Multiple Object Tracking using K-Shortest Paths Optimization

Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames will be ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results in a convex problem. We take advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast. This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance in two very different contexts.


Publié dans:
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1806--1819
Année
2011
Publisher:
Institute of Electrical and Electronics Engineers
ISSN:
0162-8828
Mots-clefs:
Laboratoires:




 Notice créée le 2011-03-04, modifiée le 2018-12-03

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)