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Abstract—In this paper we use the cortical current density
based inverse solution to classify Event Related Potentials, in
particular for error-related potentials elicited during a Brain-
Computer Interface experiment. We selected discriminant cor-
tical sources for comparing classification performance with
respect to surface EEG. We found that the data from estimated
cortical sources achieves higher classification accuracy for
most of the subjects. In addition, the inverse method exhibits
consistently discriminant activity for the sources located over
the anterior cingulate cortex region for different time points.
This level of neurophysiological interpretation in terms of
localisation of selected cortical sources is enabled with the use
of inverse solution.

I. INTRODUCTION

Distributed inverse solutions allow to estimate intracranial
source activity from the recorded surface Electroencephalo-
graph (EEG) potentials [1]. Studies using this cortical activity
for motor-imagery based Brain-Computer Interface (BCI)
systems have shown that higher classification accuracies can
be achieved in comparison to surface EEG data [2], [3]. This
motivates us to study distributed inverse solution on different
BCI experiments based on Event Related Potentials (ERPs).

In this paper we select error-related potential (ErrP) based
ERP data [4], [5] to study the classification performance
between surface EEG and cortical activity estimated using
cortical current density (CCD) based distributed inverse solu-
tion [6]. A preliminary study on the feasibility of using CCD
inverse solution for ERPs is reported in [7]. In our study, we
found that the data from cortical sources not only increases
classification accuracy for some subjects, but it also provides
us an opportunity for neurophysiological interpretation of the
ERP data in terms of active cortical sources. The inverse
method provided localization information of the selected
sources which is difficult to interpret from the surface EEG
data directly.

II. MATERIALS AND METHODS
A. CCD distributed inverse solution

CCD distributed inverse solution is a linear method to
estimate cortical activity from the measured EEG activity on
the scalp [6]. The model assumes cortical activity in form of
dipoles which are perpendicularly arranged on the cortical
surface with fixed orientation. The geometry of the cortical
mantle is obtained through an average head model from the
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MNI institute [8]. The cortical mantle is divided into 3013
vertices, each representing a dipolar source. Mathematically,
the CCD activity (x) is estimated using a linear transforma-
tion of surface EEG potential (b) at a given time ¢ as

x(t) = Gb(?) (1)

where G is a matrix that represents the inverse of the forward
model emulating the electrical propagation properties from
the cortical sources to surface EEG potentials. For more
details on the CCD model and inverse solutions, please
refer [1], [6], [9]. The linear projection from EEG potential
to CCD vortices tends to un-mix the EEG signals, which
results in an improved spatial resolution and signal-to-noise
ratio. Hence classifiers computed using this activity may
ameliorate recognition performances of brain activity.

B. ErrP-based ERP experiment

We use the data from an experiment aimed to study error
potentials during brain-computer interaction, where subjects
were asked to monitor movement of a cursor moving towards
a target on the screen [5]. The cursor movement is termed
erroneous whenever it moves away from the target. The
objective of this experiment is to correctly identify the types
of cursor movement from the surface EEG signals into two
classes: correct and erroneous. Erroneous movements were
randomly generated with probability Pg,, = 0.2 in order to
elicit error-related EEG activity. In each recording session,
subjects monitored 10 runs of 15 targets (approx. 90 single
trials per block). Two recording sessions per subject were
performed on different days with a difference ranging from
2 months to 2 years. Fig. 1 shows the error-minus-correct
grand average (FCz electrode), which is characterized by two
fronto-central positive peaks appearing at 200 ms and 320
ms as well as fronto-central negativity near 250 ms after
receiving error feedback from the agent.

C. Preprocessing

The ErrP recording was performed using Biosemi Ac-
tiveTwo system with a sampling frequency of 512Hz.
Sixty-four electrodes were used according to the stan-
dard 10/20 international system. The common average refer-
ence (CAR) was used as spatial filter followed by a 1-10Hz
band-pass filter and then the epochs corresponding to erro-
neous and correct cursor movements were extracted. Down-
sampled data (factor of 16) between the time window 200 ms
and 450 ms after the stimulus presentation was considered
for further analysis because ErrP was most prominent in this
time window as shown in Fig. 1.
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Fig. 1. Grand average ERP, error-minus-correct at channel FCz for six
subjects. Time window T = [200 450]ms is highlighted in gray with
points in red used for classification purpose. Triangular points are used
for topographic analysis as discussed in section III-B.

D. Classification

For classifying the spatio-temporal features of the ErrP
data, we make single sub-decisions for the spatial features
at every time point (i.e. we train a separate classifier per
time point) and finally combine all of them to make a single
decision for the whole trial. This procedure enabled us to
interpret our results with cortical sources as discussed in
section III-B.

For the surface EEG data, we use a Fisher linear discrimi-
nator (FLD) [10] to estimate a spatial weighting vector w(t; ),
i =[1,2,...,T] represents time points shown in Fig.1 that
maximally discriminate the trials for two conditions, correct
versus erroneous. The FLD projected value is represented
as y(t). Sub-decision for each time point ¢ is obtained as
a probability P(w;|y(t)) for the class wj,(j = 1,2). The
probability P(w;|y(t)) is computed as the likelihood,
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P(w;ly(t)) = me

where p;(t) and o, (¢) are mean and covariance for the data
of class w; in the FLD canonical space. The final decision
for a trial is made on the basis of all the probabilities over
the selected time window,
1 I
P(wjly) = T ZP(Wﬂy(ti)) (3)
i=1
Classification using CCD requires to deal with a feature
space with size corresponding to 3013 cortical values. This
number is significantly high to use FLD as proper estimation
of the covariance would require a prohibitively large number
of training trials. To solve this problem, we perform a feature
selection procedure based on the discriminative power of
each source and then we take a decision by combining
classification ability of a subset of these sources with highest
discriminant power. We use a separability score (72 measure)

to quantify the discriminability of each source and select top
D highest ranking cortical sources. The value of D is chosen
based on a statistical test as discussed in sectionIIl. For
classification purposes, we assign a probability P(w;|z;(t))
to each selected cortical source i (= 1,2,...,D) at time ¢
using the same likelihood formula as in equation 2. The
probability P(w;|x(t)) at time ¢ is computed by combining
output for all the sources,

1 D
Plwjlx(t)) = 5 ZP(wj'lwi(t)) @)

Final decision for a trial follows the same combination rule
as described in equation 3.

It is important to note that each cortical source activity
by itself is a linear weighted combination of surface EEG
potentials. Thus in principle, every cortical source carries
information from all the EEG electrodes. If we perform an
equivalent spatial procedure of source selection with surface
EEG potentials, we will end up in selecting a subset of EEG
potential values, which we want to avoid as we are interested
is using information from all the EEG electrodes and not just
restricting to some electrodes.

ITI. RESULTS
A. Classification Accuracy

The data recorded for session 1 was used for training the
classifiers and session 2 for testing them. With this approach,
we want to show the applicability of our classification system
on two different days of recording. This factor is important
for BCI-systems as the trained classifier is expected to func-
tion with high accuracy on different days of recording [11].

For the purpose of classification using cortical sources,
we wanted to choose sufficient number of sources to make
a robust decision system. We performed Kruskal-Wallis
statistical test on the probabilities obtained for the test trials
(for each class separately) with D ranging from 10 to 150
and found no significant differences in the range [50 150].
For this preliminary study we choose D = 100.

TableI presents the classification results for 6 subjects. We
separately compute the classification accuracy for the two
classes. We also present the value of area under the ROC
curve for each method which provided a single value per-
formance measure for the maximum likelihood based classi-
fication for unbalanced classes presented in this paper. The
results clearly show that for all subjects, the CCD method
achieves higher accuracy in classifying trials belonging to
correct class which is statistically significant (Kruskal-Wallis,
p < 0.05) except subject 4. When the accuracy of error
class is concerned, the CCD method significantly increase
accuracy for subject 1 (Kruskal-Wallis, p < 0.05) and
achieve similar classification performance with the surface
EEG for subjects 3, 5 and 6. We only found 2 subjects
(subjects 2 and 4) where the surface EEG-based system gives
significantly higher accuracy when recognizing the erroneous
trials (Kruskal-Wallis, p < 0.05), although one of them
performs around random level (subject 4). The above higher



TABLE I
PERCENTAGE ACCURACY OF CLASSIFICATION AND AREA UNDER ROC
CURVE WITH TWO METHODS.

CCD method Surface EEG
Subj | Corr(%) | Err(%) | AUC | Corr(%) | Err(%) | AUC
1 90.1 73.5 0.901 85.6 61.5 0.791
2 96.2 71.3 0.950 66.7 83.7 0.847
3 87.4 78.7 0.905 85.0 79.8 0.896
4 80.4 36.1 0.670 72.3 50.9 0.709
5 65.8 77.2 0.843 49.9 75.0 0.723
6 90.1 65.6 0.896 89.4 59.8 0.859

classification results obtained for CCD method over surface
EEG is also support by the respective higher AUC values.

B. Topographic analysis of cortical sources

Based on the accuracy of CCD method, we found that
subject 1 has the best performance. On the contrary, subject 4
has the worst performance as the detection of erroneous trials
has fallen to 36.11 %. We consider only these two subjects
for our further analysis due to space limitations.

In Fig. 2 we show the localization of selected cortical
sources at time points highlighted by triangular marks in
Fig. 1. Information from these sources is used to compute
the combined probability in equation 4.

For subject 1, at time ¢ = 200 ms after stimulus presen-
tation, we find the selected sources are localized over the
region of cingulate cortex with some activation originating
from the anterior cingulate cortex (ACC) region as well.
According to FMRI studies, ACC region is consistently
involved in error-related cognitive process [12]. We can see
that the distribution of selected cortical sources change over
time. For the time ¢ = 343 ms, we find a high concentration
of selected sources over the cingulate cortex which reduces
to a more frontal region at time ¢ = 414 ms. This shows the
change in activity level of cortical region over time for error
awareness.

However, for subject 4, we find a more scattered dis-
tribution of selected sources over different time instances.
Discriminant sources are selected over cingulate cortex for
the first time at ¢ = 343 ms. Although this distribution is
not as dense as subject 1, it still shows that error awareness
is undertaken by sources over cingulate cortex at that time
instance. For the time points ¢ = 343,414 ms some of
the discriminant sources are selected from the prefrontal
cortex region. This anomaly could be possible due to ocular
artifacts.

In addition to these maps, a combined cortical map in
Fig. 3 shows the frequency of occurrence of the selected
cortical sources. These maps highlight the region in the
brain which contributes to the maximum information in
discriminating the two classes across the whole time win-
dow. The map for subject 1 shows that the region above
ACC is a significant contributor in decision making process.
However, for subject 4 we find two different regions in
decision making, one over cingulate cortex and another over
prefrontal cortex. In addition to subjects 1 and 4, we found
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Fig. 2. Selected sources on CCD maps (D=100) vs relative weights

of electrodes on surface EEG topographic maps for subject 1 and 4.
Highlighted time points (ms) in Fig. 1 are considered for this analysis.
The nose is facing upwards for all the maps.

the distribution of selected sources was well localized over
cingulate cortex for subjects 2 and 3. In subjects 5 and 6 we
found scattered distribution with localisation over cingulate
cortex and parietal cortex.

C. Topographic analysis of FLD weights

The FLD weights mentioned in section II-D define a
canonical projection that maximally separates two classes
at a selected time point. These weights determine the im-
portance of each EEG electrode at a given time point for
classification of data. We plot the absolute value of these
weights in form of surface EEG topographic maps along with
the maps of cortical region for the same subjects (see Fig.
2). The color scheme for the maps is normalized such that
red represents maximum absolute weight and blue represents
minimum absolute weight.

For subject 1, we find a strong focus for the electrodes
over cingulate region of the brain for ¢ = 200,271, 343 ms.
The relative importance of EEG electrodes in this region
seems to be similar till ¢ = 414ms where we find that
there are two foci over left and right temporal regions.
With respect to localization information in cortical maps,
the weight distribution over EEG electrodes limits our ability
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Fig. 3. Combined map showing the frequency of selection of the cortical
sources across the selected time window. Nose is facing upwards.

to interpret classification procedure for time instances ¢ =
200,271,343 ms.

For subject 4, we see that a clear focus over cingulate
region at time ¢ = 200,271 ms. The weighting of EEG elec-
trodes keep changing over time which shows the activation
of different regions of the brain. This high spatial variability
with time could be the result of unsustained activation pattern
across different trials which leads to a low classification
accuracy for this subject in comparison to subject 1.

IV. CONCLUSION AND FUTURE WORK

In this paper we performed single-trial classification on
ERP-based BCI using data from the estimated cortical
sources and compared it with surface EEG. For each time
point we computed a probability of occurrence of a class
and combined these probabilities over time to make a single
decision. We found that the data from the estimated cortical
sources achieves higher classification accuracy for most of
the subjects. The premise of performance increase with the
use of inverse solution over surface EEG for MI-based BCI
experiments seems to be true with this ERP-based BCI
experiment as well. This suggest that we need to test this
inverse method for other ERP experiments to validate the
claim.

The inverse solution for cortical source activity estima-
tion is developed for neurophysiological studies in source
localization. Its application for BCI purpose is relatively
new. In this paper, we used CCD inverse solution for
better classification performance and also for interpreting
the localization of selected cortical sources using cortical
maps. This localization aspect of inverse solution provides
us with more neurophysiological assistance in interpreting
the results. We found that for the subject 1 who has high
accuracy of recognition in ErrP experiment also has more
number of cortical sources selected around cingulate cortex
in comparison to the subject 4 which has lower performance.
This distribution of cortical sources is more stable across the
relevant time window for subject 1 than for subject 4. Thus,
lower contribution of sources from the cingulate area to the
recorded scalp EEG may be related to classification accuracy
for subject 4.

We found a variability in localization of selected sources

over time for the same task. We speculate that some of
these selected sources are not involved in error cognition
and might be responsible for other neurophysiological task.
A possible approach would be to perform classification only
based on cortical sources known to be involved in the
process of interest (i.e. ACC for error-related processes).
Alternatively, a combined approach can be devised where
both the discriminant power and the neurophysiological
relevance are taken into account for the feature selection. In
this regard we propose to incorporate our neurophysiological
knowledge in selecting these sources instead of a fixed
number which might result in higher accuracy of recognition.
This procedure may be related to beamforming approaches
where neurophysiologically relevant sources are used to
design spatial filters for EEG data [13]. We leave this analysis
for our future studies.
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