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Abstract. Dense disparity maps can be computed from wide-baseline
stereo pairs but will inevitably contain large areas where the depth can-
not be estimated accurately because the pixels are seen in one view only.
A traditional approach to this problem is to introduce a global opti-
mization scheme to fill-in the missing information by enforcing spatial-
consistency, which usually means introducing a geometric regularization
term that promotes smoothness.

The world, however, is not necessarily smooth and we argue that a better
approach is to monocularly estimate the surface normals and to use them
to supply the required constraints. We will show that, even though the es-
timates are very rough, we nevertheless obtain more accurate depth-maps
than by enforcing smoothness. Furthermore, this can be done effectively
by solving large but sparse linear systems.

1 Introduction

Though dense short-baseline stereo matching is well understood [1, 2], its wide
baseline counterpart is much more challenging due to large perspective distor-
tions and increased occluded areas. It is nevertheless worth addressing because
it can yield more accurate depth estimates while requiring fewer images to re-
construct a complete scene.

It has been shown that replacing traditional correlation windows by SIFT-
like descriptors such as DAISY [3], which can be efficiently computed at every
point in the image, yields more effective dense matching and therefore better
depth maps for widely separated images. This, however, does not address the
occlusion issue, that is, of pixels that are seen in one image only and to which it
is difficult to assign a reliable depth value. A traditional approach to solving this
problem is to rely on a global optimization scheme to fill the resulting holes in
the depth map by enforcing spatial consistency, which usually means introducing
a geometric regularization term that promotes smoothness.

The world, however, is not always smooth, especially in urban environments,
and this approach often results in over-smoothing. In this paper, we show that
we can improve upon this situation by estimating the normals in the occluded
areas and using these estimates to more accurately fill-in the holes in our depth
maps. More specifically, even though single-view estimation of surface normals is
known to be difficult, as evidenced by the fact that shape-from-texture remains
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an open problem in uncontrolled environments, we will show that it is possible
to train classifiers to categorize the normal direction as left or right, up or down,
and frontal or non-frontal. Given such categories, we formulate constraints on
the normals and solve a large but sparse linear system involving these constraints
along with those imposed by depth estimates in non-occluded areas.

We will show both qualitatively and quantitatively that the resulting depth
maps are much more accurate than those obtained by simply imposing smooth-
ness on several urban scenes for which the ground truth data are available.

2 Related Work and Approach

For short-baseline stereo techniques, occlusions are a concern but one that usu-
ally affects only a small fraction of the resulting disparity map. A number of
recent algorithms simultaneously solve for depth and occlusion estimation using
energy minimization approaches [4,5] and fill-in the disparity maps using val-
ues from the background. Others rely on image segmentation and assign a depth
value to individual segments [6, 7]. Yet another approach is to use a texture-based
algorithm to propagate depth and texture together from the boundaries of oc-
cluded areas, while taking edge information into account [8]. These approaches,
however, assume that the occluded content spatially occupies a small region,
and hence imposing a form of smoothness together with a texture-gradient like
constraint is able to cope with the problem. This assumption, however, is not
necessarily true when the occlusions start occupying larger regions.

The approach we advocate here to address these issues is to estimate the
surface normals in the occluded areas from the local texture and the changes in
spatial frequencies that orientation changes produce. In that sense, our approach
is closely related to the traditional shape-from-texture problem, which has been
thoroughly researched over the years [9-13]. These methods start from the as-
sumption that the properties of the textures are statistically homogeneous in the
3D space, and that observed distortions result from the perspective projection
and depend on the orientation of the surface normal. To quantify this effect, they
often rely on the fact that an instance of the texture has been observed from a
known viewpoint and explicitly compute differential geometric parameters using
tools such as the wavelet transform [14], the Fourier transform [9], or Gabor
filters [15].

For an algorithm designed to work in a wide range of situations, however,
the basic assumption that underpins these approaches is far too restrictive. Real-
world textures are rarely homogeneous enough to make them amenable to such
techniques, even if one limits oneself to built-up environments. However, even
in such an environment, regularities exist and can be exploited. For example,
most urban areas contain structures with very similar, even if not homogeneous,
texture contents such as brick walls, windows, and regularly-shaped pavements.
Therefore, we propose to train classifiers from generic outdoor textures of build-
ings to estimate normal cues for a generic urban wide-baseline stereo algorithm.
This is generic in the sense that it does not require any information about the
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current, scene apart from the fact that it contains building-like structures. To the
best of our knowledge, this is the first learning-based approach to surface nor-
mal inference. It is in the same spirit as approaches that use learning for depth
estimation from single images [16] but is designed for true metric reconstruction.

Normal estimation from a single image is a difficult and potentially ill-posed
problem. To achieve as much robustness as possible to varying textures, noise,
and rapid depth changes, we first train classifiers to handle simple sub-problems,
such as deciding whether the surface normal orientation is left or right, up or
down and frontal or not. The results are then used to constrain a global recon-
struction algorithm. In practice, even though the output of the classifiers are
only coarse surface normal estimates, they are sufficient to yield much improved
reconstructions.
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Fig. 1. DAISY descriptor. It is computed by first separating the gradients into
different layers according to their orientation and then using Gaussian convolutions to
perform the aggregation over different sized windows efficiently.

3 Constraining the Normals

As discussed above, in textured areas, spatial frequencies change with surface
orientation. There are many ways to capture this effect, using for example the
Fourier or Wavelet transforms [9,14]. In this work, we rely on gradient his-
tograms, which are also sensitive to orientation changes and can be computed
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locally and fast at every pixel to form DAISY descriptors [3]. We made this
choice because DAISY has also proved very good at matching points across
widely separated images, and we can also use it to establish correspondences in
the non-occluded areas.

DAISY is a dense descriptor composed of concatenated gradient histograms.
They are computed by first separating gradients into different layers and aggre-
gating gradient magnitudes at different orientations, as shown in Figure 1. Once
the aggregation is done, a histogram with a certain aggregation window size is
computed by reading the values of the pixels from the appropriate Gaussian
convolved layers.

Fig. 2. Feature extraction grid. We compute features around the patch at dis-
cretized locations. (a) Grid locations. (b) Each circle represents a possible window
size for histogram computation. (c) Possible aggregation sizes for a grid point near the
edge are shown. Larger window sizes are not allowed at grid points near the edge in
order to limit the patch size.

‘We use this same procedure to compute our features to estimate normal cues.
To be specific, our features are the values of the bins of the gradient histograms
computed as explained above on a dense grid as shown in Figure 2 to pass a
richer set of possibilities to the classifier.

Given the features computed at points where the surface normals are known,
we train a binary classifier with the Adaboost [17] learning procedure using two
types of weak classifiers. The first weak classifier type is a simple decision rule
of the form

q{lﬂh>h (1)

—1 otherwise ’

where f, is the p!* feature and f, is the ¢! feature. Both of them are chosen
randomly and the comparison direction is optimized over the training data.

The second weak classifier type is a level-2 decision tree structured as
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Fig. 3. Training Textures. Some of the textures used for training normal classifiers.

lif fp > 0p & fq > 04
¢ = lif fp <op & fqg > 04, (2)
—1 otherwise

where the decision thresholds ¢’s and the comparison directions are again
optimized over the training data.

During the training phase, we randomly generate and train 1000 weak clas-
sifiers of both types at every iteration of the Adaboost procedure and then pick
the one that minimizes the weighted error of the samples. The learned strong
classifier is then of the form

K
C= Zwkck, (3)
k=1

where K is the number of weak classifiers and wy, are the weights associated
with them.

Training is performed on a set of generic building textures, some of which are
shown in Fig. 3. We extract patches from these textures and warp them according
to a surface normal. For example, in order to train the left-right classifier, we
used patches warped to the left and right of the plane parallel to the fronto-
parallel normal. Once the warping is done, these patches are used as positive
and negative examples for training.

We compute features from 8-bin gradient histograms within a 60 pixel radius
of the patch center. We use 4 aggregation windows of sizes 15, 30, 45 and 60.
Since we enforce an upper limit to the maximum area where a feature can be
computed, the size of the feature windows becomes smaller as we approach the
patch boundary.

As said earlier, we train 3 such classifiers for the normal cue estimation:
left-right (Ciy), up-down (Cyq), and frontal-non-frontal (Cy,r), using the same
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(a)

Fig. 4. Classification of a sphere. We test the trained classifiers on an image of a
checkerboard pattern overlayed on a sphere (a). We show the score response of each
classifier. (b) Result of the left-right classifier. (c) Result of the up-down classifier. (d)
Result of the frontal-nonfrontal classifier.

feature space. After training, we evaluate the performance of the classifiers on
an image of a checkerboard pattern overlaid on a sphere, shown in Figure 4.

We also show the performance of the classifier on a real scene, for which
we know the true normal values, in Figure 5. All the pixels that are correctly
classified are marked with a color and we use different colors to distinguish
among correct classes. If the classifier is uncertain, i.e. gives a low response to
either classes, we do not mark the pixel.

]

(a)

Fig. 5. Normal Estimation Performance. We show the performance of the normal
estimation on an example image. We mark the pixel with a color if it is correctly
classified. (a) shows the correctly classified left(blue) and right(red) pixels. (b) shows
the correctly classified up(blue) and down(red) pixels. (c) shows the correctly classified
frontal(red) and non-frontal(blue) pixels.

4 Optimization

In this section, we explain how we combine the output of the classifiers and the
depth estimates computed from the stereo algorithm. We formulate the opti-
mization problem as the minimization of an energy function E, which takes into
account both the constraints that derive from knowing some depth values, and
those provided by our normal estimation algorithm. They are expressed in terms
of two energy terms, Ep and Ey respectively, and we take E to be:
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E(d) = Ep(d) + En(d) (4)
with
Ep(d) = Vi;(dij —di;)?, (5)
i,5€1

where V; ; is an indicator function defined as

- _J1it gi,j is provided
Vig = {O otherwise (6)

and

d'+17' 7d‘_17' —x
En(d) = Z wij(% _ dm')2+
ijel
d, . _ d . . ) (7)
y 1,5+1 4,j—1 Y \2
3 up, sttt gy
i,5€l
with Ej,j and Egj representing the estimated x and y-gradient of the depth
map at pixel (7, j), and wy;, wi; their relative weights.
The depth estimate d for the scene will then be computed as

d = argmin F(d), (8)

d

by imposing SE()
ad % ©)

We formulate this problem as a sparse linear system Ad = b and solve it
using Cholesky factorization as described in [18].

The depth gradients in Equation 7 are computed from the normal cues at each
pixel location by combining the results of our normal classifiers. In addition to
this cue, these gradients can also be computed imposing smoothness and, where
available, normal estimates obtained from stereo data. The gradient estimates
used in the optimization will then be composed by a weighted average of such
terms:

o ASAG + AN=,5) R0 ) (10)

o Asd¥ + )\Ny(aj)dzjlv(i,j)

Y AsH A
The A terms represent the influence of the different factors in the computation

of the estimated gradients, and they are also used to compute the relative weights
of the gradients in the energy function E(d) as:

(11)

w; ;= As + An=(ij), (12)
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wij = As + Avu(ij)- (13)

The value of Ag is kept constant in all the experiments shown in the paper and
the values of Ay=(; j) and Anu(; j) are proportional to the score of the classifiers.
Moreover, the values of d§ and d% indicate the smoothness component and are,
therefore, set to zero. Finally the terms dfv(i’j) and di’\,(i’j) are obtained from the
normal estimation process. The Frontal-Non-frontal classifier, C'y,, ¢, works as a
detector about the degree of the deviation from being frontal which is equivalent
to the slant of the patch. We coarsely set the value of the slant ¢ by comparing

the classifier response to an uncertainty threshold, T, +:

0if ‘Cfnf| < Tty
045 = 0if Cfnf > Tf”f . (14)
7T/4 if Cfnf < *Tfnf

In uncertain cases, such as when |Cp,r| < Trnr, we assign 0 to the slant and
do no worse than smoothness.

The other two classifiers Cy,. and C,, 4 provide information about the tilt angle
7 and we similarly set it in a coarse way by comparing the classifier responses
to uncertainty thresholds, T;, and T4:

0if |Cl7"| <Ty & |Cud‘ < Ty
37T/4 if Cy > T, & Cud > Tua
—37T/4 ifC, >T, &Cu<—-Tu
7T/4 if Oy < =Ty & Cug > Tua
Ti,j = —7T/4 if Cp < =T & Cug < —Tug - (15)
7T/2 if |Cl7-| <T & Cuq > Tyuq
77T/2 if |Clr| < 1y, & Cud < —Tya
0if C), < T} & |Cud‘ < Tya
mif Cp > T, & |Cud‘ < Thua

This is a coarse 1-out-of-8 possible direction selection, but nonetheless gives
enough information to improve the quality of the results. Again, in an uncertain
situation, we set the tilt angle 7 to 0. This procedure of normal selection lets us
use normal cues where our classifier successfully retrieves them, and falls back
to simple smoothness when it fails.

The relation between the slant-tilt representation and the normal direction
is given as

sin(o; ;) * cos(Ti )
Nij; = SZ"I’L(O',L'J') * SZ"I’L(TZ‘J) (16)
cos(o; ;)

Once the normal, n;;, is decided for a pixel, we compute implied depth
gradient for this pixel using:
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1

anK_l 0

. - 0
dN(z',j) = d(ZaJ) i—1 ) (17)

nig K

0

nl Kt |1

. 0
d?jv(i’j) =d(i,5) ST (18)

Since this formulation depends on a depth estimate, d(i, j), we first solve the
system using smoothness only and then initialize the gradient depth estimates
from the smooth solution. In practice, we run the optimization algorithm for
a few iterations and re-estimate dfv(i, 7 and dN(i’j) at every iteration from the
current solution.

5 Experiments

To evaluate the effectiveness of including the surface normals in the reconstruc-
tion algorithm, we first performed synthetic experiments by introducing artificial
occlusions in scenes for which high quality laser scans are available [19]. We com-
pared our results against standard smoothness constraints, which is intrinsically
not suitable to recover piecewise smooth surfaces.

(a) (b) ()

Fig. 6. Zoom-In on Fountain image. A zoomed in version of the recovered lower-
left occlusion in Fig. 9 (a) The original depth map. (b) Recovered depth map with
smoothness. (c) Recovered depth map using normal constraints.

In Figure 9 and Figure 10, we artificially occluded the black rectangular
regions, treated the depths outside them as being known, and ran our regular-
ization algorithm with and without surface normal constraints. We display the
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(d)

Fig. 7. Occlusion recovery with stereo . (a-b) Input images. (¢) Ground truth
depth map. (d) Output of the stereo algorithm. (e) Depth map recovered using only
smoothness constraints. (f) Depth map recovered using normal cue based constraints

(a) (c) (d)

Fig. 8. Reconstruction Zoom-In. In this experiment, we occluded some part of a
ground truth depth map and tried to recover it using only smoothness and normals.
(a) shows the original image and (b) is the estimated score for the left-right classifier,
with blue indicating left and red indicating right. (c) is the original depth map with a
red rectangle showing the occluded region. The result of using smoothness is shown in
(d), and the result of using the constraints of (b) is shown in (e). It is evident from
this figure that even using this coarse normal cue is enough to generate a better depth
map than simple smoothness.
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Fig. 9. Occlusion Recovery for the Fountain dataset. (a) Original image (b)
Ground truth depth map with occluded area borders shown in black. (¢) Depth map
recovered by imposing smoothness. (d) Depth map recovered by imposing surface
normal based regularization. (e) Percentage of pixels within a certain distance from
the ground truth. (f) True and recovered depth along the red line in the lowermost
occluded rectangle.

recovered depth maps and the error curves for both approaches. Error curves
are computed in occluded regions only, and they show the percentage of pix-
els whose depth estimates are within a given threshold, expressed as a fraction
of scene’s depth range. Inspecting the estimated depths along scan lines in oc-
cluded regions, such as the ones of Figures 9(f) and 10(f) shows that our normal
cues definitely bring the results closer to the ground truth than the smoothness
constraints.

In Figures 6 and 8, we show close-up views of regions where smoothness fails
to recover the actual structure and estimated surface normals do better.

Next, in Figure 11, we used a wide baseline stereo algorithm [3] to estimate
depth and occlusion maps and fill in the occlusions using either smoothness or
surface-normal based regularization for different image pairs. Deviations from
the ground truth are also plotted. Smoothness constraints are indiscriminately
smooth in every direction while the surface-normals are better behaved. As can
be noticed, the positive effects of our approach are more evident when the base-
line is wider, and therefore the occlusions larger, since it does not affect pixels
for which the depth has been retrieved through the stereo algorithm. In Figure 7
we perform the same experiment on a different image pair.
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Fig. 10. Occlusion Recovery for the HerzJesu dataset. (a) Original image (b)
Ground truth depth map with occluded area borders shown in black. (¢) Depth map
recovered by imposing smoothness. (d) Depth map recovered by imposing surface
normal based regularization. (e) Percentage of pixels within a certain distance from
the ground truth. (f) True and recovered depth along the red line in the lowermost
occluded rectangle.

6 Conclusion

In this paper we proposed a solution to recover depth in large areas which are oc-
cluded due to the intrinsic nature of wide baseline stereo. Our approach depends
on estimating coarse normal cues using an Adaboost based binary classifier. Al-
though our normal estimators do not extend to any generic texture, they work
well for common building textures. We showed that using normal cues improves
the quality of the recovered depth maps quantitatively and qualitatively, espe-
cially if the scene contains non-smooth, piecewise-smooth structures.

One possible shortcoming of our method is its two step approach: first com-
puting depth and occlusion estimates and then filling in the occlusions. We
believe that a joint solution of the stereo and normal cue steps should improve
the overall performance as both steps are highly correlated and we will pursue
this idea in future.

References

1. Brown, M., Burschka, D., Hager, G.: Advances in Computational Stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2003) 993-1008

2. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms. Computer Vision and Image Understanding
47 (2002) 7-42



13

Large Occlusion Completion Using Normal Maps

o 80 e 80 o 80
T ] K]
g Z ; — E ]
8 60 8 60 8 60
5 1 5
© 50 S s © s
0 / nomalmap —— 40 normalimap —— 0 normalmap ——
2 smoothness 2 smoothness 2 smoothness
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Error Tolerance % Error Tolerance % Error Tolerance %
1.4 1.4 1.4
groundtruth groundtruth groundtruth
2 lf normalmap 112 normalmap 1.2 normalmap
21 smoothness [ smoothness 21 smoothness
1" 1 1"
£ 108 X £ 108 1 < 108
g g g
8 g 8
s 106 $ S 106 / S 108
104 104 ¥ 104
102 102 102
10 10 10

280 300 320

x-axis

340 360 380 260 280 300 320

x-axis

340 360 380 260 280 300 320

x-axis

340 360 380

Fig.11. Results on stereo with normal cue regularization. We try to recover
the depth map given in the first row using the first image and other images one
by one. Second Row. Estimated depth and occlusion maps using the wide baseline
stereo algorithm given in [3]. Third Row. Depth maps recovered using smoothness
constraint. Fourth Row. Depth maps recovered using the normal cue based constraint.
Fifth Row. Error curves of two approaches expressed as a percentage of scene’s depth
range. Sixth Row. True and recovered depth along the red line in the third row.



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Engin Tola, Andrea Fossati, Christoph Strecha, Pascal Fua

Tola, E., Lepetit, V., Fua, P.: A Fast Local Descriptor for Dense Matching. In:
Conference on Computer Vision and Pattern Recognition. (2008)

Deng, Y., Yang, Q., Lin, X., Tang, X.: A Symmetric Patch-Based Correspondence
Model for Occlusion Handling. In: International Conference on Computer Vision.
(2005) 1316-1322

Sun, J., Li, Y., Kang, S., Shum, H.Y.: Symmetric Stereo Matching for Occlusion
Handling. In: Conference on Computer Vision and Pattern Recognition. (2005)
399-406

Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic Inpainting: Joint Color and
Depth Completion from Stereo Images. In: Conference on Computer Vision and
Pattern Recognition. (2008)

Klaus, A., Sormann, M., Karner, K.: Segment-Based Stereo Matching Using Belief
Propagation and a Self-Adapting Dissimilarity Measure. In: International Confer-
ence on Pattern Recognition. (2006) 15-18

Torres-Méndez, L., Dudek, G.: Reconstruction of 3D Models from Intensity Images
and Partial Depth. In: American Association for Artificial Intelligence Conference.
(2004) 476-481

Bajcsy, R., Lieberman, L.: Texture Gradient as a Depth Cue. Computer Graphics
and Image Processing 5 (1976) 52-67

Aloimonos, Y., Swain, M.: Shape from Texture. In: International Joint Conference
on Artificial Intelligence. (1985) 926-931

Malik, J., Rosenholtz, R.: Computing Local Surface Orientation and Shape from
Texture Forcurved Surfaces. Computer Vision and Image Understanding 23 (1997)
149-168

Garding, J.: Shape from Texture for Smooth Curved Surfaces. In: European
Conference on Computer Vision. (1992) 630-638

Lobay, A., Forsyth, D.: Shape from Texture Without Boundaries. Computer Vision
and Image Understanding 67 (2006) 71-91

Clerc, M., Mallat, S.: Shape from Texture Through Deformation. International
Conference on Computer Vision 1 (1999) 405

Super, B., Bovik, A.: Shape from Texture Using Local Spectral Moments. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 333-343
Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3D Scene Structure from a Single
Still Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 31
(2009) 824-840

Freund, Y., Schapire, R.: A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. In: European Conference on Computational
Learning Theory. (1995) 23-37

Davis, T.A.: Direct Methods for Sparse Linear Systems. STAM, Philadelphia (2006)
Part of the STAM Book Series on Fundamentals of Algorithms.

Strecha, C.: Multi-view evaluation - http://cvlab.epfl.ch/data (2008)



