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ABSTRACT The current work is partly motivated by a similar framework

) ) proposed by the authors for speaker verification (SV) tasiguanly
In this paper, we propose a novel parts-based binary-vdeaddre  single frame information [7][8]. This framework yieldedrslar SV
for ASR. This feature is extracted using boosted ensembigple  performance on clean condition and better performance @y no
threshold-based classifiers. Each such classifier looksspeéific  gnditions when compared to standard cepstral-based agpro
pair of time-frequency bins located on the spectro-teripolame. After feature extraction, there are two dominant approsche
These features termed as Boosted Binary Features (BBFpi@re i for acoustic modeling before integration into standard H¥héed
grated into standard HMM-based system by using multilagec@p-  ASR system, namely Gaussian mixture models (GMMs) and mul-
tron (MLP) and single layer perceptron (SLP). Preliminaydges  tjjayer perceptrons (MLP). In this work, MLP was chosen ageno
on TIMIT phoneme recognition task show that BBF yields simil = gyitaple to model the binary-valuéet1) inputs. We also tried sin-
or better performance compared to MFCC (67.8% accuracyBét B gle layer perceptrons (SLP) to model the binary featuresetify

vs. 66.3% accuracy for MFCC) using MLP, while it yields sini  our hypothesis that the phoneme classes could be linegriyaisle
cantly better performance than MFCC (62.8% accuracy for B&F i, this discriminative feature space.

45.9% for MFCC) using SLP. This demonstrates the potentitie We investigated the proposed feature on TIMIT phoneme recog

proposed feature for speech recognition. nition task. Our studies show thBBF yields performance similar
Index Terms— Phoneme recognition, automatic speech recog®r better than standard acoustic features using MLP. Usiij the

nition, binary features, boosting. proposed feature yields the least drop in performance arfdrpes

significantly better than standard features. The rest optyer is
organized as follows. In Sec.2, we describe the proposeahpin
1. INTRODUCTION features based framework. We describe our experimentsdr8Se
Finally, we discuss and outline the main conclusions of ooirkin
Phoneme/phone-specific information is embedded acrobstinoé ~ Sec.4.
and frequency in the speech signal. Standard ASR systemarlsi
use cepstral features which tend to capture the envelopoof-sfrm
magnitude spectrum of speech (frequency domain informptioy-
namic information is subsequently added by appending appede
temporal derivatives of the cepstral features. Other featauch as In the first step, the input speech waveform is blocked irhons
TRAPS/HATS [1], frequency domain linear prediction feasif2],  and processed via a bank of 24 Mel filters to yield a sequenkmgof
multiresolution RASTA features [3], 2D-DCT localized faggs [4]  spectral vectors of dimensiaNr = 24. Sets of Ny = 17 con-
extract information directly from the spectro-temporairs. secutive such vectors are stacked to form spectro-temputces
In this paper, we propose a novel parts-based approach f@r ASof size N x Nr.! Let X be such a spectro-temporal matrix. The
which extracts binary+1) features from spectro-temporal segments (k, t)-th element, X (k, t) of X denotes the log magnitude bfth
of speech. This approach is inspired by Fern features whiafe w Mel filter output att-th time frame. Consecutive spectro-temporal
successfully applied for object detection in computerondb]. For  matrices are formed using shifts of one time frame, implyimg
each phoneme, given equal-sized segments of spectrottelmpp-  spectro-temporal matrix per frame.
resentation (in our casépg mel filter bank energies with tempo- The proposed binary features are extracted from the m&irix
ral context of 170ms), the proposed approach builds simiplerp  as follows. A binary feature; : RV7*~7 — {—1,1} is defined
classifiers for each time-frequency bin pair in the spettroporal  completely by 5 parameters: two frequency indicks;, k2 €
segments. Then it selects (through boosting [6]) those @irsphat ~ {1,--- , Ny}, two time indices,t;1, ti2 € {1,---,Nr} and
best discriminates the phoneme against rest of the phonéBne=sn  one threshold parametet;. The pairs of indicesk; 1,t;,1) and
a new spectro-temporal segment, the selected binary fibssdor  (k; »,¢;,2) define two time-frequency bins in the spectro-temporal
each phoneme are applied on respective time-frequencydiis p matrix. To ensure two separate bins, both frequency anditidiees
and theirt1 decisions are used as input features for standard speeaould not be equal. The featuseis defined as,
recognition system. We refer to these features as BoostedryBi _
FeaturesgBF). :(X) = {1 if X(kia,ti1) — X(ki2, ti2) > 05, @
—1 if X(ki,l,ti’l) — X(ki,z,ti,z) < 0;.

2. THE PROPOSED FRAMEWORK

2.1. Binary Features

The authors would like to thank the Swiss National SciencenEa-
tion, projects MultiModal Interaction and MultiMedia Dat¢ining (MULT], In Fig. 1, we illustrate this process for an examplex 17 spectro-
200020-122062) and Interactive Multimodal Informationdgement (IM2,  temporal matrix. Given the rangesiafy, k: » andt; 1, t; 2, the total
51NF40-111401) and the FP7 European MOBIO project (IST3244 for
their financial support. 1In Sec. 3.3, we explain our choice dfy = 17.
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Fig. 1. Each binary feature; is associated with a pair of time-frequency
bins in the spectro-temporal matrix, defined by the pararséfg 1,t;,1)

and(k; 2, t; 2). The difference of the log magnitude values at these two bins —

is compared with a thresholt} and the sign is retained. An example feature
¢; is shown in the figure.

number of such binary featuresdés = NrNp(NrNp — 1). Let
P = {@}f\;@l represent the complete set of such features.

2.2. Feature selection

Out of the complete set of binary featur@s a certain number of
features are iteratively selectéat each phonemaccording to their
discriminative ability with respect to that phoneme. Thekestion is

based on the Discrete Adaboost algorithm [6] with weightaah-s
pling, which is widely used for such binary feature selattiasks

[9] and is known for its robust performance [6]. These selédea-

tures are termed Boosted Binary FeatuBK). The boosting algo-
rithm, which is to be run once for each phoneme, is as follows:

Algo.: Feature selection by Discrete Adaboost for a phoneme

Inputs: NN, training samples, i.e.
{Xj}j.\’:tg extracted from the training data; their corresponding
class labelsy; € {—1,1}, (-1 : X; ¢ w, 1 : X; € w); Ny,
the number of features to be selectéd;., the number of training
samples to be randomly sampled at each iteratiéfh & Ni.-).

« Initialize the sample weightgw: ;} + .
e Repeatfom =1,2,--- Ny:

W j

A ENM- W
j/=1"mn.J

Normalize weightsy,, ;

Randomly sampleVy;. training samples, according to
the distribution{w; }

For eachp; in ®, choose threshold parameterto min-
imize misclassification error,

N
€ = 7 2521 Lo, (x,)2y;) OVer the sampled set.
Select the next best featuk&, = ¢;
wherei* = arg min; ¢;
Sets, +

€%

1—e;x

pHenX)=v;}
sJEm

Update the weightsp,11,; < wn

Output: The sequence of selected best feat{wégﬁzl.

Figure 2 illustrates the first 8 boosted features for phorsefab/,
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Fig. 2. Time-frequency bin pairs of the first 8 boosted features fargmes
leh/, Jah/, Ip/ and /s/ shown on the 2417 spectro-temporal matrix. Horizon-
tal axes denote time, vertical axes denote frequency, i.el. filer indices.
Each pair is indicated by a black line connecting the (i, 1, t»,1) (light
yellow square) with the bitiky, 2,t,,2) (dark green square). One example
of each of the 3 feature types are indicated. Please see Sdor Betails.

/ahl, Ip/ and /s/, selected using training utterances floeniMIT
corpus. It can be observed that there are three distincstyppe

spectro-temporal matricesfeatures:

1. Features with time-frequency bins separated mostlynie ti
These features could be capturing similar temporal vaniati
information as captured by TRAPS/HATS features in differ-
ent frequency bands.

. Features with bins separated mostly in frequency. Thesse f
tures could be capturing localized frequency informatioms
ilar to cepstral features.

3. Features with bins separated along both time and freguenc

Hence, the proposed approach seems to present a general fram
work involving pairs of time-frequency bins on the spedeaiporal
plane, some of which capture information along time, soroagl
frequency and some along both, depending on their discaitini
ability with respect to the particular phoneme being matell

For example, it is observed in Figure 2 that for fricativetfs#
features belong mostly to type 2 and are mainly in high freque
region, while for stop /p/ the features belong to type 1 aedaainly
in low frequency region. For vowels, the features belongtipde
type 3, are closer to the center frame (in time) and lie maimiype
low to medium frequency region.

3. PHONEME RECOGNITION EXPERIMENTS

In this section, we describe the studies on TIMIT phonemegei
tion task using our proposed framework.



3.1. Database This results in a 1600-dimensional binary feature vector pe
We use TIMIT acoustic-phonetic corpus for phoneme recagnit frame, just as for thB8BF features.

experiments (excluding the SA sentences). The data censist

3,000 training utterances from 375 speakers, 696 crosdav@n ut- 3 3 c|assifier

terances from 87 speakers, and 1,344 test utterances fi®sp&ak-

ers. The 61 hand labeled phonetic symbols are mapped to 86t of We studied two different classifiers for each feature,

phonemes with an additional garbage class [10] 1. A single layer perceptron (SLP) classifier with softmamndu

3.2. Features tion for output units was trained to classify phonemes.
We used a frame size of 25 ms and a frame shift of 10 ms to extract

features. The features that are used in this study are: 2. A multilayer perceptron (MLP) classifier was trained tasl

sify phonemes in the conventional way.
1. MFCC: 39 dimensional acoustic feature vector consisting of
In the case ofMFCC feature, a 9 frame temporal context (4

13 static Mel Frequency Cepstral Coefficients (MFCCs) withf ; di d followi idedvat
cepstral mean substraction and their approximate firstrorde' aMES Of preceding and following context) was providedatnput

and second order derivatives (i.ey,— ci2 + A + AA), ex-  ©f Poth SLP and MLP.
tracted using HTK. In the case oMFBE feature, a 17 frame temporal context (8

] ] frames of preceding and following context) was providedhatibput

2. MFBE: 24 log Mel Filter Bank Energie$ over a context of  of hoth SLP and MLP. The choice of 17 frames is based on the tota
17 frames, i.e. a total of 408 features per frame. We study,ymper of frames needed to estimate 9 frames of cepstrairésat
this feature as a holistic approach to compare with the proyith their first order and second order derivatives, wheesdiriva-
posed parts-based approach which involves spectro-temporjye js estimated using 2 preceding and 2 following framelsis Ts
segments of the same sizeMBBE but looks at only selected  gj5o the reason why we restricted the spectro-temporaicestio a
time-frequency bins (parts). temporal context oN7 = 17 in the case oBBF.

3. BBF: The proposed parts-based approach selects and trains For BBF, the 1600-dimensional binary feature vector was pro-
binary features (termeBoostedBinary Features) from the vided at the input of both SLP and MLP.
spectro-temporal plane abg mel filter bank energies with The input dimension for each feature (for SLP and MLP) and
temporal context of 17 frames (8 preceding and 8 followingnumber of hidden units (for MLP) is given in Table 1. In theea$
frames around the reference frame), i.24ax 17 spectro- MFCC, the number of hidden units was chosen based upon previous
temporal matrix (ref. Sec. 2.1). work reported in [11]. FOMFBE, the hidden units were chosen so
We used a subset of training data, more specifically 334 utthat the number of parameters are same a#/féCC feature based
terances (uniformly randomly chosen) out of the 3,000 witter System. In the case of binary features, the hidden units dee-
ances for selecting the binary features (described eanlier Mined based on cross validation on the training data.
Sec. 2.2). This was done mainly to speedup the training pro-

cess. The spectro-temporal matrices extracted from thiés da Feature Input # of hidden
was split into two parts, namely, training samples and cross dimension units
validation samples. The total number of training samples MECC 351 1000
was 80,000 out of which the number of positive samples for MEBE 208 843
each phoneme class was around 2,003;., the number of BBE 1600 200
matrices randomly sampled at each boosting iteration was se Rand 1600 200

to 4,000. The number of (selected) binary featuhgs for
each phoneme was set to 40 based on cross validation expefable 1. Number of input units for SLP and MLP, and number of
iments (using 20,000 cross validation samples). This t@sul higden units for MLP.
in 40 x 40 = 1600 binary features per frame, aggregated over
all phonemes. The SLPs and MLPs were trained using quicknet softivarae
MFCC andMFBE features were normalized in the usual manner by

lobal mean and standard deviation estimated on the tradita. In
posed parts-based approach, we also used features that - - T !

) : . he case of binary features, no normalization is done. Ttypgtg
volved randomly selected time-frequency bin pairs from the .~ "~ -
criteria for training of SLP and MLP was frame accuracy onssro

rs]gtralctro-temporal plane. This was done in the following man- . idation data of 696 utterances.

4. Rand To ascertain the utility of feature selection in our pro-

(a) Create the complete sétof binary features consider- 3.4. KL-HMM System

|(r;€g all’pc;sasrlll(ajlt(ak(.:on;plr;a(trlgfnssgit|2n12¢§-frequency PAS Conventional hybrid HMM/MLP based system use the output of
S 02y b2 PORes) MLP as local score (emission probabilities). In this worle use
(b) Uniformly randomly select 1600 features out of the setKullback Leibler (KL) divergence based acoustic modellimdpere

. the probabilities of phoneme classes output of SLP and MIleP ar

(c) Foreach of these 1600 binary features, compute the difdirectly used as features. This system is referred to as KIMH
ferencesX (kin,ti1) — X (ki 2, ti2) over all training ~ System [12]. In KL-HMM, each statéis modeled by a multino-

samples i.e. the same 80,000 samples used for selectidRidl distributiony; = i, :;%D]Tv where D is the number of
and training ofBBF feature. Simply set the median of Phonemes (in our case 40). Given a phoneme po§ter|or f%dgare
these differences as the thresh@ldor the feature. servation (probabilities output by MLP or SL®) = [z;, -+, 21 ]

2from which the static MFCCscf — c12) were extracted Shttp://www.icsi.berkeley.edu/Speech/gn.html



at timet, the local score for stateis estimated as,

|,
ISH

D
KL(yi,z) = y_ yi log(
d=1

+a

zZ

The parameters of HMM (multinomial distributions) are tred us-
ing Viterbi expectation maximization algorithm with a céghction

based on KL-divergence. The decoding is performed usinglata

Viterbi decoder. It has been shown that KL-HMM can perforrtidre
than hybrid HMM/MLP system.

The propose@BFfeature performs better th&andthus show-
ing the benefit of our boosting-based approach. HoweRand
achieves acceptable performance, especially if the SLierpeance
is considered, where it performs significantly better thd#CC and
MFBE. The extraction of botiBBF and Randin principle could be
seen as a problem of finding a sparse representation for pteone
recognition. In the area of pattern recognition and signat@ssing,
there are efforts towards finding such sparse represemsatior ex-
ample, in a recent work on face recognition, it has been stbamn
the choice of feature is less crucial if the sparsity of theogmition

In our studies, the KL-HMM was trained with the 3000 training Problem is harnessed properly [13]. Our studies may havéiderp
utterances. Each phoneme was modeled by a three-state HbtM. FiiON towards this direction.

recognition, the insertion penalties were tuned on crotidation
data set, and then fixed for the test data.

3.5. Results

Table 2 presents the performance obtained for differertifes, in
terms of phoneme recognition rate (obtained on the tes) dai
frame classification accuracy (obtained on the cross \iididaata).

SLP MLP
Feature|| CV Frame| Phoneme|| CV Frame| Phoneme
acc. rec. rate acc. rec. rate
MFCC 52.5 45.9 69.0 66.2
MFBE 52.4 46.6 68.2 66.6
BBF 64.4 62.8 69.1 67.8
Rand 59.5 56.2 67.3 65.0

In this work, we used spectro-temporal representatiorveléri
fromlog mel filter bank energies. In principle, the extractiorB&F
is not limited to spectro-temporal representation. Fainse, it can
be applied on phoneme posteriorgram (estimate of phoneste-po
rior probabilities across time). Also, we restricted ourdé¢s to a
context of 17 frames for fair comparison with cepstral feathased
systems. The effect of using larger contexts BBF could be in-
vestigated. Furthermore, we used equal number of binatyries
i.e. 40, for all phonemes. This may not be necessary. The num-
ber of binary features could possibly be decided for eacmeme
in a data-driven manner. Future work will explore all thesed
tions along with extension of our studies to conversatiapaech
and speech corrupted by noise. The latter case could beaipéai
teresting because such binary features have previousty dfemvn
to be robust against different types of noise for speakéfication
task [7].

In summary, this preliminary work proposed a novel parts-

Table 2. Frame accuracy on cross validation (CV) data and phonemBased approach to extract binary features from the speatnporal

recognition rate on test set expressed in %.

The propose@BFfeature yields the best performance with both
SLP and MLP. Interestingly, thRandfeature yields a close enough

performance when compared to other features. It may be dthae

the MLP system foBBF uses higher number of parameters than for
MFCCandMFBE and hence yields better performance. So, in order (1

to verify it, we trained MLPs foMFCC and MFBE features by in-

creasing the number of hidden nodes to 1674 and 1462 resggcti

to equalize the number of parameters. The performancklFEZC

improved to 67.2% and foiFBEto 66.7%, which is still lower than

the performance obtained with the proposed feature.
The study using SLP reveals interesting trends.

The perfor-

plane. We evaluated the efficiency of the proposed featuiidiir
phoneme recognition task. Our studies showed that the peabo
binary features can yield performance similar or betten $tandard
acoustic features.
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