
∑

k=1

βB,k

KX
∑

l=1

IB,g,k,l,rA
Xc,t′(l) (2.18)

where IB,g,k,l,rA
is an indicator equal to 1, if the parameter βB,k is associated to the

attribute Xc,t′(l), to the group of fund g and appear under the risk rA. Ig,c is an
indicator equal to 1 if c belongs to g.

MB(c, t ′|rA, β) = αB,rA
VB(c, t|rA, β)eλB,rA

D(c,t) (2.19)

is a term accounting for the effect of the previous action, represented by the deter-
ministic utility of B in the previous action, weighted by D(c, t), the duration between
the last and the current action performed on stocks of c. The assumptions about the
random terms are

εB,rA ,c,f,t′, εS,rA,c,f,t′
i.i.d

∼ EV(0, µf), for rA ∈ {N, R}, (2.20)
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The probabilities of the actions B and S under the risk rA are

PB(c, t ′|rA, β) =
1

1 + e−µfV ′

B

,

PS(c, t
′|rA, β) = 1 − PB(c, t ′|rA, β), (2.21)

where

V ′

B = VB(c, t ′|rA, β) + MB(c, t ′|rA, β). (2.22)

After having summed on the risks N and R, the probabilities of the actions come

PB(c, t ′|β, ωA) = PB(c, t ′|N, β)PA(N, c, t ′|ωA)

+ PB(c, t ′|R, β)PA(R, c, t ′|ωA),

PS(c, t
′|β, ωA) = 1 − PB(c, t ′|β, ωA), (2.23)

where PA(N, c, t ′|ωA), PA(R, c, t ′|ωA) are the probabilities to be in the risk R defined
in equation (2.11). The vector of parameters β is then

β = {{βB,k}k=1...KB
, {ASCB,r, αB,r, λB,r}r=N,R, {µf}f=2...6}. (2.24)

Only attributes for tH = 1 are used in the deterministic utility shown in Equation
(2.18). This results from the statistical analysis presented in Table 2.3 and explained
in Section 2.6. Indeed, dynamic variables calculated with small tH are significantly
correlated with the action choice. This means that investors have tendency to make
decisions using short-range information, showing their reactivity. In a multivariate
context tH = 1 appears to be the most appropriate (see Section 2.8). MB(c, t ′|rA, β)

is the memory effect. In this term, the deterministic utility of the previous buy
alternative has been chosen to represent the previous action because it is tractable
for prediction. We expect λB,rA

to be negative, as we suppose the impact of the
previous action to decrease when the duration between the previous and the current
action increases. A scale parameter is associated to each fund in order to account for
the behavioral specificity of the investors within funds. Note that µ1 has been fixed
to 1 because all the µf are identifiable, except one.

2.7.3 The duration model

After the action, we model the duration until the next action. This duration is
supposed to depend on this latter decision. We expect the investor not to change
his mind when waiting for the next action. This assumption is made for easing the
mathematical formulation of the likelihood function, and consequently the estimation
of the combined model. In this section, we model the survival of the action A(c, t ′).
The distribution of the observed duration between two actions is presented in Figure
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2.11, proving the survival nature of the underlying phenomenon. A lifetime model has
been chosen to handle the duration. The Weibull regression model has been retained,
because it mimic the exponential model, with a more flexible formulation.

D(c, t ′) is ǭD,t′ , the mean of the random variable ǫD,t′ . ǫD,t′ is assumed to
follow a Weibull distribution. λD(c, t ′|θ, ωD, β) is the scale parameter of the Weibull
distribution, and ηD the shape parameter.

D(c, t ′) = ǭD,t′ with ǫD,t′ ∼ W(λD(c, t ′|θ, ωD, β), ηD). (2.25)

We define a utility

mD(c, t ′|rD, θ, β) =
∑

g∈{1,2}

Ig,cASCD,rD,g +
∑

g∈{1,2}

Ig,c

KD−1
∑

k=1

θD,k

KX
∑

l=1

ID,g,k,l,rD
Xc,t′(l)

+ θD,KD
SigmVIXt ′ ,360Ir=N

+ αD,N,1Ic,g=1IrD=ND(c, t)

+ αD,N,2Ic,g=2IrD=ND(c, t)

+ αD,R,2Ic,g=2IrD=RD(c, t)

+ θB,rD
VB(c, t ′|rD, β) (2.26)

where ID,g,k,l,rD
is an indicator equal to 1 if the parameter θD,k is associated to the

attribute Xc,t(l), to the group of funds g, and associated to the risk rD. Ig,c is an
indicator equal to 1 if the company c belongs to the group of funds g. IrD=N is an
indicator equal to 1 if rD = N, 0 otherwise. IrD=R = 1 − IrD=N. In order get rid of
the risk rD in mD(c, t ′|rD, θ), we need to sum on levels of rD

mD(c, t ′|θ, ωD, β) = mD(c, t ′|N, θ, β)PD(N, t ′|ωD)

+ mD(c, t ′|R, θ, β)PD(R, t ′|ωD), (2.27)

where PD(N, t ′|ωD) and PD(R, t ′|ωD) are shown in equation (2.16). The vector of
parameters θ is

θ = {ASCD,N, ASCD,R, {θD,k}k=1...KD
, αD,N,1, αD,N,2, αD,R,2, {θB,rD

}rD=N,R}. (2.28)

We have

λD(c, t ′|θ, ωD, β) =
1

emD(c,t′|θ,ωD,β)
, (2.29)

consequently, if Γ() denotes the gamma function
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D(c, t ′) = ǭD,t′

=
1

λD(c, t ′|θ, ωD)
Γ(1 +

1

ηD

)

= emD(c,t′|θ,ωD,β)Γ(1 +
1

ηD

). (2.30)

The density of the Weibull distribution calculated for D(c, t ′) is

f(D(c, t ′)|λD(c, t ′|θ, ωD, β), ηD)

= ηDλD(c, t ′|θ, ωD, β)
η

DD(c, t ′))
ηD−1

e−(λD(c,t′|θ,ωD,β)D(c,t′))ηD
. (2.31)

In Equation (2.26), only attributes for tH = 60 are used. They give the best model
fit and provide interpretable parameters. Note that we did not present any descriptive
statistics regarding D(c, t) in Section 2.6, because no generic correlation across funds
appeared during the univariate analysis. In Equation (2.26), the influence of the
previous duration D(c, t) for g = 1 and rD = R has been discarded because the
associated parameter did not appear to be significant (see Section 2.8).

2.7.4 The likelihood function

The likelihood of the action model is

lA(β, ωA) =

C
∏

c=1

T
∏

t′=2

(PB(c, t ′|β, ωA)zB,c,t ′Ic,t ′

× PS(c, t
′|β, ωA)(1−zB,c,t ′)Ic,t ′ ), (2.32)

C is the number of companies. zB,c,t′ is an indicator equal to 1 if stocks of c have
been bought on t ′, 0 otherwise. Ic,t′ is an indicator equal to 1 if an action has been
observed on t ′ for c, 0 otherwise. Concerning the duration model, the likelihood
function is

lD(θ, ωD, β) =

C
∏

c=1

T−1
∏

t′=1

f(D(c, t ′)|λD(c, t ′|θ, ωD, β), ηD)Ic,t ′ , (2.33)

where Ic,t′ is an indicator equal to 1 if an action has been performed for c on t ′.
Then, the joint likelihood function is

l(β, ωA, θ, ωD) = lA(β, ωA)lD(θ, ωD, β) (2.34)

and the log-likelihood function

L(β, ωA, θ, ωD) = log(l(β, ωA, θ, ωD)) (2.35)
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2.7.5 Alternative specifications

In this chapter, we focus on the modeling of the action choice and the duration be-
tween two actions. Other tests have been done to ensure the quality of the proposed
approach. In the early stage of the analysis, a discrete choice model with three al-
ternatives has been developed. The three alternatives were buy, sell, and wait. The
assumption was that every day an investor decides to buy or sell stocks, or wait for
investing. This previous approach allowed to get rid of the duration model. This
model has not been kept because it had some problems, due to the prevalence of
wait actions in the data. The estimation results showed a dominance of the alterna-
tive specific constants and some very weak elasticities associated to the explanatory
variables.

The invested quantity of money is important to model in order to have a complete
picture of the investors behavior. We did not include it in the final analysis. Some
attempts have been conducted, but very limited causalities could be captured, with
extremely low prediction capabilities. The reason of these limitations is the lack
of precious information in the data. Portfolio information are crucial to explain
the invested quantity of money, but they are not available in the data for obvious
sensitivity reasons.

2.8 Model estimation

The combined model is estimated by maximum likelihood using the biogeme soft-
ware (Bierlaire (2003a) and Bierlaire and Fetiarison (2009)). The log-likelihood for
the entire model is presented in equation (2.35). The processed data were used for
estimation (see Sections 2.5 and 2.6). General estimation results are displayed in Ta-
ble 2.5. The 61 parameters of the combined model are split between the action and
duration models (respectively 29 and 32 parameters). The number of observations
for the duration model is equal to the number of actions (9178), minus the number
of companies (1121). For the last observed decision associated to a company, we do
not know the duration until the next action. The duration model has a big impact
on the log-likelihood of the combined model. The R2 of the duration model is low.
Interpretations of the parameters are explained in the following for the action and
duration models.

2.8.1 The action model

Parameters values and associated t-tests are presented in Tables A.1 and A.2.

• the risk perception in the action model: ASCWA
was not significantly

different from minus the VIX threshold defined in Figure 2.3. This value was
the starting value for estimation. ωA,1 and ωA,2 are the two parameters as-
sociated to the VIX, respectively for the groups of funds 1 and 2. Logically,
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Action choice model Duration model Combined model
Nb parameters 29 32 61
Nb observations 9178 8057 9178
Null Log-likelihood -6361.705
Final Log-likelihood -5635.580 -19711.528 -25347.109
ρ̄2/R2 0.109 0.048

Table 2.5: General estimation results of the action and duration models

both parameters are positive meaning that the risk increases with the VIX, as
described in Sections 2.7.1 and 2.7.1. ωA,1 > ωA,2, so investors managing funds
in group 1 are more sensitive to risk than investors managing group 2. ωA,3

is associated to the standard error of sentiment calculated for tH = 5 (days).
It is positive as expected, showing that the increase of the fluctuations in the
analyst opinions increases the perception of risk, which is logical.

• The alternative specific constants: ASCB,N and ASCR,N are negative,
meaning that in the two risk situations, buy is penalized.

• The parameters associated with the explanatory variables: A statisti-
cal analysis has been conducted (see Table 2.3) and several model specifications
have been tested. The variables which appeared to be the best appropriated
to this analysis, were calculated with tH = 1 (day), meaning that the investors
base their choices on short-term information. No βB,k (k = 1 . . . 15) is generic
across risk situations and groups of funds. The generic parameters across groups
of funds are βB,4, βB,5, βB,6 and βB,15. βB,6 and βB,15 are positive, Under the
risk N, the increase of the short-term values of quality and value favor the buy
alternative. βB,5 is negative, an increase of the long-term value of quality favor
the sell alternative. βB,4 is positive, so under the risk R, the increase of the
short-term value of price increases the probability to buy, underlying the ten-
dency of investors for taking advantage of immediate fluctuations of variables.

• The memory effect: αB,N and αB,R are both negative showing that for a
given stock, investors have not the tendency to perform consecutively two buy
actions. This is stronger in under the risk R than in under the risk N. Investors
are more likely to bet on short-term returns in under R, which is logical. As
expected, this effect is attenuated with the increase of the duration between
two consecutive actions, as shown by the negative value of λB,N and λB,R. The
attenuation is higher in a normal situation than in a risky situation.

• The scale parameters: µ1 is fixed to 1 for identification reasons, and {µf}f∈{2...6}
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are significantly different from µ1, showing the specificities of the investors’ be-
havior within each fund. The variance of the error terms εB,rA,c,f,t′ and εS,rA ,c,f,t′

(introduced in equation (2.17)) is

Var =
π2

6µf
2
, (2.36)

as µf > µ1 for f ∈ {2, 3, 4, 5, 6}, the variance associated to the choice of action is
higher for the fund 1 compared to the others, meaning that the decisions taken
in funds 2, 3, 4, 5, 6 are apparently more rational than the decisions taken in
fund 1.

2.8.2 The duration model

Parameters values and associated t-tests are shown and in Tables A.3 and A.4.

• the risk perception in the duration model: ASCWD,1 and ASCWD,2 are
negative, as expected. Investors of fund groups 1 have a stronger a priori toward
the risk N, compared to investors of group 2 (ASCWD,1 < ASCWD,2). ωD,1 and
ωD,2 are positive as expected. Investors of fund group 1 are more sensitive to
risk than investors of group 2 (ωD,1 > ωD,2).

• The shape parameter: ηD is the shape parameter of the Weibull regression
model, which has been estimated under 1, showing the proximity to a an expo-
nential regression model, but with a distribution characterized by a less heavy
right tail.

• The constants: ASCD,N,1, ASCD,N,2. ASCD,R,1, ASCD,R,2 are all positive.
They characterize the average duration in pure risk situations and are specific
to the fund groups, all other attributes being equal to 0. The average of the
predicted duration is presented in Equation (2.30). The average of the duration
in the situation N for the fund group 1 is 68.9 weeks, and for group 2, 57.6
weeks. The average of the duration under risk R for the fund group 1 is 2.5
weeks, and for group 2, 2.9 weeks. This seems logical, because investors have
to react much more faster in risky situations than in normal situations.

• The parameters associated with the explanatory variables: No parame-
ter is generic across fund groups and risk situations, which underline the strong
specificities of the investors’ behaviors. θD,16 is associated to the standard error
of the VIX calculated over 360 days, for the fund group 2 under the risk N.
It is negative, which is logical because when the variation of the principle risk
indicator of the market increases, investors have tendency to perform actions
more often. θB,N and θB,R are negative, so when the utility of the buy alterna-
tive increases, the duration decreases under both risk N and R. In any case,



38 2. THE FINANCIAL BEHAVIOR: MODELING OF INVESTORS’ DECISIONS

when money is invested in a company, the vigilance of the investor toward the
company increases, and he is more likely to adjust his decision in a near future.

• The influence of the previous duration: αD,N,1, αD,R,1 and αD,N,2 are
positive. This shows the stability of the phenomenon, in the sense that the
increase of the previous duration generates an increase of the current duration.

To conclude this section, the parameters of the combined model are significant and
interpretable. The interpretations have been discussed with the involved investors.
The variables presented in the Section 2.6 are adapted to explain the investors’ be-
havior. Behavioral specificities within each fund appear clearly.

2.9 Model prediction

In this section we study the prediction accuracy of the combined model. We start by
examining the model prediction on the estimation data and perform a cross-validation.
For the action model, we conduct a simulation analysis.

2.9.1 Prediction on the estimation data

The frequencies of the predicted probabilities of the observed actions are shown in
Figure 2.12. If the model was perfect, all predicted probabilities should be equal to 1.
This corresponds to a log-likelihood equal to 0. This is of course never the case, but
a significant shift of the distribution on the right is observed. In addition 66.25% of
the actions are predicted with a probability higher than 0.5, represented by the grey
bin. The model is compared to a simple binary logit model. It contains only two
parameters which are the constants in the determinimistic utilities of buy and sell,
and without risk perception. It has the property to reproduce the aggregated shares
of actions of the estimation data, when used for prediction. In that case, there are
approximately as much actions of type Buy (4530) than action of type Sell (4648).
This simple model predicts a quasi equal probability for the two actions (∼ 0.5, for the
two actions). Consequently for 66.25% of the decisions, the proposed model makes a
better prediction than this simple model.

The standardized residual of the duration model zc,t is defined as

zc,t = ηD(log(D(c, t)) − mD(c, t|θ, ωD, β)) ∼ EV(0, 1), (2.37)

which makes the parallel with the lognormal regression where the standardized resid-
uals calculated with the logarithm of the dependent variable are supposed normally
distributed N(0, 1). The distribution of {zc,t} is plotted in Figure 2.13 (histogram),
as well as the theoretical distribution EV(0, 1) (curve). The observed distribution
is near from the theoretical curve, but the model tends to over-predict the duration
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for some observations. A bi-modality appears. The over-predictions concerns very
small durations. The duration model works well for situations presented in Figure 2.4
where actions are sparse, but not for situations displayed in Figure 2.5, where actions
are concentrated. Several regression models have been tested, such as the lognormal,
Poisson, negative binomial, exponential and Rayleigh (these two latter are particular
cases of the Weibull). In terms of fit and residual analysis, the Weibull appeared to be
the best. Regarding the specification, many trials have been done. The improvement
of the residual distribution is possible by the using of distribution mixtures and the
integration of supplementary data, such as money flows.

This prediction analysis is performed on the estimation data. It reinforces the
estimation results (see Section 2.8), but the models have not been yet tested for
forecasting.

2.9.2 Cross-validation

We need to check the prediction capability of the combined model. The cross-
validation consists in estimating the combined model on a part of the data, and
simulate on the remaining part. The total time horizon is divided in five periods
of equal duration. The starting date and ending date of each period as well as the
number of actions per period are shown in Table 2.6. The estimation of the combined
model is done on 4 subsets and the simulation on the remaining subset. The experi-
ence is repeated five times in order to cover all the possibilities.

Validation set 1 2 3 4 5
Starting date 2005.01.03 2006.03.02 2007.04.25 2008.06.05 2009.07.24
Ending date 2006.03.01 2007.04.24 2008.06.04 2009.07.23 2010.09.13
Nb actions 1363 1511 1766 2149 2399

Table 2.6: Starting dates, ending dates and number of actions per subset of data for
the cross-validation

For each experience, we calculate statistics revealing the prediction accuracy of
the models on the simulation subset. Concerning the action model, the predicted log-
likelihood is calculated (Predicted L). For the duration model, R2

e is the predicted R2

for experience e. These values are respectively compared to the log-likelihood (Es-
timated L) and the R2 (Estimated R2) obtained when applying the combined model
(estimated on the entire data) on the simulation subset.

The results are presented in Table 2.7. Logically the estimated R2 and L are always
higher than R2

e and the predicted L. Regarding the action model, the log-likelihood
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increases chronologically because the volume of decisions is also increasing (see Table
2.6). The higher difference between the estimated and predicted log-likelihood is
observed for the experience 5 (235.141). However for every experiences, both log-
likelihoods have the same order. This shows the stability of the action model. This
is not the case for the duration model. We explicit R2

e. t0,e is the starting date of the
simulation subset for experience e, and Te is the ending date. D(c, t) is the observed
duration for day t and company c, D̂(c, t) is the predicted duration, and D̄(c, t) is
the duration mean calculated over t and c.

R2
e = 1 −

∑C

c=1

∑

t=t
Te
0,e

(D̂(c, t) − D(c, t))2

∑C

c=1

∑

t=t
Te
0,e

(D(c, t) − D̄(c, t))2
(2.38)

R2
e is negative for e ∈ {3, 4, 5}. The predictions are worse than those of the simple

model predicting the duration mean on the considered time period. The experience
5 is even not well predicted by the duration model estimated on the entire data.
Two explanations are invoked: this is an heterogeneous period in terms of risk and
behavior, compared to the other periods. The market tends to return to a normal
risk situation, but with lots of aftershocks related to the 2008 crisis. This is shown
by significant picks on the VIX curve in Figure 2.3. At the beginning of the period,
fund managers reinvest a lot, as shown in Figure 2.6. Then, the average of action
volumes decrease, but adjustments are still performed.

Experience 1 2 3 4 5
R2

e 0.034 0.047 -0.003 -0.003 -1.790
Estimated R2 0.053 0.065 0.010 0.025 -0.464
Predicted L -394.436 -431.504 -1095.921 -1269.583 -1588.811
Estimated L -383.671 -420.055 -1052.993 -1220.002 -1353.67

Table 2.7: Results of the cross-validation performed on the estimation data

Specifically to the action model and for each experience, we have calculated the
percentage of observations predicted with a probability less than 0.5, which are con-
sidered badly predicted. The results are displayed in Table 2.8. For the action model
estimated on the entire data, there are 33.75% of bad predictions. For every expe-
rience, the percentage is similar to this value. This underlines the stability of this
model.

Experience 1 2 3 4 5
Action model 36.90 38.65 31.65 30.15 41.31

Table 2.8: Percentages of badly predicted observations per experience of cross-
validation
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The financial crisis of 2008 appears in the subset 4 (see Table 2.6). In this period,
the prediction of the duration model are bad (R2

4 < 0). This is not the case for the
action model (30.15% of badly predicted observation), which shows its robustness.
The cross-validation is a first step toward forecasting, the results are worth for the
action model and limited for the duration model.

2.9.3 Simulation

In this section, we present a concrete forecasting application of the action model.
The experience 5 of the cross-validation is considered (see Table 2.6). The action
model is estimated on the calibration subset and applied on the simulation subset.
We hypothesize that the action days are fixed. Five simulations are performed on
the simulation subset. In each simulation and for each action day, an action is drawn
from the predicted probability distribution. The number of buy and sell actions
are aggregated per month. Results are presented in Table 2.9. For each month,
the number of buy actions, nb buy sim, and sell actions nb sell sim, are shown as
“nb buy sim/nb sell sim”. The observed shares are also displayed in the column
“Reality” (“nb buy obs/nb sell obs”).

Month Reality Simul. 1 Simul. 2 Simul. 3 Simul. 4 Simul. 5
Jul. 09 21/31 20/32 25/27 26/26 22/30 18/34
Aug. 09 121/81 109/93 96/106 96/106 94/108 108/94
Sep. 09 108/84 91/101 106/86 116/76 101/91 108/84
Oct. 09 110/141 121/130 130/121 116/135 116/135 112/139
Nov. 09 105/138 109/134 112/131 117/126 113/130 104/139
Dec. 09 76/93 75/94 86/83 77/92 75/94 58/111
Jan. 10 69/82 71/80 70/81 67/84 69/82 70/81
Feb. 10 69/77 68/78 61/85 56/90 68/78 67/79
Mar. 10 101/79 87/93 90/90 92/88 94/86 91/89
Apr. 10 148/54 96/106 112/90 104/98 101/101 108/94
May 10 85/84 76/93 85/84 75/94 83/86 86/83
Jun. 10 41/48 34/55 38/51 41/48 49/40 40/49
Jul. 10 53/96 65/84 77/72 78/71 72/77 81/68
Aug. 10 79/93 80/92 86/86 64/108 86/86 74/98
Sep. 10 17/15 23/9 14/18 16/16 20/12 15/17

Table 2.9: Results of the simulations performed with the action model on the period
going from 2009.07.24 to 2010.09.13

For each month, the simulated and observed shares are compared. We define the
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percentage of error

Err =
nb buy obs − n buy sim

n buy obs + n sell obs
× 100, (2.39)

it corresponds to the number of false simulated actions divided by the total number
of actions within the month. As the action days are fixed, we have n buy obs +

n sell obs = n buy sim+n sell sim. The percentages of error are shown in Table
2.10. The highest values are observed for April 2010, otherwise no percentage of error
is above 20%. Moreover, 81.33% of the percentages of error are under 10%, show-
ing the forecasting accuracy of the action model. The aggregation of the results has
been done per month, which is relatively detailed specially for long-term investments.
This simulation emphasizes the good quality and usefulness of the model in real-life
applications.

Month Simul. 1 Simul. 2 Simul. 3 Simul. 4 Simul. 5
Jul. 09 1.92 -7.69 -9.62 -1.92 5.77
Aug. 09 5.94 12.38 12.38 13.37 6.44
Sep. 09 8.85 1.04 -4.17 3.65 0.00
Oct. 09 -4.38 -7.97 -2.39 -2.39 -0.80
Nov. 09 -1.65 -2.88 -4.94 -3.29 0.41
Dec. 09 0.59 -5.92 -0.59 0.59 10.65
Jan. 10 -1.32 -0.66 1.32 0.00 -0.66
Feb. 10 0.68 5.48 8.90 0.68 1.37
Mar. 10 7.78 6.11 5.00 3.89 5.56
Apr. 10 25.74 17.82 21.78 23.27 19.80
May 10 5.33 0.00 5.92 1.18 -0.59
Jun. 10 7.87 3.37 0.00 -8.99 1.12
Jul. 10 -8.05 -16.11 -16.78 -12.75 -18.79
Aug. 10 -0.58 -4.07 8.72 -4.07 2.91
Sep. 10 -18.75 9.38 3.13 -9.38 6.25

Table 2.10: Percentages of error (see Equation (2.39)) based on simulations of Table
2.9

Note that a simulation using the combined model has been tested. The obtained
results were not convincing. The reason is the limited predictive power of the duration
model (see Section 2.9.2). Consequently we focused on the action model.
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2.10 Contributions

The analysis of the investors’ behavior has raised several contributions.

In general, the lack of disaggregate data valuable for studying the investors’ be-
havior, obliges analysts to work with synthetic data (De Grauwe and Grimaldi, 2004).
In these works, most of the models are rule-based. This approaches are interesting
and allow to go deep in the simulation. The main drawback is the distance to the re-
ality, in terms of understanding and applications. In this work, we have the chance to
work with real disaggregate data. Behavioral hypothesis have been built by observing
investors and exploring data with descriptive statistics. These hypothesis have been
confirmed by estimating the proposed model on the data. In addition, the behavioral
finance mainly focuses on the qualification of the behaviors, but not on their quantifi-
cations (Baker and Wurgler, 2007). Our approach allows to measure the causalities,
which is an important contribution. We mainly showed that investors have tendency
to use short-range information to make decisions, they consider previous actions when
making decisions, and they are highly influenced by their risk perception.

Finance is characterized by an abundance of aggregate data, which are very noisy.
Machine learning methods have been naturally applied in this field, due to the huge
amount of available data, and the difficulty for identifying causalities (Kim, 2003).
Their main drawback is the over-fitting. The proposed action model presents good
prediction capabilities, which emphasizes the added-value of the behavioral hypothesis
setting. Hypothesis allow to compensate the intrinsic noise of the data.

Few discrete choice models have been developed in finance. We have translated
and prove the relevance of mathematical formulations which have been mainly pro-
posed in transportation and marketing.

2.11 Conclusion

We developed models capturing the investors’ behavior. The data provided by the
Swiss private bank Lombard Odier have been processed to infer the decisions per-
formed by investors. Variables are computed based on the five indicators and the
VIX, for reflecting the dynamics of the observed behavior. A correlation analysis
allows to understand the links between the decisions and the decisional context. An
integrated approach has been proposed to model simultaneously the choice of action
(buy or sell) and the duration between two actions. A binary logit model with latent
classes is developed for the choice of action, where the latent classes correspond to
the risk situations. Two situations are considered, normal and risky. The duration
is handled using a Weibull regression, which also accounts for the two risk situa-
tions. But, the perception is different compared to the action model. Both models
account explicitly for the dynamics of the behavioral phenomenon. The two models
are linked, because the perception of the buy alternative enters in the duration model.
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The combination of the action and duration models is estimated simultaneously,
using the processed data. Parameters are interpretable. Results have been discussed
with investors. They explicit causalities and reveal behavioral mechanisms. The ac-
counting of the dynamics has sense, investors consider their previous decisions when
taking current decisions. The specificity of the investors’ behavior within each fund
appears. The hypothesis about the risk perception is valid in the action and duration
models. In risky situations, the duration between two consecutive actions is shorter
than in normal situations, which is logical, as investors tend to adjust more often
their portfolio in risky situations. Regarding the action choice model, the specificity
of the behavior per fund is more important in risky than in normal situations. This
is logical, as individualities and emotions are emphasized in panic situations.

Predictions of the models have been checked and the combined model has been
cross-validated on the estimation data. The predictive accuracy of the action model
is good, and limited for the duration model. This is not surprising for the duration
model because the associated modeling assumptions are moved from the reality. This
is due to the fact that we have decided to develop the most realistic models remaining
operational. In addition, crucial data are missing about money inflows and outflows
to characterize this duration. The relevance of the action model has been shown by
the simulation which is the practical way to use it. As it is, the action model can
be embedded in a simulator for forecasting aggregated action shares based on market
scenarios. For fund managers and investors, this could be relevant decision-aid tool
as well as a potential starting point for a quantitative investment strategy.

There are several perspectives to this work. In terms of modeling, the risk percep-
tion can be refined for both models. More than two latent classes could be considered.
The integration of relevant supplementary data can also be considered, such as portfo-
lio information, money inflows and outflows, and investors’ characteristics. Dedicated
data collection could be conducted in order to point out precisely the information used
by investors when taking decisions and refine the explanatory variables. Then, the
proposed models can be improved. Regarding the duration model, mixtures of distri-
bution can be considered. In addition, the assumption about the non revision of the
duration once the decision has been taken, can be relaxed. The forecasting accuracy
of the action model has been tested by simulation. The same thing with the combined
model could be considered with a better duration model.

In this analysis, we focused on the investors’ decisions because they are the sources
of the observed trades. It would be interesting to model the behavior of the traders
who are implementing the investors’ decisions, in order to obtain a full picture of
the decision process inside the bank. Then, It would be also useful to compare the
investors’ behavior with the traders’ behavior.

The prediction of the stock prices evolution is a further perspective. The developed
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model is not sufficient, other financial actors should be modeled, in order to capture
the entire financial scene. This requires to have specific and detailed behavioral data
about all the actors and data about the scene, which is an utopian task. Then,
accurate behavioral models should be developed. Finally, the different models could
be embedded into a single simulator in order to predict the stock prices evolution.

A first step would be to focus on stocks, for which the actions performed by
professional investors dominate those of other financial actors. This will ease the
prediction of the price evolution, as the proposed model can make the major part of
it.



46
2
.

T
H

E
F
IN

A
N

C
IA

L
B

E
H

A
V

IO
R

:
M

O
D

E
L
IN

G
O

F
IN

V
E

S
T

O
R

S
’
D

E
C

IS
IO

N
S

A(c, t ′)

mD(c, t ′|rD, θ, β)

D(c, t ′)

WD(rD, t ′|ωD)

t ′ = t + D(c, t) + 5 days
t

Xc,t′

UB(c, t ′|rA, β)

D(c, t)

WA(rA, c, t ′|ωA)

Yt′

VB(c, t|rA, β)

VB(c, t ′|rA, β)

MB(c, t ′|rA, β)

VA(R, c, t ′|ωA)
εA,rA ,c,t′

rA

VD(R, t ′|ωD)

rD

εD,rD ,t′

ǫD,t′

εB,rA ,c,f,t′

λD(c, t ′|rD, θ, β)

US(c, t
′|rA, β)

εS,rA ,c,f,t′

F
igu

re
2.10:

T
h
e

gen
eral

m
o
d
elin

g
fram

ew
ork



2.11. CONCLUSION 47

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175 200 225 250

F
re

q
u
en

cy

duration (weeks)

Figure 2.11: Distribution of the observed durations, expressed in weeks (5 days)
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Figure 2.12: Distribution of the predicted action choice probabilities calculated on
the estimation data
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Figure 2.13: Comparison between the distribution of the residuals {zc,t}, related to
the duration model (histogram) and the theoretical distribution (curve)
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3. The walking behavior: modeling
of pedestrian movements

3.1 Introduction

We propose and validate a model for pedestrian walking behavior, based on discrete
choice modeling. Two main types of behavior are identified: unconstrained and con-
strained. By unconstrained, we refer to behavior patterns which are independent from
other individuals. The constrained patterns are captured by a leader-follower model
and by a collision avoidance model. The spatial correlation between the alternatives
is captured by a cross nested logit model. The model is estimated by maximum
likelihood on a real data set of pedestrian trajectories, manually tracked from video
sequences. The model is successfully validated using a bi-directional flow data set,
collected in controlled experimental conditions at Delft university.

This chapter contains mainly the developments proposed by Robin et al. (2009).

3.2 Motivation

Pedestrian behavior modeling is an important topic in different contexts. Architects
are interested in understanding how individuals move into buildings to create optimal
space designs. Transport engineers face the problem of integration of transportation
facilities, with particular emphasis on safety issues for pedestrians. Recent tragic
events have increased the interest for automatic video surveillance systems, able to
monitor pedestrian flows in public spaces, throwing alarms when abnormal behavior
occurs. Special emphasis has been given to more specific evacuation scenarios, for
obvious reasons. In this spirit, it is important to define mathematical models based
on behavioral assumptions, tested by means of proper statistical methods. Data col-
lection for pedestrian dynamics is particularly difficult and only few models presented
in the literature have been calibrated and validated on real data sets.

Previous methods for pedestrian behavior modeling can be classified into two
main categories: microscopic and macroscopic models. In the last years much more
attention has focused on microscopic modeling, where each pedestrian is modeled as
an agent. Examples of microscopic models are the social forces model in Helbing and

51
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Molnar (1995) and Helbing et al. (2002) where the authors use Newtonian mechanics
with a continuous space representation to model long-range interactions, and the
multi-layer utility maximization model by Hoogendoorn et al. (2002) and Daamen
(2004). Blue and Adler (2001) and Schadschneider (2002) use cellular automata
models, characterized by a static discretization of the space where each cell in the
grid is represented by a state variable. Another microscopic approach is based on
space syntax theory where people move through spaces following criteria of space
visibility and accessibility (see Penn and Turner, 2002) and minimizing angular paths
(see Turner, 2001). Finally, Borgers and Timmermans (1986), Whynes et al. (1996)
and Dellaert et al. (1998) focus on destination and route choice problems on network
topologies. For a general literature review on pedestrian behavior modeling we refer
the interested reader to Bierlaire et al. (2003). For applications of pedestrian models
in image analysis, we refer the reader to our previous work ( Antonini et al., 2004,
Venegas et al., 2005, Antonini, 2005 and Antonini, Venegas, Bierlaire and Thiran,
2006)

Leader-follower and collision avoidance behavior play a major role in explaining
pedestrian movements. Existing literature has shown the occurrence of self-organizing
processes in crowded environments. At certain levels of density, interactions be-
tween people give rise to lane formation (Helbing et al., 2005, Hoogendoorn and Daa-
men, 2005). Collision avoidance (e.g. Collett and Marsh, 1974) and leader-follower
(e.g. Li et al., 2001) have been widely studied. In order to include these aspects in our
model, we took inspiration from previous car following models in transport engineer-
ing (including Newell, 1961, Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999).
The main idea in these models is that two vehicles are involved in a car following
situation when a subject vehicle follows a leader, normally represented by the vehi-
cle in front, reacting to its actions. In general, a sensitivity-stimulus framework is
adopted. According to this framework a driver reacts to stimuli from the environ-
ment, where the stimulus is usually the leader’s relative speed. Different models differ
in the specification of the sensitivity term. This modeling idea is extended here and
adapted to the more complex case of pedestrian behavior. We want to stress the fact
that in driver behavior modeling a distinction between acceleration and direction (or
lane) is almost natural (see Toledo, 2003 and Toledo et al., 2003), being suggested
by the transport facility itself, organized into lanes. The pedestrian case is more
complex, since movements are two-dimensional on the walking plane, where accelera-
tion and direction changes are not easily separable. Constrained behavior in general,
and collision avoidance in particular are also inspired by studies in human sciences
and psychology, leading to the concept of personal space (see Horowitz et al., 1964,
Dosey and Meisels, 1969 and Sommer, 1969). Personal space is a protective mech-
anism founded on the ability of the individual to perceive signals from the physical
and social environment. Its function is to create spacing patterns that regulate dis-
tances between individuals and on which individual behaviors are based (Webb and
Weber, 2003). Helbing and Molnar (1995) in their social forces model use the term
“territorial effect”. Several studies in psychology and sociology show how individual
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characteristics influence the perception of space and interpersonal distance. Brady
and Walker (1978) found for example that ’anxiety states’ are positively correlated
with interpersonal distance. Similarly, Dosey and Meisels (1969) found that individ-
uals establish greater distances in high-stress conditions. Hartnett et al. (1974) found
that male and female individuals approached short individuals more closely than tall
individuals. Other studies (Phillips, 1979 and Sanders, 1976) indicate that an other
person’s body size influences space.

The validation of pedestrian walking models is a difficult task, and has not been
extensively reported in the literature. Berrou et al. (2007) and Kretz et al. (2008)
validate their model by comparing real and simulated flows and densities at bottle-
necks. Brogan and Johnson (2003) compare real walking paths with simulated paths
using three different metrics: the distance error, that is the mean distance between
the real and the simulated path for all simulation time steps, the area error, that is
the area between the two paths, and the speed error, that is the mean difference in
speed between the two paths for all simulation time steps.

3.3 Modeling framework

In this work we refer to the general framework for pedestrian behavior described
by Daamen (2004). Individuals make different decisions, following a hierarchical
scheme: strategical, tactical and operational. Destinations and activities are chosen
at a strategical level; the order of the activity execution, the activity area choice and
route choice are performed at the tactical level, while instantaneous decisions such
as walking and stops are taken at the operational level. In this chapter, we focus
on pedestrian walking behavior, naturally identified by the operational level of the
hierarchy just described. We consider that strategic and tactical decisions have been
exogenously made, and are interested in modeling the short range behavior in normal
conditions, as a reaction to the surrounding environment and to the presence of other
individuals. By“normal” we mean non-evacuation and non-panic situations.

The motivations and the soundness of discrete choice methods have been addressed
in our introductory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,
Antonini and Bierlaire, 2007). The objective of this chapter is twofold. First, we aim
to provide an extended disaggregate, fully estimable behavioral model, calibrated on
real pedestrian trajectories manually tracked from video sequences. Second, we want
to test the coherence, interpretability and generalization power of the proposed spec-
ification through a detailed validation on external data. Compared with Antonini,
Bierlaire and Weber (2006), we present three important contributions: (i) we esti-
mate the model using significantly more data representing revealed walking behavior,
(ii) the model specification explicitly captures leader-follower and collision-avoidance
patterns and (iii) the model is successfully validated both using cross-validation on
the estimation data set, and forecasting validation on another experimental data set,
not involved in the estimation process.
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Pedestrian walking behavior

Unconstrained Constrained

Keep Toward Free flow
direction destination acc/dec

Collision Leader
avoidance follower

Figure 3.1: Conceptual framework for pedestrian walking behavior

We illustrate in Figure 3.1 the behavioral framework. Unconstrained decisions
are independent of the presence of other pedestrians and are generated by subjective
and/or unobserved factors. The first of these factors is represented by the individual’s
destination. It is assumed to be exogenous to the model. The second factor is
represented by the tendency of people to keep their current direction, minimizing
their angular displacement. Finally, unconstrained acceleration and deceleration are
dictated by the individual’s desired speed. The implementation of these ideas is made
through the three unconstrained patterns indicated in Figure 3.1.

We assume that behavioral constraints are induced by interactions with other
individuals nearby. The collision avoidance pattern is designed to capture the effects
of possible collisions on the current trajectory of the decision maker. The leader-
follower pattern is designed to capture the tendency of people to follow another
individual in a crowd, in order to benefit from the space she creates.

The discrete choice model introduced by Antonini, Bierlaire and Weber (2006) is
extended here. The basic elements are the same and summarized below. Pedestrian
movements and interactions take place on the horizontal walking plane. The spatial
resolution depends on the current speed vector of the individuals. The geometrical
elements of the space model are illustrated in Figure 3.2.

In a given coordinate system, the current position of the decision maker n is
pn ≡ (xn, yn), her current speed vn ∈ IR, her current direction is dn ∈ IR2 (normalized
such that ‖dn‖ = 1) and her visual angle is θn (typically, θn = 170◦). The region of
interest is situated in front of the pedestrian, ideally overlapping with her visual field.
An individual-specific and adaptive discretization of the space is obtained to generate
a set of possible places for the next step. Three speed regimes are considered. The
individual can accelerate to 1.5 times her speed, decelerate to half time her speed,
or maintain her current speed. Therefore, the next position will lie in one of the
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θn

pn ≡ (xn, yn)

vndn

Figure 3.2: The basic geometrical elements of the space structure

zones, as depicted in Figure 3.3(b). For a given time step t (typically, 1 second), the
deceleration zones range from 0.25vnt to 0.75vnt, with the center being at 0.5vnt,
the constant speed zones range from 0.75vnt to 1.25vnt, with the center being at vnt,
and the acceleration zones range from 1.25vnt to 1.75vnt, with the center being at
1.5vnt. With respect to the direction, a discretization into 11 radial directions is used,
as illustrated in Figure 3.3(a), where the angular amplitudes of the radial cones are
reported in degrees.

A choice set of 33 alternatives is generated where each alternative corresponds to a
combination of a speed regime v and a radial direction d, as illustrated in Figure 3.4.
Each alternative is identified by the physical center of the corresponding cell in the
spatial discretization cvd, that is

cvd = pn + vtd, (3.1)

where t is the time step. The choice set varies with direction and speed and so does
the distance between an alternative’s center and other pedestrians. As a consequence,
differences in individual speeds are naturally mapped into differences in their relative
interactions. Note that the presence of physical obstacles can be modeled by declaring
the corresponding cells as not available.

3.4 The model

Individuals walk on a 2D plane and we model two kinds of behavior: changes in di-
rection and changes in speed, i.e. accelerations. Five behavioral patterns are defined.
In a discrete choice context, they have to be considered as terms entering the util-
ity functions of each alternative, as reported in Equation 3.2. The utilities describe
the space around the decision maker and under the assumption of rational behavior,
the individual chooses the location (alternative) with the maximum utility. In the
following, we discuss the different patterns and the associated assumptions in more
details.

Following the framework proposed in Figure 3.1 we report here the systematic
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Figure 3.3: The spatial discretization.

utility as perceived by individual n for the alternative identified by the speed regime
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Figure 3.4: Choice set representation, with numbering of alternatives

v and direction d.
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(3.2)

where all the β parameters as well as λacc, λdec, αL
acc, ρL

acc, γL
acc, δL

acc, αL
dec, ρL

dec, γL
dec,

δL
dec, αC, ρC, γC, δC are unknown and have to be estimated. We explain in the

following the different terms of the utilities.

3.4.1 Keep direction

This part of the model captures the tendency of people to avoid frequent variation
of direction. People choose their next position in order to minimize the angular
displacement from their current direction of movement. In addition to the behavioral
motivation of this factor, it also plays a smoothing role in the model, avoiding drastic
changes of direction from one time period to the next. In order to capture the non-
linearity of this pattern, we include a different term for each group of directions. The
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“central” group, identified by the indicator Id,central, contains the cones 5, 6 and 7 (see
Figure 3.3), the “side” group, identified by the indicator Id,side, contains the cones 3,
4, 8 and 9, and the “extreme” group, identified by the indicator Id,extreme, contains
the cones 1, 2, 10 and 11.

The associated terms in the utility function are

βdir centraldirdnId,central + βdir sidedirdnId,side + βdir extremedirdnId,extreme (3.3)

where the variable dirdn is defined as the angle in degrees between the direction d

and the direction dn, corresponding to the current direction, as shown in Figure 3.5.
Note that the indicators guarantee that only one of these three terms is nonzero for
any given alternative. We expect the β parameters to be negative.

We preferred this specification to a continuous specification, in terms of the di-
rection cones, in order to capture the specificity of each of them.

cvdn

d

dnDestination

ddistvdn

ddirdn

dirdn

Figure 3.5: The elements capturing the keep direction and toward destination behav-
iors

3.4.2 Toward destination

The destination is defined as the final location that the pedestrian wants to reach.
To be coherent with the general framework introduced in Section 4.2, we assume
that the destination choice is performed at the strategical (or possibly tactical) level
in the hierarchical decision process, and is therefore exogenous in this model. Such
a higher level choice is naturally reflected on short term behavior as the tendency
of individuals to choose, for the next step, a spatial location that minimizes both
angular displacement and the distance to the destination.

This behavior is captured by the term

βddistddistvdn + βddirddirdn (3.4)
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where the variable ddistvdn is defined as the distance (in meters) between the desti-
nation and the center of the alternative Cvdn, while ddirdn is defined as the angle in
degrees between the destination and the alternative’s direction d, as shown in Figure
3.5. We expect a negative sign for both the βddir and βddist parameters.

3.4.3 Free flow acceleration

In free flow conditions the behavior of the individual is driven by her desired speed.
The acceleration is then a function of the difference between current speed and desired
speed. However, this variable is unobserved and it cannot be introduced explicitly in
the model. As a consequence, we assume that the utility for acceleration is dependent
on the current speed. Increasing speed corresponds to decreasing utility for further
accelerations. In order to reflect that a parameter varies with speed vn, we use the
specification

β = β̄

(

vn

vref

)λ

. (3.5)

Note that

λ =
∂β

∂vn

vn

β

can be interpreted as the elasticity of the parameter β with respect to the speed vn.
The value of vref is arbitrary, and determines the reference speed corresponding to β̄.

In our context, we define such a term for the parameters associated with deceler-
ation

βdecIv,dec(vn/vmax)
λdec (3.6)

where Iv,dec is one if v corresponds to a deceleration, and zero otherwise, and the
reference speed is selected to be the maximum speed observed vmax = 4.84 (m/s).
The impact of this term on the utility is illustrated in Figure 3.6(a) (the estimated
values of the parameters have been used to generate Figure 3.6). It shows that
the utilities of the alternatives associated with deceleration are very low when the
pedestrian is already walking slowly. For higher speeds, this term has basically no
impact on utility.

For the acceleration, we have introduced two terms, one for lower speeds (less
than or equal to 5km/h = 1.39 m/s), and one for higher speeds.

βaccLSIn,LSIv,acc(vn/vmaxLS)
λaccLS + βaccHSIn,HSIv,acc(vn/vmax)

λaccHS (3.7)

where In,LS is one if the individual’s current speed is less than or equal to 1.39 and
zero otherwise, In,HS = 1 − In,LS, and the reference speed for low speeds vmaxLS =

1.39. The indicator Iv,acc is 1 if the alternative corresponds to an acceleration and 0
otherwise. We expect negative signs for βaccHS, βaccLS, βdec and λdec parameters, while
a positive sign is expected for λaccLS and λaccHS. Indeed, we assume a depreciation of
utilities associated to accelerated alternatives when the speed increases. Similarly we
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assume a depreciation of utilities associated to decelerated alternatives when the speed
decreases. The impact of this term on utility is illustrated on Figure 3.6(b), where
the two parts of the curve (low and high speed) are represented. It appears clearly
that the role of the second part is to avoid a too dramatic penalty of acceleration for
high speeds.

3.4.4 Leader-follower

We assume that the decision maker is influenced by leaders. In our spatial represen-
tation 11 radial cones partition the space (see Figure 3.3). In each of these directions
a possible leader can be identified among a set of potential leaders. A potential leader
is an individual who is inside a certain region of interest, not so far from the deci-
sion maker and with a moving direction close enough to the direction of the radial
cone where she is. Among the set of potential leaders for each radial direction, one
of them is selected as leader for that direction (the closest to the decision maker).
Once identified, the leader induces an attractive interaction on the decision maker.
Similarly to car following models, a leader acceleration corresponds to decision maker
acceleration. The leader-follower model is given by the following terms

Iv,accI
L
d,accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL
acc

L + Iv,decI
L
d,decα

L
decD

ρL
dec

L ∆v
γL

dec

L ∆θ
δL
dec

L . (3.8)

It is described by a sensitivity/stimulus framework. The leader for each direction
is chosen considering several potential leaders (represented by light gray circles in
Figure 3.7). An individual k is defined as a potential leader based on the following
indicator function:

Ik
g =















1, if dl ≤ dk ≤ dr (is in the cone),
and 0 < Dk ≤ Dth (not too far),
and 0 < |∆θk| ≤ ∆θth (walking in almost the same direction),

0, otherwise,

where dl and dr represent the bounding left and right directions of the cone in the
choice set (defining the region of interest) while dk is the direction identifying the
position of pedestrian k . Dk is the distance between pedestrian k and the decision
maker, ∆θk = θk−θd is the difference between the movement direction of pedestrian
k (θk) and the angle characterizing direction d, i.e. the direction identifying the radial
cone where individual k lies (θd). The two thresholds Dth and ∆θth are fixed at the
values Dth = 5Dmax, where Dmax is the radius of the choice set, and ∆θth = 10

degrees. This seems to be reasonable and well adapted to pedestrian environment
perception. In addition, when looking at the data, this appears to be be a good
trade off between the computational complexity and the real behavior. We assume
an implicit leader choice process, executed by the decision maker herself and modeled
choosing as leader for each direction, the potential leader at the minimum distance
DL = mink∈K(Dk), illustrated in Figure 3.7 by the darker circle. Once the leader is
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(a) Deceleration

(b) Acceleration

Figure 3.6: Impact of free flow acceleration terms on utility (x axis: the speed, y axis:
the utility contribution )
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identified, we compare her speed. The indicator IL
d,acc is one if the leader in the cone d

has been identified with a speed larger than vn, and zero otherwise. Similarly, IL
d,dec =

1 − IL
d,acc is one if the leader in cone d has been identified with a speed lower than

vn, and zero otherwise. Finally, the indicator functions Iv,acc and Iv,dec discriminate
between accelerated and decelerated alternatives, as with the free flow acceleration
model. The underlying assumption is that faster leaders will have an impact on the
acceleration, while slower leaders will have an impact on the deceleration.

d

θd

leader

potential leaders
dk

dr

dℓ

θk

D
th

=
5
D

m
a
x

D
L

D
max

Figure 3.7: Leader and potential leaders in a given cone

For a given leader, sensitivity is described by

sensitivity = αL
gD

ρL
g

L (3.9)

where DL represents the distance between the decision maker and the leader. The
parameters αL

g and ρL
g have to be estimated and g = {acc, dec} indicates when the

leader is accelerating with respect to the decision maker. Both αL
acc and αL

dec are
expected to be positive while a negative sign is expected for ρL

acc and ρL
dec.

The decision maker reacts to stimuli coming from the chosen leader. We model
the stimulus as a function of the leader’s relative speed ∆vL and the leader’s relative
direction ∆θL as follows:

stimulus = ∆v
γL

g

L ∆θ
δL

g

L (3.10)
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with ∆vL = |vL −vn|, where vL and vn are the leader’s speed module and the decision
maker’s speed module, respectively. The variable ∆θL = θL−θd, where θL represents
the leader’s movement direction and θd is the angle characterizing direction d, as
shown in Figure 3.7. Positive signs are expected for both the γL

acc and γL
dec parameters,

while we expect a negative sign for both the δL
acc and δL

dec. Indeed, we assume the
pedestrian to follow a leader who has a behavior that the pedestrian wishes to have. If
the pedestrian accelerates, her perception will be heavily impacted by her leader who
is strongly accelerating and going in her desired direction. Inversely, if the pedestrian
is decelerating, her perception will be significantly impacted by her leader who is
strongly decreasing her speed and going in her desired direction. This means that a
leader acceleration induces a decision maker’s acceleration. A substantially different
movement direction in the leader reduces the influence of the latter on the decision
maker. Note that in the final specification, the parameter δL

dec appeared not to be
significantly different from 0. Therefore, we decided to remove it from the model in
the final estimation. The specification (3.8) thus becomes

Iv,accI
L
d,accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL
acc

L + Iv,decI
L
d,decα

L
decD

ρL
dec

L ∆v
γL

dec

L . (3.11)

3.4.5 Collision avoidance

This pattern captures the effects of possible collisions on the decision maker’s tra-
jectory. For each direction in the choice set, a collider is identified among a set of
potential colliders. Another individual is selected as a potential collider if she is inside
a certain region of interest, not too far from the decision maker and walking in the
opposite direction. The collider for a radial direction is chosen from the set of poten-
tial colliders for that direction as the individual whose walking direction forms the
larger angle with the decision maker’s walking direction. This pattern is associated
with repulsive interactions in the obvious sense that pedestrians change their current
direction to avoid collisions with other individuals. The collision avoidance model is
given by the following term

Id,CαCeρCDC∆v
γC

C ∆θδC

C . (3.12)

The collider for each direction is chosen considering several potential colliders, as
shown in Figure 3.8. An individual k is defined as a potential collider based on the
following indicator function:

Ik
C =















1, if dl ≤ dk ≤ dr (is in the cone),
and 0 < Dk ≤ D ′

th (not too far),
and π

2
≤ |∆θk| ≤ π (walking in the other direction),

0, otherwise,

where dl, dr and dk are the same as those defined for the leader-follower model. D ′

k is
the distance between individual k and the center of the alternative, ∆θk = θk−θdn is
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the difference between the movement direction of pedestrian k, θk, and the movement
direction of the decision maker, θdn . The value of the distance threshold is now fixed
to D ′

th = 10Dmax. We use a larger value compared to the leader-follower model,
assuming the collision avoidance behavior to be a longer range interaction, happening
also at a lower level of density. We assume an implicit collider choice process, which
is deterministic and decision-maker specific. Among the set of Kd potential colliders
for direction d, a collider is chosen in each cone as that individual having ∆θC =

maxk∈Kd
|∆θk|. The indicator Id,C = 1 if a collider has been identified, and 0 otherwise.

Finally, the collision avoidance term is included in the utility functions of all the
alternatives.
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Figure 3.8: Collider and potential colliders in a given cone

We apply a similar sensitivity/stimulus framework, where the sensitivity function
is defined as

sensitivity = αCeρCDC (3.13)

where the parameters αC and ρC, that have to be estimated, are both expected to have
a negative sign and DC is the distance between the collider position and the center
of the alternative. The decision maker reacts to stimuli coming from the collider. We
model the stimulus as a function of two variables:

stimulus = ∆v
γC

C ∆θδC

C (3.14)
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with ∆θC = θC − θdn , where θC is the collider movement direction and θdn is the
decision maker movement direction, and ∆vC = vC + vn, where vC is the collider’s
speed module and vn is the decision maker’s speed module. The parameters γC and
δC have to be estimated and a positive sign is expected for both of them. Individuals
walking against the decision maker at higher speeds and in more forward directions
(higher ∆θC) generate stronger reactions, weighted by the sensitivity function.

Note that in the final specification, the parameters γC and δC appeared not to
be significantly different from 0. Therefore, we decided to remove them from the
model in the final estimation. The final specification includes only the sensitivity
part (3.13).

3.4.6 The error term

We use a cross nested logit (CNL) model (see, among others, Wen and Koppelman,
2001, Bierlaire, 2006, Abbe et al., 2007) specification. Such a model allows flexible
correlation structures in the choice set, keeping a closed form solution. The CNL being
a Multivariate Extreme Value model (MEV, see McFadden, 1978), the probability of
choosing alternative i within the choice set C is:

P(i|C) =
yi

∂G
∂yi

(y1, ..., yJ)

µG(y1, ..., yJ)
(3.15)

where J is the number of alternatives in C, yj = eVj with Vj the systematic part of
the utility described by (3.2) and G is the following generating function:

G(y1, ..., yJ) =

M
∑

m=1

(

∑

j∈C

(α
1/µ

jm yj)
µm

)
µ

µm

(3.16)

where M is the number of nests, αjm ≥ 0, ∀j, m,
∑M

m=1 αjm > 0, ∀j, µ > 0, µm >

0, ∀m and µ ≤ µm, ∀m. This formulation leads to the following expression for the
choice probability formula, using yi = eVi :
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(3.17)

We assume a correlation structure depending on the speed and direction and we
identify five nests: accelerated, constant speed, decelerated, central and not central. We
fix the degrees of membership to the different nests (αjm) to the constant value 0.5. We
do not want to estimate the membership degrees, as an alternative is supposed to be
as correlated with alternatives in its direction cone, than correlated with alternatives
belonging to the same speed regime. They are geographic and kinetic correlations.
The parameter µ is normalized to 1, and the nest parameters µm are estimated. Note
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that the parameter associated with the deceleration nest had been constrained to 1
in the final specification, as it did not appear to be significantly different from that
value.

3.4.7 Intermediary specification steps

The proposed specification is the result of an intensive modeling process, where many
different specifications have been tested. We have gradually refined the specification.
We start with a logit with multiple alternatives containing only the keep direction and
toward destination parts. The cross-nested logit structure has been rapidly adopted
and kept due to the large fit improvement. An early version of the model has been
embedded in a basic simulator in order to check prediction capabilities. They showed
abnormal predicted behaviors regarding speeds. There were amplifications of acceler-
ations and decelerations conducting to abnormally high speeds or stops We decided to
account for the free flow acceleration, which regulates the speed. The final non-linear
specification follows an early piecewise linear specification which helped to find the
adapted mathematical formulation. The leader-follower and collision ovoidance term
have been lately introduced in the model. We got inspiration from car models, as
depicted in Sections 3.4.4 and 3.4.5.

We conclude this section by emphasizing that the above specification ignores het-
erogeneity in the population. Characteristics such as age, sex, weight, height (among
others) probably influence the spatial perception, interpersonal distance and human-
human interactions. However, given the nature of the data (trajectories) it is not
possible to take them into account in the model. Therefore, a specification with un-
observed heterogeneity captured by random coefficient in a panel data setup would
have been appropriate. However, the complexity of this specification did not allow us
to estimate the model with a sufficiently high number of draws. The proposed model
does not explicitly account for the specificity of the cross-walk and the influence of
fixed obstacles. These latter are roughly accounted in the model, by declaring un-
available the cells which are filled with obstacles. Regarding the leader-follower and
collision avoidance parts, note that only a single leader or collider is considered for
each alternative. The model does not account for the influence of pedestrian groups.
This has been not considered due to computational issues.

3.5 Data

The data set used to estimate the model consists of pedestrian trajectories manually
tracked from video sequences.

It was collected in Sendai, Japan, in August 2000 (see Teknomo et al., 2000,
Teknomo, 2002). The video sequence was recorded from the 6th floor of the JTB
parking building (around 19 meters above the ground), situated at an important
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(a) Japanese scenario

Figure 3.9: A frame from the Japanese video

pedestrian crossing. Two main pedestrian flows cross the street, giving rise to a large
number of interactions. A frame extracted from this video is represented in Figure 3.9.

The data set consists of 190 pedestrian trajectories, manually tracked at a rate of
2 processed frames per second, for a total number of 10200 position observations. The
mapping between the image plane and the walking plane was performed by Arsenal
Research (Bauer, 2007) using a 3D-calibration with the standard DLT algorithm
(Shapiro, 1978). The reference system on the walking plane has the origin arbitrarily
placed at the bottom left corner of the cross-walk. The x axis represents the width
of the crossing while the y axis represents the length.

For each frame, the following information for each visible pedestrian was collected:
(i) the time t corresponding to the frame f (in this case t = f/2), (ii) the pedestrian
identifier n, and (iii) the coordinates pf

n = (xf
n, yf

n) identifying the location of the
pedestrian in the walking plane.

From these raw data, we first derived the current direction and speed of each
pedestrian using the current and previous frames, that is

dn = pf
n − pf−1

n ,

vn = ‖dn‖/0.5 = 2‖dn‖.

In Figure 3.10 we report the speed histogram and in Table 3.1 the speed statistics.
High speed (the right tail of the histogram) are associated to persons who are rushing
to cross the road. They appear mainly when the pedestrian light gets red. They often
appear on the video when already running.

Then, a specific choice set (see Figure 3.4) was constructed for each pedestrian,
based on (3.1) where t = 1 sec (that is, 2 frames), v = vn for constant speed alterna-
tives, v = 0.5vn for decelerated alternatives, v = 1.5vn for accelerated alternatives,
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Mean 1.31
Standard Error 0.012

Median 1.27
Mode 1.28

Standard Deviation 0.37
Minimum 0.43
Maximum 4.84

Note: standard error is the estimated standard deviation of the sample mean

Table 3.1: Speed statistics(m/sec)
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Figure 3.10: Speed histogram



3.5. DATA 69

d = dn for alternatives in cone 6 (alt. 6, 17, 28), and d = rot(dn, ζ) is obtained by
rotating dn around pn with an angle ζ corresponding to the cone, that is

Cone 1: ζ = 72.5◦, Cone 11: ζ = −72.5◦,
Cone 2: ζ = 50◦, Cone 10: ζ = −50◦,
Cone 3: ζ = 32.5◦, Cone 9: ζ = −32.5◦,
Cone 4: ζ = 20◦, Cone 8: ζ = −20◦,
Cone 5: ζ = 10◦, Cone 7: ζ = −10◦.

For each cell in the choice set, each variable in (3.2) was then computed based
on the explanations in Section 3.4. Note that the destination of each individual was
defined by her location in the last frame where she is visible. Finally, the chosen
alternative has been identified as the cell containing the pedestrian’s location after
1 second, that is pf+2

n . In the rare instances where pf+2
n did not belong to any cell

(because of numerical errors due to poor image resolution, or extreme speed varia-
tions), the corresponding piece of data was removed from the sample (a total of 919
observations). We represent in Figure 3.11 selected generated choice sets on a given
trajectory (representing them all would have been unreadable).

ldrsrs rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs

rs rs rs rs rs
rs rs

rs
rs rs

rs rs
rs rs rs rs rs rs rs rs rs rs rs rs rs rs

rs rs
rs rs rs rs rsrs

rs rsrs rs rs rs rs
rs

Figure 3.11: Example of one manually tracked trajectory with choice sets

We obtain a total of 9281 observations for 190 pedestrians . In Figure 3.12 we
report the frequency of the revealed choices as observed in the data set. The three
peaks in the distributions arise on the central alternatives (6, 17, 28), as expected.
Note that cells 1, 12, 23 and 33 were never chosen in this sample. A summary of the
observations across the nests is detailed in Table 3.2.

Nest # steps % of total
acceleration 1065 11.48%
constant speed 7565 81.51%
deceleration 651 7.01%
central 4297 46.30%
not central 4984 53.70%

Table 3.2: Number of chosen steps in each nest for the real data set
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Figure 3.12: Revealed choices histograms

3.6 Estimation results

Table 3.3 presents the estimation results. The parameters were estimated using Bio-
geme (Bierlaire, 2003b, biogeme.epfl.ch).

All estimates have the expected sign. They are coherent with the expectations
presented in Section 3.4. Note that the parameter associated with the deceleration
nest was clearly insignificant, and fixed to 1. The influence of the extreme tail of the
speed distribution (see Figure 3.10) has been checked. It appears to be negligible on
the estimation results. Observations associated to these speeds mainly concern the
constant speed, because pedestrians are already running when they enter the video
(rushing pedestrians).

In addition to the proposed model, we analyze also a simple model, where the
utility of each alternative is represented only by an alternative specific constant. This
constant-only model perfectly reproduces the observed shares in the sample, with
28 parameters (33 alternatives, minus 4 which are never chosen, minus one constant
normalized to 0), but does not capture any causal effect. This is a simplistic, model
easy to build in any analysis. With this model, the loglikelihood drops from -13944.74
to -17972.03, illustrating the statistical significance of the proposed specification.
Note that a classical likelihood ratio test is not appropriate here, as the hypotheses
are not nested. We believe that a more rigorous test is not really necessary given the
huge jump in loglikelihood value.

Note that a comparison with a simple model is a common practice in model
estimation and validation (see Brogan and Johnson, 2003), but not sufficient as such
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Variable Coefficient t test 0 Variable Coefficient t test 0 t test 1
name estimate name estimate
βddir -0.0793 -24.14 ρL

acc -0.465 -1.78
βddist -1.52 -11.63 γL

acc 0.552 1.98
βdir extreme -0.0343 -9.71 αL

dec 3.78 5.41
βdir side -0.0553 -22.71 ρL

dec -0.654 -6.70
βdir central -0.0320 -13.90 γL

dec 0.658 5.48
βaccLS -4.94 -25.20 δL

acc -0.179 -2.22
βaccHS -7.41 -5.10 αC -0.00730 -10.84
βdec -0.0645 -2.46 ρC -0.212 -8.38
λaccLS 4.37 20.06 µacc 1.66 9.97 3.95
λaccHS 0.354 2.02 µconst 1.45 16.99 5.25
λdec -2.40 -8.50 µcentral 5.76 2.84 2.34
αL

acc 0.735 1.87 µnot central 1.82 13.12 5.91
Sample size = 9281 Init log-likelihood = -32451
Nbr of estimated parameters = 24 Final log-likelihood = -13944.74
ρ̄2 = 0.570 Likelihood ratio test = 37013

Table 3.3: CNL estimation results for the Japanese data set

to validate the proposed model.

3.7 Model validation

Two data sets are used for validation: the Japanese data set used for estimation and
described in Section 4.3, and a data set collected in the Netherlands, which was not
involved at all in the estimation of the parameters.

In Section 3.7.1, we apply the model on the Japanese data set, and compare the
predicted choices with the observed ones. In Section 3.7.2, we test the robustness of
the model specification by performing cross-validation, where a subset of the Japanese
data set is saved for validation, and the model is estimated on the rest. Finally, in
Section 3.7.3, we apply both our model, and a simple constant-only model on the
data set collected in the Netherlands.

3.7.1 Japanese data set: validation of the model

We first apply our model with the parameters described in Table 3.3 on the Japanese
data set, using Biosim (Bierlaire, 2003b). For each observation n, we obtain a prob-
ability distribution Pn(i) over the choice set.

Figure 3.13 represents the histogram of the probability value Pn(i∗n) assigned by
the model to the chosen alternative i∗n of each observation n, along with the hazard
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value 1/33 (where 33 is the number of alternatives). We consider observations below
this threshold as outliers. There are only 7.10% of them. As a comparison, there are
19.90% of outliers with the constant-only model.

Figure 3.13: Predicted probabilities of the Japanese data

The top part of Figure 3.14 reports, for each i,
∑

n Pn(i), and the bottom part
reports

∑

n yin, where yin is 1 if alternative i is selected for observation n, 0 otherwise.
As expected, the two histograms are similar, indicating no major specification error.

This is confirmed when alternatives are aggregated together, by directions (see
Table 3.4) and by speed regimes (see Table 3.5). For a group Γ of alternatives, the
quantities

MΓ =
∑

n

∑

i∈Γ Pn(i),

RΓ =
∑

n

∑

i∈Γ yin,

and
(MΓ − RΓ)/RΓ

are reported in columns 3, 4 and 5, respectively, of these tables.
The relative errors showed in Table 3.4 and Table 3.5 are low, except for groups of

alternatives with few observations, that is groups corresponding to extreme left and
extreme right directions.

3.7.2 Japanese data set: validation of the specification

In order to test the proposed specification, we have performed a cross validation done
on the Japanese data set. It consists in splitting the data set into 5 subsets, each
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(a) Predicted shares

(b) Observed shares

Figure 3.14: Predicted and observed shares for the Japanese data set

Cone Γ MΓ RΓ (MΓ − RΓ)/RΓ

Front 5 − 7, 16 − 18, 27 − 29 8486.16 8481 0.0006

Left 3, 4, 14, 15, 25, 26 348.86 367 −0.0494

Right 8, 9, 19, 20, 30, 31 419.29. 407 0.0302

Extreme left 1, 2, 12, 13, 23, 24 12.29 10 0.2292

Extreme right 10, 11, 21, 22, 32, 33 14.39 16 −0.1004

Table 3.4: Predicted (MΓ) and observed (RΓ) shares for alternatives grouped by
directions with the Japanese data set
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Area Γ MΓ RΓ (MΓ − RΓ)/RΓ

acceleration 1 − 11 1059.85 1065 −0.0048

constant speed 12 − 22 7588.28 7565 0.0031

deceleration 23 − 33 632.87 651 −0.0279

Table 3.5: Predicted and observed shares for alternatives grouped by speed regime
with the Japanese data set.

containing 20% of the observations. We perform 5 experiments. For each of them,
one of the five subsets is saved for validation purposes, and the model is re-estimated
on the remaining 4 subsets. The same procedure has been applied with the constant-
only model. The proportion of outliers for each experiment is reported in Table 3.6.
We observe that they are consistent with 7.10% (for our model) and 19.90% (for the
constant-only model) of outliers obtained with the complete data set, illustrating the
robustness of the specification.

Model Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Proposed spec. 8.62% 6.52% 7.44% 7.87% 5.87%
Constant only 20.79% 20.70% 17.13% 19.88% 18.64%

Table 3.6: Summary of the cross-validation performed on the Japanese data set

The above analysis indicates a good specification and performance of the model.
However, it is not sufficient to fully validate it. Consequently, we perform now the
same analysis on a validation data set, not involved in the estimation of the model.

3.7.3 Dutch data set: validation of the model

This data set was collected at Delft University, in the period 2000-2001 (Daamen
and Hoogendoorn, 2003b, Daamen and Hoogendoorn, 2003a, Daamen, 2004) where
volunteer pedestrians (about 80) were called to perform specific walking tasks in a
controlled experimental setup (experiment 4 in Daamen and Hoogendoorn, 2003a):
“The walking experiments have been conducted in a large hallway. One rectangular
area (10 meters × 4 meters) was used and taped on the floor. The digital camera
was mounted at the ceiling of the hallway, at a height of 10 m, observing an area of
approximately 14 m by 12 m.”

For the purposes of our validation procedure we use the subset of the Dutch data
set corresponding to a bi-directional flow. This situation is the experimental version
of the Japanese data set, which corresponds to a walkway. The subset includes
724 subjects for 47481 observed positions, collected by means of pedestrian tracking
techniques on video sequences, at a frequency of 10Hz, that is 10 frames per second.
In Figure 3.15 we report one frame from the experimental scenario.
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For each frame, we collected for each visible pedestrian the time t corresponding
to the frame f (in this case t = f/10), the pedestrian identifier n, and the coordinates
pf

n = (xf
n, yf

n) identifying the location of the pedestrian in the walking plane. From
these raw data, we derived the current direction and speed of each pedestrian using
the current and previous frames, that is

dn = pf
n − pf−1

n ,

vn = ‖dn‖/0.1 = 10‖dn‖.

Consistent with the model assumptions, the chosen alternative has been identified as
the cell containing the pedestrian’s location after 1 second, that is pf+10

n .
A summary of the observations across nests is detailed in Table 3.7. Note the

very low number of decelerations and accelerations, probably due to the experimental
nature of the data.

Figure 3.15: A representative frame from the video sequences used for data collection

Nest # steps % of total
acceleration 1273 2.68%
constant speed 45869 96.61%
deceleration 339 0.71%
central 20950 44.12%
not central 26531 55.88%

Table 3.7: Number of chosen steps in each nest for Dutch data

We compare the observed choices for the Japanese and the Dutch data set in
Table 3.8 and Figure 3.16. Table 3.8 reports the percentage of observations for cells
at the extreme left of the choice set (alts. 1, 2, 12, 13, 23, 24), the left part (alts.
3, 4, 14, 15, 25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19,
20, 30, 31) and the extreme right ( 10, 11, 21, 22, 32, 33). Figure 3.16 reports
normalized observation, that is, for each alternative i,

∑

n yin/N, where yin is 1 if
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alternative i is selected for observation n, 0 otherwise, and N is the total number of
observations. We observe a great similarity in the observed proportions, except for
alternatives corresponding to accelerations and decelerations. This suggests that a
simple model, with only alternative specific constants, may actually perform well on
this data set. The property of this simple model is to reproduce the alternative shares
of the estimation data, when used for forecasting at an aggregate level. So a model
with constant only and estimated on the Japanese data set should perform well when
applied on the Dutch data set. We show below, however that this is not the case.

Data set Extreme left Left Front Right Extreme right
Japanese 0.11% 3.95% 91.38% 4.39% 0.17%
Dutch 0.06% 4.40% 91.35% 4.15% 0.04%

Table 3.8: Comparison between Japanese and Dutch data sets for the observations
proportions in the direction’s cones
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Figure 3.16: Comparison between the Japanese and Dutch normalized observation
distributions across the alternatives

We applied our model with the parameters described in Table 3.3 on the Dutch
data set, using the Biosim package. For each observation n, we obtain a probability
distribution Pn(i) over the choice set.

Figure 3.17 represents the histogram of the probabilities Pn(i∗n) of the chosen
alternatives as predicted by the model, as well as the hazard value 1/33 (where 33
is the number of alternatives) illustrating the prediction of a purely random model
with equal probabilities. Again, we consider observations below this threshold as
outliers. We observe that there are 2.41% of them. This is good news, as it is
actually less than for the data set used for parameter estimation. The shape of the
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curve, as well as the low number of outliers are signs of the good performance of the
model. The shape of the curve is even better in the Dutch case, than in the Japanese
case, with higher frequencies for high choice probabilities. When we compare it
with predictions obtained with the constant-only model (Figure 3.18), the superior
forecasting potential of our model is clear.

The significant superiority of our model over the constant-only model is also illus-
trated by comparing the proportion of outliers (2.41% vs. 10.31%) or the loglikelihood
(-51303.58 vs. -77269.28, as detailed in Table 3.14).

Figure 3.17: Prediction with the proposed model

We now compare the predictions performed by our model with the actual ob-
servations. The top part of Figure 3.19 reports the predicted probabilities obtained
by sample enumeration, that is, for each i,

∑

n Pn(i), and the bottom part the ob-
served shares, that is

∑

n yin. The predictions are very satisfactory, except maybe
for decelerations (alternatives 22 to 33) and accelerations (alternatives 1 to 11).

Cone Γ MΓ RΓ (MΓ − RΓ)/RΓ

Front 5 − 7, 16 − 18, 27 − 29 43552.36 43374 0.0041

Left 3, 4, 14, 15, 25, 26 1948.77 2089 −0.0671

Right 8, 9, 19, 20, 30, 31 1853.34 1972 −0.0602

Extreme left 1, 2, 12, 13, 23, 24 43.91 27 0.6261

Extreme right 10, 11, 21, 22, 32, 33 82.62 19 3.3485

Table 3.9: Predicted (MΓ) and observed (RΓ) shares for alternatives grouped by
directions with the Dutch data set.
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Figure 3.18: Prediction with the constant-only and proposed model

Area Γ MΓ RΓ (MΓ − RΓ)/RΓ

acceleration 1 − 11 4022.32 1273 2.1597

constant speed 12 − 22 40581.06 45869 −0.1153

deceleration 23 − 33 2877.62 339 7.4886

Table 3.10: Predicted (MΓ) and observed (RΓ) shares for alternatives grouped by
speed regime with the Dutch data set.
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(a) Predicted

(b) Observed

Figure 3.19: Choice histogram predicted by the model against revealed choices in the
Dutch data set
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We also perform the comparison at a more aggregate level, for groups of cells.
Tables 3.9 and 3.10 show a good overall performance of the model. Clearly, the
extreme left and extreme right groups contain too few observations to reach any
conclusions. The only bias seems to consist in a systematic over-prediction of accel-
erations and decelerations. This is consistent with the above-described analysis. The
Dutch data set was collected in controlled experimental conditions, which may have
introduced a bias in pedestrian behavior, depending on the exact instructions they
have received. This assumption is supported by the quasi absence of decelerations in
the data set, and by the different shapes of the speed distributions (see Figure 3.20).
While the Japanese curve appears to be Gaussian, the Dutch curves contain some
non-Gaussian features which are likely the result of the experimental nature of the
data. In particular, the support is much narrower, with few high speeds. Note that,
in the Japanese case, some pedestrians are running when the traffic light becomes red
and cars start moving.

Data Set Mean speed [m/s]
Dutch (experimental) 1.297
Japanese (real) 1.341

Table 3.11: Average pedestrian speed in the data sets
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Figure 3.20: Distribution of speed in the two data sets

We now report the same aggregate prediction obtained with the constant-only
model in Tables 3.12 and 3.13. The good performance of this simple model at the
aggregate level emphasizes the need for the disaggregate validation performed above.
Indeed, the relatively good performance of the model is due to the coincidental simi-
larity of proportions of chosen alternatives in the two data sets (see Table 3.8). The
detailed analysis presented in Figure 3.18 clearly rejects the simple model, while the
aggregate analysis does not.

For the sake of completeness, a constant-only model was calibrated on the Dutch
data set, in the same way as for the Japanese. Our model estimated on the Japanese
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Cone Γ MΓ RΓ (MΓ − RΓ)/RΓ

Front 5 − 7, 16 − 18, 27 − 29 43386.42 43374 0.0003

Left 3, 4, 14, 15, 25, 26 1877.47 2089 −0.1013

Right 8, 9, 19, 20, 30, 31 2082.10 1972 0.0558

Extreme left 1, 2, 12, 13, 23, 24 51.16 27 0.8947

Extreme right 10, 11, 21, 22, 32, 33 81.85 19 3.308

Table 3.12: Predicted (MΓ) using the constant-only model and observed (RΓ) shares
for alternatives grouped by direction with the Dutch data set.

Area Γ MΓ RΓ (MΓ − RΓ)/RΓ

acceleration 1 − 11 5448.24 1273 3.2798

constant speed 12 − 22 38700.42 45869 −0.1563

deceleration 23 − 33 3330.34 339 8.824

Table 3.13: Predicted (MΓ) using the constant-only model and observed (RΓ) shares
for alternatives grouped by speed regime with the Dutch data set.

data is better than the constant-only model estimated on the Dutch data, when
applied on the Dutch data set, both in terms of log-likelihood (-51303.58 against -
71847.69) and prediction (2.41 %, percentage of outliers against 4.33%). We have
summarized the various loglikelihood values in Table 3.14, where each column corre-
sponds to a model, and each row to a data set.

Constant-only model Constant-only model
Data set Our model based on Japanese data based on Dutch data
Japanese -13944.74 -17972.03 —

Dutch -51303.58 -77269.28 -71847.69

Table 3.14: Loglikelihood of each model applied to the two data sets

In summary, we observe that our model applied to the estimation data (Japanese)
have few outliers compared to the constant-only model, and reproduces the observed
choices well. A forecasting cross-validation based on 80% of the sample illustrates
the robustness of the specification. When the model is applied to the validation
data (Dutch), we observe few outliers and an excellent probability histogram. Also,
it reproduces the observed choices very well, in terms of directions and constant
speed. We emphasize that this disaggregate analysis was necessary since the aggregate
comparison does not reject the constant-only model.
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3.8 Contributions

We proposed and validated a discrete choice model for the walking behavior, wich
lead to several contributions.

Several behavioral patterns have been considered and translated in mathematical
formulations. The advantage of such an approach is the modularity. Behavioral
patterns can be included in the model without changing the model structure, contrary
to physical models (Helbing et al., 2002). The model is estimated on real data, as
in the work done by Hoogendoorn et al. (2002). This guarantees the relevance of
the modeling assumptions and the quality of the estimates. Contrary to rule-based
models (see Blue and Adler, 2001), behavioral assumptions are not only checked at
the validation stage, but also at the estimation.

Compared to the previous work of Antonini, Venegas, Bierlaire and Thiran (2006),
two supplementary behavioral patterns have been added in the model. They concern
the interactions with other pedestrians: leader-follower and collision-avoidance. They
improve significantly the model in terms of fit and prediction.

We proposed and applied a validation methodology. The validation is crucial in
order to check the prediction capabilities of the model, before using it in a simulation
tool. This has been done in the literature mainly at an aggregate level (Berrou et al.
(2007) and Kretz et al. (2008)), with the comparison of simulated and observed flows.
In this work, we proposed both an aggregate and a disaggregate validation. The
second step of the validation involves a Dutch data set, not used for estimation. In
addition of the good validation results, the analysis allowed to compare the Japanese
and Dutch data sets. These two data sets have been collected in two different setups:
a real context in the Japanese case, and an experience in the Dutch case. Dutch
pedestrians are walking at much more at a constant speed, compared to Japanese
pedestrians, while the directional behavior is similar.

3.9 Conclusions

In this chapter we propose a discrete choice model of pedestrian walking behavior.
The short range walking behavior of individuals is modeled, identifying two main
patterns: constrained and unconstrained. The constraints are generated by the inter-
actions with other individuals. We describe interactions in terms of leader-follower
, and collision avoidance model. These models capture self-organizing effects which
are characteristic of crowd behavior, such as lane formation. Inspiration for the
mathematical form of these patterns is taken from driver behavior in transportation
science, and ideas such as the car following model and lane changing models have
been reviewed and re-adapted to the more complex pedestrian case. The difficulties
of collecting pedestrian data as well as the limited information conveyed by pure dy-
namic data sets limit the possibilities in model specification. Important individual
effects cannot be captured without the support of socio-economic characteristics. Re-
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cent development of pedestrian laboratories (see among others Daamen and Hoogen-
doorn, 2003a, Nagai et al., 2005, Helbing et al., 2005, Cepolina and Tyler, 2005, Kretz
et al., 2006), where controlled experimental conditions are possible, represent an im-
portant step in this direction. We use experimental data in a two step validation
procedure. First, the model is validated on the same data set used for estimation in
order to check for possible specification errors. Second, the model is run on a new
data set collected at Delft University under controlled experimental conditions. The
proposed validation procedure suggests good stability of the model and good forecast-
ing performance. Few observations are badly predicted, mostly concentrated at the
extremes of the choice set. The estimated coefficients are significant and their signs
are consistent with our behavioral assumptions. As opposed to other previous mod-
els, we can quantify the influence of the relative kinematic characteristics of leaders
and colliders on decision-maker behavior. Moreover, such quantitative analysis has
been performed using real world pedestrian data.

The validation procedure is rather complete, since it involves several models, in-
cluding a simple one, and analyzes the results both at an aggregate and a disaggre-
gate level. The next step would be to validate the model within actual tools, such as
pedestrian simulators or automatic video tracking systems (Antonini, Venegas, Bier-
laire and Thiran, 2006). In particular, a simulation tool would allow for validation at
the path level (Brogan and Johnson, 2003) or based on flows and densities (Berrou
et al., 2007). Also, the validation of phenomena like spontaneous formation of lanes
and queues requires a simulation environment. In such a context, the errors may
quickly add up even with a good model, and a mechanism to keep the simulation on
track may be necessary.

From a modeling viewpoint, future developments will focus on analyzing more
and improving the acceleration and deceleration patterns. In particular, we plan
to incorporate some physical and socio-economic characteristics of the pedestrians
in the model. Also, we must investigate alternative resolutions of the choice set,
with a possible adaptation of the resolution to the circumstances. In particular, the
granularity of the most used alternatives (toward the front) may be revised. The
current version has been designed to account for the resolution of the available data,
and to limit the complexity of the model. Clearly, the behavioral relevance of this
resolution should also be analyzed. The influence of the obstacles should be refined
in the model. For example, we can adapt the collision avoidance pattern in this
purpose. Regarding interactions with other pedestrian, the influence of pedestrian
groups should also be considered. For the moment, only one single leader and collider
are considered for each alternative.

Finally, it is important to emphasize that there is no such thing as a universal
walking behavior model, as there are differences in actual walking behavior across
circumstances and across cultures (Wiseman, 2007, pp. 262–268). The validation of
the model guarantees that the model performs well in similar contexts, and is robust
when used for forecasting.
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4. The judgmental behavior:
dynamic facial expression
recognition

4.1 Introduction

We propose a dynamic facial expression recognition framework based on discrete
choice models. We model the choice of a person who has to label a video sequence
representing a facial expression. The originality is based on the explicit modeling of
causal effects between the facial features and the recognition of the expression. Five
models are proposed. The first assumes that only the last frame of the video triggers
the choice of the expression. The second model is composed of two parts. The first
part captures the evaluation of the facial expression within each frame in the sequence.
The second part determines which frame triggers the choice. The third model is an
extension of the second model. It assumes that the choice of the expression results
from the average of expression perceptions within a group of frames. The fourth
and fifth models integrate the panel effect inherent to the estimation data and are
respectively based on the first and second models. The models are estimated using
videos from the Facial Expressions and Emotions Database (FEED). Labeling data
on the videos has been obtained using an internet survey. The prediction capability
of the models is studied in order to check their validity, by cross-validation using the
estimation data. Estimation results and prediction capabilities of the five models are
compared and discussed.

This chapter contains mainly the developments proposed by Robin et al. (2010).

4.2 Motivation

Facial expressions are essential to convey emotions and represent a powerful way used
by human beings to relate to each other. When developing human machine interfaces,
where computers have to take into account human emotions, automatic recognition
of facial expressions plays a central role. In addition, The emotion is essential in
many choice processes (Lerner and Keltner, 2000, Mellers and McGraw, 2001) and

85
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the facial expression is one of the main indicators of the emotion.
Some coding systems have been proposed to describe facial expressions. Ekman

and Friesen (1978) introduced the facial action coding system (FACS). They iden-
tified a list of fundamental expressions and associated groups of muscles tenseness
or relaxations, called action units (AU) to each basic expression. A FACS expert
can recognize AU activated on a face, and then deduct precisely the facial expression
mixture. This is now the coding system of reference to characterize facial expressions.

The dynamic facial expression recognition (DFER) refers to the recognition of
facial expressions in videos, whereas the static facial expression recognition (SFER)
concerns the recognition of facial expressions in images. The DFER is an extension
of the SFER. A great deal of research has been conducted in the field. Cohen et al.
(2003) have developed an expression classifier based on a Bayesian network. They
also propose a new architecture of hidden Markov model (HMM) for automatic seg-
mentation and recognition of human facial expression from video sequences. Pantic
and Patras (2006) present a dynamic system capable of recognizing facial AU and ex-
pressions, based on a particle filtering method. In this context, Bartlett et al. (2003)
use a Support Vector Machine (SVM) classifier. Finally, Fasel and Luettin (2003)
study and compare methods and systems presented in the literature to deal with the
DFER. They focus particularly on the robustness in case of environmental changes.

There is a recent interest in quantifying facial expressions in different fields such
as robotics, marketing or transportation. In the robotic field, Tojo et al. (2000) have
implemented facial and body expressions on a conversational robot. With some exper-
iments, they showed the added value of such a system in the communication between
humans and the robot. Miwa et al. (2004) have also developed a humanoid robot able
to reproduce human expressions and their associated human hand movements. In the
marketing field, Weinberg and Gottwald (1982) have investigated human behavior
characterizing impulse purchases. Emotions play a key role and facial expressions
appeared to be one of their main indicators. Small and Verrochi (2009) studied how
the victim faces displayed on advertisements for charities affect both sympathy and
giving.

Measuring user emotions has become an important research topic in transporta-
tion behavior analysis. In the car context, it may allow one to adapt the vehicle
functionalities to the driver’s mood for both well-being and safety reasons. Reimer
et al. (2009) develop the concept of “awareness” of the vehicle in order to improve the
mobility, performance and safety of older drivers. Information about driver general
states, such as respiration, facial expression or concentration, are crucial to correctly
apprehend the immediate driver capabilities and adapt the vehicle behavior to it.
Moreover, some car manufacturers are currently working on the driver’s mood recog-
nition in order to warn the driver about possible dangers generated by other users.
This aims at preventing road rage. Currently, the mood recognition is based only on
the driver’s voice. For routine trips, Abou-Zeid (2009) conducts experiments to mea-
sure the travel well-being for both public transportation and car modes. Collected
data were employed to estimate mode choice models. Well-being measures are used
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as utility indicators, in addition to standard choice indicators.

Contrarily to computer vision algorithms which are calibrated using a ground
truth, the proposed models are estimated using behavioral data. Computer vision
algorithms can be often considered as a “black box”, as their parameters are difficult
to interpret. In our case, a specification is proposed where causal links between fa-
cial characteristics and expressions are explicitly modeled. The output of the model
is a probability distribution among expressions. We have successfully applied the
approach for SFER (Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran, 2010, and
Sorci, Robin, Cruz, Bierlaire, Thiran and Antonini, 2010). We propose a logit model,
with nine alternatives corresponding to the nine considered expressions. Each utility
is a function of measures related to the AU associated to the expression, as defined
by the FACS. Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010) have also
introduced the concept of expression descriptive units (EDU), that capture interac-
tions between AU. Moreover, some outputs of the computer vision algorithm used to
extract measures on facial images, are also included in the utility, in order to account
for the global facial perception.

The DFER does not fit into the usual discrete choice applications, so adjustments
have to be done. We took inspiration from the work of Choudhury (2007) who uses
a dynamic behavioral framework to model car lane changing, and more generally
from the framework developed by Ben-Akiva, 2010 for the concept of “planning and
action”. Five models are presented in this analysis. Different modeling assumptions
have been tested and compared. We first present the behavioral data used to estimate
the models. Then the specification of the proposed models and the estimation results
are presented. We finally describe the cross-validation and the predictions of the
proposed models. In order to ease the understanding of the mentioned acronyms,
Table B.1 in Appendix B.1 summarizes them and their definitions.

4.3 Data

The data is derived from a set of video sequences from the facial expressions and
emotions database (FEED) collected by Wallhoff (2004). They have recorded students
watching television. Different types of TV programs are presented to the subjects in
order to generate a large spectrum of expressions. The database contains 95 sequences
from 18 subjects. The collected videos last between 3 and 6 seconds. In each video,
the subject starts with a neutral face (see example in Figure 4.1). Then, at some
point the TV program triggers an expression (see example in Figure 4.2).

We have selected 65 videos from 17 subjects. The videos of subject No17 were
removed because of the lack of variability in facial characteristics, and to some dis-
continuities in the recording. The number of considered videos per subject is shown
in Figure 4.3. We have no access to the type of expression that was meant to be
triggered during the experiment.

A video is a sequence of images. For each image, numerical data are extracted
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Figure 4.1: Snapshot of a FEED database video: neutral face (subject No2)

Figure 4.2: Snapshot of a FEED database video: expression produced by the TV
program (subject No2)

using an active appearance model (AAM, Cootes et al., 2002). It allows to extract
facial distances and angles as well as facial texture information (such as levels of gray)
from each image. This technique is based on several principal component analysis
(PCA) performed on the image treated as an array of pixel values. The algorithm
tracks a facial mask composed of 55 points (see Figure 4.4) used to measure various
facial distances and angles. The details of the mask are shown in Figure 4.5(a), as
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Figure 4.3: Numbers of considered videos per subject

well as the geometrical relationship of the facial measure points (Figure 4.5(b)) and
some facial descriptors (Figure 4.5(c)). The correspondences between the measures
on the mask displayed in Figure 4.5(b) and the mask presented in Figure 4.5(c), are
shown in Table 4.1.

Figure 4.4: Mask tracked by AAM along a video sequence

Different explanatory variables based on the outputs of the AAM, are used to
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(a) (b) (c)

Figure 4.5: a) Facial landmarks (55 points); b) the geometrical relationship of facial
feature points; c) some facial descriptors;

reflect the perception of facial expressions. They are coming from the facial action
coding system (FACS); they are expression descriptive units (EDU), and also C pa-
rameters. We describe them briefly in the following. Note that a complete description
of these variables can be found in Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran
(2010).

The FACS associates tensenesses and relaxations of muscles to each expression.
They call them action units (AU). A sample of AU is presented in Figure 4.6. For
example AU 6 is associated to happiness. The details of these associations are pre-
sented in Ekman and Friesen (1978). We translate the facial distances and angles
extracted from the mask, into AU.

Figure 4.6: Sample of AU

EDU are reported in Table 4.2 and introduced by in Antonini, Sorci, Bierlaire
and Thiran (2006). Additionally to the FACS, they account for the interactions be-
tween facial descriptors. The first 5 EDU represent, respectively, the eccentricity
of eyes, left and right eyebrows, mouth and nose. The EDU from 7 to 9 represent
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Figure 4.7: Examples of synthesized faces obtained varying the first C parameter
from the mean face (±3std).

the eyes interactions with mouth and nose, while the 10th EDU is the nose-mouth
relational unit. The last 4 EDU relate the eyebrows to mouth and nose. The EDU
can be intuitively interpreted. For example, in a face displaying a surprise expres-
sion, the eyes and the mouth are usually opened and this can be captured by EDU7
(eyeheight/mouthheight).

Another vector C of values capturing both the facial texture and shape is also
generated by the AAM. FACS and EDU provide measures of local facial features but
they do not provide a description of a face as a global entity. This information can
be obtained considering the appearance vector C matching the face in the processed
image. Figure 4.7 shows the effect of varying the first appearance model parameter,
showing changes in identity and expression.

A total of 88 variables capturing distances (number of pixels) and angles (radians),
as well as 100 elements of the vector C, have been generated for each image in each
video, which leads to obtain 188 variables per image.

The video is discretized in groups of 25 images, each corresponding to one second
of the video, i.e. the number of groups of images is equal to the duration in seconds
of the video. The features associated with each group of images are the features of
the first image of the group. In the following, we use “frame” to refer to what is
actually the first image of a group. The features of the 24 remaining images are used
to compute variances (see Equation (4.2)).

For a given frame t and video o, three sets of variables are introduced: {xk,t,o}k=1,...,188,
{yk,t,o}k=1,...,188, {zk,t,o}k=1,...,188. {xk,t,o}k=1,...,188 are the features extracted using the
AAM (188 = 88 variables capturing distances + 100 elements of the C vector).

Frame dynamics is captured by variables yk,t,o. For each xk,t,o, k = 1, . . . , 188,
yk,t,o is defined as

yk,t,o = xk,t,o − xk,t−1,o for t = 2, . . . , To, (4.1)

where To is the number of frames in the video o. As each frame corresponds to one
second, yk,t,o can be interpreted as the first derivative of xk,t,o with respect to time,
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approximated by finite differences. It quantifies the level of variation of the facial
characteristics between two consecutive frames.

Finally, another set of variables zk,t,o, is introduced to capture the variation of
xk,t,o within a frame. For each xk,t,o, k = 1, . . . , 188, zk,t,o is defined as

zk,t,o = Var(xk,t,o). (4.2)

It is the variance of the features calculated over the 25 images preceding the
frame t. It characterizes the short time variations of the facial characteristic xk,t,o.
For logical reasons, we have fixed

yk,1,o = zk,1,o = 0 ∀k, o , (4.3)

meaning that the derivative and the variance of a variable in the first frame of all
videos, is fixed to 0. We have a database of 564 (= 188× 3) variables for each frame
t in each video o. The variables have been normalized in the interval [−1, 1], in order
to harmonize their scale: each variable has been divided by the maximum in absolute
value between its observed maximum and minimum over all frames and videos.

An internet survey has been conducted in order to obtain labels of FEED videos.
The list of labels is composed of the seven basic expressions described by Keltner
(2000): happiness (H), surprise (SU), fear (F), disgust (D), sadness (SA), anger (A),
neutral (N). We have also added “Other” (O) and “I don’t know” (DK), to avoid
ambiguities in the survey. It is available at http://transp-or2.epfl.ch/videosurvey/
since august 2008. A screen snapshot is shown at Figure 4.8.

Figure 4.8: Snapshot of the internet survey screen (subject No15)
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For this analysis, we have collected 369 labels from 40 respondents. The repartition
of the observations among the expressions is displayed in Figure 4.9.
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Figure 4.9: Distribution of the collected labels among expressions
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FACS Measures Measures on mask 4.5(a)

JJ ′ Dist(P5, P6)

JF Dist(P6, P19)

J ′F ′ Dist(P5, P15)

KG ≡ l8 Dist(P8, P25)

K ′G ′ Dist(P3, P17)

GI ≡ l6 Dist(P25, P21)

G ′I ′ Dist(P13, P17)

PF Dist(P19, P42)

P ′F ′ Dist(P15, P37)

FC Dist(P19, P31)

F ′C ′ Dist(P15, P27)

FD ≡ l4 Dist(P25, P29)

F ′D Dist(P17, P29)

OD Dist(
(

P39+P40
2

)

, P29)

OB Dist(
(

39+40
2

)

, 33)

DB Dist(P29, P33)

C ′C Dist(P27, P31)

∡FHJ ∡P19P23P6

∡F ′H ′J ′ ∡P15P11P5

∡HFI ∡P23P19P21

∡H ′F ′I ′ ∡P11P15P13

∡HGF ∡P23P25P19

∡H ′G ′F ′ ∡P15P17P11

Table 4.1: Correspondences between measures on masks 4.5(b) and 4.5(a)
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EDU Measures Measures definition

EDU1 lew+rew
leh+reh

EDU2 lbw
lbh

EDU3 rbw
rbh

EDU4 mw
mh

EDU5 nh
nw

EDU6 lew
mw

EDU7 leh
mh

EDU8 leh+reh
lbh+rbh

EDU9 lew
nw

EDU10 nw
mw

EDU11 EDU2
EDU4

EDU12 EDU3
EDU4

EDU13 EDU2
EDU10

EDU14 EDU3
EDU14

Table 4.2: Expressions Descriptive Units
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4.4 Models specification

We consider a decision-maker who has to label a video sequence by choosing among
the list of facial expressions described in Section 4.3 (happiness (H), surprise (SU), fear
(F), disgust (D), sadness (SA), anger (A), neutral (N), other (O), not known (DK)).
Five models based on different assumptions have been developed. We suppose that
the perception of the respondent starts at the first frame of the video. Then, we
assume that the respondent updates her perception every second, which corresponds
to every frame (see Section 4.3). In the first model we hypothesize that only the last
frame of the video influences the observed choice of label. This is the simplest model
presented in this analysis because it does not include dynamic aspects and it will be
considered as a reference for comparison. This model is called reduced model. In
the second model, only the most impressive frame is supposed to be influential on
the choice of label. It is called latent model. In the third model, we hypothesize
that it is the average perception of a group of consecutive frames which generates the
choice of label. This is called smoothed model. Two supplementary models are
proposed in order to account for the panel nature of the data, they are based on the
first and second models and called reduced model with panel effect and latent
model with panel effect. Note that a smoothed model with panel effect is
not considered due to its estimation complexity.

The theoretical details and specification of each model are described in Sections
4.4.1, 4.4.2, 4.4.3, 4.4.4 and 4.4.4. They are all extensions of the model proposed
by Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010), which is called static
model. Due to the small number of respondents, their socio-economic characteristics
have not been included in the models.

4.4.1 The reduced model

We first assume that the perception of the last frame of a video is suggesting the
choice of label. The filmed subject starts with a neutral face and evolves toward a
certain expression which is triggered by the TV program that she is watching, and
the video ends. The subject’s face on the last frame should be expressive. The model
is a direct application of the static model in the last frame.

The model associated to the perception of expressions is denoted by PM1
(i|o, θM1

).
It is the probability for an individual to label the video o with the expression i,
given the vector of unknown parameters θM1

. The last frame is supposed to be the
only information used by the respondent to label the video o. The utility function
associated with each expression is defined in Equation (4.4).
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VM1
(H|To, o, θM1

) = ASCM1,H +

KM1
∑

j=1

IM1,H,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(SU|To, o, θM1

) = ASCM1,SU +

KM1
∑

j=1

IM1,SU,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(F|To, o, θM1

) = ASCM1,F +

KM1
∑

j=1

IM1,F,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(D|To, o, θM1

) = ASCM1,D +

KM1
∑

j=1

IM1,D,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(SA|To, o, θM1

) = ASCM1,SA +

KM1
∑

j=1

IM1,SA,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(A|To, o, θM1

) = ASCM1,A +

KM1
∑

j=1

IM1,A,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(N|To, o, θM1

) = 0 ,

VM1
(O|To, o, θM1

) = ASCM1,O +

KM1
∑

j=1

IM1,O,jθM1,j

188
∑

k=1

IM1,j,kxk,To,o ,

VM1
(DK|To, o, θM1

) = ASCM1,DK , (4.4)

where To denotes the length of the video o in seconds, which is also the index of the
last frame of the video o. KM1

is the total number of parameters associated to facial
measurements {xk,t,o} in the reduced model. IM1,i,j is an indicator equal to 1 if the
parameter j is present in the utility of expression i, 0 otherwise. IM1,j,k is an indicator
equal to 1 if the parameter j is related to the facial measurement xk,To,o collected in
the last frame of the video o, 0 otherwise. We have

188
∑

k=1

IM1,j,k = 1 ∀j , (4.5)

meaning that a parameter θM1,j is related to only one facial measurement xk,To,o. Each
utility contains an alternative specific constant ASCM1,i except the neutral, which is
taken as the reference, and its utility is fixed to 0. Note that there is no expression
specific attributes, as the facial characteristics do not vary across the expressions.
The details of the utility specifications are presented in Tables B.2 and B.3. For
each parameter θM1,j, if IM1,i,j is equal to 1, there is a “×” in the column of the
corresponding expression i. This notations is used in all Tables in Appendix B.2. If
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IM1,j,k is equal to 1, the relative facial characteristic xk,To,o is indicated. The model
is a logit, so the probability is

PM1
(i|o, θM1

) =
eVM1

(i|To,o,θM1
)

∑9
j=1 eVM1

(j|To,o,θM1
)
. (4.6)

Then the log-likelihood is

L(θM1
) =

O
∑

o=1

9
∑

i=1

wi,o log(PM1
(i|o, θM1

)), (4.7)

where wi,o is a weight, corresponding to the number of times the expression i has
been chosen for the video o in the collected database of annotations (see Section 4.3).

Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010) employed the database
proposed by T.Kanade (2000) when collecting behavioral data. The estimated pa-
rameters of the static model cannot be used directly in our analysis due to problems
of facial position and scale between this database and the FEED (see Section 4.3).
The filmed subjects are further from the camera in the FEED, compared to the
Cohn-Kanade. Consequently, the model has to be re-estimated. In addition, the
specifications of the utilities have been adapted to this analysis because of the lower
number of available data. We use 369 observations of labels against 38110 for the
work of Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010). This implies
the estimation of a lower number of parameters: the utility specifications have been
simplified and parameters have been grouped together regarding their sign and inter-
pretability. The proposed model contains 32 parameters against 135 for the static
model.

4.4.2 The latent model

The assumption supporting this model is that one frame in the video has influenced
the observed choice of label, but the analyst does not know which one. The DFER
model consists of a combination of two models. The first model quantifies the percep-
tion of expressions in a given frame. It is similar to the reduced model presented
in Section 4.4.1. The second model predicts which frame has influenced the chosen
label. It is a latent choice model where the choice set is composed of all frames in the
video. The instantaneous perception of expressions and the most influential frame
are not observed. Only the final choice of label for the video is observed.

The first model provides the probability for a respondent to choose the expression i

when exposed to the frame t of the video sequence o, and is written PM2
(i|t, o, θM2,1, αM2

).
The second model provides the probability for the frame t of video o to trigger the
choice, and is denoted by PM2

(t|o, θM2,2). The probability for a respondent to la-
bel the video o with expression i, is denoted by PM2

(i|o, θM2
, αM2

), which is ob-
servable. θM2,1 and θM2,2 are the vectors of unknown parameters to be estimated,
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merged into the vector θM2
. αM2

is a vector of parameters capturing the mem-
ory effects, which will be introduced in Equation (4.11), and has to be estimated
(αM2

= {αM2,i}i=H,SU,F,D,SA,A,O). We obtain

PM2
(i|o, θM2

, αM2
) =

To
∑

t=1

PM2
(i|t, o, θM2,1, αM2

)PM2
(t|o, θM2,2). (4.8)

For specifying the model PM2
(i|t, o, θM2,1, αM2

), we need to define a utility func-
tion associated to each expression. We hypothesize that the perception of an expres-
sion i in frame t depends on the instantaneous perceptions of this expression i in the
frames t and t − 1. VM2

(i|t, o, θM2,1, αM2,i) is a utility reflecting the perception of
the expression i in frame t for the video o. We decompose it into two parts. First
Vs

M2
(i|t, o, θM2,1) concerns the instantaneous perception of the frame t in the video

o. Second, Vs
M2

(i|t − 1, o, θM2,1) concerns the instantaneous perception of the frame
t − 1 in the video o. This is designed to capture the dynamic nature of the decision
making process, as illustrated in Figure 4.10. In this figure, the facial measurements
{xk,t,o} and {zk,t,o} (introduced in Equation (4.2)) are observed, they are enclosed in
rectangles and their influences are represented by plain arrows; whereas the utilities
are latent, they are enclosed in ellipses and their influences are marked by dashed
arrows. {xk,t,o} and {zk,t,o} influence Vs

M2
(i|t, o, θM2,1), while VM2

(i|t, o, θM2,1, αM2,i)

is only function of Vs
M2

(i|t, o, θM2,1) and Vs
M2

(i|t − 1, o, θM2,1).

xk,t,o, zk,t,oxk,t−1,o, zk,t−1,o

Vs
M2

(i|t, o, θM2,1)Vs
M2

(i|t − 1, o, θM2,1)

VM2
(i|t, o, θM2,1, αM2,i)VM2

(i|t − 1, o, θM2,1, αM2,i)

b b bb b b

tt − 1

Figure 4.10: The dynamic process of the latent model

The specification of {Vs
M2

(i|t, o, θM2,1)} is presented in Equation (4.9)
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Vs
M2

(H|t, o, θM2,1) = ASCM2,H +

KM2
∑

j=1

IM2,1,H,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(SU|t, o, θM2,1) = ASCM2,SU +

KM2
∑

j=1

IM2,1,SU,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o

+

Kz
M2

∑

j=1

Iz
M2,SU,jθ

z
M2,1,j

188
∑

k=1

Iz
M2,j,kzk,t,o ,

Vs
M2

(F|t, o, θM2,1) = ASCM2,F +

KM2
∑

j=1

IM2,F,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(D|t, o, θM2,1) = ASCM2,D +

KM2
∑

j=1

IM2,D,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(SA|t, o, θM2,1) = ASCM2,SA +

KM2
∑

j=1

IM2,SA,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(A|t, o, θM2,1) = ASCM2,A +

KM2
∑

j=1

IM2,A,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(N|t, o, θM2,1) = 0 ,

Vs
M2

(O|t, o, θM2,1) = ASCM2,O +

KM2
∑

j=1

IM2,O,jθM2,1,j

188
∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(DK|t, o, θM2,1) = ASCM2,DK , (4.9)

where KM2
is the total number of parameters related to {xk,t,o}. Kz

M2
is the total

number of parameters related to {zk,t,o}. The indicators are similar to those introduced
in Section 4.4.1. IM2,i,j is an indicator equal to 1 if the parameter j is included in the
utility of expression i, 0 otherwise. IM2,j,k is an indicator equal to 1 if the parameter
j is related to the facial measurement xk,t,o collected in the frame t of the video o, 0

otherwise. We have

188
∑

k=1

IM2,j,k = 1 ∀j , (4.10)

meaning that a parameter θM2,j is related to only one xk,t,o. Iz
M2,SU,j and Iz

M2,j,k have
exactly the same role as IM2,i,j and IM2,j,k, but they concern the parameter θz

M2,j which
is related to zk,t,o. Each utility contains a constant, except for the neutral expression,
whose utility is the reference and is fixed to 0. The presence of {zk,t,o} (short time
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variations of facial characteristics) in the surprise utility accounts for the perception
of suddenness. {zkto} are better than {yk,t,o} in this case, because they capture faster
variations of facial characteristics. This does not lead necessarily to the surprise facial
expression, but according to the collected data, fast variations of facial characteristics
could be perceived as surprise by respondents. {zkto} have been tested in the reduced
model, but the associated parameters did not appear to be significant, certainly due
to the simplistic assumption about the last frame triggering the expression choice.
The detailed specification of Vs

M2
(i|t, o, θM2,1)} is described in Tables B.4 and B.5.

The reading of the tables is exactly the same as for Table B.2 described in Section
4.4.1.

The utility function VM2
(i|t, o, θM2,1, αM2,i) is supposed to be the sum of Vs

M2
(i|t, o, θM2,1)

and {Vs
M2

(i|t − 1, o, θM2,1) weighted by αM2,i, the parameter of memory effect. The
specification of VM2

(i|t, o, θM2,1, αM2,i) is defined in Equation (4.11).

VM2
(H|t, o, θM2,1, αM2,H) = Vs

M2
(H|t, o, θM2,1)

+ αM2,HVs
M2

(H|t − 1, o, θM2,1),

VM2
(SU|t, o, θM2,1, αM2,SU) = Vs

M2
(SU|t, o, θM2,1),

VM2
(F|t, o, θM2,1, αM2,F) = Vs

M2
(F|t, o, θM2,1)

+ αM2,FV
s
M2

(F|t − 1, o, θM2,1),

VM2
(D|t, o, θM2,1, αM2,D) = Vs

M2
(D|t, o, θM2,1),

VM2
(SA|t, o, θM2,1, αM2,SA) = Vs

M2
(SA|t, o, θM2,1)

+ αM2,SAVs
M2

(SA|t, o, θM2,1),

VM2
(A|t, o, θM2,1, αM2,A) = Vs

M2
(A|t, o, θM2,1),

VM2
(N|t, o, θM2,1, αM2,N) = Vs

M2
(N|t, o, θM2,1) = 0,

VM2
(O|t, o, θM2,1, αM2,O) = Vs

M2
(O|t, o, θM2,1)

+ αM2,OVs
M2

(O|t, o, θM2,1),

VM2
(DK|t, o, θM2,1, αM2,DK) = Vs

M2
(DK|t, o, θM2,1). (4.11)

Note that this is not anymore a linear-in-parameter specification for happiness,
fear, sadness and anger, since {αi} are estimated. Five memory effect parameters
{αM2,i}i=SU,D,A,N,DK have been fixed to 0 : for neutral because it is the referent al-
ternative, so its utility is fixed to zero; and for “I don’t know” because its utility
contains only ASCM2,DK, which is invariant across the frames. For surprise, disgust
and anger, they do not appeared to be significant in previous specifications of the
model (see Section 4.6 and Table B.6). {αM2,i}i=H,F,SA,O are supposed to be in the
interval [−1, 1] because we hypothesize that the instantaneous perception of expres-
sion i at time t is more influenced by the instantaneous perception of expression i

at frame t than at frame t − 1. This dynamic specification has not been tested in
the reduced model, as in this model we hypothesized that only the last frame of
the video was triggering the expression (and not the two last frames). The model for
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PM2
(i|t, o, θM2,1, αM2

) is a logit model, that is

PM2
(i|t, o, θM2,1, αM2

) =
eVM2

(i|t,o,θM2,1,αM2,i)

∑

j e
VM2

(j|t,o,θM2,1,αM2,j)
. (4.12)

The model PM2
(t|o, θM2,2) is also specified as a logit model. Note that we decide

to ignore here the potential correlation between error terms of successive frames. A
utility VM2

(t|o, θM2,2) is associated to each frame t in the video o. The utility depends
on variables {yk,t,o} (see Equation (4.1)), and {zk,t,o} (see Equation (4.2)). We define
VM2

(1|o, θM2,2) = 0 and, for t = 2, . . . , To,

VM2
(t|o, θM2,2) =

K
y
M2,2
∑

j=1

θ
y
M2,2,j

188
∑

k=1

I
y
M2,2,j,kyk,t,o

+

Kz
M2,2
∑

j=1

θz
M2,2,j

188
∑

k=1

Iz
M2,2,j,kzk,t,o , (4.13)

and

PM2
(t|o; θM2,2) =

eVM2
(t|o,θM2,2)

∑To

ℓ=1 eVM2
(ℓ|o,θM2,2)

. (4.14)

K
y
M2,2 and Kz

M2,2 are numbers of parameters associated to {yk,t,o}, and {zk,t,o}

respectively, in the utility related to each frame. I
y
M2,2,j,k is an indicator equal to 1 if

the parameter θ
y
M2,2,j is associated to yk,t,o, 0 otherwise. As for the other indicators,

it is related to only one yk,t,o, we have

188
∑

k=1

I
y
M2,2,j,k = 1 ∀j , (4.15)

Iz
M2,2,j,k is similar to I

y
M2,2,j,k, but is associated to zk,t,o. The vector of parameters

θM2,2 is described in Table B.7. Finally, the log-likelihood function is

L(θM2
, αM2

) =

O
∑

o=1

9
∑

i=1

wi,o log PM2
(i|o, θM2

, αM2
)

=

O
∑

o=1

9
∑

i=1

wi,o log(

To
∑

t=1

PM2
(i|t, o, θM2,1, αM2

)PM2
(t|o, θM2,2)). (4.16)

4.4.3 The smoothed model

In this model, we hypothesize that the behavior of the respondent is composed of
two consecutive phases, when watching a video. In the first phase, the respondent is
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waiting for information, no perception of expressions is influencing the observed choice
of label. At a certain point in time, the respondent starts to use the information of
the frames to make her choice of label. This consideration of information is continued
until the end of the video and constitutes the second phase. The model combines a
model related to the perception of expressions and a model which detects the changing
of phase. The observed choice of label is supposed to be the average across the frames
of the perception of expressions in the second phase. Both models are latent as only
the choice of label is observed.

The first model provides the probability for a respondent to choose the expression i

when exposed to frame ℓ of the video sequence o, and is written PM3
(i|l, o, θM3,1). The

second model PM3
(t|o, θM3,2) provides the probability for a respondent to enter in her

second phase when being exposed to the frame t. The probability for a respondent to
label the video o with expression i, is denoted by PM3

(i|o, θM3
), which is observable.

θM3,1 and θM3,2 are the vectors of unknown parameters to be estimated within each
of the two models, merged into the vector θM3

. PM3
(i|o, θM3

) is the average of
{PM3

(i|l, o, θM3,1)}l=t...To , weighted by PM3,n(t|o, θM3,2), sum up over t = 1 . . . To. We
obtain

PM3
(i|o, θM3

) =

To
∑

t=1

PM3
(t|o, θM3,2)

1

To − t + 1

To
∑

l=t

PM3
(i|l, o, θM3,1). (4.17)

For PM3
(i|t, o, θM3,1), a utility VM3

(i|t, o, θM3,1) is associated to each expression
i. The specification of {VM3

(i|t, o, θM3,1)} is defined in Equation (4.18).
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VM3
(H|t, o, θM3,1) = ASCM3,H +

KM3
∑

j=1

IM3,1,H,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(SU|t, o, θM3,1) = ASCM3,SU +

KM3
∑

j=1

IM3,1,SU,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o

+

Kz
M3

∑

j=1

Iz
M3,SU,jθ

z
M3,1,j

188
∑

k=1

Iz
M3,j,kzk,t,o ,

VM3
(F|t, o, θM3,1) = ASCM3,F +

KM3
∑

j=1

IM3,F,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(D|t, o, θM3,1) = ASCM3,D +

KM3
∑

j=1

IM3,D,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(SA|t, o, θM3,1) = ASCM3,SA +

KM3
∑

j=1

IM3,SA,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(A|t, o, θM3,1) = ASCM3,A +

KM3
∑

j=1

IM3,A,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(N|t, o, θM3,1) = 0 ,

VM3
(O|t, o, θM3,1) = ASCM3,O +

KM3
∑

j=1

IM3,O,jθM3,1,j

188
∑

k=1

IM3,j,kxk,t,o ,

VM3
(O|t, o, θM3,1) = ASCM3,DK . (4.18)

The general description of the utilities is exactly the same as for the utilities
in Equation (4.9). The detailed specifications of {VM3

(i|t, o, θM3,1)} are presented in
Tables B.8 and B.9. Note that a dynamic formulation, as presented in Equation (4.11),
has been tested in the expression utilities. It did not appear to be relevant, certainly
due to the fact that the dynamics is already accounted for, by the consideration of
the two phases. A logit form is postulated for PM3

(i|t, o, θM3,1)

PM3
(i|t, o, θM3,1) =

eVM3
(i|t,o,θM3,1)

∑

j e
VM3

(j|t,o,θM3,1)
. (4.19)

The second model PM3
(t|o, θM3,2) captures the change of phases. A utility VM3

(t|o, θM3,2)
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is associated to each frame t in the video o

VM3
(t|o, θM3,2) =

K
y
M3,2
∑

k=1

θ
y
M3,2,k

188
∑

k=1

I
y
M3,2,j,kyk,t,o, (4.20)

where K
y
M3,2 is the number of parameters associated to this model. The specification

of VM3
(t|o, θM3,2) is generic. I

y
M3,2,j,k is an indicator equal to 1 if θ

y
M3,2,k is associated

to yk,t,o, 0 otherwise. θ
y
M3,2,k is linked to only one yk,t,o, we have

188
∑

k=1

I
y
M3,2,j,k = 1 ∀j . (4.21)

The model contains only {yk,t,o}, {zk,t,o} have been tested but do not appear to be
significant. {yk,t,o} measure more drastic changes in the face compared to {zk,t,o} (see
Section 4.6.3). The detailed specifications of the utilities are presented in Table B.10.
Finally, PM3

(t|o, θM3,2) is a logit model

PM3
(t|o, θM3,2) =

eVM3
(t|o,θM3,2)

∑To

ℓ=1 eVM3
(ℓ|o,θM3,2)

, (4.22)

and the log-likelihood function is

L(θM3
) =

O
∑

o=1

9
∑

i=1

wi,o log PM3
(i|o, θM3

)

=

O
∑

o=1

9
∑

i=1

wi,o log(

To
∑

t=1

PM3
(t|o, θM3,2)

1

To − t + 1

To
∑

k=t

PM3
(i|k, o, θM3,1)). (4.23)

4.4.4 Models with panel effect

The models presented in Sections 4.4.1, 4.4.2 and 4.4.3 do not account for the correla-
tion between labels obtained through the internet survey. In this section, we assume
that the labels are correlated through the filmed subject. Other panel structures
have been tested (over respondents and videos) but this one appears to be the most
relevant. Two models are developed based on the reduced and latent models.

The reduced model with panel effect

This is a direct extension of the reduced model presented in Section 4.4.2. The
utilities shown in equation 4.4 become
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VM4
(H|To, o, θM4

, εM4,s) = ASCM4,H +

KM4
∑

j=1

IM4,H,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(SU|To, o, θM4,εM4,s

) = ASCM4,SU +

KM4
∑

j=1

IM4,SU,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(F|To, o, θM4

, εM4,s) = ASCM4,F +

KM4
∑

j=1

IM4,F,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(D|To, o, θM4

, εM4,s) = ASCM4,D +

KM4
∑

j=1

IM4,D,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(SA|To, o, θM4

, εM4,s) = ASCM4,SA +

KM4
∑

j=1

IM4,SA,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(A|To, o, θM4

, εM4,s) = ASCM4,A +

KM4
∑

j=1

IM4,A,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(N|To, o, θM4

, εM4,s) = 0 ,

VM4
(O|To, o, θM4

, εM4,s) = ASCM4,O +

KM4
∑

j=1

IM4,O,jθM4,j

188
∑

k=1

IM4,j,kxk,To,o +

17
∑

s=1

Io,sεM4,s,

VM4
(DK|To, o, θM4

, εM4,s) = ASCM4,DK +

17
∑

s=1

Io,sεM4,s, (4.24)

where εM4,s is an error term capturing the correlation between observations associated
to the filmed subject s. It is supposed normally distributed, εM4,s ∼ N(0, σM4

). Io,s

is an indicator equal to 1 if the subject s appears in video o, 0 otherwise. The
probability of choosing the expression i is

PM4
(i|o, θM4

, εM4,s) =
eVM4

(i|To,o,θM4
,εM4,s)

∑9
j=1 eVM1

(j|To,o,θM4
,εM4,s)

. (4.25)

Then, for the calculation of the log-likelihood, we have to integrate on εM4 ,s

L(θM4
, σM4

) =

17
∑

s=1

log

(

∫

(

O
∏

o=1

9
∏

i=1

PM4
(i|o, θM4

, εM4,s)
wi,oIo,s)f(εM4,s)dεM4,s

)

,

(4.26)
where f(εM4,s) is the probability density function (pdf) of εM4,s.
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The latent model with panel effect

This model generalizes the model proposed in Section 4.4.2. The utilities introduced
in equation 4.11 are reformulated

VM5
(H|t, o, θM5,1, αM5,H, εM5,s) = Vs

M5
(H|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s

+ αM5,HVs
M5

(H|t − 1, o, θM5,1),

VM5
(SU|t, o, θM5,1, αM5,SU, εM5,s) = Vs

M5
(SU|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s,

VM5
(F|t, o, θM5,1, αM5,F, εM5,s) = Vs

M5
(F|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s

+ αM5,FV
s
M5

(F|t − 1, o, θM5,1),

VM5
(D|t, o, θM5,1, αM5,D, εM5,s) = Vs

M5
(D|t, o, θM5,1) +

17
∑

s=1

Io,sεM5 ,s,

VM5
(SA|t, o, θM5,1, αM5,SA, εM5,s) = Vs

M5
(SA|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s

+ αM5,SAVs
M5

(SA|t, o, θM5,1),

VM5
(A|t, o, θM5,1, αM5,A, εM5,s) = Vs

M5
(A|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s,

VM5
(N|t, o, θM5,1, αM5,N, εM5,s) = Vs

M5
(N|t, o, θM5,1) = 0,

VM5
(O|t, o, θM5,1, αM5,O, εM5,s) = Vs

M5
(O|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s

+ αM5,OVs
M5

(O|t, o, θM5,1),

VM5
(DK|t, o, θM5,1, αM5,DK, εM5,s) = Vs

M5
(DK|t, o, θM5,1) +

17
∑

s=1

Io,sεM5,s.(4.27)

where εM5,s is an error term capturing the correlation between observations impli-
cating the same filmed subject s. εM5,s is supposed normally distributed, εM5,s ∼

N(0, σM5
). Note that {Vs

M5
(i|t, o, θM5,1)} are free of the error components, so there

is no double counting of the error terms. The probability of choosing the expression
i, within frame t of video o is

PM5
(i|t, o, θM5,1, αM5

) =
eVM5

(i|t,o,θM5,1,αM5,i,εM5,s)

∑9

j=1 eVM5
(j|t,o,θM5,1,αM5,j,εM5,s)

, (4.28)
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and the probability of choosing the expression i for video o is

PM5
(i|o, θM5

, αM5
, εM5,s) =

To
∑

t=1

PM5
(i|t, o, θM5,1, αM5

)PM5
(t|o, θM5,2), (4.29)

where PM5
(t|o, θM5,2) is the influence of the frame t of video o on the choice of label.

It is the same than for the latent model (equation 4.14). The calculation of the
log-likelihood function requires to integrate on εM5,s

L(θM5
, αM5

, σM5
) = (4.30)

17
∑

s=1

log

(

∫

(

O
∏

o=1

9
∏

i=1

PM5
(i|o, θM5

, αM5
, εM5,s)

wi,oIo,s)f(εM5,s)dεM5,s

)

,

where f(εM5,s) is the pdf of the normal distribution N(0, σM5
).

4.5 Intermediary specification steps

The five models presented in this chapter are the results of a long modeling process,
where intermediary models have been generated. We started from the work of Sorci,
Antonini, Cruz, Robin, Bierlaire and Thiran (2010) and first tried to apply their
model. The results were not satisfactory as the face positions and scales were not
the same in the FEED and Cohn-Kanade databases as explained in Section 4.4.1.
The model has not only been re-estimated, it has also been adapted due to the small
number of observations available in this analysis. The obtained model is the reduced
model, which is a strong basis for the development of the four other models. In the
other proposed models, the model managing the expression perception are extensions
of this reduced model.

Then, we focus on the latent model (Section 4.4.1). In a first step, the model
did not include any dynamics (Equation (4.11)). It came after the study of HMM
and the dynamic formulation appeared to be meaningful in our work. Note that
the accounting for previous probabilities instead of previous utilities has also been
tested, but it appeared to be very heavy to manipulate. The incorporation of {zk,t,o}

(Equation (4.2)) in the utility of surprise (Equation (4.9)) is consecutive to an analysis
of the observed labels. Respondents have tendency to answer “surprise” when they
perceive suddenness, and {zk,t,o} are well adapted to reflect it. Several specifications
have been tested for the model managing the frame influence. We began with a
model giving equal probabilities to all the frames, but the estimated results were not
good. Regarding the frame utilities (Equation (4.13)), we started by incorporating
only {xk,t,o} (Section 4.3), but parameters were not significant. We continued with
models integrating only {yk,t,o} (Equation (4.1)), in order to account for the facial
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changes, which made a lot of sense. Finally we refined the model using both {yk,t,o}

and {zk,t,o} in order to capture more in details the perception of the changes.

The study of the latent model predictions shows an instability of the model in
case of several impressive frames in the video, presenting different expressions. The
improvement of this model passed by a smoothing of its behavior, that’s why we
introduced the smoothed model (see Section 4.4.3). This new model is relevant
for the forecasting, because it is less subject to tiny fluctuations of facial descriptors,
which can appear in noisy data. The dynamic formulation of the utilities has also been
tested in the smoothed model, but it did not appear to improve it. It is certainly
due to the fact that the dynamics is already accounted for, with the assumption
about the two behavioral phases (see Section 4.4.4). Several utility specifications of
the model managing the phase changing have been tested (see Equation (4.20)). Only
{zk,t,o} appeared to be significant, certainly due to the fact that facial changes should
be drastic for passing from one behavioral phase to the other.

We decided to refine the quality of the estimates for the reduced and latent
models by accounting for the correlation between the observations in the data. It
was not considered in the smoothed model due to practical difficulties linked to
its estimation, induced by the modeling complexity. We obtained the reduced and
latent models with panel effect. We considered sequentially the correlation per
respondents, per videos and per filmed subjects. We retained this latter, the reasons
are explained in the Section 4.6.5. In this model, we additionally tried several speci-
fications of the error term related to the panel effect. We tried to include i.i.d. and
homoscedastic error terms in every alternatives (see Equation (4.24) and (4.27)). But
the estimation results were equivalent. We kept the final specifications, because in
addition of the panel effect, they capture the correlation between all the alternatives,
except the neutral. This mimics a nested structure, which as a lot of sense, as the
neutral is the default expression.

4.6 Estimation of the models

The models are estimated by maximum likelihood (see Equations (4.7), (4.16), (4.23),
(4.26) and (4.31)) using the biogeme software (Bierlaire, 2003a and Bierlaire and
Fetiarison, 2009). Except for the reduced models (with and without panel effect),
these models are complex to estimate. The estimation results for the latent and
smoothed models have been also obtained using codes based on biogeme. The
estimation of the models with panel effect requires to perform numerical integration.
A Monte-Carlo simulation with 1000 draws has been used. General estimation results
are presented in Table 4.3.
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4.6.1 The reduced model

The Reduced model is the simplest model because it only accounts for the influence
of the last frame on the observed choice of label. The values of the 32 estimated
parameters and associated t-tests are presented in Tables B.2 and B.3. Fourteen
parameters are related to facial measurements characterizing AU (see Section 4.4.1).
The signs are consistent with the work of Sorci, Antonini, Cruz, Robin, Bierlaire and
Thiran (2010), and with the FACS (Ekman and Friesen, 1978). The asymmetry of
the face is taken into account by associating different parameters to the left and right
measurements of a same type.

All parameters related to AU are significantly different from 0 (t-test ≥ 1.96). This
is also the case for the five parameters related to EDU and for the five parameters
associated to elements of the vector C. Their signs are coherent with the work of
Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010).

Some of the eight {ASCi} do not appear to be significant, which is a good feature
because they are designed to absorb the unobserved perception of respondents.

4.6.2 The latent model

For the latent model, the values and associated t-tests of the 34 parameters related
to the model handling with the expression perception are presented in Tables B.4 and
B.5.

Signs and significance of parameters associated to AU, EDU and elements of
the vector C are correct and consistent with the estimated parameters obtained for
the reduced model. In addition, the model contains two more parameters. The
parameter θM2,1,22 associated to the height of the mouth (“mouth h” ), appears to
be significant, while it was not the case for the reduced model. This is due to the
fact that the reduced model accounts only for the perception of the last frame in
a video, compared to all the frames here. So the reduced model could not be as
precisely specified as this model. θz

M2,1,1 is related to the variance of the height of the
mouth (“mouth h”). It is positive meaning that the more the height of the mouth
varies during the previous second, the more the surprise will be favored, which is
logical.

Four parameters of memory effect (αM2,H, αM2F, αM2SA, αM2O) appear to be sig-
nificantly different from zero (see Table B.6). They have the same magnitude. With-
out any constraint, their estimated values are in [−1, 1] meaning that the present
perception is predominant, as expected.

Seven parameters related to the model characterizing the influence of the frames
are estimated significantly different from zero (see Table B.7). Six are associated
to {yk,t,o} and one to z2,t,o, which is the variance of the distance between eyebrows
(“brow dist”). Their magnitude is larger than for the parameters associated to the
model of perception of the expressions. This means that the model is sensitive to
small variations of features and tends to produce a sharp probability distribution
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among the frames. The signs of the parameters are logical, for example θM2,2,5 is
attached to the height of the eyes (“eye h”) and is negative. This means that the
more a subject has the eye closed on a frame, the more the frame has influence on
the observed choice of label.

4.6.3 The smoothed model

For the smoothed model, the model dealing with the perception of the expressions
contains 36 parameters (see Tables B.8 and B.9).

Signs and significance of parameters associated to AU, EDU and C parameters
are the same than for the reduced model. The model contains 4 more parameters.
θM3,1,4 and θM3,1,12 are respectively attached to the EDU corresponding to the fraction
between the height of the eyebrows and their width (“RAP brow”), and to the fifth
element of the vector C (“C 5”). Both are in the utility of disgust. Compared to the
reduced model, they appear to be significant due to the fact that we now account
for the total number of frames. θz

M3,1,1 and θz
M3,1,2 are respectively related to the

variance of the height of the mouth (“mouth h”) and the variance of the height of the
left eye (“leye h”). They are included in the utility of surprise in order to capture the
perception of suddenness. They are positive as expected, meaning that the higher
z1,t,o and z3,t,o are, the more the surprise is favored, which is logical.

The model designed to detect the first frame of the relevant group of frames
contains 8 parameters (see Table B.10). They are all linked with {yk,t,o}. None of
the parameters attached to {zk,t,o} appeared to be significant. The perception of the
short time variations of facial characteristics is not relevant for activating the second
phase of behavior, which seems logical. The change in the facial characteristics should
be more drastic, which explains why {yk,t,o} are better adapted. As for the latent
model, the magnitude of the parameters is larger compared to the model handling
with the perception of the expressions. The interpretation remains the same as for
the latent model.

4.6.4 Models with panel effect

Concerning the models with panel effect, the parameters of the reduced model
with panel effect are shown in Tables B.11 and B.12. The parameters of the latent
model with panel effect are presented in Tables B.13, B.14, B.15 and B.16. In
both cases, the parameter values are respectively rather the same than for reduced
and latent models. Their interpretations remain unchanged. The standard errors
σM4

and σM5
appear to be significant, so the hypothesis of correlation between labels

associated to the same filmed subject is verified.
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4.6.5 Comparison of the five models

The final log-likelihood is improved between the reduced and latent models, and
the reduced and smoothed models. The three first models can not be compared
using likelihood ratio-tests. We use ρ̄2 as a goodness of fit to identify the best model.
Looking at Table 4.3 and regarding models without panel effect, the latent model
appears to be the best model, closely followed by the smoothed model. The im-
provement brought by the dynamic modeling is substantial. This is due to the nature
of the videos (see Section 4.3). At the beginning of the videos, the facial expressions
are neutral, and then they evolve toward other expressions, so faces are highly ex-
pressive on the last frame of the video. This explains why the reduced models are
working well. Nevertheless, the proposed behavioral hypothesis have sense. The as-
sumption about one single frame triggering the choice seems to be the most relevant
(latent model), closely followed by the assumption about the two behavioral phases
(smoothed model). This order seems to be logical as the latent model focuses on
a “pure” and “strong” perception, which is intuitively the most important, specially
in short facial videos. Compared to this model, the smoothed model polishes the
perceptions in the second behavioral phase. The main advantage of the smoothed
model is to be less sensitive to data errors, compared to the latent model.

Regarding the models with panel effect, the log-likelihood is improved between the
reduced model and reduced model with panel effect, and the latent model
and latent model with panel effect. Out of the five proposed models, the latent
model with panel effect is the best in terms of fit. The accounting for the corre-
lations between observations related to a same filmed subject, improves significantly
the fit. A correlation by respondents has been tested but did not appear to meaning-
ful, the perception of the respondent seems to be homogeneous. This is logical as the
respondents are also homogeneous in terms of socio-economic characteristics (they
are mainly in Switzerland with an academic background). A correlation per videos
has been tested and gave approximately the same results than for the correlation per
filmed subjects. It has not been kept because this model was very heavy to manipu-
late. As there is more videos than filmed subjects, we increased the number of draws
which increased dramatically the estimation time, making the cross-validation (see
Section 4.7.2) unrealizable.

The magnitude of the parameter values and signs are the same for the five models.
For example, θM1,4, θM2,1,4, θM3,1,5, θM4,4 and θM5,1,4 are associated to the opening
of the mouth (“RAP mouth”), defined as the fraction between the height of the
mouth (“mouth h”) and the width of the mouth (“mouth w”). They are present in
the utilities of surprise and fear. The associated parameters are all positive, showing
the stability of the models. Their positive sign is logical because when a person has
the mouth opened, the perceived facial expression is more likely to be fear or surprise.

The specifications of the model related to the detection of the most impressive
frame in the latent models (with and without panel effect), and to the detection
of the first frame of the relevant group of frames in the smoothed model, are very
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Reduced Latent Smoothed Reduced panel Latent panel
Nb obs. 369 369 369 369 369

Nb param. 32 45 44 33 46

Null L −810.78 −810.78 −810.78 −810.78 −810.78

Final L −475.79 −441.28 −447.67 −470.26 −435.14

ρ̄2 0.374 0.400 0.394 0.379 0.406

Table 4.3: General estimation results

similar. For the latent models, it contains parameters associated with both {yk,t,o}

and {zk,t,o} and for the smoothed model, only associated with {yk,t,o}. For example,
y2,t,o is present in both models and is related to the height of the mouth (“mouth h”).
Figure 4.11 displays the variation of this feature among frames of a video which are
displayed at the top. The sign of the parameters associated to y2,t,o (θM2,2,6, θM5,2,6

and θM3,2,8) is positive for both latent and smoothed models, which is logical.
The higher the difference of mouth height between two consecutive frames, the more
important the second frame is. In that special case and regarding only y2,t,o, frame
3 seems to be the most important.

In conclusion, the parameters of the models are significant and interpretable.
Moreover, the addition of a dynamic part in the models significantly improves the fit.
The accounting of the panel effect is successful, as the latent model with panel effect
has the best fit.

4.7 Prediction capability

The prediction capability is tested in order to ensure the quality of the models. The
dataset used in this section is the same as the one used for the estimation (see Section
4.6). We proceed in three steps: the first one consists of comparing the percentages of
badly predicted observations for the proposed models. In a second step, the models
are validated using the method of cross-validation. In the third step, we study the
predictions of the proposed models at a more disaggregated level. This consists of
picking a certain video and analyzing the predictions of the models in detail.

4.7.1 Aggregate prediction

An observation is considered as badly predicted, if its forecasted choice probability is
less than 1

9
, which corresponds to the probability predicted by a uniform probability

on the number of alternatives. Table 4.4 summarizes the percentages of badly pre-
dicted observations per model. The percentages are consistent with the fitting results
presented in Section 4.6, which is a good sign. The percentage of badly predicted
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Figure 4.11: Examples of the variations of y2,t,o, associated to the height of the mouth
(“mouth h”), for a video

observations is already low for the reduced model. The improvement brought by
the latent and smoothed models compared to the reduced model is minor in
terms of prediction. This can be explained by the structure of the considered facial
videos. As the “peak” emotion is often observed at the end of the video, there are few
observations where the dynamic models could do better. However the latent model
with panel effect is the best.

The cumulative distributions of the choice probabilities predicted by the models
are displayed in Figure 4.12. If the models were perfect, the curves should be flat
with a pick for choice probabilities equal to one. This would mean that the models
replicate exactly the observed choices of labels. Of course this is not the case. The
five curves are close in the “badly predicted” interval (choice probabilities less than
1
9

= 0.11). This is consistent with the results shown in Table 4.4. In the interval
[0, 0.78] the latent model with panel effect is the best. In the last interval, it is
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Reduced Latent Smoothed Reduced panel Latent panel
17.89 17.34 15.45 18.43 14.45

Table 4.4: Percentages of badly predicted observations on the estimation data

the latent model. This model predicts the highest probabilities (its curve is the last
to reach the level of one). The smoothed model, is better than the reduced model
except on [0.68, 1]. Moreover the latent model with panel effect is always better
than the reduced models (with and without panel effect), which demonstrates the
added value of the dynamic modeling.

4.7.2 Cross-validation

The study of the badly predicted observations, described in Section 4.7.1 is done on
the estimation data presented in Section 4.3. The finality of the models is to be used
on some data not involved in the estimation process, for prediction. Consequently
the quality of the model should be tested on some new data, but we do not dispose
of such data. In this situation, the cross-validation allows to validate the models.
The methodology is inspired from the work of Robin et al. (2009) who successfully
cross-validate a model of pedestrian behavior. The dataset is split into an estimation
subset and a validation subset. The dataset is randomly split across the videos, in five
subsets. Each subset contains twenty percent of the videos. In the data, there are 65
videos, so each subset contains the collected labels related to 13 videos. Four subsets
are combined into the estimation dataset. After estimation, the model is applied on
the remaining subset. The operation is repeated five times. The percentages of badly
predicted observations, calculated over the validation subsets are presented in Table
4.5.

Validation subsets 1 2 3 4 5
Reduced 28.74 26.15 21.31 21.87 28.26

Latent 24.14 13.85 11.48 17.19 21.74

Smoothed 20.69 16.92 18.03 15.63 10.87

Reduced panel 28.73 26.15 22.95 23.43 28.26

Latent panel 28.70 15.38 21.29 ∗ 35.87

Table 4.5: Percentages of badly predicted observations calculated over the validation
subsets, obtained when cross-validating the models

Regarding models without panel effect, the two dynamic models (the latent and
smoothed models) are always better than the reduced model. In addition, the
percentages of badly predicted observations are close from those obtained on the
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entire estimation data (see Table 4.4) for the latent and smoothed models, not
the reduced model. The dynamic models appear to be much more robust than the
reduced model. This justifies the goodness of the approach and the validity of the
dynamic models.

Concerning the models with panel effect, results for the reduced model with
panel effect are worse than for the reduced model. This is also the case for the
latent model with panel effect compared to the latent model. Note that for
experience 4, the estimation of the latent model with panel effect did not converge
(this model is very difficult to estimate due to its complexity). We conclude that the
two models with panel effect tends to over fit the data.

4.7.3 Disaggregate prediction

We looked at the power of prediction over the estimation dataset, at the aggregate
level. The study of a particular video allows to detail precisely the predictions of
the five models. The video is the same than the one considered in Figure 4.11. The
detailed predictions of the models are shown in Figure 4.13 for the reduced model,
Figure 4.14 for the latent model, Figure 4.15 for the smoothed model, Figure 4.16
for the reduced model with panel effect and Figure 4.17 for the latent model
with panel effect. On these figures, each column is associated to a frame, except the
extreme right. The first line displays the considered frames. As mentioned in Section
4.3, each frame is the first of a group of images corresponding to one second in a video.
The second line concerns the predictions of the model associated to the perception of
the expressions. For each frame, the probability distribution among the expressions
is presented. The third line shows the influence of the frames. The contributions
of the frames sum up to one. For the reduced models (with and without panel
effect), only the last frame is considered relevant, so the peak is logically on this last
frame. For the latent models (with and without panel effect), it shows the influence
of each frame on the final expression choice. For the smoothed model, the peak
measures the contribution of the average perception of the following group of frames
(until the end of the video), including the frame of the peak. Finally in the extreme
right column, you find on the second row the final probability distribution among the
expressions, which is predicted by the model, and on the third row, the distribution
of the collected labels for the video.

On the first frame of the considered video (see Figure 4.11), the face tends to
be neutral, and then evolves toward a different expression. Seven respondents have
labeled this video: three gave the label happiness, three gave the label surprise, and
one the label anger. Anger does not seem to be appropriate for this video, but it
has been kept because there was no proof of mistakes made by the respondent. In
addition, the subject on the two first frames of the video could be considered angry.
The observed distribution of the collected labels is displayed at the bottom right of
the figures. The reduced model predicts 65% of happiness, 35% of surprise, and
0% for anger. The prediction seems logical regarding only the facial characteristics
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Figure 4.13: Example of a detailed prediction of the reduced model
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Figure 4.14: Example of detailed prediction of the latent model
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Figure 4.15: Example of detailed prediction of the smoothed model
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Figure 4.16: Example of detailed prediction of the reduced model with panel
effect
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Figure 4.17: Example of detailed prediction of the Latent model with panel effect
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in the last frame.

The latent model predicts 24% of happiness, 58% of surprise, 18% of disgust
and 0% for anger. This is further away from the distribution of the collected labels,
compared to the reduced model. The model has selected frame 3 as being the
most impressive frame, with a probability almost equal to one, so the predictions of
the model results only from the perception of this frame. This is logical because the
utilities of the frames contain both {yk,t,o} and {zk,t,o} (see Section 4.4.2), and they
appear to be very high for frame 3 (see Figure 4.11 for the height of the mouth). For
this frame, the predicted probability of surprise is very high. This is logical, because
the utility of surprise contains {zk,t,o} (see Equation (4.9)), which account for the
perception of suddenness. For this frame, the high probability for happiness is also
intuitive due to the facial characteristics. The prediction of disgust does not seem to
be appriopriate.

The smoothed model predicts 58% of happiness, 38% of surprise, 4% of disgust
and 0% of anger. The prediction is well adapted to the observed distribution of labels.
The model detects frame 3 as being the first frame of the relevant group of frames. As
for the latent model, this is due to the presence of {yk,t,o} in the utilities of the frames
(see Section 4.4.3), and {yk,t,o} are high for this frame (see Figure 4.11). The model
handling with the perception of the expressions predicts more surprise than happiness
for frame 3, and the contrary for frame 4. This is logical due to the perception of
suddenness in frame 3 (see the utility of surprise in Equation (4.18)). The facial
characteristics are stabilized in frame 4 and lead to the expression happiness, which
is coherent. The final prediction of the model is the average of the perception of
expressions among the frames of the relevant group (frames 3 and 4), which explains
the balanced share between happiness and surprise.

The results are rather the same for the reduced model with panel effect
than for the reduced model. Regarding the latent model with panel effect, it
predicts 35% of happiness, 52% of surprise, 13% of disgust and 0% of anger. The
model has selected the frame 3 as being the most influential. Even if the results are
quite similar compared to those obtained with the latent model, they are better
because the difference between the predicted probabilities of happiness and surprise
are smaller.

The predictions of the five models are explainable. The smoothed model seems
to be the most interpretable. The smoothed model and latent model with panel
effect predict the closest distributions of probability across the expressions, to the
collected labels. The smoothed model over predicts happiness and under predicts
surprise, contrary to the latent model with panel effect.

4.8 Contributions

The proposed work overcomes the limitations of the standard approaches in the dy-
namic facial expression recognition. Standard approaches consist in associating any
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two examples with the same facial descriptors to the same expression. One of the
main assumption, is that facial expression labels, which are in the data, stand for the
true expressions (Cohen et al., 2003, Bartlett et al., 2003). But this assumption does
not hold in reality, as people can perceive differently the same expression. Facial ex-
pressions are characterized by the ambiguity. In our work, this ambiguity is directly
taken into account, as we have adopted a probabilistic approach. Another limitation
of the previous approaches is the inability for interpreting the knowledge acquired
by the systems. They are often black-boxes, where the interpretations of the links
between the inputs (facial descriptors) and the output (expression), are not possible.
Due to this black-box nature, it is also impossible to put knowledge in the model in
order to improve it. In our proposed work, psychological concepts are translated into
mathematical equations, and the maximum likelihood estimation allows to confirm
(or infirm) the quality of the model, in terms of interpretation and significance of
the parameters. In addition, this allows to learn the behavioral patterns contained in
the data. In particular, we have quantified the concepts introduced by Ekman and
Friesen (1978).

We generalize the work of Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran
(2010), as we worked with facial videos and not with images. More generally, this
work is the first attempt for analyzing videos using discrete choice models.

Regarding discrete choice modeling, we have developed models inspired from re-
cent works (Ben-Akiva, 2010). Original formulations have been introduced to cap-
ture the dynamics, which can be reused in other analysis. The proposed models
are based on different assumptions about video perceptions. The estimation, vali-
dation and comparison of the models underlined the relevance of these assumptions.
We learned that respondents have tendency to make their expression choices when
watching specific frames, and we know how to select these frames with different ways.
Our approach explicits and quantifies these psychological concepts.

4.9 Conclusions and Perspectives

We propose a new approach of the dynamic facial expression recognition. The esti-
mation of the models is based on labels collected through respondents of an internet
survey. The developed models capture up causal effects between facial characteristics
and expressions. Statistical tests and model predictions have proved the quality of the
models, and the added value of the dynamic formulation (the latent models and the
smoothed model compared to the reduced models). In terms of fit, the latent
model with panel effect is the best. The five models have been cross-validated
on the estimation data, the latent model and the smoothed model appear to be
more robust than the reduced model. The models with panel effect over fit the
data. Consequently they are not worth for forecasting. Finally, some qualitative
analysis of the model predictions allow to confirm the modeler’s intuition about the
facial video. Regarding all the analysis, the smoothed model seems to be the more
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robust.
As such, the models can be used directly for applications. The major difficulty

concerns the computation of the variables. The quality of the considered videos should
be very high, in terms of definition and size of the face. The videos of the FEED
database are not dedicated to transportation (the stimuli used to generate the facial
expressions of the subjects were not necessarily related to the field) but they remain
quite general. Some case studies have to be conducted in order to completely prove
the model applicability to transportation (Denis, 2009).

In the context of “Aware” vehicles, we think of a system able to manage automat-
ically the interior features of the car, based on the driver’s characteristics, including
the facial expression. In case of dedicating the proposed model to this application, a
data collection in two steps should be performed. In a first step, we can conduct a
survey in a car simulator, by placing the respondents in controlled real driving situ-
ations and recording their faces. Then, the respondents are asked to perform actions
using the interior car features. In a second step, the collected facial videos are labeled
using a survey similar to the proposed internet survey. A model handling the choice
of action taking as input the driver’s characteristics and expression can be developed.
Then, in a real context, the face of a driver can be monitored with a camera and the
proposed model applied.

The proposed models may be also used to analyze travelers satisfaction in public
transportation (Friman and Garling, 2001). The facial expression could be used
as a measure of satisfaction when conducting transportation surveys. For on-site
measures, it is not worth as the facial expressions are most of the time generated by
stimuli not related to transportation. The experimental design of the survey should
be carefully set, in order to use adapted stimuli.

More generally, for the estimation of hybrid choice models, some indicators of the
latent variables are needed. Bolduc and Alvarez-Daziano (2010) propose a hybrid
choice model handling with the vehicle choice. In that case, the facial expression
of the survey respondent could be used as an indicator of the two latent variables:
“Environmental concern” and “Appreciation of new car features”. In addition of
the rational behaviors, the latent variables are capturing the emotional states. The
facial expression results from a short emotion and it could be used as a proxy of this
emotion, or combined with other emotion indicators (questionnaires for example) to
reveal it. Practically, in addition to the questionnaires, some well-chosen stimuli have
to be shown to the survey respondents (such as short and shocking environmental
documentaries, or advertisements of cars having new features), while their faces are
recorded. Then, a DFER model is needed for determining the facial expressions. For
this application, the facial expression does not enter in the prediction process, but it
helps to reinforce the quality of the estimated model.

Finally in the marketing context, MacInnis et al. (1991) studied the ability of in-
dividuals to process the brand information from advertisements, the facial expression
could enter in the inputs of the model, in addition of eye-tracking data.

Even if this new modeling framework is meaningful, some improvements could be
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done. The model has been estimated on a small dataset. More observations would be
useful. The number and type of videos is also a critical aspect, feature variabilities
are quite low and should be increased. This would allow to have a more complete
specification of the utilities. We think of using the specification proposed by Hensher
(2010) for the processing of explanatory variables, which is highly relevant due to
large amount of information provided on a face. In addition, more complex structures
could be tested for the choice models. In the latent and smoothed models, the
model handling with the detection of the most attractive frame and the first frame of
the relevant group of frames, can be modified for taking into account the correlation
between frames. A cross-nested logit seems to be well adapted to the frame choice,
using two nests: “attractive” and “not attractive”. Each frame could belong to the
two nests. The membership degrees of the frame to each nest should be defined as a
function of their attractivenesses. They can not be generic, as the videos are varying
from one observation to the other, as well as the associated frame set. This stands
as a research topic in its own. Finally a comparison with a state of the art machine
learning method, such as neural networks (NN) or hidden markov models (HMM)
would be interesting.



5. Conclusion

We synthesize the contents of the thesis and discuss the perspectives of the present
works.

5.1 Review of the main results

This thesis is based on a collection of papers. Consequently the chapters are rather
independent from each other. We synthesize the contents of each chapter and their
associated contributions.

In Chapter 2, we presented a model for the investors’ behavior. Data provided by
a bank are used to characterize the behavioral phenomenon. They are transactions
initiated on stocks markets by investors managing six different funds. The modeling
of two decisions is considered: the choice of action (buy or sell) and the duration
between two actions. An integrated approach has been developed, where the action
choice and the duration are modeled together. The action model is a binary logit
with latent classes, representing the risk perception. The duration model is a Weibull
regression which also accounts for the risk perception. The dynamics of the behavior
is modeled explicitly in both models. The perception of the actions is accounted for
in the duration model. Explanatory variables are indicators computed by the bank
and a market index. New variables are calculated and incorporated in the models to
reflect the dynamics.

The models are estimated simultaneously. Parameters are significant and inter-
pretable. Several behavioral mechanisms are underlined. Investors tend to use short-
term information when making action choice (daily), whereas they use long-term
information for the duration (monthly). The accounting of the dynamics has sense,
as investors consider their previous decisions when making current decisions. The
specificity of the investors’ behavior within each fund appears. The hypothesis about
the risk perception is valid in the action and duration models. In risky situations, the
duration between two consecutive actions is shorter than in normal situations, which
is logical, as investors adjust more often their portfolio in risky situations. Regarding
the action choice model, the specificity of the behavior per fund is more important
in risky than in normal situations. This is logical, as individual personalities and
emotions are emphasized in panic situations.
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Both models are cross-validated on the estimation data. The prediction capabil-
ities are satisfactory for the action model, but limited for the duration model. This
is due to the fact that important explanatory variables have not been incorporated
in the duration model, such as money flows, as they were not available in the data.
Simulation is performed using the action model in order to support its predictive
power, and its usefulness in a real context.

In Chapter 3, we focus on the specification, estimation and validation of a discrete
choice model capturing the walking bahavior. The data are trajectories of pedestrians
extracted from videos. The model is a cross nested logit where the choice set is
composed of the possible next steps. It is determined by the speed and the direction
of the pedestrian. Eleven direction cones and three speed regimes are considered
(deceleration, constant speed and acceleration). The combination of the direction
cones and the speed regimes lead to thirty-three alternatives. Each alternative belongs
to two nests. A nest corresponds to a direction cone or a speed regime. This choice
set is individual specific and dynamic as it evolves at each step. The utilities account
for the distances and angles of the alternatives toward the destination, the angle with
the straight direction, the speed of the pedestrian, and some interactions with the
other pedestrians (leader-follower and collision avoidance).

The model is estimated using trajectories of pedestrians on a cross-walk in Japan.
Parameters are interpretable and modeling assumptions are checked. Several inter-
esting behavioral patterns are standing out. Pedestrians have tendency to go straight
toward their destinations, without making turns. They tend to keep a stabilized
speed. They avoid potential colliders and follow pedestrians going in the same direc-
tion, which is logical.

The model is validated using some experimental data collected at the Delft uni-
versity, which represent bi-directional flows. The validation results show a good
prediction accuracy of the model in terms of direction but not for the speed regimes.
This is partly explained by the difference of behavior between pedestrians in natural
and experimental situations, as well as the difference of culture.

In Chapter 4, we develop some discrete choice models for handling the recognition
of dynamic facial expressions. We propose an approach where the ambiguity of the
expression perception is accounted for. Data are collected, facial videos of the FEED
database are annotated with expressions using an internet survey. Nine labels are
proposed: happiness, surprise, fear, disgust, anger, sadness, neutral, other and not
known.

Five discrete choice models have been developed, where the choice set is composed
of the nine expressions. The reduced model is a logit, where the last frame of the
video is supposed to trigger the choice of label. The latent model is a logit with
latent classes, where the most influential frame is supposed to motivate the choice
of label. The dynamic process is accounted by a linear combination of the utilities
associated to the expressions. The smoothed model is an adaption of a logit model
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with latent classes, where a group of relevant frames is assumed to generate the choice
of label. Two supplementary models are proposed based on the first and second model
(reduced model with panel effect and latent model with panel effect). They
account for the correlation between labels obtained besides videos displaying the same
filmed subject. Measures are extracted from the faces on the videos using an active
appearance model. These measures are used to calculate variables according to the
facial action coding system (FACS). They constitute the explanatory variables of the
five proposed models.

The models are estimated, and fitted parameters are interpretable. In each model,
parameters associated with the expression perception are consistent with the FACS.
In the dynamic models (latent model, smoothed model and latent model with
panel effect), parameters related to the frame influence have sense, showing that
frames with expressive faces are the most influential. The explicit modeling of the
dynamic perception is meaningful.

The models are then cross-validated. The prediction capabilities of the reduced,
latent and smoothed models are satisfactory, whereas the models with panel effect
tend to over-fit the data. Regarding estimation results and predictive accuracy, the
smoothed model appears to be the best.

We have adopted a general framework for performing analysis in non traditional
applications of the behavioral modeling. Three analysis have been successfully con-
ducted in complex and original contexts, characterized by real data. Challenges have
been addressed in each tasks of the modeling framework, leading to the generation of
several contributions.

Original approaches have been conducted in the three application fields and the
different analysis emphasize the added-value of multi-disciplinarity.

Regarding data collection, a data-base of labeled videos has been collected in
Chapter 4. An internet survey has been used, which is an emerging way for collecting
data. Computer vision techniques were necessary to extract information from facial
videos.

Regarding the model specification, behavioral mechanisms are pointed out and
quantified, using proper mathematical formulations. In particular, the modeling of
the dynamics is considered in Chapters 2 and 4.

For the estimation, the parameters of the developed models are fitted by maximum
likelihood. Parameters are significant and their interpretations have been discussed.

Concerning the validation, a complete methodology is proposed and performed in
Chapter 3. In Chapters 2 and 4, the prediction capabilities of the models are checked
by cross-validation. In each application, the proposed models are operational in real
contexts.

Moreover, discrete choice models with latent classes are developed in Chapters
2 and 4. In the literature, these models have been developed for understanding
behaviors and rarely for prediction. In this work, both aspects have been studied in
details.
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5.2 Future research

In each chapter, we detailed the perspectives specifically associated to each analysis.
In this section, we emphasize the common perspectives. In addition, the global re-
search perspectives of the thesis are developed.

For the three applications, the proposed models should be embedded into simu-
lators. This will allow to conduct case studies in order to illustrate the added-value
of the models in decision-aid tools. Regarding the financial behavior, the simulator
would give insight for future decisions to fund managers. For the walking behavior,
it would be helpful for the urban planning and the design of infrastructures, such
as building, stations or public places in general. Concerning the dynamic facial ex-
pression recognition, it is particularly relevant in marketing, in transportation in the
context of “aware vehicles”, and in any human-machine interfaces.

In the literature, models have been proposed for each application. A comparison
between these models and the models developed in this thesis would be interesting.
The comparison should be done in terms of understanding and prediction capabilities.
This would quantify the added-value of the explicit modeling of behavioral causalities.

In this thesis, no model accounts for socio-economic characteristics of the decision-
maker, because they were not available in the data. They obviously impact the be-
havior. Regarding financial decisions, different styles are known to be adopted by
investors, depending on their experience and personality. For the pedestrian model-
ing, physical characteristics and activities at the destination are relevant. For exam-
ple, a pedestrian going to work has not the same behavior than a pedestrian who is
window-shopping. Concerning the dynamic facial expression recognition, an individ-
ual is supposed to label differently a subject having the same ethnic group. In the
three applications, the influence of the culture on the decision process is not negligible,
and should be further investigated.

For each task of the adopted modeling framework, we underline specific perspec-
tives. Regarding data, in Chapter 4 we have conducted a data collection using an
internet survey. More generally, designs of experiments should be adapted to emerg-
ing applications. They should be consistent with the new available technologies for
collecting data. Moreover, these technologies allow to generate huge amounts of data.
New mathematical developments are required to manage and exploit such databases.

Concerning the model specification, a model should be both operational and re-
alistic. Practically, a trade-off has to be found between these two characteristics. In
this thesis and for each application, we proposed the most realistic behavioral models
which remain operational. The improvement of the modeling techniques would allow
to reduce this gap in complex applications. Different aspects should be explored.
For example, large choice sets are current in nowadays applications. Rationality of
individuals is not always a valid assumption and should be relaxed in some cases. At-
titudes are known to be crucial decision factors, so more psychological and sociological
concepts should be integrated in behavioral models.
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The combination of the new modeling techniques and huge databases complicate
the estimation task. The estimation induces the optimization of complex mathemat-
ical functions. The development of powerful optimization algorithms is required to
guarantee the quality of the fitted parameters. In addition, they should run real-time
in order to be usable for applications.

In terms of validation, we have quantified the validity of the proposed models.
But, it would be interesting to formally decide if a model is valid or not. In the
literature, few statistical tests have been proposed in that purpose. This should be
further investigated.
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A. The modeling of investors’
decisions

In this appendix, we summarize the estimation results of the five models proposed in
Chapter 2.

Parameter v Transform tH (day) g r Value t-test
ASCB,N 1 1,2 N -1.39 -4.41
ASCB,R 1 1,2 R -2.01 -4.44
βB,1 Price Long() 1 1 N -2.31 -3.15
βB,2 Price Perf() 1 2 N,R 6.18 4.19
βB,3 Price Short() 1 2 N -1.02 -3.15
βB,4 Price Short() 1 1,2 R 0.916 1.78
βB,5 Quality Long() 1 1,2 N -0.428 -2.57
βB,6 Quality Short() 1 1,2 N 0.723 2.03
βB,7 Sentiment Long() 1 2 N 0.659 2.78
βB,8 Technic Long() 1 1 R 1.06 1.84
βB,9 Technic Long() 1 1 N 1.02 2.51
βB,10 Technic Long() 1 2 R -0.805 -2.42
βB,11 Technic Short() 1 1 R 1.80 2.45
βB,12 Technic Short() 1 1 N 2.78 4.28
βB,13 Technic Short() 1 2 R 1.30 3.40
βB,14 Technic Short() 1 2 N -1.47 -2.00
βB,15 Value Short() 1 1,2 N 0.625 2.43
αN 1,2 N -0.222 -5.43
αR 1,2 R -0.312 -6.77
λB,N 1,2 N -0.0156 3.79
λB,R 1,2 R -0.00946 5.27
µ1 1,2 N,R 1
µ2 1,2 N,R 1.23 5.07
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µ3 1,2 N,R 1.58 4.21
µ4 1,2 N,R 2.93 3.16
µ5 1,2 N,R 1.43 2.77
µ6 1,2 N,R 2.46 3.48

Table A.1: Estimated parameters of the action model (β)

Parameter v Transform tH (day) g Value t-test
ASCWA

1 1,2 -25.327
ωA,1 VIX 1 1.37 49.41
ωA,2 VIX 2 1.08 31.39
ωA,3 Sentiment Sigm() 5 1,2 9.29 5.17

Table A.2: Estimated parameters of the risk model asso-
ciated to the action model (ωA)

Parameter v Transform tH (day) g r Value t-test
ASCD,N,1 1 1 N 3.54 5.49
ASCD,N,2 1 2 N 3.36 10.71
ASCD,R,1 1 1 N 0.242 1.54
ASCD,R,2 1 2 N 0.398 2.93
θD,1 Price Short() 60 1 N -1.22 -3.47
θD,2 Price Sigm() 60 1 N 1.52 1.78
θD,3 Quality Long() 60 1 N -1.08 -3.03
θD,4 Quality Short() 60 1 R 0.960 1.80
θD,5 Quality Short() 60 2 R -0.661 -1.54
θD,6 Quality Short() 60 1 N -1.43 -1.96
θD,7 Sentiment Long() 60 2 R -0.716 -3.29
θD,8 Sentiment Short() 60 2 R 0.990 3.72
θD,9 Technic Long() 60 2 R 1.42 5.38
θD,10 Technic Long() 60 1 N -1.18 -2.36
θD,11 Technic Short() 60 1 R 1.79 3.19
θD,12 Technic Sigm() 60 2 N -1.48 -3.91
θD,13 Value Short() 60 2 R 1.90 4.84
θD,14 Value Short() 60 1 N 2.25 2.60
θD,15 Value Sigm() 60 2 N -0.613 -1.72
θD,16 VIX Sigm() 360 2 N -2.05 -4.99
θB,N 1,2 N -0.350 -2.27
θB,R 1,2 R -0.261 -2.53
αD,N,1 1 N 7.09 4.77
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αD,R,1 1 R 5.29 3.25
αD,N,2 2 R 2.23 1.84
ηD 0.530 82.26

Table A.3: Estimated parameters of the duration model
(θ)

Parameter v Transform tH (day) g Value t-test
ASCWD,1 1 1 -7.48 -1.59
ASCWD,2 1 2 -4.93 -3.76
ωD,1 VIX 1 0.377 2.10
ωD,2 VIX 2 0.263 4.53

Table A.4: Estimated parameters of the risk model asso-
ciated to the duration model (ωD)
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B. The dynamic facial expression
recognition

In this appendix, we summarize the notations and the estimation results of the five
models proposed in Chapter 4.

B.1 Notations

Acronym Definition
A Anger

AAM Active appearance model
ASC Alternative specific constant
AU Action unit
D Disgust

DCM Discrete choice model
DFER Dynamic facial expression recognition
DK I don’t know
EDU Expression descriptive unit

EDU 6 EDU defined as the ratio between the average of
the eye width and the mouth width

EDU 8 EDU defined as the ratio between the average of
the eyes height and the average of the brow-eyes height

F Fear
FER Facial expression recognition
FACS Facial action coding system
FEED Facial expression and emotion database
HMM Hidden markov model

H Happiness
MEV Multivariate extreme value

N Neutral
NN Neural networks
O Other
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PCA Principal component analysis
RAP brow EDU defined as the ratio between the average of

the brow-eyes height and the brow-eyes width
RAP mouth EDU defined as the ratio between the height

and the width of the mouth
SA Sadness

SFER Static facial expression recognition
SU Surprise

SVM Support vector machine
Table B.1: Summary of the mentioned acronyms

B.2 Estimation results

parameter H SU F D SA A N O DK xk,To,o value t-test 0
ASCM1,A × 1 0.95 0.28
ASCM1,D × 1 25.38 7.88
ASCM1,DK × 1 -0.69 -1.79
ASCM1,F × 1 0.49 0.19
ASCM1,H × 1 -3.14 -0.79
ASCM1,O × 1 6.95 3.20
ASCM1,SA × 1 10.80 2.54
ASCM1,SU × 1 -11.27 -5.63

Table B.2: Estimation results of the constants for re-
duced model

parameter H SU F D SA A N O DK xk,To,o value t-test 0
θM1,1 × EDU 6 -6.52 -3.63
θM1,2 × EDU 8 -4.75 -6.18
θM1,3 × × RAP brow 6.70 4.53
θM1,4 × × RAP mouth 2.94 2.85
θM1,5 × RAP mouth 9.36 5.35
θM1,6 × C 1 -16.30 -3.51
θM1,7 × C 2 23.98 3.49
θM1,8 × C 2 26.22 5.16
θM1,9 × C 3 15.34 3.13
θM1,10 × C 3 15.73 3.27
θM1,11 × broweye l2 153.91 3.17
θM1,12 × broweye l3 85.58 5.75
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parameter H SU F D SA A N O DK xk,To,o value t-test 0
θM1,13 × × × × × broweye r2 -49.81 -4.30
θM1,14 × × eye angle l 58.55 3.43
θM1,15 × eye brow angle l -140.87 -5.10
θM1,16 × eye mouth dist l2 -69.83 -3.42
θM1,17 × × × eye mouth dist l -36.03 -2.89
θM1,18 × eye nose dist l 245.03 5.05
θM1,19 × × × × eye nose dist l 147.67 4.89
θM1,20 × × × × × eye nose dist r -213.93 -6.04
θM1,21 × × leye h 20.97 2.09
θM1,22 × × mouth nose dist2 -90.97 -2.15
θM1,23 × mouth nose dist -236.37 -5.65
θM1,24 × mouth w 188.42 4.90

Table B.3: Estimation results and description of the spec-
ification of reduced model

parameter H SU F D SA A N O DK xk,t,o value t-test 0
ASCM2,A × 1 -5.86 -1.31
ASCM2,D × 1 22.73 4.48
ASCM2,DK × 1 -0.71 -1.83
ASCM2,F × 1 -4.55 -1.13
ASCM2,H × 1 3.02 0.22
ASCM2,O × 1 14.44 4.22
ASCM2,SA × 1 8.54 1.57
ASCM2,SU × 1 -25.69 -7.08

Table B.4: Estimation results of the constants for the la-
tent model, associated the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM2,1,1 × EDU 6 -6.92 -3.37
θM2,1,2 × EDU 8 -3.92 -5.42
θM2,1,3 × × RAP brow 7.84 4.45
θM2,1,4 × × RAP mouth 4.93 3.42
θM2,1,5 × RAP mouth 12.74 2.54
θM2,1,6 × C 1 -38.18 -5.27
θM2,1,7 × C 2 40.99 4.81
θM2,1,8 × C 2 45.77 7.12
θM2,1,9 × C 3 23.96 3.71
θM2,1,10 × C 3 24.46 4.11
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parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM2,1,11 × broweye l2 240.75 4.11
θM2,1,12 × broweye l3 104.09 4.61
θM2,1,13 × × × × × broweye r2 -41.76 -2.93
θM2,1,14 × × eye angle l 44.95 2.58
θM2,1,15 × eye brow angle l -199.01 -6.04
θM2,1,16 × eye mouth dist l2 -73.15 -2.72
θM2,1,17 × × × eye mouth dist l -84.03 -3.83
θM2,1,18 × eye nose dist l 217.99 3.69
θM2,1,19 × × × × eye nose dist l 80.02 2.09
θM2,1,20 × × × × × eye nose dist r -211.73 -4.45
θM2,1,21 × × leye h 51.35 4.12
θM2,1,22 × × × × × × mouth h 98.27 3.27
θM2,1,23 × × mouth nose dist2 -92.34 -2.04
θM2,1,24 × mouth nose dist -412.5 -5
θM2,1,25 × mouth w 158.29 2.13
θz

M2,1,1 mouth h, z1,t,o 50.21 3.04

Table B.5: Estimation results and description of the spec-
ification of the latent model, associated to the expres-
sion perception model

parameter value t-test 0
αM2,H -0.62 -8.18
αM2,F -0.33 -2.73
αM2,SA -0.46 -2.04
αM2,O -0.70 -2.68

Table B.6: Estimation results of the latent model, as-
sociated to the memory effects parameters

parameter yk,t,o value t-test 0
θ

y
M2,2,1 C 2 -426.75 -1.83

θy
M2,2,2 eye brow angle 350.53 1.7

θ
y
M2,2,3 mouth w 407.34 1.76

θ
y
M2,2,4 C 4 463.35 1.75

θ
y
M2,2,5 eye h -566.62 -1.79

θy
M2,2,6 mouth h 104.51 1.84

θz
M2,2,1 brow dist, z4,t,o 261.65 1.84
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parameter yk,t,o value t-test 0
Table B.7: Estimation results and description of the spec-
ification of the latent model, associated to the model
which detects the most meaningful frame

parameter H SU F D SA A N O DK xk,t,o value t-test 0
ASCM3,A × 1 -7.53 -1.63
ASCM3,D × 1 20.28 4.03
ASCM3,DK × 1 -0.69 -1.79
ASCM3,F × 1 -0.35 -0.09
ASCM3,H × 1 -7.66 -1.43
ASCM3,O × 1 12.95 4.38
ASCM3,SA × 1 4.17 1.04
ASCM3,SU × 1 -29.15 -7.07

Table B.8: Estimation results of the constants for the
smoothed model, associated to the expression percep-
tion model

parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM3,1,1 × EDU 6 -9.19 -3.82
θM3,1,2 × EDU 8 -4.18 -4.09
θM3,1,3 × × RAP brow 12.6 5.69
θM3,1,4 × RAP brow 5.44 2
θM3,1,5 × × RAP mouth 2.89 2
θM3,1,6 × RAP mouth 11.77 4.44
θM3,1,7 × C 1 -23.36 -3.36
θM3,1,8 × C 2 42.46 5.3
θM3,1,9 × C 2 33.98 5.51
θM3,1,10 × C 3 25.82 3.88
θM3,1,11 × C 3 17.61 2.74
θM3,1,12 × C 5 -16.4 -2.5
θM3,1,13 × broweye l2 149.31 3.15
θM3,1,14 × broweye l3 128.49 5.76
θM3,1,15 × × × × × broweye r2 -61.58 -4.31
θM3,1,16 × × eye angle l 40.99 2.06
θM3,1,17 × eye brow angle l -126.55 -4.59
θM3,1,18 × eye mouth dist l2 -50.07 -2.13
θM3,1,19 × × × eye mouth dist l -32.09 -2.2
θM3,1,20 × eye nose dist l 163.49 3.75
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parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM3,1,21 × × × × eye nose dist l 114.66 3.15
θM3,1,22 × × × × × eye nose dist r -256.49 -5.39
θM3,1,23 × × leye h 52.58 3.73
θM3,1,24 × × × × × × mouth h 90.92 2.96
θM3,1,25 × mouth nose dist -342.14 -6.17
θM3,1,26 × mouth w 228.81 4.47
θz

M3,1,1 × mouth h, z1,t,o 0.13 4.46

θz
M3,1,2 × × leye h, z3,t,o 0.04 2.39

Table B.9: Estimation results and description of the spec-
ification of the smoothed model, associated to the ex-
pression perception model

parameter yk,t,o value t-test 0
θ

y
M3,2,1 C 1 -234.75 -1.75

θ
y
M3,2,2 eye brow angle 548.34 1.76

θ
y
M3,2,3 mouth w 23.29 1.81

θ
y
M3,2,4 C 2 101.9 1.85

θ
y
M3,2,5 C 3 -221.23 -1.57

θ
y
M3,2,6 C 5 529.64 1.91

θ
y
M3,2,7 eye h -122.15 -1.79

θ
y
M3,2,8 mouth h 119.21 1.88

Table B.10: Estimation results and description of the
specification of the smoothed model, associated to the
model related to the detection of the first frame of the
relevant group of frames

parameter H SU F D SA A N O DK xk,To,o value t-test 0
ASCM4,A × 1 1.61 0.42
ASCM4,D × 1 25.40 5.80
ASCM4,DK × 1 -0.067 -0.10
ASCM4,F × 1 1.14 0.37
ASCM4,H × 1 -3.69 -0.94
ASCM4,O × 1 7.44 2.95
ASCM4,SA × 1 11.60 3.37
ASCM4,SU × 1 -9.91 -4.83

Table B.11: Estimation results of the constants for re-
duced model with panel effect
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parameter H SU F D SA A N O DK xk,To,o value t-test 0
θM4,1 × EDU 6 -6.68 -3.27
θM4,2 × EDU 8 -4.57 -3.68
θM4,3 × × RAP brow 6.38 4.41
θM4,4 × × RAP mouth 2.70 3.33
θM4,5 × RAP mouth 9.66 5.50
θM4,6 × C 1 -16.70 -2.33
θM4,7 × C 2 22.76 2.80
θM4,8 × C 2 25.20 4.01
θM4,9 × C 3 15.84 2.47
θM4,10 × C 3 15.92 6.03
θM4,11 × broweye l2 158.76 3.00
θM4,12 × broweye l3 82.23 5.75
θM4,13 × × × × × broweye r2 -52.02 -3.20
θM4,14 × × eye angle l 55.23 3.12
θM4,15 × eye brow angle l -143.11 -7.56
θM4,16 × eye mouth dist l2 -66.87 -2.49
θM4,17 × × × eye mouth dist l -42.45 -3.40
θM4,18 × eye nose dist l 252.55 5.46
θM4,19 × × × × eye nose dist l 153.93 3.38
θM4,20 × × × × × eye nose dist r -214.88 -3.93
θM4,21 × × leye h 22.90 1.80
θM4,22 × × mouth nose dist2 -93.02 -2.01
θM4,23 × mouth nose dist -235.84 -3.82
θM4,24 × mouth w 202.92 4.48
σ 1.47 4.33

Table B.12: Estimation results and description of the
specification of reduced model with panel effect

parameter H SU F D SA A N O DK xk,t,o value t-test 0
ASCM5,A × 1 -5.29 -1.44
ASCM5,D × 1 20.90 4.44
ASCM5,DK × 1 -0.180 -0.25
ASCM5,F × 1 -3.30 -0.63
ASCM5,H × 1 -11.08 -0.96
ASCM5,O × 1 14.70 3.00
ASCM5,SA × 1 10.09 1.95
ASCM5,SU × 1 -22.50 -6.45
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parameter H SU F D SA A N O DK xk,t,o value t-test 0
Table B.13: Estimation results of the constants for the
latent model with panel effect, associated the expres-
sion perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM5,1,1 × EDU 6 -6.10 -4.01
θM5,1,2 × EDU 8 -3.85 -3.65
θM5,1,3 × × RAP brow 7.62 3.37
θM5,1,4 × × RAP mouth 3.96 2.98
θM5,1,5 × RAP mouth 17.70 3.27
θM5,1,6 × C 1 -30.40 -4.20
θM5,1,7 × C 2 43.40 5.52
θM5,1,8 × C 2 46.10 5.68
θM5,1,9 × C 3 21.60 3.21
θM5,1,10 × C 3 25.30 3.99
θM5,1,11 × broweye l2 238.00 4.76
θM5,1,12 × broweye l3 87.70 4.30
θM5,1,13 × × × × × broweye r2 -51.60 -3.14
θM5,1,14 × × eye angle l 39.3 1.80
θM5,1,15 × eye brow angle l -190.00 -7.84
θM5,1,16 × eye mouth dist l2 -67.8 -1.82
θM5,1,17 × × × eye mouth dist l -84.30 -3.71
θM5,1,18 × eye nose dist l 258.00 3.15
θM5,1,19 × × × × eye nose dist l 106.00 1.59
θM5,1,20 × × × × × eye nose dist r -223.00 -3.01
θM5,1,21 × × leye h 46.50 3.02
θM5,1,22 × × × × × × mouth h 103.00 2.42
θM5,1,23 × × mouth nose dist2 -121.00 -1.91
θM5,1,24 × mouth nose dist -327.00 -3.00
θM5,1,25 × mouth w 215.00 4.74
θz

M5,1,1 mouth h, z1,t,o 55.20 3.06

σM5
1.20 2.44

Table B.14: Estimation results and description of the
specification of the latent model with panel effect,
associated to the expression perception model

parameter value t-test 0
αM5,H -0.557 -4.29
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parameter value t-test 0
αM5,F -0.314 -2.14
αM5,SA -0.381 -1.31
αM5,O -0.585 -2.64

Table B.15: Estimation results of the latent model
with panel effect, associated to the memory effects pa-
rameters

parameter yk,t,o value t-test 0
θy

M5,2,1 C 2 -506.23 -3.58

θ
y
M5,2,2 eye brow angle 311.53 3.93

θ
y
M5,2,3 mouth w 438.40 3.69

θ
y
M5,2,4 C 4 441.12 3.85

θy
M5,2,5 eye h -634.03 -3.63

θ
y
M5,2,6 mouth h 123.99 3.66

θz
M5,2,1 brow dist, z4,t,o 295.89 3.76

Table B.16: Estimation results and description of the
specification of the latent model with panel effect,
associated to the model which detects the most mean-
ingful frame
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