Extents of Reaction and Mass Transfer in the Analysis of
Chemical Reaction Systems

THESE N° 5028 (2011)

PRESENTEE LE 27 MAI 2011
A LA FACULTE SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE D'AUTOMATIQUE
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Nirav Pravinbhai BHATT

acceptée sur proposition du jury:

Prof. R. Longchamp, président du jury
Prof. D. Bonvin, Dr M. Amrhein, directeurs de thése
Prof. D. Dochain, rapporteur
Prof. K. Hungerbuhler, rapporteur
Prof. W. Marquardt, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2011






=T IO T 0

- ~r_ I ~ .

faam st fa=rer faqgmefa am=@r |

TTACATEAATIIT STgH da: 9 |
-fEara=er, 92 waw

Knowledge gives humility, from humility comes worthiness, from worthiness one gets
wealth, from wealth (one does) righteous deeds, from that (comes) joy.
Hitopadesha, 12th CE







Acknowledgements

The last five and half years of research was a journey where I have been accompanied
and supported by many people. I would like to take this opportunity to express my
gratitude for all of them for accompanying me.

I am deeply grateful to my thesis director Prof. Dominique Bonvin and co-director
Dr. Michael Amrhein for providing me with their support, perspective and mentorship
during the course of the research. Prof. Bonvin provided his perspective, constructive
comments, and time throughout all the stages of the dissertation to achieve the stated
objectives. The unbeatable enthusiasm of Dr. Amrhein in research was contagious and
motivational for me. His truly engineer intuition has made him as a constant oasis of
ideas and passions in research, which exceptionally enrich my growth as a researcher. I
appreciate that my thesis directors always found time to listen to my questions, even
the little ones, and to give their advice. Especially, I am thankful to my thesis directors
for technical and editorial advice during the preparation and editing of this dissertation.

My sincere thanks to Prof. Bala Srinivasan for his valuable insights and inputs in
the development of several concepts of the dissertation. I would also like to thank
Dr. Philippe Miilhaupt for taking time and explaining me the concepts in the analysis
of nonlinear systems. I warmly thank the president of the defense jury Prof. Roland
Longchamp, and the external jury members Prof. Wolfgang Marquardt, Prof. Denis
Dochain, and Prof. Konard Hungerbiihler for reviewing the dissertation and providing
many valuable comments.

I am thankful to all my past and current colleagues at the Laboratoire d’ Automatique
for such an enjoyable working atmosphere. I would like to thank Francine, Homeira,
Ruth, Sara and Sol for their assistance in administrative matters, and Philippe, Francis
and Christophe for their assistance in IT.

Throughout my time at EPFL, I had opportunities to interact with interesting people.
Thanks are due to Paman and Saurabh for being there, sharing lunch and tea (coffee)
breaks, and stimulating discussions on various spheres of life. Many thanks to Aristeidis,
Ben, Mercedes, Yadira, and Sandeep for their engagement in various activities outside
the lab.

I extend my thanks to Prof. Shankar Narasimhan at II'T-Madras for encouraging me
to pursue the doctoral studies. I am especially grateful to Nitin Jani, Pankaj Raja, and
my father for providing me seed money to start life in Switzerland.

Last, the financial support of Swiss National Science Foundation through project
number 200021-119853 is gratefully acknowledged.

iii






Abstract

Monitoring, control and optimization of chemical reaction systems often requires in-
depth analysis of the underlying reaction mechanisms. This dissertation investigates
appropriate tools that facilitate the analysis of homogeneous and gas-liquid reaction
systems. The main contribution is a novel procedure for computing the extents of
reaction and the extents of mass transfer for reaction systems with inlet and outlet
streams. These concepts can help reduce the dimension of reaction models and are
useful in the identification of reaction kinetics based on concentrations and spectral
data.

Extents of reaction, mass transfer and flow

The concept of extents of reaction is well established for single-phase closed systems such
as batch homogeneous reactors. However, it is difficult to compute the extent of reaction
for open and heterogeneous reactors due to material exchange with the surroundings
via inlet and outlet streams and between phases via mass transfer.

For open homogeneous reaction systems involving S species, R independent reactions,
p independent inlet streams and one outlet stream, this dissertation proposes a linear
transformation of the number of moles vector (S states) into four distinct parts, namely,
the extents of reaction, the extents of inlet, the extent of outlet and the invariants, using
only the stoichiometry, the inlet composition and the initial conditions.

The open gas-liquid reaction systems considered in this thesis involve S, species, p,
independent inlets and one outlet in the gas phase, S; species, R independent reactions,
p; independent inlets and one outlet in the liquid phase. In addition, there are p,,
mass-transfer fluxes between the two phases. For these systems, various extents are
developed successively for the liquid and gas phases. Using only the stoichiometry,
the inlet composition, the initial conditions, and knowledge of the species transferring
between phases, a linear transformation of the numbers of moles (S; states) in the
liquid into five distinct parts is proposed, namely, the extents of reaction, the extents of
mass transfer, the extents of liquid inlet, the extent of liquid outlet and the invariants.
Similarly, a transformation of the numbers of moles (5, states) in the gas phase into
four distinct parts is proposed to generate the extents of mass transfer, the extents of
gas inlet, the extent of gas outlet and the invariants.

Minimal state representation and state reconstruction

A state representation is minimal if (i) it can be transformed into variant states that
evolve with time and invariants that are constant with time (representation condition),
and (ii) the transformed model is minimal (minimality condition).

Since the linear transformation transforms the numbers of moles into variant states
(the extents) and invariant states, it satisfies the representation condition. For homo-
geneous reaction systems, the linearly transformed model is of the order (R + p + 1),
while the order of the linearly transformed model for open gas-liquid reaction systems
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is (R+ pi + py + 2pm + 2). Using the concept of accessibility of nonlinear systems, the
conditions under which the transformed models are minimal state representations are
derived for both types of reaction systems.

Since it is often not possible in practice to measure the concentrations of all the
species, the unmeasured concentrations have to be reconstructed from available mea-
surements. Using the measured flowrates and the proposed transformations, it is pos-
sible to reconstruct the unmeasured concentrations without knowledge of the reaction
and mass-transfer rate expressions. Furthermore, it is shown that the minimal number
of measured concentrations is R for homogeneous reactors and (R + p,,) for gas-liquid
reactors.

Use of concentrations and spectral data

The identification of reaction kinetics can be done incrementally or globally from ex-
perimental data. Using measured concentrations and spectral data with knowledge of
pure-component spectra, incremental identification proceeds in two steps: (i) computa-
tion of the extents of reaction and mass transfer from measured data, and (ii) estimation
of the parameters of the individual reaction and mass-transfer rates from the computed
extents.

In the first step, the linear transformation is applied to compute the extents of reac-
tion, mass transfer and flow directly from measured concentrations without knowledge
of the reaction and mass-transfer rate expressions. The transformation can be extended
to measured spectral data, provided the pure-component spectra are known. An ap-
proach is developed for the case where concentrations are only available for a subset of
the reacting species. In the second step, the unknown rates can be identified individ-
ually for each reaction or each mass transfer from the corresponding individual extent
using the integral method. For the case of measured concentrations corrupted with zero-
mean Gaussian noise, it is shown that the transformation gives unbiased estimates of
the extents.

For the case of spectral data with unknown pure-component spectra, the contributions
of the reactions and mass transfers can be computed by removing the contributions
of the inlet flows and the initial conditions. This leads to the reaction- and mass-
transfer-variant (RMV) form of spectral data, from which the reaction and mass-transfer
rate parameters can be estimated simultaneously. However, if the RMV-form is rank
deficient, the rank must be augmented before applying factor-analytical methods. In
such cases, it is shown that, for example, gas consumption data can be used for rank
augmentation.

The concepts and tools are illustrated using simulated data. Several special reactors
such as batch, semi-batch and continuous stirred-tank reactors are considered.

Key words:
Extents of reaction; Extents of mass transfer; Minimal state representation; Identi-

fication; Reaction kinetics; Transport phenomena; Homogeneous reactors; Gas-liquid
reactors.



Résumé

Le suivi, la commande, et 'optimisation des systémes réactionnels chimiques nécessi-
tent généralement une analyse approfondie des mécanismes réactionnels sous-jacents.
Cette dissertation traite du développement d’outils appropriés, qui facilitent I"analyse
des systémes réactionnels homogénes et gaz-liquide. La contribution principale réside
dans le développement d’'une procédure nouvelle, pour le calcul des avancements des
réactions et des avancements des transferts de masse pour les réacteurs continus. Ces
concepts peuvent aider a réduire la dimension des modéles réactionnels et sont utiles
pour l'identification des cinétiques réactionnelles sur la base de mesures de concentra-
tions et de mesures spectrales.

Avancements des réactions, transfert de masse, et débit entrée

Le concept d’avancement de réaction est bien établi pour les systémes fermés, par ex-
emple pour les réacteurs fermés uniformes. Cependant, il est difficile d’étendre ces
concepts aux réacteurs continus et/ou hétérogénes, a cause des échanges de matiére
avec 'environnement - a travers débits d’entrée et de sortie - et entre les phases, par
transfert de masse.

Pour des systémes réactionnels homogénes impliquant S espéces, R réactions indépen-
dantes, p entrées indépendantes, et une sortie, cette dissertation propose une transfor-
mation linéaire du vecteur composé du nombre de moles en quatre parties distinctes:
(1) les avancements de réaction, (2) les avancements d’entrée, (3) les avancements de
sortie, et (4) les invariants, en utilisant seulement la stoechiometrie, la composition de
I’alimentation, et les condition initiales.

Les systémes réactionnels gaz-liquide considérés impliquent S, espéces, p, entrées
indépendants, et une sortie gazeuse, S; espéces, R réactions indépendantes, p, entées
indépendantes, et une sortie liquide. De plus, p,, flux de transfert de masse entre les
deux phases sont considerés. Pour ces systémes, le concept des différents avancements
est développé successivement pour les phases liquide et gazeuse. Une transformation
linéaire du vecteur composé du nombre de moles (.S; états) dans la phase liquide en cing
parties est proposée, pour obtenir: (1) les avancements des réactions, (2) les avance-
ments des transferts de masse, (3) les avancements d’entrée liquide, (4) ’avancement de
sortie, et (5) les invariants. Cette transformation nécessite de l'information concernant
la steechiometrie, la composition d’alimentation, les conditions initiales, et les espéces
qui sont transferées & l'interface entre les deux phases. De facon similaire, une trans-
formation du vecteur composé du nombre de moles (S, états) dans la phase gazeuse
en quatre parties est proposée, pour obtenir: (1) les avancements des transferts de
masse, (2) les avancements des alimentations gaz, (3) 'avancement de sortie, et (4) les
invariants.

vii
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Représentation d’état minimale et reconstruction d’état

Une représentation d’état est dite minimale si (i) on peut trouver une transformation
qui permet de séparer les états variant avec le temps des états constants (condition de
représentation), et (ii) le modéle transformé est minimal (condition de minimalité).

Comme les transformations linéaires discuteés ci-dessus séparent les états constants
des états variant avec le temps, elles vérifient par construction la condition de représenta-
tion (i). Pour les systémes réactionnels homogénes, les modéle linéairement transformé
est d’ordre (R4 p-+1). De la méme fagon, 'ordre des modéle linéairement transformés
est (R + p; + py + 2p, + 2) pour le cas des réateurs hétérogenes. Les conditions pour
lesquelles les modéles transformés vérifient la condition de minimalité (ii) sont établies
en utilisant le concept d’accessibilité des systémes nonlinéaires.

Puisqu’il n’est pas souvent possible de mesurer les concentrations de toutes les es-
péces, il est nécessaire de reconstruire les concentrations non mesurées & partir des
mesures disponibles. De plus, les cinétiques réactionnelles et les transferts de masse
sont souvent inconnus. Les transformations développés séparent les contributions des
réactions, des transferts de masse, des éntrées, et de la sortie. Cette séparation effec-
tuée, on propose une approche de reconstruction des concentrations non mesurés en
utilisant les débits d’alimentation et les transformations. De plus, on démontre que le
nombre de concentrations minimales nécessaires est R pour les réacteurs homogénes et
(R 4+ p) pour les réacteurs gaz-liquide.

Utilisation des mesures de concentration et spectrales

Il est possible d’identifier les cinétiques réactionnelles incrémentalement (et individu-
ellement) ou globalement (et simultanément) & partir de données expérimentales. En
utilisant des mesures de concentration et spectrales avec les informations des spectres
des composants purs, l'identification incrémentale peut étre réalisée en deux étapes:
(i) le calcul des avancements des réactions et des transferts de masse sur la base des
mesures, et (ii) 'estimation des paramétres des vitesses des réactions et des transfertsde
masse sur la base des avancements ainsi calculés.

Pendant (i), la transformation linéaire est appliquée sans il soit nécessaire d’utiliser
des informations sur les expressions des vitesses des réaction et des transferts de masse.
On développe également une approche pour le cas spécial dans lequel les concentrations
ne sont disponibles que pour une partie des espéces considérées. La transformation
linéaire est aussi appliquée a des données spectrales si les spectres des composants
purs sont connus. Ensuite, il est possible I'identifier les vitesses inconnus pour chaque
réaction ou chaque transfert de masse, a partir de ’avancement individuel correspon-
dant, par la méthode intégrale. Pour le cas des concentrations corrompues par du bruit
Gaussien de moyenne nulle, on démontre que la transformation donne des estimations
des avancements sans biais.

Quand les spectres des composants purs sont inconnus, on calcule les contributions des
réactions et des transferts de masse en retirant les contributions des débits d’éntrée et des
conditions initiales. Cette nouvelle forme de données spectrales (forme RMV) permet
d’estimer simultanément les paramétres des vitesses des réactions et des transferts de
masse. Cependant, si la forme-RMV est de rang déficient, on doit augmenter ce rang
avant d’appliquer les méthodes du type “factor analysis” (FA). Dans de tels cas, on
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démontre que les données de consommation du gaz peuvent étre utilisées pour effectuer
cette augmentation du rang.

Les différents concepts, les outils developpés et leur mise en ceuvre sont illustrés en
simulation. Plusieurs réacteurs, tels que des réacteurs fermeés uniformes, semi-fermés
uniformes, et aussi des réacteurs parfaitement agités continus sont considérés.

Mots-clés:

Avancements de réaction; Avancements de transfert de masse; Représentation d’état
minimale; Identification; Lois cinétiques; Phénoméne de transfert; Réacteurs ho-
mogénes; Réacteurs gaz-liquide.
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Nomenclature

Accents

() extended inlets

(i) quantities corresponding to mass transfers in the gas phase

(t) computed or estimated quantities

(~) continuous approximation of discrete low-resolution measurements in Chap-
ters 5 and 6

Calligraphic symbols

P vector of partial pressure (S-dim.)

(@) set

N Gaussian distribution

N, matrix of numbers of moles (H x S;)
P pressure or partial pressure

P, total pressure

) set of species

U set of vector-valued function (v-dim.)
w weighting matrix (H x H)

W(t) solution of Eq. (4.1) at time t

Greek symbols

B random vector

3. matrix of measurement noise (S x 5)

O, vector of variables expressing the difference between the extents of mass trans-
fer in the gas and liquid phases (p,,-dim.)

7 non-zero arbitrary real constant

A outlet variant or discounting variable

1 mean

v stoichiometric coefficient

Xv



xvi Nomenclature

Wy, vector of gas consumption data (H-dim.)

p density

o standard deviation

0., rate parameter vector (q—dim.)

0, rate parameter vector (I-dim.)

v the number of inputs in Eq. (4.1)

A vector of discounting variable (H-dim.)

Q,, matrix of gas consumption data (H X p,,)

& batch extent of reaction or molar mass-transfer flux
Em.j overall extent of the jth mass transfer

&ri overall extent of the ith reaction

13 vector of extents of reaction (R-dim.)

'3 vector of variant states in Eq. (4.3) (¢g-dim.)
&, vector of invariant states in Eq. (4.4) ((S — ¢)-dim.)
¢ mass-transfer rate

¢ mass-transfer vector (p,,-dim.)

Operators

()F Moore-Penrose pseudo-inverse of (-)

(+): ith row of (-)

A(Y) accessibility distribution of (-)

diag (-)  diagonalize (-)

E[] expectation of [-]

V() spatial derivative of ()

rank () rank of (-)

var|:| variance of [-]

F(-), g(+) function of (-)

o(+) order of magnitude (-)

Roman symbols

A measured spectra matrix (H x L)

a measured spectral vector for L channels (L-dim.)

ag vector of initial spectrum (L-dim.)

A, matrix of liquid-inlet spectra (p,, x L)

A, matrix of mass-transfer spectra (p,, x L)

A, volume-weighted spectral matrix (H x L)

a, volume-weighted spectral vector (L-dim.)

N, extended stoichiometric matrix (S, X (R + p,,))

c vector of measured concentrations (S-dim.)

wh vector of weight fractions of the kth inlet stream (S-dim.)
W.,, inlet weight-fraction matrix (S x p)

d contribution of reactions to the numbers of moles produced or consumed by

the reactions in (S-dim.)



Nomenclature

E

-
3

T e N R
3

(e}

AN

<.

pure-component spectra matrix (S, x L)

vector of measurement noise (S-dim.)

vector fields

vector of reaction fluxes (S-dim.)

vector of reaction and mass-transfer fluxes ((S; + S,)-dim.)
computed extent of the jth mass transfer (H-dim.)
computed extent of the ith reaction (H-dim.)

spectral matrix in RMV-form (H x L)

Jacobian matrix in Chapter 4

projection matrix (S X p)

projection matrix in the linear transformation (S x p)
pure component molecular weight matrix (S x S)
stoichiometric matrix (R x 5)

vector of number of moles (S-dim.)

vector of initial numbers of moles (S-dim.)

extended stoichiometric matrix (S, X (R + pm,))

vector of appropriate dimension with all elements being 1
null space of N (S x (S — R))

projection matrix (S x (S — R — p))

row of Q (S-dim.)

projection matrix in the linear transformation (S x (S — R — p))
projection vector in the linear transformation (S-dim.)
vector of inlet volumetric flowrates (p-dim.)

vector of reaction rates (R-dim.)

projection matrix (S x R)

projection in the linear transformation (S x R)

vector of inlet mass flowrates (p-dim.)

= diag (Vi(to), Vi(t1), ..., Vi(tn)), diagonal matrix of V; (H x H)
molecular weight matrix (S x p)

state vector in Eq. (4.1)

inlet-composition matrix (S X p)

mass—transfer matrix for the f phase (Sy X p,,)

vector of the extents or variants

matrix of extents of inlet (H X p;)

matrix of extents of reaction (H x R)

matrix of extents of mass transfer (H X p,,)

matrix of extents of reaction and mass transfer (H x R + p,,)
state vector in two-way decomposition

state vector in three-way decomposition

specific interfacial area

function in Section 3.1.1

time instant, h =0,1,..., H

Henry constant

rate constant of the ith reaction

mass transfer coefficient of the jth mass transfer

Xvil



xviii Nomenclature
K, overall mass transfer coefficient

m mass of reaction mixture

D number of independent inlets

Da the number of absorbing transferring species

q minimal order

Qo outlet volumetric flowrate

R number of independent reactions

R, number of slow reactions

S number of species

t time

[T outlet mass flowrate

Vi total reactor volume

Y mole fraction in the gas bulk

J objective function

Subscripts

a related to S, available species

c related to measurement noise

f related to f phase

g related to the gas phase

gl transferring from the gas to the liquid

i running index for the reactions

n related to inlet streams

w related to invariants

j running index for the mass transfers

k running index for the inlets

l related to the liquid phase

lg transferring from the liquid to the gas

m related to the mass transfers

my related to the extents of mass transfer computed from the gas phase
my related to the extents of mass transfer computed from the liquid phase
na related to non-reacting but absorbing reacting species
out related to outlet streams

r related to reactions

ra related to absorbing reacting species
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f
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Chapter 1

Introduction

1.1 Motivation

Chemical reactions are present in various spheres of our lives. They occur in many
fields such as in basic science, chemistry and biology, and in applied science, chemical
engineering and biotechnology. A large number of industrial processes in chemical engi-
neering and biotechnology depend on (bio-)chemical reactions to convert raw materials
into desired products that include polymers, organic chemicals, vitamins, vaccines and
drugs. This dissertation deals with the chemical reactions taking place in the latter
fields, i.e. chemical and biotechnological industries.

In the wake of rapidly changing market conditions and stringent environmental spec-
ifications, chemical and biotechnological industries need to invent and implement new
processes in a short time to remain competitive. Consequently, one important goal of
these industries is rapid process development with flexibility and selectivity in produc-
tion, including quality control, safety and environmental protection. Chemical reaction
systems are essential parts of industrial processes and involve chemical reactions, mate-
rial exchange via inlets, outlets and mass transfer, and energy exchange via heating and
cooling. Reliable process models are used to minimize the production of undesirable
products and pollutants, increase efficiency, and improve quality through model-based
monitoring, control, and optimization.

Process models of chemical reaction systems are typically first-principles models that
describe the state evolution (the concentrations, the temperature, the volume) by means
of conservation equations of differential nature (molar balances, heat balances, continu-
ity equation) and constitutive equations of algebraic nature (e.g. equilibrium relation-
ships and rate expressions). They usually include information regarding the underlying
reactions (e.g. stoichiometries, heats of reaction, reaction kinetics), the mass transfers
between phases, and the operational mode of the reactor (e.g. the initial conditions,
external exchange terms, operational constraints). A reliable description of reaction
kinetics and transport processes (such as mass transfer) poses the main challenge in
building first-principles models for chemical reaction systems.

In practice, a reliable description of these phenomena is constructed from exper-
imental data obtained in the laboratory or collected during production as shown in
Figure 1.1. A kinetic model used in production is typically developed in two steps as
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shown in Figure 1.1. Process development in the laboratory is the first step, in which
experimental data are explored and features such as the time instants of the start/stop
of the main and side reactions, the presence or absence of accumulation of specific
species, and safety parameters are extracted. These features can be summarized in a
feature-based descriptive model. When process development is performed in the labo-
ratory, it is possible to influence and measure many variables in planned experiments
under controlled experimental conditions.

During process development in the laboratory, common on-line measurements such as
temperature, pressure, inlet and outlet mass flowrates, and off-line measurements such
as the concentrations of the main and side products at batch end are routinely available.
In addition to these measurements, advanced instruments such as calorimeters and spec-
trometers (mid-infrared MIR; near-infrared NIR; ultraviolet/visible - UV /VIS) enable
the indirect measurement of key variables such as the heat flow and the concentrations
of initial and final products in-situ or at-line.

For the purpose of model-based monitoring, control and optimization, the kinetic
model obtained at the process development stage needs to be adjusted to the production
environment. This adjustment is typically done with only a few measurements and
a restricted choice of production conditions due to safety and production constraints.
Hence, it is of interest to be able to solve the following problems to meet industrial goals
based on the experimental data and prior knowledge regarding the reaction systems:

(P1) Build first-principles models,
(P2)  Simplify dynamic reaction models to a form that brings out the key features,

(P3) Monitor, control and optimize reaction systems.

Problem P1 deals with the development of mathematical models that describe the
dynamic behavior of reaction systems. The solutions to Problems P1 and P2 help
perform computer simulations under various scenarios and reduce cost and time in the
laboratory. Consequently, they speed up process development and also help move the
developed process from the laboratory to production. The solution to P3 helps improve
product quality, safety and environmental protection in production. The solutions to
Problems P1 and P2 also help develop effective methods to solve Problem P3. Hence,
the solutions to Problems P1-P3 call for systematic approaches based on mathematical
modeling and analysis of chemical reaction systems.

To meet these challenges and deal with Problems P1-P3, this dissertation devel-
ops a methodology based on system-theoretical and data analysis of chemical reaction
systems, in particular for homogeneous and gas-liquid reaction systems.

Building first-principles models

Building first-principles models of reaction systems through the identification of kinetic
models is an essential task during the process development stage. The identification of
a kinetic model involves the determination of a model structure (reaction stoichiome-
try, reaction-rate expressions, mass-transfer-rate expressions) and of the corresponding
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Figure 1.1 Schematic diagram illustrating the development of a kinetic model at the process
development stage in the laboratory and its adaptation in production.

parameters. In this dissertation, ‘kinetic model’ will be used for a model that includes
reaction stoichiometry, reaction rates, and possibly mass-transfer rates. In practice,
the kinetic model of a given reaction system must be identified from measurements. In
the literature, the reaction stoichiometry and the expressions for the reactions and the
mass transfers are identified simultaneously by solving an optimization problem for the
rate parameters. On the other hand, it could help to break down the identification of
a kinetic model into two steps: (i) compute the extents of reaction and mass trans-
fer from measured data without knowledge of the reaction-rate and mass-transfer-rate
expressions, and (ii) identify each rate expression individually from the corresponding
extent of reaction or mass transfer.

Postulate
The concept of extents of reaction and mass transfer helps to describe the behavior of

chemical reaction systems. Such a concept is useful from both a system-theoretical and
a data-analysis view point. The following postulate can be formulated:

The number of moles vector of a reaction system can be transformed to the
extents of reaction, mass transfer and flow, which helps solve Problems P1-P3
in two ways: Firstly, the transformation can help build the dynamic model from
various measurements such as concentrations and spectral data; secondly, if a
dynamic reaction model is available, the transformation can be used to simplify
the model.

This postulate, which will be investigated in this dissertation, can be divided into
two parts as shown in Figure 1.2. In the first part, a transformation of the dynamic
reaction model to the extents of reaction, mass transfer and flow will be developed
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without knowledge of the reaction-rate and mass-transfer-rate expressions. Information
regarding the reaction stoichiometry, the inlet compositions, the species transferring
between phases, and the initial conditions will be used to develop the transformation.
A system-theoretical analysis of the transformed states will lead to minimal state rep-
resentation and minimal information for state reconstruction. In the second part, the
transformation will be used in the analysis of concentrations and spectral data. Data
analysis will lead to a novel incremental method for the identification of kinetic models
that can be useful for process monitoring, control and optimization of reaction systems.

System-theoretical analysis (Chapters 2-4)

Information
l Minimal state
Dynamic Transformed states representation
--=-- first-principles Transformation (extents of reaction,

mass transfer, and
model flows)

Model-based

control and

optimization

Data analysis (Chapter 5)

Information

Transformation [

Estimated

extents of reaction,

Concentrations

Spectral data mass transfer,

and flows

,”Validated *
4;‘\ kinetic [ — .
/ integral method

Dynamic

L IKinetic identification using
first-principles

model

Figure 1.2 Schematic diagram illustrating the two-part postulate in this dissertation: system-
theoretical analysis, and data analysis.
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1.2 State of the art

1.2.1 Reaction variants, flow variants and invariants

In the study of reaction systems, it is important to distinguish between the states that
evolve with reaction progress, labeled reaction variants, and the states that do not,
labeled reaction invariants. The numbers of moles has been broken down into reaction
variants and invariants in the literature [6, 31]. As expected, the reaction invariants are
independent of the reactions; however, the reactions variants do not only represent the
contribution of the reactions since they are also affected by inlet streams |6, 31, 96].
Srinivasan et al. |75] proposed a nonlinear transformation of the numbers of moles
into reaction variants, flow variants, and reaction and flow invariants. The proposed
nonlinear transformation decomposes reaction invariants into flow variants and reaction
and flow invariants.

Various implications of reaction variants and invariants have been studied in the
literature. The fact that reaction invariants are independent of the reaction progress
has been exploited in the areas of process analysis, design and control. For example,
the importance of reaction invariants for state observability and state controllability
of continuous stirred-tank reactors has been pointed out in [5, 6, 31]. Waller and
Makila |96] demonstrated the role of reaction-invariant relationships such as the atomic
matrix to compute the reaction invariants and subsequently to control pH. In contrast
to reaction invariants, reaction variants vary with the progress of reaction. Control
laws using reaction variants have been computed from linearized continuous stirred-
tank reactor models in [40]. Srinivasan et al. [75] studied the implications of reaction
and flow variants/invariants for control-related tasks such as model reduction, state
accessibility, state reconstruction, and feedback linearizability. Bonvin and Rippin [15]
used reaction variants in batch reactors for the determination of stoichiometry models
without knowledge of the reaction kinetics.

The reaction variants and invariants proposed in the literature for the case of reactors
with inlet and/or outlet streams are based on the ensemble of reactions and streams and
thus represent a space property. In other words, the reaction variants and invariants are
merely mathematical quantities that are devoid of any physical meaning and describe an
abstract space. However, only in batch reactors, due to the absence of inlet and outlet
streams, does each reaction variant correspond to the extent of a particular reaction
[96]. Hence, the concept of reaction variant in batch reactors represents an individual
property.

The concept of extent of reaction is useful to describe the behavior of chemical re-
actions. The rate of a reaction can be expressed in terms of its extent of reaction, i.e.
independently of the various concentrations in the reaction system [21|. This fact is
used to express reaction progress and handle chemical equilibrium [19, 30, 73|. The fact
that the reaction variants in batch reactors represent true extents of reaction has been
used for modeling reaction systems.
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1.2.2 Reduced-order models

Since detailed models of reaction systems contain a large number of states with widely
varying dynamics, they are difficult to use straightforwardly in many applications.
These models often contain a large number of either redundant or negligible dynamic
elements. Model-order reduction can be used to eliminate both redundant and negligi-
ble elements, thus simplifying the model and providing deeper insight into the reaction
system [42, 60]. In the literature, the three approaches, lumping, time-scale analysis
and sensitivity analysis, are routinely applied to reduce the model order [42, 60, 94|. In
lumping, the original state vector is transformed into a lower-dimensional state vector
by linear or nonlinear functions [51, 52, 53, 88]. Hence, the transformed states are
linear or nonlinear combinations of the original states. Time-scale analysis exploits the
multiple time scales in reaction dynamics exhibited by fast and slow reactions. The
fast reactions can be considered at quasi-steady-state relative to the slow reactions and
thus the model order can be reduced by keeping the slow modes and eliminating the
fast ones [34, 57, 60, 94]. On the other hand, sensitivity analysis examines the dynamic
behavior of reaction systems with respect to disturbances, and identifies the important
species and reactions [45, 62, 90]. Then, a reduced model is obtained by eliminating
the insignificant species and redundant reactions. All these reduction methods require
sufficient information regarding the kinetic model. Note also that physical information
about species and reactions is lost in the reduced models.

1.2.3 Identification of reaction systems

The identification of reaction systems involves two steps, namely the identification of
a model structure and the estimation of model parameters from experimental data. In
model-based experimental analysis, measurements of concentrations, calorimetry and
spectra (NIR, MIR, UV/VIS, etc.) are obtained from experiments that are planned
based on some prior knowledge about the reaction system of interest. Analysis methods
such as multivariate calibration (MVC) and multivariate curve resolution (MCR) are
used to estimate concentrations based on spectral data [55]. An experienced human
modeler can propose a model structure (e.g. possible stoichiometries and reaction-rate
expressions) from prior knowledge, and estimated and measured key variables. Pa-
rameter estimation is then applied to estimate the unknown parameters in each of the
proposed models based on experimental data and/or the estimated key variables. The
model that ‘best’ fits the data (typically in terms of weighted least-squares error) is
selected as the best model. If this model does not describe the data satisfactorily, new
experiments are planned based on this model. Iterative improvements of the experi-
ments and the model are carried out to generate an acceptable kinetic model.

Various methods and frameworks for the analysis of measured data in the literature
can be divided into two classes depending on the type of measured data. The first class
consists of the methods that use spectral and calorimetric data, while the second one
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consists of the methods and frameworks that use concentrations and calorimetric data.
In the following sections, these two classes of methods are described.

1.2.3.1 Use of spectral and calorimetric data
Analysis methods for spectral and calorimetric data can be classified into three main

groups: soft-modeling methods, hard-modeling methods, and hybrid-modeling methods.

Soft-modeling methods

Soft-modeling methods, such as MVC or MCR, allow us to analyze spectral data from
reaction systems without knowledge of a kinetic model. Soft-modeling methods estimate
concentrations and pure-component spectra based on spectral data. Then, the concen-
trations estimated using soft-modeling methods can be used for investigating reaction
systems.

MVC methods develop a calibration model based on spectra data and the corre-
sponding reference concentrations [18]. Methods such as principal component regres-
sion (PCR), partial least squares (PLS), neural networks, support vector machines, or
projection pursuit are often used to build the calibration model [89, 95, 99]. This cali-
bration model can then be applied to spectra from mixtures of unknown concentrations
to predict the concentration values in some prediction intervals.

When reference concentrations are not available, MCR methods (including factor-
analytical methods, FA) can be used to resolve the unknown concentration profiles
from spectral data and some prior knowledge. MCR involves two steps: (i) decom-
position of the spectral data matrix into abstract factors using principal component
analysis (PCA), and (ii) rotation of these abstract factors into physically meaningful
concentration profiles and pure-component spectra by methods such as alternative least-
squares (ALS) [55]. For this rotation, prior knowledge about the underlying system and
the type of instrumental response is required. This prior knowledge must be carefully
translated into constraints such as non-negativity of concentrations and pure-component
spectra, unimodality of certain types of concentration profiles such as hyphenated data,
and mass balance closure condition in order to overcome the rotational ambiguity in
Step (ii) [32, 86]. Multivariate curve resolution-alternative least square (MCR-ALS)
is a constrained optimization algorithm that takes into account these constraints to
recover the true underlying concentration profiles and pure-component spectra from
spectral data [84|. Tauler [83| proposed a new MCR method that minimizes an un-
constrained nonlinear function formulated directly from the constraints non-fulfillment
and being in the subspace spanned by the abstract factors obtained in Step (i). The
unconstrained nonlinear function has large values when the constraints are not fulfilled,
while it has values close to zero when the constraints are nearly or totally fulfilled [83].
The MCR method based on this unconstrained function is called MCR-FMIN in [83].
However, the constraints applied in MCR methods rarely guarantee a unique solution,
and a set of feasible solutions are also possible [23]. Hence, in practice, finding and
applying appropriate constraints that overcome the ambiguity are key elements in en-
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hancing the MCR-based techniques |23, 33, 86]. Moreover, it is of great interest to check
whether rotational ambiguity is present in the solutions obtained using MCR methods.
A method to evaluate the possible rotational ambiguity in the solutions obtained using
MCR methods has been proposed [82, 83]. This method can also check how different
the true solution can be from that obtained by MCR methods.

MCR methods can estimate the concentration profiles of the absorbing species and the
pure component spectra under the assumption that the rank of the spectral data matrix
is equal to the number of absorbing species [71]. For reaction systems, however, the
spectral data matrices are typically rank deficient due to the underlying reactions, i.e.
the corresponding rank is less than the number of absorbing species |2, 3]. MCR applied
to such rank-deficient spectral data leads to invalid estimates of concentration profiles.
Fortunately, the problem of rank deficiency can be solved by rank augmentation such
as appending data obtained from several experiments and/or adding amounts (‘spike’)
of certain species during the experimental run [3].

Hard-modeling methods

Hard-modeling methods involve fitting a kinetic model directly to the spectral data
[2, 54, 80, 85]. The contributions of inlets and initial conditions can be removed from
the spectral data such that the resulting reaction-variant form (RV-form) of the spec-
tral data contains only the contribution of the unknown chemical reactions [2|. Using
the RV-form of spectral data and a given kinetic model with unknown parameters,
a constrained least-squares optimization problem has been formulated to estimate the
concentration profiles and the rate parameters [2]. In contrast to soft-modeling methods
such as MVC, the identified kinetic model can often be extrapolated outside the con-
ditions used to determine the model and its parameters [65]. A constrained nonlinear
least-squares problem has been proposed to simultaneously determine the concentration
profiles and fit the parameters of a kinetic model to spectral data [54]. Simultaneous
analysis of multi-batch spectroscopic and calorimetric data has also been proposed to
fit a kinetic model and estimate the reaction heat and dissolution heat profiles [65].

The spectral and calorimetric data contain different information as well as measure-
ment errors. A scaling procedure has been proposed to appropriately weight the fitting
errors of spectroscopic and calorimetric data [102, 103|. As an alternative, an approach
based on a multi-objective cost function has been proposed to estimate the parameters
of a given model structure using Pareto optimal approach and a genetic algorithm [35].
The errors and uncertainties in the experimental conditions affect the rate parameters
estimated using hard-modeling methods. The propagation of errors from the measured
spectral data to the estimated rate parameters has been studied in [13].

Hybrid-modeling methods

Hybrid-modeling methods have been introduced to exploit the advantages of soft-
modeling and hard-modeling methods [24, 25|. A kinetic model with given model
structure but unknown parameters is added as a hard constraint to solve the rota-
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tional ambiguity in MCR-ALS (labeled as hybrid MCR-ALS). Hybrid MCR-ALS has
also been applied to the RV-form of spectral data obtained from a batch reactor in [14].

1.2.3.2 Use of concentrations and calorimetric data

To identify the parameters of a kinetic model from concentration data, two methods
can typically be distinguished: the integral and differential methods [50]. In the integral
method, the given rate expression is integrated analytically or numerically to predict
concentrations, and the unknown parameters are estimated by fitting these predictions
to measured concentrations using constrained optimization techniques. In the differen-
tial method, the reaction rates are estimated through differentiation of concentration
data, and the unknown parameters are estimated by fitting the estimated rates to the
computed rates using the given rate expression.

There are advantages and disadvantages of each method. On the one hand, the
integral method requires a large computational effort because integration is required at
each step of the optimization procedure. On the other hand, the differential method
requires differentiation of concentration measurements — a difficult task because of noise
and sparsity of measurements— that calls for appropriate regularization. Note that the
integral method gives optimal estimates in the maximum likelihood sense in the absence
of structural uncertainty and for Gaussian measurement noise [17], while the differential
method does not, due to the approximation introduced by the numerical differentiation.

The integral and differential methods used by the two modeling frameworks that are
available to identify the model structure and the parameters of reaction systems: (i)
global identification, and (ii) incremental identification.

Simultaneous identification

The simultaneous or global identification approach proceeds as follows. One chooses a
model structure for the complete reaction system and formulates a parameter estimation
problem involving a dynamic reaction model to identify the corresponding parameters.
This approach is also termed ‘simultaneous identification’ since all reactions are con-
sidered simultaneously. The procedure needs to be repeated for all candidate model
structures. The candidate with the best fit is usually selected. Issues like structural
identifiability [97] and experimental planning [59] are important to guarantee parameter
estimates with little correlation and narrow confidence intervals.

The main advantage of global identification is that it can deal with highly complex
reaction and mass-transfer rates and lead to statistically optimal parameters in the
maximum-likelihood sense |9]. However, the global identification approach can be com-
putationally costly when several candidate structures are available. Furthermore, since
the global model is fitted to reduce the prediction error, structural errors in some of the
reactions will result in errors in other parts of the model. Finally, initialization with
suitable parameter values is difficult and often gives rise to convergence problems [17]
or to convergence to a local minimum.
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Several variants of global identification have been proposed for the efficient identifica-
tion of kinetic models from concentrations and calorimetric data [48, 72]. A framework
for automatic modeling of chemical /biochemical reaction systems (TAM-C/B) based on
concentrations and calorimetric data has been proposed [43, 72|. TAM uses an auto-
matic iterative procedure that imitates the human expert in modeling reaction systems.
From measured data, TAM first generates a qualitative description of the dynamic be-
havior of the reaction system using a fuzzy interval identification method [72|. Then,
based on the resulting qualitative description, prior knowledge regarding the reaction
stoichiometry and a rule-based library, TAM postulates possible rate expressions and
fits the global model to the concentrations and calorimetric data.

An iterative model refinement framework has also been proposed that includes the
discovery of model deficiencies from concentration data [48]. The authors suggest adding
a stochastic process to selected mole balances exhibiting possible uncertainty. The
mole balances with large fitted stochastic parameters are pinpointed as having model
deficiencies. The modeler can then refine the pinpointed model equations.

Incremental identification

Alternatively, the identification task can be split into a sequence of subproblems such
as the identification of stoichiometry and rate expressions. For each subproblem, the
number of model candidates can be kept small. In addition, the information available
at a given step can be used to refine the model in subsequent steps.

An incremental identification approach to identify reaction systems from concentra-
tions has been proposed in [10, 16, 56]. Incremental identification splits the identifica~
tion problem into a set of subproblems, namely the calculation of combined reaction and
mass-transfer fluxes for each species, reaction stoichiometry, reaction and mass-transfer
rates (without assuming any structure), and finally estimation of rate parameters, as
shown in Figure 1.3 [16, 17, 56].

The combined reaction and mass-transfer flux of each species is first estimated from
noisy concentrations using balance equations. Based on these fluxes, the stoichiome-
try can be determined using Target Factor Analysis (TFA) without knowledge of the
reaction kinetics [15]. Incremental TFA has been proposed to remove the variability
corresponding to an accepted reaction before continuing target testing for the other
reactions [64]. This procedure allows more sensitive target testing in the case of noisy
concentration measurements. Necessary and sufficient conditions have been formulated
for the acceptance of stoichiometric targets [4].

Individual reaction and mass-transfer rates can be estimated without knowledge of
rate expressions from the computed reaction and mass-transfer fluxes through differ-
entiation of concentrations and using information regarding reaction stoichiometry and
the species transferring between phases |16, 58|. Then, each estimated rate profile can
be used to discriminate between several candidate rate expressions. The rate expression
with the best fit is typically retained.

If the kinetic model identified using the initial experiments is inappropriate to meet
the identification goal, new experiments might have to be carried out. Hence, an itera-
tive model identification procedure is needed, as shown in Figure 1.3.
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The incremental identification approach typically uses the differential method of ki-
netic identification, whereby reaction and mass-transfer fluxes are obtained by differ-
entiation of measured concentrations. However, a bias is typically introduced in the
estimation of fluxes and thus also of the rates [10, 17]. Since the rate parameters
are estimated from biased rates, the estimated parameters are not statistically opti-
mal. Hence, in the final parameter estimation step, global identification is used to
obtain statistically optimal parameters using the best model structure identified by
the incremental approach. After parameter estimation, the model is validated using
well-established validation techniques [8]. If the model describes the data satisfactory
and the parameters are within desired confidence intervals, the model is accepted and
the iterative identification process terminates. Otherwise, new experiments have to be
designed and carried out to refine the current model.
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Figure 1.3 Incremental identification of rate expressions using the differential (rate-based
method (x the computation of fluxes calls for the differentiation of concentration measurements
[16, 17].

1.3 Research objectives

This dissertation contributes to the development of the concept of extents of reaction,
mass transfer and flow for homogeneous and gas-liquid chemical reaction systems with
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inlets and outlets’. These various extents are quite useful to study minimal state rep-
resentation and state reconstruction in reaction systems. Procedures to compute the
extents of reaction and mass transfer based on concentrations and spectral data are
proposed. Furthermore, a novel incremental procedure for the identification of kinetic
models from the computed extents using the integral method of kinetic identification is
proposed.

Extents of reaction, mass transfer and flows

For homogeneous reaction systems, the mathematical three-way decomposition of the
numbers of moles into reaction variants, inlet-flow variants, outlet-flow variant and in-
variants proposed by Srinivasan et al. [75] will be extended. The extension will eliminate
the effect of the initial conditions from the reaction and flow variants, thus leading to
true extents. The resulting linear transformation uses only information regarding the
stoichiometry, the inlet composition and the initial conditions and, furthermore, it does
not require any kinetic expressions.

Furthermore, the linear transformation will be extended to gas-liquid reaction sys-
tems. The concept of extents of reaction, mass transfer and flow will be developed
successively for the liquid and gas phases using a linear transformation.

Minimal state representation and state reconstruction

The linear transformation decomposes the number of moles vector into the various
extents and invariant states. Since the invariant states remain constant, they can be
dropped from the transformed dynamic models, thus leading to model-order reduction.
Minimal state representations of both homogeneous and gas-liquid reaction systems will
be investigated using the concept of accessibility of nonlinear systems. In contrast to the
reduced-order representations resulting from lumping, time-scale analysis and sensitivity
analysis, the minimal state representations proposed in this work are not approximations
and do not require kinetic information in the reduction step. Conditions under which
the linearly transformed model is minimal state representation will be proposed.

Using these transformations, the reconstruction of unmeasured concentrations from
measured concentrations and mass flowrates will be studied for both homogeneous
and gas-liquid reaction systems. Furthermore, the minimal number of concentration
measurements needed to reconstruct the unmeasured concentrations will also be in-
vestigated. It will be shown that the minimal number of concentration measurements
needed is equal to the number of independent reactions for homogeneous reactors and
the number of independent reactions and mass transfers for gas-liquid reactors.

1 The concept of extent of reaction exists in the literature for closed reaction systems (for example, batch
reactor). This dissertation extends this concept to open reaction systems, in particular to reaction systems with
outlet streams.
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Use of concentrations and spectral data

We will investigate the identification of reaction and mass-transfer rates using concen-
trations and spectral data for the case of open homogeneous and gas-liquid reaction
systems. The identification task proceeds in two steps: (i) computation of the extents
of reaction and mass transfer without knowledge of the reaction and mass-transfer rates,
and (ii) estimation of the rate parameters for each rate individually from the computed
extents.

In the first step, various procedures will be investigated to compute the extents of
reaction and mass transfer using the proposed linear transformations. In the second
step, the estimation problem to identify unknown rate parameters from the computed
individual extents using the integral method will be formulated. Moreover, for the case
of noisy concentrations, the error propagation from the concentrations to the computed
extents will be studied.

For the case of spectral data with unknown pure-component spectra, data processing
will be proposed to isolate the unknown reaction and mass-transfer contributions from
the measured spectral data. The resulting data is called the reaction and mass-transfer
variant (RMV) form of spectral data. An estimation problem will be formulated to
simultaneously estimate the rate parameters from spectral data in RMV-form using
the integral method. Furthermore, a way to use gas consumption data for rank aug-
mentation will be proposed for the case where the spectral data in RMV-form is rank
deficient.

1.4 Organization of the dissertation

Chapters 2 and 3 will investigate a transformation of the dynamic reaction models of
homogeneous and gas-liquid reaction systems to extents of reaction, mass transfer and
flow, and to invariants. Furthermore, Chapter 4 will investigate the minimal state rep-
resentation and state reconstruction of homogeneous and gas-liquid reaction systems.
The proposed transformations in Chapters 2-3 and the approaches developed in Chap-
ter 4 will be applied to analyze concentrations and spectral data in Chapter 5. Special
reactor configurations such as batch, semi-batch, and continuous stirred-tank reactors
will be considered.

Chapter 2 considers homogeneous reaction systems with inlet and outlet streams and
proposes a linear transformation of the number of moles vector to extents of reaction,
extents of inlet flow, extent of outlet flow and invariants. The linear transformation for
homogeneous reaction systems is extended to gas-liquid reaction systems with inlet and
outlet streams in Chapter 3. In addition to extents of reaction and flow, the concept of
extents of mass transfer in the gas and liquid phases is developed. Chapter 4 derives
conditions under which the transformed models are minimal state representations. It
also proposes approaches to reconstruct unmeasured concentrations using the minimal
number of measurements. Chapter 5 develops procedures to compute the contributions
of reaction and mass transfer from concentrations and spectral data. It also investigates
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the identification of unknown rates from computed extents using the integral method.
Chapter 6 presents concluding remarks and several future directions.

The main concepts are illustrated through simulated reaction systems. For the sake
of readability, the proofs of the theorems, propositions, lemmas, and corollaries are
given in the appendices.



Chapter 2

Extents of reaction and flow in
homogeneous reaction systems

The mole balance equations of homogeneous reaction systems with inlet and outlet
stream (also called open homogeneous reaction systems) describe the time evolution
of the numbers of moles. They contain information regarding the stoichiometry and
kinetics of the reaction system as well as operating conditions such as the reactor type,
initial conditions, inlet concentrations, and inlet and outlet flowrates. The concept of
reaction variants and invariants can be useful in the analysis of these reaction systems.
However, the reaction variants and invariants are merely mathematical quantities that
describe a space rather than individual true extents of reaction. The objective of this
chapter is to develop a transformation of the numbers of moles that computes physically
meaningful reaction variants and flow variants for open homogeneous reaction systems.

A novel linear transformation of the numbers of moles is proposed that leads to
(i) the reaction variants, (ii) the inlet-flow variants, (iii) the outlet-flow invariant, and
(iv) the invariants. This new linear transformation uses only information regarding
the stoichiometry, the inlet composition and the initial conditions and, furthermore,
it does not require information regarding kinetic expressions. Moreover, the proposed
transformation enables physical interpretation of the reaction variants as extents of
reaction, of the inlet-flow variants as extents of inlet flow, and of one of the reaction and
inlet-flow invariants as extent of outlet flow. Special reactor configurations such as batch,
semi-batch and CSTR reactors are considered. Note that this linear transformation can
be performed independently of the energy balance.

The resulting concept of extents of reaction can help transform measured data in such
a way that the contribution of the (unknown) reactions can be separated from the other
effects. Hence, kinetic investigation can be performed for each reaction individually,
i.e. independently of the contribution of the other reactions and of operating conditions
such as initial conditions, inlet concentrations and flowrates [16|. Expressed differently,
one would like to be able to analyze data measured in an open reactor as if they resulted
from a batch reactor.

The mole balance equations for open homogeneous reaction systems are presented in
Section 2.1 and it is shown that the mass balance equation is redundant since mass can
be computed from the numbers of moles and molecular weights of the various species.
The concept of extent of reaction is defined in Section 2.1.1. Section 2.2 describes the
mathematical reaction space obtained using a two-way and a three-way decomposition
of the numbers of moles. Then, a linear transformation of the numbers of moles is

15
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proposed and used to derive the concepts of extents of reaction and of inlet and outlet
flows in Section 2.3. The computation of the various extents from measured data is
illustrated in simulation via the ethanolysis of phthalyl chloride in batch, semi-batch,
and continuous modes in Section 2.4.

2.1 Mole balance equations for homogeneous reaction

systems

The mole balance equations for a homogeneous reaction system involving .S species, R
reactions, p inlet streams and one outlet stream, as shown in Figure 2.1, can be written
generically as follows:

n(t) = N* V() r(t) + W,, u,, (t) —

n(t), n(0) = ny, (2.1)

where n is the S-dimensional vector of numbers of moles, r the R-dimensional reac-
tion rate vector, u,, the p-dimensional inlet mass flowrate vector, u,,, the outlet mass
flowrate, V' and m the volume and mass of the reaction mixture, N the R x S stoi-
chiometric matrix, W,, = M;lwm the S X p inlet-composition matrix with MM, the
S-dimensional diagonal matrix of molecular weights and W,, = [w! ,--- WP | with w”,
being the S-dimensional vector of weight fractions of the kth inlet stream, and ny the
S-dimensional vector of initial numbers of moles. The flowrates u,,(t) and wu,,,(t) are
considered as independent (input) variables in Eq. (2.1). The way these variables are
adjusted depends on the particular experimental situation; for example, some elements
of u,, can be adjusted to control the temperature in a semi-batch reactor, or wu,,, can
be a function of the inlet flows in a constant-volume reactor. The continuity equation
(or total mass balance) is given by:

m(t) = 1,0, — Uy, m(0) = my, (2.2)

where 1, is the p-dimensional vector filled with ones and m, the initial mass. However,
the mass m(t) can also be computed from the numbers of moles as

m(t) = 15 M, n(t). (2.3)

From the relationships 1M, N™ = 0z and 1M, W,, = 1], Eq. (2.2) can be ob-
tained by differentiation of Eq. (2.3). Hence, the continuity equation Eq. (2.2) becomes
redundant.

Model (2.1) is simply a mole balance for a homogeneous single-phase reaction system
with several inlet streams and one outlet stream. The model holds for single-phase
reaction systems, both gas and liquid, isothermal or not, since the specificities regarding
the reactor type and its operation are contained in the volume V' (¢), the reaction rate



2.1 Mole balance equations for homogeneous reaction systems 17

vector r(t), and the specified inlet and outlet streams u,,(¢) and u,,,(t). Because the
transformations developed in the next sections need only information regarding the
stoichometric matrix IN, the inlet-composition matrix W, and the initial conditions
ng, these specificities do not play any role in the transformations. However, for the sake
of completeness, these specificities for both gas- and liquid-phase reaction systems are
discussed in Appendix B. The mole balance equations for four common reactor types,
namely batch reactor, semi-batch reactor, CSTR during transient, and CSTR at steady
state, are summarized in Table 2.1.

9 n, u,,

Figure 2.1 Schematic diagram of a homogeneous reaction system with p inlets and one outlet

Table 2.1 Models of batch reactor, semi-batch reactor, CSTR during transient, and CSTR at
steady state (SS).

|Case|Reactor type [Model |
1 |Batch n(t) =NTV(t)r(t)
(u,, =0, u,,, =0)
2 |Semi-batch n(t) =N"V(t)r(t) + W,, u,,(t)
(uout = O)
3 |CSTR n(t) = N"Vr(t) + W, u,,(t) — “20 n(t)
(V = cst)
4 CSTR@SS 0=N"Vr+W,u, — ““n
(V =cst, n=0)

Throughout this chapter, the R reactions and p inlets are assumed, without loss of
generality, to be independent:
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Definition 2.1 (Independent reactions)

R reactions are said to be independent if (i) the rows of N (stoichiometries) are linearly
independent, i.e. rank (N) = R, and (ii) there exists some finite time interval for which
the reaction rate profiles r(t) are linearly independent, i.e. 3'r(t) =0 < 3 = 0.

Definition 2.2 (Independent inlets)

p inlet streams are said to be independent if (i) the columns of W,, are linearly inde-
pendent, i.e. rank (W,,) = p, and (ii) there exists some finite time interval for which the
inlet mass flowrate profiles u,,(t) are linearly independent, i.e. B"u,,(t) =0 < B = 0,.

Amrhein [2| presents transformations of dependent reactions or inlets into independent
ones.

2.1.1 Extents of reaction

For a reaction system with .S species and R independent reactions, the change in extent
of reaction for the ith reaction, d¢;, is defined as [73]:

d .
de; = 2 s —1,....S, Yi=1,...,R, (2.4)

Vs,i

where dn; is the variation of the number of moles of the sth species caused by the ith
reaction and v, the corresponding stoichiometric coefficient. Note that this definition
focuses on the reaction and is independent of the reactor type.

The definition of extent of reaction in Eq. (2.4) can be directly applied to reactors
without outlet stream (batch or semi-batch), for which the extent of ith reaction &;(t)
satisfies:

é;i(t) = V(t) ri(t), £i(0) = 0. (2.5)

In reactors with an outlet stream, the outlet removes a certain amount of the species
present in the reactor. Hence, the number of moles of the sth species caused by the
1th reaction needs to account for the outlet term. A mole balance for n,; involving the
reaction and outlet terms gives:

)

. uo‘u.
Ngi = Vs,i Vir, — - Ngi- (2-6)
m

Combining Eqgs. (2.4) and (2.6) allows expressing the extent of reaction ;(t) that con-
siders only the material still in the reactor:

Ei(t) ==V (t) ri(t) — (1), £(0) = 0. (2.7)

Note that the definition in Eq. (2.7) also encompasses that in Eq. (2.5) for reactors
with no outlet stream (u,,,(t) = 0). Note also that the kinetics to be investigated at
a given time depend on the species present in the reactor at that time, and not on the
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total amount of material that has been in the reactor. In other words, the extents of
reaction &;(t), ¢ = 1,..., R, in Eq. (2.7) represent precisely what is needed for kinetic
investigation.

Egs. (2.5) and (2.7) describe the extents of reaction in a reactor without and with
an outlet stream, respectively. However, the objective of this study is not to compute
the extents £(t) from Egs. (2.5) or (2.7) but from n(t), i.e. without reaction kinetics
information.

2.2 Mathematical reaction space

This section introduces the concept of reaction variants and invariants. It will be shown
that the S-dimensional space in which the numbers of moles evolve can be decomposed
into an R-dimensional reaction space and an (S — R)-dimensional reaction invariant
space.

Definition 2.3 (Reaction variants)
Any set of R linearly independent variables that evolve in the reaction space constitutes
a reaction variant set.

Definition 2.4 (Reaction invariants)
Any set of (S — R) linearly independent variables that evolve in the space orthogonal
to the reaction space constitutes a reaction invariant set.

Reaction variants can be abstract quantities or, conversely, have a clear physical mean-
ing as in the case of batch extents of reaction.

2.2.1 Two-way decomposition: Reaction variants and invariants using

a linear transformation

The two-way decomposition found in the literature [6] transforms the space of numbers
of moles into mutually orthogonal reaction variant and reaction invariant spaces, as
illustrated in Figure 2.2a. Indeed, the linear transformation

N+
n— [yT] = n (2.8)
yiv PT
brings Eq. (2.1) to:
y,=Vr+N"W, u,, — Yot Vo y.(0) = N ng, (reaction variants)
m
v, =P"W, u,, — Your Vios v..(0) = P™ng, (reaction invariants)
m

(2.9)
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where ‘+’ indicates the Moore-Penrose pseudo-inverse of a matrix, y, is the R-
dimensional vector of reaction variants, and y,, is the (S — R)-dimensional vector of
reaction invariants, both expressed in kmol. P is an S x (S — R) matrix describing the
null space of N, i.e. NP = 0z, (s_g). The numbers of moles n in the reactor at time ¢
can be computed from ny, y,(t) and y,,(t) as follows:

n(t) = Ny .(t) + Py..(t). (2.10)

Eq. (2.9) shows that the reaction term r affects only the reaction variants y,. How-
ever, since the reaction variants also depend on the inlet and outlet streams, they cannot
be interpreted as extents of reaction. Hence, it would be useful to remove the effect
of the inlet and outlet streams from the reaction variants, which is the essence of the
three-way decomposition introduced in the next subsection.

2.2.2 Three-way decomposition: Reaction variants, inlet-flow

variants, and invariants using a linear transformation

We look for a transformation that decomposes n into the three parts z,, z,, and z,,,
Z, ST
n— |z, | =|M"|n, (2.11)
Z'Lu QT
such that Eq. (2.1) becomes:
U oot
2T =S™N"Vr + STWm u,;, — = Z,., ZT(O) = STno,
SN~ N—— m
IR 0R><p
. uout
z;,, — MTNT VI' + MTW,m u,;, — W Z;,, Zin(O) = MTno, (212)
Orxr 1,
Ut
ziv - QTNT Vr + QTW'ML uin - i Z'Lu? zzv(o) - QTn07
—— —— m
O(s—RrR-p)xR O(s—RrR—p)xp

where S, M and Q are matrices of dimensions S x R, S x p, and S x (S — R — p),
respectively. These matrices are constructed so as to fulfill the conditions shown under
the braces in Eq. (2.12), for example, STN™ = Ip. The variables z,, z,, and z,, are
the reaction variants, the inlet-flow variants, and the reaction and inlet-flow invariants,
respectively. Srinivasan et al. [75] proposed a nonlinear transformation that satisfies
the conditions given in Eq. (2.12) (See Appendix D). Unfortunately, the variables z, (t)
and z,,(t) cannot be interpreted as the extents of reaction and extents of inlet flow at
time ¢ since the initial conditions z,(0) and z,,(0) are nonzero. In the next section, a
novel linear transformation will be proposed.
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Theorem 2.1 (Linear transformation to reaction variants and flow variants)
Consider a homogeneous reaction system involving S species, R independent reactions,
p independent inlets and one outlet, and let rank ([N*, W,,]) = R+ p. Then, the linear
transformation

Z, ST
n— |z, | = |[M|n (2.13)

Ziv QT

brings Eq. (2.1) to:
7 = Vr— Lo z,, z.(0) = S™ny, (reaction variants)
Z, =u,, — Your Zi, z,,(0) = M™ny,, (inlet-flow variants)
m
7, = _ Yow Z.,, z,,(0) = Q" ny. (reaction and inlet-flow invariants)
m

(2.14)
z, is the R-dimensional vector of reaction variants expressed in kmol, z,, the p-
dimensional vector of inlet-flow variants expressed in kg, and z,, the (S — R — p)-
dimensional vector of reaction and inlet-flow invariants expressed in kmol. The matrices
S, M and Q are computed using the algorithm given in Appendix C. The numbers of
moles n in the reactor at time t can be computed from z,(t), z,,(t) and z,,(t) as follows:

—n(t) =N"z.(t)+ W,,z,.(t) + Qz, (). (2.15)

(See Proof in Appendix A.1)

Interpretation of three-way decomposition.

The three-way decomposition illustrated in Figure 2.2b can be interpreted as follows.
NT™N™, W, W' and QQ" represent the reaction, inlet-flow, and reaction and inlet-
flow invariant spaces, respectively. By construction, QQ™" is orthogonal to both the
reaction and inlet spaces, which leads to Q"N™ = 0 and Q"W,, = 0 in Eq. (2.12), and
thus z,, is independent of r and u,,. Furthermore, since the reaction and inlet spaces
are not orthogonal to each other, the inlet space is rotated to give the rotated inlet
space W, M" that fulfills the conditions M"N" = 0z and M"W,, = I, so that z,, is
independent of r and the inlet-flow variants are decoupled. Finally, since the reaction
space N"IN"* is not orthogonal to W, M™, the projection (Is — W,,MT) is introduced
to make the reaction space N'S™ orthogonal to the rotated inlet space, thus giving
ST =N™(Is — W,,M") and STN™ = I. It follows that z, is independent of u,, and
the reaction variants are decoupled. Note that the vectors z,, and z,, represent the
(S — R) reaction invariants that can be computed independently of the reaction rate
expressions r. Note also that the effect of the outlet flow is still present in z,, z,, and

z,, as seen in Eq. (2.14). The linear transformation in Theorem 2.1 can be visualized

iv
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by rewriting Eq. (2.15) with the help of Eq. (2.13):

n=[N'S"+ W, M"+QQ"] n=1Ign. (2.16)

reaction and inlet-flow

invariant space

PP" =Is — N"N™

reaction invariant space

rotated inlet space

reaction space

NTNT+

reaction variant space

made orthogonal to

rotated inlet space

Figure 2.2 Transformation of the S-dimensional space of numbers of moles. (a) Mathematical
two-way decomposition of the S-dimensional space of numbers of moles into the R-dimensional
reaction variant space and the (S — R)-dimensional reaction invariant space. The two spaces are
orthogonal to each other with N"N"* +PP™ = Is. (b) Mathematical three-way decomposition
of the S-dimensional space of numbers of moles into an R-dimensional reaction space, a p-
dimensional inlet-flow space, and an (S — R — p)-dimensional reaction and inlet-flow invariant
space. All spaces are orthogonal to each other with N*ST + W, M™ + QQ™ = Ig.

2.3 Linear transformation to extents of reaction and flow

The two-way and three-way decompositions presented in the previous section have gen-
erated mathematical variants and invariants that are devoid of physical meaning. For
example, due to the presence of nonzero initial conditions, the reaction and inlet-flow
variants in Eq. (2.14) cannot be interpreted as individual extents of reaction and inlet
flow. This section will propose a linear transformation of these reaction and flow vari-
ants to true extents of reaction and flow, thus paving the way to the computation of
extents from the numbers of moles n(t).
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2.3.1 Discounting of initial conditions

For computing the extents of reaction and inlet flow, it is necessary to account for the
effect of the nonzero initial conditions in Eq. (2.14). At time 0, one needs to remove the
contributions z, o = S™n, and z,, o = M"n,. However, the effect of the initial conditions
reduces with time due the presence of the outlet stream. Hence, one needs to discount
the effect of the nonzero initial conditions, which can be done with the introduction of
the discounting variable A(t) € [0, 1] as shown next. The resulting linear transformation
of z,, z,, and z,, reads:

Z, X, z, Z,. 0
. 1§_R_p z;,
Zin X'Ln - Zin - )\ Zm,O Wlth )\ - T
S—R—pZiv,0
Z,;, Xiv Z;, Z;,,0

and 15 p ,7,07#0, (2.17)

where x, is the R-dimensional vector of extents of reaction, x,, the p-dimensional vector
of extents of inlet flow, and x;, the (S — R — p)-dimensional vector of reaction and inlet-
flow invariants.

2.3.2 From numbers of moles n(t) to extents x(%)

The linear transformation is described in the next theorem. The transformed reaction
and inlet-flow invariant space is one-dimensional and can be described by the variable
A. The condition 15 p 7,0 # 0 is satisfied if and only if the initial numbers of
moles n, provide information that is novel compared to the inlet-composition matrix
W, or, in mathematical terms, W, and ng are linearly independent of each other, i.e.
rank ((W,, no]) =p+ 1.

Theorem 2.2 (Linear transformation to extents of reaction and flow)
Consider a homogeneous reaction system involving S species, R independent reactions,
p independent inlets and one outlet, and let rank ([N* W, ng]) = R+ p + 1. Then,
the linear transformation

X, Sy
n— |x,| = |MJ| n, (2.18)
A 4

with

]‘g—R—p QT

So =8"(Is —moqy), My=M"(Is—noqy), qy= T Qmy
S—R—p

(2.19)
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brings Eq. (2.1) to:

u

i =Vr— -, z,:(0)=0, Vi=1,...,R, (extents of reaction)
m
Tk = U o — Yout Tk, T,.1(0)=0, Vk=1,...,p, (extents of inlet flow)
m
3 = _ Hout A, A0) = 1. (discounting of ng)
m

(2.20)
x,; Is the extent of reaction corresponding to the ith reaction expressed in kmol, z,, j
the extent of inlet flow corresponding to the kth inlet expressed in kg, and \ the scalar
dimensionless variable used to discount the effect of the initial conditions. The numbers
of moles n in the reactor at time t can be computed from x,.(t), x,,(t) and A(t) as
follows:

— n(t) = N"x,.(t) + W, x,,.(t) + ng A(t). (2.21)

(See Proof in Appendix A.2)

Remarks.

Several remarks are in order:

1. It is convenient to express the transformed system exclusively in terms of extents by
introducing the dimensionless scalar extent of outlet flow z,..(t) = 1 — A(t), with
which Eq. (2.21) becomes:

X

r

X — n(t) =ng + N™x,.(t) + W, x,,.(t) — ng z,,,(t). (2.22)

in

xT

out

Z,,, evolves also in the one-dimensional space nyqy.

2. The extent of reaction z,; in Eq. (2.20) corresponds to §; in Eq. (2.7), i.e. z,; =&

3. Transformation (2.18) uses the knowledge of N, W, , and n,. Note that, compared
to the transformation (2.11), this transformation depends on the initial conditions
ng, hence the subscript 0 in the transformation matrices. Consequently this trans-
formation is not one-to-one.

4. The transformed reaction system is of dimension (R+p+1) and not S. The (S—R—p)
invariant states x,, are identically equal to zero and can be discarded:

X, (t) = Qon(t) = 0s_pr—_p, (2.23)



2.3 Linear transformation to extents of reaction and flow 25

with Qf = Q"(Is — npqy) and rank (Qg) = S — R — p — 1. Hence, the (S — R —p)
invariant states x,, live in the (S — R — p — 1)-dimensional space Q QJ.

5. The matrix (Is —noq)) removes the contribution of ng from z,, z,,, and z,, to obtain
X,, X;,, and x,,. Hence, x, evolves in the R-dimensional space N*S{, x,, in the
p-dimensional space W, , My, and x,, in the (S — R —p — 1)-dimensional space Q Q.
A evolves in the one-dimensional space noq;. Note that the spaces for x,, x,,, x
and A are not orthogonal to each other, but they add up to the identity matrix, i.e.
N"S§ + W, . Mj + Q Qg + noqq = Is.

6. It is well known that a nonzero ny never lies in the row space of N [4]. Thus,
the working assumption of Theorem 2.2, rank ([N* W, ny]) = R+ p + 1, implies
rank (W, ng]) =p+ 1.

7. If ny is a linear combination of the rows of W,,, i.e. rank ([W,, ng]) = p, ny can
be modeled by an impulse inlet flowrate for the given W,,. Hence, z, o = O and
Z,,0 = 0, in the model (2.14), which generates the extents z, = x, and z,, = x,,.

8. If rank ([N*, W,,, ng]) < R+ p + 1, the transformation n — F}Z] defined by

iv

Eq. (2.18) does not hold, but the transformation [%\2} — n defined by Eq. (2.21) is
still valid.

The linear transformation of Theorem 2.2 is illustrated in Figure 2.3. The physical
interpretation of x,, x,,, and z,,, is discussed next.

out

Extents of reaction x, [kmol]

Eq. (2.20) indicates that the extent of reaction z,; (Vi = 1,..., R) is decoupled from
the other extents. It can be interpreted as the number of moles that is produced by the
ith reaction and remains in the reactor. The term —®etz ; accounts for the material
produced by the ith reaction and removed from the reactor.

Extents of inlet flow x,, [kg]

The element x,, . (Vk =1,...,p) can be interpreted as the mass added by the kth inlet
that remains in the reactor. The term —=etx, , accounts for the material added by
the kth inlet that has left the reactor.

in,

Extent of outlet flow z,,, [-]

The element z,,, indicates the fraction of the initial conditions that has been removed
from the reactor through the outlet. In the case of no outlet, z,,, = 0, while with an
outlet, z,,,(t) goes asymptotically to 1.

out
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N
\

invariant space
Xiv = OS—R—p
S—R—p-—1

extents of inlet flow

N”S?

reaction space

W, M|

inlet space

extents of reaction
\

Figure 2.3 Physical three-way decomposition of the S-dimensional space of numbers of moles
into an R-dimensional reaction space, a p-dimensional inlet-flow space, a one-dimensional space
describing the discounting of ng, and an (S— R—p—1)-dimensional invariant space. The extents
of reaction (z,;, 7 =1, 2,..., R), extents of inlet flow (x,, %, ¥ = 1,2,..., p), and extent of
outlet flow (z,.,) are illustrated by the side figures. Note that these spaces are not orthogonal
to each other due to the removal of the initial conditions through the matrix (Is — noqy);
however, N"S§ + W,, M{ + noq; + QQg = Is.

2.3.3 Special reactor configurations

The extents of reaction and flow for special reactor configurations such as batch, semi-
batch and CSTR reactors are discussed next.

Batch reactor:

In a batch reactor, p = 0 and wu,,, = 0. It follows that z,,, = 0, and Eq. (2.20) reduces

to:

out

.. =Vr, z,;0)=0, Vi=1,...,R. (extents of reaction) (2.24)

x,; corresponds to the batch extent of the ith reaction in Eq. (2.5), i.e. the number of
moles converted by the ith reaction. The dynamic system is of order R. The recon-
struction of n(t) is given by:
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n(t) = ng + N'x,(t). (2.25)

Semi-batch reactor:
In a semi-batch reactor, u,,, = 0. It follows that z,,, = 0, and Eq. (2.20) reduces to:

.Z.'TJ' = VTZ', xr7i(0) =

‘%..'Ln,k = uin,k? xzn,k(o) =

, Vi=1,...,R, (extents of reaction)

, Vk=1,...,p. (extents of inlet flow)

(2.26)
x,; is the (batch) extent of reaction of the ith reaction. z,, , can be interpreted as the
mass added to the reactor by the kth inlet and is labeled the extent of the kth inlet
flow. Note that m(t) = mg + 1, x,,(t). The dynamic system is of order (R + p). The
reconstruction of n(t) is given by:

n(t) = ny + N, (t) + W, x..(t). (2.27)

CSTR:

In a CSTR, u,,,(t) is computed from V (t) = % = Vp and Eq. (2.2) as follows:

() = 10, (8) — (1) Vi, (2.28)

where p is the mixture density. The extents of reaction and flow are computed from
Eq. (2.20) and the reconstruction of n(t) is given by Eq. (2.22). The dynamic system
is of order (R + p+ 1). Note that, if the density is constant, p(t) = po, m(t) = mg and
u,..(t) = 1,u,,(t). It follows that A(t) can be computed algebraically from the states

Ty
X, (t) as A(t) =1— lp:lils(t) and, thus, the state equation for A can be removed and the
dynamic system is of order (R + p).

2.4 Illustrative simulated example

The implication of being able to compute the extents of reaction and flow from measured
data is illustrated through a simulated varying-density isothermal homogeneous reaction
system. The reaction system considered is the ethanolysis of phthalyl chloride (A) [26].
In two successive irreversible ethanolysis reactions, the desired product phthalyl chloride
monoethyl ester (C') and phthalic diethylester (E) are produced from ethanol (B). Both
reactions produce hydrochloric acid (D). It is assumed that B also reacts with D in
a reversible side reaction to produce ethyl chloride (F') and water (G). The reaction
system can be described by the following reaction scheme with seven species (S = 7)
and three independent reactions (R = 3):
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Rl: A+B— C+ D,
R2: C+B— E+D,
R3: D+B= F+G.

. . L —~1-11 1000 .
The stoichiometric matrix is N = 911110 ?] and the reaction rates obey the
mass-action principle:
r1 = ki cacg, Ty = ks cpco, r3 = kzcpep — kycpeg,

with the reaction rate constants k; given in Table 2.2. The molecular weights and
densities of the pure species are given in Table 2.3. The vector of numbers of moles
is n = [n4, ng, nc, np, g, np, ng|". Since the reactor is considered isothermal, the
density of the reaction mixture is computed as p = 1/ 25521 ij, with w, the weight
fraction of species s. Three reactor configurations will be investiigated, namely a batch
reactor, a semi-batch reactor, and the startup of a CSTR.

Table 2.2 Reaction rate constants (in m* kmol=! h=1).

ki ke ks Ky
0.127 0.023 11.97 8.01

Table 2.3 Molecular weights M, ;, in kg kmol ™!, and liquid densities p;, in kgm™2, of the S
pure species.

Species M., ; p;

A 203 1400
B 46 790

C 212.5 1118
D 36.5 1486
E 222 1118
F 64.5 9214
G 18 998

2.4.1 Case 1: Batch reactor

0.2 kmol of A and 0.6 kmol of B are initially placed in the reactor and thus ny =
[0.2, 0.6, 0, 0, 0, 0, 0]" kmol. A is the limiting reactant.
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Extents of reaction:

The numbers of moles n(t) are simulated using Egs. (2.1), (3.13) and (B.1) and are
considered as noise-free measured data (see Figure 2.4a). Since the mixture density
varies with concentration, the volume varies as well (not shown here). The extents of
reaction x, are computed from n using Eq. (2.18), i.e. without kinetic information.
The extents z, 1, =, and z, 3 in Figure 2.4b correspond to the numbers of moles pro-
duced by reactions R1, R2, and R3, respectively. Since A is the limiting reactant and
is only consumed by reaction R1, x,1(t) = nao — na(t) and approaches 0.2 kmol, in-
dicating completion of reaction R1. Species C, which is produced by reaction R1 and
consumed by reaction R2, limits reaction R2 shortly after reaction R1 stops. The extent
x,o indicates the number of moles of E that is produced by reaction R2 and also ap-
proaches 0.2 kmol, indicating completion of reaction R2. Since the forward reaction of
R3 is initially faster than the backward reaction, x, ;3 goes through a maximum before
approaching equilibrium. The profile of z, 5 corresponds to that of G. The reaction
variants computed in this case correspond to the well-known batch extents of reaction.
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X Bx2
0.3 tC o
[ ---
"B
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T X2
S od s
g
=
£0.15
0.1
0.05] "
0.02f |
/
0 ! ; PPN P . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50 (b 5 10 15 20 25 30 35 40 45 50
Time [h] Time [h]

Figure 2.4 Batch reactor. Time profiles of (a) the numbers of moles n, and (b) the extents
of reaction x,..

2.4.2 Case 2: Semi-batch reactor

0.5 kmol of A is initially placed in the reactor, n, = [0.5, 0.0, 0, 0, 0, 0, 0]* kmol.
Species B is fed to the reactor with the constant mass flowrate 5.3 kg h™! (p = 1), thus
leading to W,,= {0 0.02170000 O] kmolkg™! and rank ((N* W, ]) = R+p =4 as
required by Theorem 2.1. The matrices S, M and Q are computed using the algorithm
given in Appendix C.
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Extents of reaction and inlet flow:

n(t) is simulated and considered as measured data. This is illustrated in Figure 2.5,
which also shows the reactor mass computed from n using Eq. (3.13). The extents of
reaction x, and the extent of inlet flow z,, are computed using Eq. (2.18), i.e. without
information regarding the kinetics and the inlet flow. As in Case 1, since the reactants
A and C are limiting, x, ; and z, 5 reach asymptotically 0.5 kmol. Because the forward
part of R3 dominates due to feeding of B, the equilibrium of reaction R3 is pushed
to the right side, and z, 5 increases steadily with time, producing F' and G, until full
depletion of D (not shown here). As shown in Figure 2.6b, x,, increases steadily with
time due to feeding of B.

G (b)

K t S L L L L L L L L L
© 5 10 15 20 25 30 B35 40 45 50 5 10 15 20 25 30 35 40 45 50
Time [h] Time [h]

Figure 2.5 Semi-batch reactor. Time profiles of (a) the numbers of moles n, and (b) the
reactor mass m.

2.4.3 Case 3: Startup of CSTR

There are two inlets to the CSTR (p = 2): pure phthalyl dichloride A and pure ethanol

B, thus leading to W, = 0.0049° -0 00000 kmolkg™! and rank ([N* W ]) =
0 0.021700000
R+ p = 5. The reactor is initially filled with 1.5 kmol of ethyl chloride (F') and thus
n, = [0, 0,0, 0, 0, 1.5, 0]" kmol. Species A is fed with the constant mass flowrate 7.8
kg h™!, while feeding of B with the constant mass flowrate 5.3 kg h™! starts after 5
h (p = 2). Hence, there is no reaction in the interval [0, 5] h. The time profiles of
n simulated using Eq. (2.1) are shown in Figure 2.7a, the mass m computed using
Eq. (3.13) is shown in Figure 2.7b, and the inlet and outlet streams are shown in
Figure 2.7c. Note that the outlet flowrate varies even when the inlet flows are constant.
Indeed, feeding the heavy species A increases the density of the reaction mixture which,
according to Eq. (2.28), decreases the outlet mass flowrate. Addition of the light species
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Figure 2.6 Semi-batch reactor. Time profiles of (a) the extents of reaction x,, and (b) the
extent of inlet flow z,,,.

B to the reactor after ¢t = 5 h initially decreases the density and thus also the reactor
mass. Thereafter, the reactions produce heavy species, which increases m.

Mathematical reaction space:

The transformation matrices S, M and Q are calculated using the algorithm given in
Appendix D. Transformation (2.13) is first applied to n to compute the reaction variants
z,, the inlet-flow variants z,,, and the reaction and flow invariants z,, (see Figure 2.8a—
c). Figure 2.8a shows that all reaction variants take nonzero (positive) values in the
time interval [0, 5] h despite the absence of reaction. This behavior results from the
effect of the nonzero initial condition S™n,. Similarly, z,, s (corresponding to the feed
of B) takes nonzero values in the same time interval despite the absence of feed B. This
behavior is due to the effect of the nonzero initial conditions M™n,. Hence, unlike in
batch and semi-batch reactors, the mathematical reaction variants z, and the inlet-flow
variants z,, do not represent physical extents in reaction systems with an outlet stream.

in

Extents of reaction and flow:

The matrices Q and M are computed using the algorithm given in Appendix C. Since
rank ([N* W, ng]) = R+p+1=6and 15 p ,Q"ng = 0.4160 # 0, Theorem 2.2 can
be applied. The extents of reaction and flow are computed from n using Eq. (2.18), i.e.
without information regarding the kinetics and the inlet and outlet flows. The results
are shown in Figure 2.9 and discussed next:

e Extents of reaction: Figure 2.9a shows the time profiles of the extents of reaction
Z,1, T,2 and z, 3 corresponding to the reactions R1, R2, and R3, respectively. In
contrast to z,, x, is indeed zero in the time interval |0, 5] h (see Figure 2.9a). The

™
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Figure 2.7 Startup of CSTR. Time profiles of (a) the numbers of moles n, (b) the reactor
mass m, and (c) the inlet and outlet mass flowrates u,, 1, U, 2 and u,,,.

extents z, 1, x, 2, and z, 3 increase until reaching steady state. The profiles of z, 5
and z, 3 correspond to the profiles of the numbers of moles of E' and G, respectively.
It is very instructive to compare the profiles of the extents of reaction in different
reactor types, for example x, for the startup of a CSTR in Figure 2.9a with z, for a
batch reactor in Figure 2.4b and a semi-batch reactor in Figure 2.6a.

Extents of inlet flow: Fig 2.9b shows the time profiles of the extents of inlet flow
Z,,1 and z,, o corresponding to the two inlets. The extents increase with time as
soon as the corresponding inlet is activated.

Extent of outlet flow: Fig 2.9¢ shows the time profiles of the outflow extent x,.,.
x,..(t) shows the fraction of the initial numbers of moles that has left the reactor at
time ¢. It tends asymptotically to 1, i.e. the initial amount of ethyl chloride has left
the reactor after 48 h.
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Figure 2.8 Mathematical variants in the startup of CSTR. (a) Reaction variants z,, (b) inlet-
flow variants z,,, and (¢) reaction and inlet-flow invariants z,,.
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2.5 Summary

In this chapter, a linear transformation has been proposed that decomposes the num-
bers of moles in open homogeneous reaction systems into extents of reaction, inlet and
outlet flows. The proposed approach accounts for the effect of the nonzero initial condi-
tions that propagate through the outlet flow, thereby generating physically meaningful
extents of reaction and flow. These extents can be considered as an extension of the
concept of batch extents of reaction to homogeneous reaction systems with an outlet
stream; each extent of reaction represents the number of moles that is converted by the
corresponding reaction and is still in the reactor, while each extent of inlet flow describes
the amount of material that is added by the corresponding inlet stream and is still in
the reactor. The extent of outlet flow represents the fraction of the initial number of
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Figure 2.9 Various extents in the startup of CSTR. (a) Extents of reaction x,., (b) extents of
inlet flow x,,,, and (c) extent of outlet flow z,,,,,.

n )

moles that has left the reactor. The ability to compute the extents of reaction and flow
from the measured numbers of moles has been illustrated via the simulated study of the
ethanolysis of phthalyl chloride.

To put the present work in perspective, the transformations available in the literature
and one proposed in this work are compared schematically in Fig. 3.10. The transformed
states exhibit widely differing characteristics. The transformed states in the literature
(M2T and M3T) are mathematical reaction variants, inlet-flow variants, and invariants.
In contrast, the transformed states in this work (P3T) represent physical individual
extents. Future work will extend the concept of extents to heterogeneous gas-liquid
reaction systems, for which mass transfer between phases needs to be considered.
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Figure 2.10 Comparison of the transformations available in the literature and that proposed
in this work. All the transformations are based on the stoichiometric matrix N, and if needed
also on the inlet matrix W, and the initial conditions ng, to transform the numbers of moles
into reaction variants and invariants. The mathematical two-way (M2T) and three-way (M3T)
transformations generate transformed states that span the appropriate spaces but are denied
of any physical meaning. On the other hand, the proposed physical three-way transformation
(P3T) for reaction systems with inlet and outlet streams generates individual extents of reaction
and flow (. = 1,...,Rand k = 1,...,p). Also note that all these transformations can be
performed independently of the energy balance.






Chapter 3

Extents of reaction, mass transfer and flow
in gas—liquid reaction systems

Gas-liquid (G-L) reaction systems are frequent in the production of chemical and bio-
chemical products. Often, the reactions take place in the liquid phase, as in oxidations,
hydrogenations and chlorinations [38|. Compared to homogeneous reaction systems, the
mass transfer between phases represents an additional element in the models of G-L
reaction systems. It follows that G—L reaction systems are difficult to model because
of the direct coupling between the chemical reactions and the transfer of reactants and
products between the two phases. Mass transfer is often modeled as additional reactions
with unknown rates in the investigation of G-L reaction systems from the measured
data [58]. However, such an approach does not account for the changes in the mass of
the individual phases. In this dissertation, mass transfer will be modeled as additional
inlets (with unknown rates) to the gas and liquid phases.

For the analysis of G-L reaction systems, it would help to be able to separate the
contributions of individual reactions and individual mass transfer from those of the inlet
and outlet streams, similar to what has been done for homogeneous reaction systems
in the previous chapter. Moreover, G-L reaction systems are dynamic entities that
encompass several phenomena, each with its own dynamics. For example, the various
reactions can have widely different time constants, or the transfer phenomena can be
fast or slow relative to the reactions. Since these dynamic phenomena typically affect
most of the states of the reaction system, which encompass the numbers of moles (or
concentrations) and the reactor temperature, it is often not possible to discard certain
states relative to others, whereas it would be fully justified to neglect certain reactions
or mass transfers compared to others. Hence, it would be very useful to be able to view
and describe the behavior of G-L reaction systems in terms of the contributions of each
reaction, each mass transfer, and each inlet and outlet flow.

The aim of this chapter is to extend the linear transformation for homogeneous re-
action systems with inlet and outlet streams proposed in Chapter 2 to G-L reaction
systems with inlet and outlet streams. A linear transformation is proposed that de-
composes the number of moles vector into five distinct parts, namely, the extents of
reaction, the extents of mass transfer, the extents of inlet flow, the extents of outlet
flow, and the invariants. The new concept of extents of mass transfer describes the
contribution of individual mass transfer, independently of the contribution of the other
reactions, other mass transfers and of operating conditions such as initial conditions,
inlet concentrations and flowrates.

37
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Section 3.1 revisits the two-film theory of steady-state mass transfer and develops
mole balance equations for G-L reaction systems. For simplicity of presentation, it is
assumed that all the reactions take place in the liquid phase. In Section 3.2, the numbers
of moles in the liquid and gas phases are transformed linearly into extents of reaction,
extents of mass transfer, and extents of inlet and outlet flow. Furthermore, for the cases
of batch and semi-batch reactors, Section 3.2.3 shows that the linear transformation can
be implemented by considering both phases simultaneously. An extension to unsteady-
state mass—transfer models is presented in Section 3.2.4. The conceptual developments
in this chapter are illustrated via the simulation of the chlorination of butanoic acid in
Section 3.3.

3.1 Mole balance equations for gas—liquid reaction systems

Consider a G-L reaction system with S species living in the S-dimensional set of species
8. Among these S species, S, species live in the gas phase, S; species live in the
liquid phase, S,, = Sy + Si, species transfer between the two phases, with Sy, species
transferring from the gas to the liquid and S), species transferring from the liquid to
the gas. Correspondingly, the various sets of species are denoted as follows: §, C §,
Sl - 8, Sm = Sgl U Slg, with Sgl - 8 and Slg - 8.

The next three sections successively revisit the concept of steady-state mass transfer
in a G-L reaction system, develop the mole balance equations for G-L reaction systems,
and introduce the concept of extended inlets.

3.1.1 Steady-state mass transfer

Mass transfer is governed by interfacial phenomena that are typically difficult to observe
experimentally. It will be assumed that mass transfer is at quasi steady state, i.e. there is
no accumulation in the boundary layer. Models such as the stagnant two-film model, the
Higbie penetration model, the surface renewal model, the film penetration model, and
their modifications have been developed to describe mass—transfer phenomena [74, 87].

The two-film model illustrated in Figure 3.1 is selected here to describe the interfacial
phenomena. In this model, it is assumed that the transfer resistance is limited to a
boundary layer composed of two thin films around the interface. Figure 3.1a depicts
the mass transfer of species s € 8§, from the gas phase to the liquid phase, while
Figure 3.1b depicts the mass transfer of species s € 8, from the liquid phase to the
gas phase. In Figure 3.1a, the mole fraction of the sth species in the gas bulk is y,,
and it decreases to the interfacial mole fraction y: at the interface. The corresponding
molar concentration at the interface is ¢}, which decreases to ¢, in the liquid bulk. In
Figure 3.1b, the molar concentration of the sth species in the liquid bulk is ¢, and it
decreases to the interfacial concentration ¢. The corresponding mole fraction at the
interface is y, which decreases to y, in the gas bulk. The concentration differences in
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Figure 3.1 Two-film model in noninteracting mass transfer: Grey color indicates the films of
thicknesses ¢, and ¢;, while white color indicates the bulk of the gas and liquid phases. As an

example, (a) the sth species transfers from the gas to the liquid with the mass—transfer rate
Cqt.s» and (b) the sth species transfers from the liquid to the gas with the mass—transfer rate

lg,s-

the thin films are assigned to molecular diffusion of species through films of thicknesses
0, and ;. The fluxes of the S, transferring species depend on the bulk concentrations
and the hydrodynamics in the films. Multicomponent mass transfer is considered next
and classified into two types: (1) noninteracting multicomponent mass transfer, and (2)
interacting multicomponent mass transfer.
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Noninteracting multicomponent mass transfer:

In the classical approach of noninteracting multicomponent mass transfer, the mass—
transfer flux of each species is assumed to be proportional to its own driving force,
which is satisfied for the following practical situations [22, 74, 87]: (i) mass transfer in a
binary mixture such as water/air during condensation or evaporation, (ii) mass transfer
in dilute solutions such as salts, antibodies, enzymes or steroids, (iii) mass transfer
of species with similar size and nature (e.g., similar diffusivities) such as close-boiling
hydrocarbons or mixtures of isomers.

The molar fluxes £, ; and &, ; of the sth species from the gas to the liquid and from
the liquid to the gas can be expressed in mole/(time)(area) units as follows:

§gl,s = fgl,s(Acs) Vs € Sgl7

3.1
§lg,s = flg,s(Acs) Vs S Slg7 ( )

where f, s and f, s are functions of the driving forces Acg, with Ac, = ¢} —¢,,Vs € 8
and Acy = ¢y — ¢}, Vs € 8.
Linear flux models are often used:

§gl,s = kl (C: - CS), ERS Sgl7

S

§ig,s = ki(cs —c;), SES8,

S

(3.2)

where k! is the local low-flux (or zero-flux) molar transfer coefficients in the liquid phase
[87].

Since it is difficult to measure the equilibrium concentration ¢ at the interface, it is
typically expressed as a function of the gas bulk mole fraction y, (or partial pressure of
the sth species in the reactor). Since the flux across the film is at stead state, the linear
flux models in terms of the partial pressure in the gas phase can be written as follows:

59175 = kg(PS - 7):)7 5 € Sgl7 (33)

&975 = kg(P: — Ps), S € Slga
where k9 is the local low-flux (or zero-flux) molar transfer coefficients in the gas phase,
and P, and P is the partial pressure in the bulk and the equilibrium partial pressure
of the sth species, respectively. The partial pressure in the bulk can be computed from
an equation of state, e.g. the ideal gas law. The equilibrium concentration can be
eliminated using an equilibrium relationship such as Henry’s law:

7)*
P — 8 3.4
CS Hc7s’ ( )

where H., is the Henry constant for the sth species with the unit [m® bar kmol™!|.
Combining Egs. (3.2)—(3.4), the equilibrium concentration ¢} can be expressed in terms
of P, and ¢, as follows:
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. kgps + kécl

C, = m (35)

By substituting ¢} in Eq. (3.5) into Eq. (3.2), the linear flux models in terms of the bulk
concentration and the partial pressure in the liquid and gas phase can be written as:

Ps
Hc,s

é-glas = K(l),s< - cs) ERS Sgl

(3.6)

€ig,s = K(l),s <Cs - ;S ) 5 € 8,.

c,s

where K| | = 7 is the overall molar transfer coefficient in the liquid phase.

1
/KL +1/Hk

Interacting multicomponent mass transfer:

The molar fluxes £, s and &, in Eq. (3.1) are functions of the driving force Ac;.
However, molar fluxes often depend on the driving forces of all the species involved in
mass transfer; thus giving:

ggl,s = fgl,s(AC)a ERS Sgla

3.7
glg,s = flg,s(AC)a ENS Slga ( )

where Ac is the S,,-dimensional driving force vector of the S, transferring species.
Interacting multicomponent mass transfer takes place in many industrial processes such
as multicomponent distillation and gas absorption. For more details, the interested
reader is referred to Taylor and Krishna [87].

Remark 3.1

Note that & denotes a molar flux across the interface expressed in % unit. Often,

the modeling of G-L reaction systems makes use of mass—transfer rates in ((ZZ;S)) unit,
which can be related to molar fluxes as follows :
CS = 55 Aw Mw,sy Sm € Sma (38)

where A, V,, and M, , are the specific interfacial area, the liquid volume, and the
molecular weight of the sth transferring species, respectively.

3.1.2 Mole balance equations for gas—liquid reaction systems with

steady-state mass transfer

The mole balance equations for a G-L reaction system are presented in this section.
The reactor is shown schematically in Figure 3.2. The gas and liquid phases will be
modeled separately, with the mass—transfer rates ¢, and ¢;, connecting the two phases.
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The gas phase also contains p, inlets and one outlet, while the liquid phase contains
p; inlets and one outlet. There are p, (= S,) mass-transfer fluxes from the gas to
the liquid, p;, (= S),) mass—transfer fluxes from the liquid to the gas, i.e. a total of
Pm (= Sp) mass—transfer fluxes. Let us consider the following assumptions:

A1) The gas and liquid phases are homogeneous.

A2) The G-L reactor has a constant total volume.

3) The reactions take place in the liquid bulk only.

4) The mass—transfer phenomena are described by the two-film theory with no
accumulation in the boundary layer. This assumption is made here for simplicity of
presentation, and Section 3.2.4 discusses an extension to the case of unsteady-state
mass transfer.

A~ N S

> >

Dy gas inlets Gas outlet

uO'lL
Win,97 uin,g t.g
Gas phase
Ng, My
Cal Cig Mass transfer
p; liquid inlets
=
W'in.l) uin,l . .

' Liquid phase

n;, my; Liquid outlet

Figure 3.2 Schematic description of a G-L reaction system with two bulk phases and mass
transfer between them.

The mass—transfer rates ¢, and ¢, are positive or zero. Since, by convention, the
positive sign (+) is assigned to the mass transfer from the gas to the liquid, the p,,-
dimensional mass—transfer rate vector is { = [fg; ] . With these assumptions, the mole
g

balances for the gas and liquid phases read:

Gas phase

fy (1) = W, () — W, C(t) — %ng(w, n, (0) = n,0, (3.9)
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Liquid phase

um’l (t)
my(t)

nl(t) = NT W(t) I‘(t) + Wm,l um,l(t) + WmJ C(t) — nl(t), nl(O) = 1o,

(3.10)
where n; is the Sy-dimensional vector of numbers of moles in the f phase, f € {g,l},
N the R x S stoichiometric matrix, R the number of reactions, W,, , = M}, W, ;
the Sy x py inlet matrix expressing the composition of the inlets to the f phase, M, ;

the Sy-dimensional diagonal matrix of molecular weights, and Wm F= [vvln FEEE w’ f]

with W” , being the Sj-dimensional vector of weight fractions of the kth inlet to the f
phase with £ = 1,...,p, for the gas inlets and k = 1,...,p; for the liquid inlets, u,, ¢
the ps-dimensional inlet mass flowrate to the f phase, and ny, the vector of initial moles
in the f phase. W, ; = M;}fEm, ¢ is the Sy X p,,, mass—transfer matrix for the f phase,

E. ;= [é}n,f ---éi’ff} with éfn,f being the Sj-dimensional vector with the element
corresponding to the jth transferring species equal to unity and the other elements
equal to zero. Let V;, V;, and V, be the total reactor volume, the liquid volume, and the
gas volume, respectively. Under Assumption A2, V; is constant and can be expressed
in terms of Vj(¢) and V(t) as: V, = Vi(t) + V,(¢t). Thus, V,(t) can be expressed as a
function of V; and Vj(t).

The relationships between mole fractions, concentrations, and numbers of moles are:

ng,s(t)
S(t) = =2 , Vs=1,...,5,, 3.11
Y ( ) 159 ng(t) § g ( )
_nu(t) _
cs(t) = TAOR Vs=1,...,5, (3.12)

where 1g, is an Sj-dimensional vector filled with ones. Note that the reactor masses
my(t) and my(t) can be inferred from the numbers of moles as:

my(t) =1 M, pns(t),  f€{gl} (3.13)

The flowrates u,, ¢(t) and w,,, (t) are considered as independent (input) variables in
Egs. (3.9) and (3.10). The way these variables are adjusted depends on the particular
experimental situation. For example, some of the liquid inlets can be adjusted to control
the temperature in a semi-batch reactor, or the gas outlet can be adjusted to control
the reactor pressure. Moreover, the liquid phase obeys Eq. (3.16) with w,,,,; specified
according to the specific reactor arrangement. For example, if the liquid phase has a
constant volume, the outlet mass flowrate varies with the mixture density as:

uout,l = 1;1 ﬁin,l - p.l ‘/h (3'14)

which reduces to u,,,; = 1; u,,,; for the constant-density case, or when the reactor is
operated at steady state.
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Model (3.9)-(3.10) holds for both isothermal and nonisothermal reactors since the
specificities regarding the reactor type and its operation are hidden in the liquid volume
Vi(t), the reaction rate vector r(t), the mass—transfer vector {(t), and the specified inlet
and outlet streams u,, ;(t) and w,,, ;(t). Since the transformations developed in the
next two sections will require information regarding only the stoichiometric matrix N,
the inlet matrices W, ¢, the mass—transfer matrices W,, ¢, and the initial conditions,
these specificities do not play any role in the transformations. The specificities for both
gas-phase and liquid-phase reaction systems are given in Appendix B.

3.1.3 Extended inlets

Upon grouping the inlet flowrates u,, ; and the mass-transfer rates ¢, Egs. (3.9) and
(3.10) become:

. - U, g(t)
nq(t) = Win,g um,g(t) — W!Zt)nq(t)7 nq(O) = ng07 (315)
. _ T X — uout,l(t) _
nl(t) = N W(t) I‘(t) + mel um,l(t) — m (t) nl(t), n[(O) = 1o, (316)
!
where Win_’g = [W.. 4 —W,, /] is amatrix of dimension S, xp,, mel =[W...,, W
a matrix of dimension S; x p;, and u,, ; = [ulgf} a vector of dimension py, with

pr=Ds+pm, f €191}

Throughout this chapter, the R reactions are assumed to be independent as per
Definition 2.1. The p; extended inlets are assumed to be independent, according to the
following definition:

Definition 3.1 (Independent extended inlets)

For the f phase, f € {g,l}, p; extended inlets are said to be independent if (i) the
columns of W, ; are linearly independent, i.e. rank (Wm,f) = py, and (ii) there exists
some finite time interval for which the inlet mass flowrate profiles u,, ;(t) are linearly
independent, i.e. 3", ;(t) =0« B =0.

3.2 Linear transformation to extents of reaction, mass
transfer and flow

The transformation proposed in Chapter 2 for open homogeneous reaction systems
will be extended to include the extents of mass transfer. Two transformations will be
developed to express n; and n, in terms of various extents as follows:

1. Linear transformation of n;(¢) to the extents of reaction, and the extents of mass
transfer, inlet and outlet flow for the liquid phase.
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2. Linear transformation of n,(t) to the extents of mass transfer, inlet and outlet for
the gas phase.

In addition, the special case of G-L reactors without outlet will also be considered
separately.

3.2.1 Liquid phase with inlet and outlet streams

The next theorem introduces a transformation of the numbers of moles in the liquid
phase to generate the corresponding extents.

Theorem 3.1 (Linear transformation to various extents)

Consider the liquid phase of the G-L reaction system given by Eq. (3.16) involving
S; species, R independent reactions, p; independent inlets, one outlet, and p,, mass
transfers between the gas and liquid phases. Let rank ([NT Wm,z nzo]) =R+p + 1.
Then, the linear transformation

T

Xy 210
n — |x,.,| = |My|n (3.17)
Al iy
with
Sio = S/ (Is, =y qjy) = N (Is, — W, M) (Ls, — myo qjp), (3.18)
10 = M (Is, — nyo qpp), (3.19)
T Tz— —71QT

T T )
1SZ—R—@ Q/nyp

brings Eq. (3.16) to the extents of reaction x,., the extents of extended inlet X,, ;, and
the discounting variable \;. The extents of extended inlet X,,, ; can be expressed in terms
of the extents of mass transfer x,,; and the extents of liquid inlet x,, ;, thus leading to
the following transformed mole balance equations:

Ut . .
., =Vir,— — ! z, z,;(0)=0, Vi=1,..,R, (extents of reaction)
my
. uout .
Tt =G — ml,l Tl s z,.(0)=0, Vj=1,..,pn, (extentsof mass transfer)

. uout . . .
it = Uin ik — ! Tiniks Tinak(0)=0, Vk=1,....p, (extents of liquid inlet)
my

\ u t . .
A= -l A(0) =1, (discounting of ny)
my
(3.21)
where x, ; is the ith reaction extent expressed in kmol, x,, ; ; the jth mass—transfer extent

for the liquid phase expressed in kg, x,,; the extent of the kth liquid inlet expressed
in kg, and \; the scalar dimensionless variable used to discount the effect of the initial
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conditions in the liquid phase. The matrices S;, M, and Q, are computed using the
algorithm given in Appendix C. The numbers of moles n;(t) can be expressed in terms
of the extents x,(t), x,,,(t), X,,,(t) and the discounting variable \(t) as follows:

n[(t) = NT Xr(t) + WmJ Xm,l(t) + Wm,l Xim[(t) + n; )\[(t) (322)

(Proof follows from Theorem 2.2)

Remarks.

1. It is convenient to express the transformed system completely in terms of extents by
introducing the dimensionless scalar extent of liquid outlet x,,,;(t) = 1 — \;(¢), with
which Eq. (3.22) becomes:

nl(t) = 1o + NT Xr(t) + WmJ XmJ(t) + Wm,l Xm,l(t) — 1o .Z'Om’[(t). (323)

2. Transformation (3.17) requires the knowledge of N, W, ,, and ny. The subscript 0

in the matrices S;5, Mo, and the vector q;o indicate that the transformation depends
on the initial conditions ny.

3. The transformed reaction system for the liquid phase is of the dimension (R+p;+1).

In addition, there are (S, — R — p;) invariant states x,,,(t) that are identically equal
to zero and can be discarded:

'Ln,l?

X,,.1(t) = Qumu(t) = 05, _r_p,, (3.24)

Note rank (Q) =S, — R—p, — 1.

4. Note that, since a nonzero ny, can never lie in the row space of N [4], the work-
ing assumption of Theorem 3.1, rank ([NT W, Ilzo]) = R+ p; + 1, implies
rank ([Wm[ nzo]) = p; + 1. Also, this working assumption leads to the well-posed
problem of solving for x,.(t), x,.(t), x,,(t) and A(t) given n;(¢) [93].

Interpretation of the linear transformation.

The decomposition of the S;-dimensional space into subspaces is illustrated in Figure 3.3.
The transformation can be interpreted in two steps.

In the first step, the spaces N*Sf, W, ,M" ,, W, ;M7 ; and Q;Q; shown in Fig-
ure 3.3a are obtained as follows. Q;Q; is orthogonal to the reaction, mass-transfer
and inlet spaces, which leads to Q"N* = 0, Q*"W,,,; = 0 and Q*"W,,; = 0, respec-
tively. Furthermore, since the reaction and extended-inlet spaces are not orthogonal
to each other, the extended-inlet space is rotated to give the rotated extended-inlet
space \K/'ll\_/lgF that fulfills the conditions MJN" = 0z and MfWinJ =1I,,. The reac-
tion space N"S; orthogonal to Wm[l\_/IlT is obtained by introducing the rotation matrix

;=15 —W,,;M7. Finally, by considering the inlets and the mass transfers separately,
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the rotated extended-inlet space gives the rotated mass-transfer space W, ;M ; and
the rotated inlet space W, ;M ;.

In the second step, the contribution of n, is removed by introducing the rotation
matrix (Is, — n,qj,) to obtain the extents x,, X, ;, X,,, and the invariant states x
These states evolve in the spaces given by N*Sj;, W, /M ,,, W, MT ;; and Q;Qj,
respectively. A; describes the contribution of n;y and evolves in the one-dimensional
space given by njqj,. The interpretation of the various extents follows directly from
Eq. (3.21) and is given next.

'wl

Extents of reaction x, [kmol]

The extent of reaction z,; (Vi = 1,..., R) is decoupled from the other extents. It can
be interpreted as the number of moles that have been produced by the ith reaction and
are still in the reactor. The term Ma ; accounts for the material produced by the
1th reaction that has been removed through the liquid outlet. Note that a negative z, ;
value indicates the number of moles that have been consumed by the ith reaction.

Extents of mass transfer x, ; [kg|

For a species transferring from the gas to the liquid, the extent of mass transfer z,,, ;
(Vj =1,...,pu) is positive and corresponds to the mass transferred to the liquid phase
that is still in the reactor. For a species transferring from the liquid to the gas, the
extent of mass transfer z,,,; (Vj = py + 1,...,p,) is negative, with its absolute value
corresponding to mass of that species that would have accumulated and remained in
the liquid phase had there not been any mass transfer. The term —"‘”—Lf’lxm,l’j accounts
for the effect of the liquid outlet. A negative z,,;; value indicates mass transfer in the

opposite direction.

Extents of liquid inlet x,,; [kg]

The extent of liquid inlet x,, ; (Yk =1, ....,p;) is the mass added by the kth liquid inlet
that is till in the liquid phase. The term —"‘;—f*lxm,hk accounts for the material added
by the kth liquid inlet that has been removed through the liquid outlet.

Extent of liquid outlet z,,,; [-]

The extent of liquid outlet x,,.,(t) = 1 — \/(¢) is the fraction of n,, that has been
removed through the liquid outlet. Without liquid outlet, A;(t) =1 and z,,,,(t) = 0.
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Figure 3.3 (a) Mathematical four-way decomposition of the S;-dimensional space into or-
thogonal subspaces: a R-dimensional reaction space, a p,,-dimensional mass-transfer space, a
pi-dimensional inlet space, and a (S; — R — p,,, — p;)-dimensional invariant space. (b) Physical
five-way transformation of the S;-dimensional space into four extents spaces and one invari-
ant space that can be discarded since the invariants are identically equal to Og,—r—p,,—p,- In
contrast to (a), the subspaces in (b) are not necessarily orthogonal to each other due to the
discounting of nyo through the matrix (Is, — njoq);). The dimension of the transformed state
vector is R+ py, +pr + 1.
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3.2.2 Gas phase with inlet and outlet streams

The following corollary introduces a transformation of the numbers of moles in the gas
phase to generate the extents of mass transfer and of gas inlet and outlet.

Corollary 3.1 (Linear transformation to various extents)

Consider the gas phase of the G-L reaction system given by Eq. (3.15) involving S,
species, p, independent inlets, one outlet, and p,, mass transfers between the gas and
liquid phases. Let rank ([Wq ngo]) = p, + 1. Then, the linear transformation

< MT
n, — e . TgO n, (3.25)
)\9 ng
with i i
\ [T \ [T T T Sg—Dg ¥
MgO = Mg (ISg - ngO qg0)7 ng - —_JePe 29 (326)

T T )
1Sg —DPg Qg N40

brings Eq. (3.15) to the extents of extended inlet X,, , and the discounting variable
Ag- The extents of extended inlet X,, , can be expressed in terms of the extents of mass
transfer x,, , and the extents of gas inlet x,, ,, thus leading to the following transformed
mole balance equations:

Uyt .
Brgi =C — ;r’; X A T, 4(0)=0,Yj=1,.. pn, (extents of mass transfer)
g9
Tongk = Uin gk — Yourrg Tingks Tingik(0)=0,Vk=1,..,p,, (extents of gas inlet)
g
. T . .
A, = _;2;79 Ay, A (0) =1, (discounting of n,g)
g
(3.27)

where x,, ,; is the extent of the jth mass transfer for the gas phase expressed in kg,
%, g% the extent of the kth gas inlet expressed in kg, and A\, the scalar dimensionless
variable used to discount the effect of the initial conditions in the gas phase. The
matrices M, and Q, are computed using the algorithm given in Appendix C. The
numbers of moles n,(t) can be expressed in terms of the extents x,, ,(t), X, ,(t) and
the discounting variable \,(t) as follows:

ng(t) = —Wy 1%, 4(t) + Wi, 4 X, 4(t) + 140 Ay (£). (3.28)

(Proof follows from Theorem 2.2)

Remarks

1. It is convenient to express the transformed system completely in terms of extents by
introducing the dimensionless scalar extent of gas outlet x,,, ,(t) = 1 — X\, (¢), with
which Eq. (3.28) becomes:

ng(t) =mng — Wy, o X, ,(t) + W, o X, () — Do T, 4(F)- (3.29)
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2. Transformation (3.25) requires the knowledge of W, ,, and ngy. It depends on the
initial conditions ng.

3. The transformed reaction system for the gas phase is of dimension (p, + 1). The
(S, — p,) invariant states x,, ,(t) are identically equal to zero as follows and can be
discarded:

Xiv,g(t) = Q;an(t) = OSg_i)g’ (330)
Here, note that rank (Qg) = S, — p, — 1.

The interpretation of the extents x,, 4, X, , and z,,, , is given next.

Extents of mass transfer x,, , [kg].

For a species transferring from the gas to the liquid, the extent of mass transfer z,, , ;
(Vj =1,...,pg) is positive and corresponds to the mass of that species that would have
accumulated and remained in the gas phase had there not been any mass transfer.
For a species transferring from the liquid to the gas, the extent of mass transfer z,, , ;
(Vj = pg + 1,...,p,) is negative, with its absolute value corresponding to the mass
transferred to the gas that is still in the reactor.

Extents of gas inlet x,, , [kg]

The extent of gas inlet z,, ,, (Vk = 1,....,p,) is the mass added by the kth gas inlet

that remains in the reactor. The term —=~2z, . accounts for the material added by
g

the kth gas inlet that is removed from the gas phase through the gas outlet.
Extent of gas outlet z,,, , [-]

The extent of gas outlet z,,, ,(t) = 1—\,(t) is the fraction of n, that has been removed
through the gas outlet. Without gas outlet, \,(t) =1 and z,,, 4(t) = 0.

3.2.3 Special case: Gas—liquid reactor without outlet

A particular situation arises when there is no outlet, as in batch and semi-batch reactors.
In such a case, the gas and liquid phases can be treated simultaneously by combining
Egs. (3.15)-(3.16) to give:

n(t) = N"Vi(t)r(t) + W,, i, (t), n(0) = ny, (3.31)
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n
where n = [ g] is the S-dimensional vector of numbers of moles in the two phases,

1,
Wing
S =8,+5, N = |:0R><Sg N] the R x S stoichiometric matrix, @,, = |u,,,
¢
the p-dimensional vector of inlet and mass-transfer rates, with p = p, + p; + P,
W, = W, W, : Wm} = | Wimo * 050xps - =Wma | 1o oxtended-inlet matrix.

05, xp, Win, Wit
Eq. (3.31) resembles Eq. (3.16) with u,,,;, = 0. Hence, the transformation of Theo-
rem 3.1 applies directly to Eq. (3.31) and gives the following extents:

'M. =Vir, z,;(0)=0, Vi=1,..,R, (extents of reaction)

i =G, z,,;0)=0, Yj=1,...,pm, (extents of mass transfer)
Tinike = Uity ZTiwax(0) =0, YE=1,...,p;, (extents of liquid inlet) (3.32)
Tinghk = Uingks Lingr(0) =0, Vk=1,....p,. (extents of gas inlet)

The numbers of moles n(¢) in the gas and liquid phases can be expressed in terms of
extents as follows:

n(t) =ny+ N"x, () + W,,, x,.(t) + Wm 1 X () + w., o Xing(t). (3.33)

Remarks

1. The transformed space is of dimension R+ p. The S — R — p invariant states x,, are
identically equal to zero and can be discarded.

2. The element x, ; can be interpreted as the extent of the ith reaction, z,, ; the extent
of the jth mass transfer, x,, ;  the extent of the kth liquid inlet, and z,, , ; the extent
of the kth gas inlet. Note that, without outlet, the extents of mass transfer x,, are
the same for both phases.

3.2.4 Extension to unsteady-state mass—transfer models

Model (3.9)-(3.10) assumes that there is neither accumulation nor reaction in the
boundary layer. However, mass—transfer phenomena are often more accurately de-
scribed by unsteady-state mass—transfer models governed by partial differential equa-
tions |66, 67, 91, 92|

F, (9cap/0t, Ve s, Vie, ;) =0 with (B.C), ., (L.C),,
se€8,,, [fedgl} (3.34)



52 Extents of reaction, mass transfer and flow in gas-liquid reaction systems

where F, is a function of (i) the accumulation of the sth species in the f phase film
expressed by the time derivative dc; ;/0t, (ii) convection expressed by the first spatial
derivative Ve, f, and (iil) diffusion expressed by the second spatial derivative V¢, ;.
(B.C.); and (I.C.), ; are the boundary and initial conditions for the sth species in the
f phase, respectively.

Since the transferring species accumulate in the gas and liquid films during unsteady-
state mass transfer, the overall mass—transfer rate vector ¢ in Eqgs. (3.9)-(3.10) is re-
placed by the p,-dimensional mass-transfer rates ¢, and ¢, for the gas and liquid
phases, respectively, to give:

Gas phase

_ uout,g (t)

ng(t) = Win-,g ui"-,g(t) - Wmﬂg Cg(t) mg(t)

n,(t), m,(0) = ng with ¢, = [ 2 | .
(3.35)

Liquid phase

Upr 1 (1) N
my(t)

n(t) = N"Vi(t)r(t) + W, u,,.,(t) + W, ¢, (t) —

with ¢, = [fw ] .
lg 1
(3.36)
¢, and ¢, are obtained by solving Eq. (3.34), the boundary conditions of which are
functions of the bulk concentrations given by Eqgs. (3.35) and (3.36). Hence, Eqgs. (3.34)-
(3.36) need to be solved simultaneously.

The transformations in Theorem 3.1 and Corollary 3.1 compute the extents of re-
action, mass—transfer and flow using information regarding only the stoichiometry, the
inlet and mass—transfer matrices and the initial conditions in the bulk phases. Upon
replacing ¢, (Vj = 1,...,pm) by (,; and ¢, ;, the transformations in Theorem 3.1 and
Corollary 3.1 hold also for unsteady-state mass transfer.

Note that, for the case of G-L reactors without outlet and with unsteady-state mass
transfer, n, and n; cannot be combined and treated simultaneously due to the presence
of the mass—transfer rates (, ; and (; ; instead of simply (;.

3.3 Illustrative simulated example

The implication of being able to compute the extents of reaction, mass—transfer and flow
from measured data is illustrated through the isothermal, varying-density G—L reaction
system involving the chlorination of butanoic acid. Chlorinated carboxylic acids are
important intermediary products, for example in the production of pharmaceuticals,
dyes and herbicides.
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Reaction system

The chlorination of butanoic acid (BA) takes place in the organic liquid phase with
ethanol as solvent and it involves two parallel auto-catalytic reactions that consume
dissolved Cly. The main reaction produces the desired product a-monochlorobutanoic
acid (MBA) and hydrochloric acid (HCI). The second reaction produces the side product
a-dichlorobutanoic acid (DBA) and HCl. HCl is a highly volatile product that is found
in both phases [101]|. The reaction stoichiometry reads:

R1: BA + Cl, — MBA + HCI,

R2: BA + 2Cl, — DBA + 2HCI,

with the kinetic expressions:

ki\/crpa + ko CBA CCly

= LV (3.37)
1 + kgCClQ CBA + €1 Cci, + €9

To = k‘4 1 CCZQ'

The kinetic and thermodynamic parameters are given in Table 3.1 [68|. Mass-transfer
rates (in kg s7') are calculated using the following equations:

Cgl,012 = k012 AV, Mw,ClQ(CEZQ - Cczg),
Cg, et = knci AV, Mw,HOl(CHCI - C;{CZ)7 (3.38)

where ¢, and ¢ are the equilibrium molar concentrations of Cl, and HCI at the
interface and c¢;, and ¢y, are the molar concentrations of Cl, and HCI in the bulk,
respectively. The equilibrium concentrations are calculated using Henry’s law given by
Eq. (3.4). The partial pressures in the gas phase are calculated using the ideal gas law.

Three cases are considered, each with a different type of reactor, namely with (i) gas
inlet and no outlet, (ii) gas inlet and gas outlet, and (iii) both gas and liquid inlets
and outlets. The details regarding the numbers of species, independent reactions, mass
transfers, and inlet and outlet flows are given in Table 3.2. The reactions take place in
the solvent (ethanol) and the total reactor volume is 9 m?.

3.3.1 Case 1: Reactor with gas inlet and no outlet

Simulation to generate the numbers of moles:

In Case 1, 100 kmol of ethanol, 13 kmol of BA and a small amount of MBA as catalyst
(1075 kmol) are placed in the reactor. The gas phase contains initially air at atmospheric
pressure (1 bar). Then, Cl, is fed continuously for 1 h with the mass flowrate 972 kg
h=!. The initial volumes of the liquid and gas phases are 7.156 m® and 1.844 m?,
respectively. The reaction system has two gaseous species (8, = {Cl,, HCl}, S, = 2),
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Table 3.1 Thermodynamics, hydrodynamics and kinetic parameters

Kinetic Parameters

Catalyst mole fraction

Thermodynamic data

Hydrodynamic data

ky = 0.045632¢>-76-3260/T) 05 [(kmol m~3)/2s71]
ko = 0.475783¢>-34=3760/T) oy [kmol m~2 s7!]
ks = 1.3577 [m® kmol |

]{74 - 01
€1 = 0.2
€y = 1

a = 0.037

Henry constants, H. ¢, = H. gc; = 70.33 [bar m* kmol ™!
Molecular weights [kg kmol!|:

M, g = 88.12

Mw,IWBA - 12252

M, ppa = 156.97

]\471,_@*12 - 71

Mw,HCl - 3645

Mw,EtOH = 46

Liquid densities of pure species |kg m™|:
piea = 859.17

PIL,MBA = 1085.53

pi.opa = 1070

pPi,cl, = 1093

PiL,HCl = 1486.26

pi.econ = 790

Specific interfacial area A = 254.9 [m™'|:
Molar transfer coefficients: [m s™|

ker, = 0.666 x 1074

kHCl = 0.845 x 10_4

Table 3.2 Numbers of species S; and S, independent reactions I, mass transfers p,,, inlet
flows p; and pg, and liquid and gas outlets for the three cases studied.

|Case No. |S1|Sg| R|pm|pi|pg|Liquid outlet|Gas outlet]
1 (gas inlet, no outlet) 5(22[2]0(1 0 0
2 (gas inlet and gas outlet) 5(312121(0(1 0 1
3 (gas and liquid inlets and outlets)[ 6|3 [2| 2 [1|1 1 1
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five liquid-phase species (8; = {Cl,, BA, MBA, HCIl, DBA}!, S, =5), two reactions
(R1 and R2, R = 2), one gas inlet (Cly, p, = 1 and p; = 0), and two transferring
species (8, = {CL}, 8§, = {HCl}, S,, = Sy + S, = 1+ 1 = 2). Since there is
no outlet, the mole balance equations for the gas and liquid phases can be combined

. . _ _ ' T
as 1 Eq (331), Wlth S = 7 and n — [nClgyg nHClg . 71012’[ nBAl n]MBAL anzl nDBAZ] .

The initial conditions are: ng = [0 0: 0 13 1075 0 0]" kmol, m;; =5523 kg. The
stoichiometric and extended-inlet matrices are:

_ . 00:—-1-1110
N = [ngg . N] = ) (339)

00:—2-1021

0.0141 © —0.0141 0
0 0 —0.0274
= Wing ¢ —Wa g 0 © o 0.0141 0
Win = | ... — . X (340)
. 0 . 0 0
O5x1 Wit
0 0 0
0 0 0.0274
- 0 0 0 -

The liquid density is calculated as:

1
PL= 38 uls 3.41
S 4
where y,, s is the weight fraction of the sth species in the liquid phase and p; s is the
corresponding pure liquid density assumed to be constant.

The numbers of moles in the liquid phase and the partial pressures in the gas phase
are simulated using Eqgs. (3.15) and (3.16) and are considered as noise-free measured
data (see Figure 3.4). With no outlet and a constant reactor volume, the partial pressure
of HCI, which is produced by both reactions, increases with time. Note that the partial
pressure of Cl, remains nearly constant, an indication that the Cl, fed to the reactor
transfers immediately to the liquid phase.

Computed extents:

The extents of reaction, mass transfer and gas inlet are computed using the transfor-
mation of Theorem 3.1 applied to the measured vector n(t), i.e. without information
regarding kinetics and mass—transfer rates. Figure 3.5a shows the extents of reaction,
with z, ; and z, » corresponding to the numbers of moles converted by reactions R1 and
R2, respectively. BA is the limiting reactant that is consumed by both reactions R1

1 Note that the solvent ethanol, which neither reacts nor leaves the reactor, does not need be accounted for.
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and R2. Because MBA is produced by reaction R1 only, z, ; also represents the number
of moles of MBA produced and approaches steady state, indicating the completion of
reaction R1. Similarly, since DBA is produced by R2 only, z, , indicates the number
of moles of DBA and also approaches steady state, indicating the completion of R2.
Since reactions R1 and R2 are autocatalytic, they start slowly due to small amount of
MBA present initially in the reactor. This leads to an accumulation of Cly in the liquid
phase (see Figure 3.4a). After about 0.25 h, the rates of both reactions increase, which
leaves only small amounts of Cl, in the liquid phase. Since the rate 7, is proportional
to 012,012, it is very small after 0.25 h, which results in a nearly constant x, » value. Both
reactions stop upon total consumption of BA after about 0.9 h.

Figure 3.5b shows the extents of inlet flow z,, , and mass transfer x,,, where z,, ,
corresponds to the amount of Cl, fed to the gas phase, z,,; and z,, » to the amounts of
Cly and HCI transferred from the gas phase to the liquid phase, respectively. Note that
x,. 2 is negative since HCI transfers from the liquid to the gas. Note also that, without
outlet, the two extents of mass transfer are the same for the gas and liquid phases.
Z,,q increases with time due to the continuous feeding of Cl,. Since Cl, is fed into
the gas phase and is consumed in the liquid phase, z,, ; increases with time, while z,, »
decreases due to production of HCI in the liquid phase and its transfer to the gas phase.
Once the consumption of Cl, and the production of HCI stop following the complete
consumption of BA after 0.9 h, the transfer of Cl, slows down since the liquid phase
becomes saturated with Cly, while that of HCI stops. Since Cl, is fed continuously to
the gas phase and consumed rapidly in the liquid phase, z, 1 ~ z,,, until complete
consumption of BA.

m)

(a) M

14 ‘ ‘ ‘ ‘ 120
* Clyx5
1ok * BA |
* MBA 100[
% HCl
101 ° DBAX20 —
— . 2 sof
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-~ 8 60
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Figure 3.4 Case 1: Reactor with a gas inlet and no outlet. Time profiles of (a) the numbers
of moles in the liquid phase, and (b) the partial and total (P;) pressures in the gas phase.
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Figure 3.5 Case 1: Reactor with a gas inlet and no outlet. Time profiles of (a) the extents of
reaction x,., and (b) the extents of inlet flow z,, ; and of mass transfer x,,.

3.3.2 Case 2: Reactor with gas inlet and gas outlet

Simulation to generate the numbers of moles:

The gas phase has one inlet (p, = 1) and one outlet. Due to the presence of the outlet,
the liquid and gas phases need to be handled separately.

Initially, 13 kmol of BA and 100 kmol of ethanol as solvent are present in the reactor.
The gas phase contains only air at atmospheric pressure (1 bar). Since air is removed
with the outlet, the mole balance of air needs to be considered, thus S, = 3 with 8§, =
{air, Cly, HC1}. The initial numbers of moles in the gas phase is n, = [0.054 0 0]"
kmol. Furthermore, S; = 5 with 8, = {Cl,, BA, MBA, HCIl, DBA}?*. The initial
numbers of moles in the liquid phase is njg = [0 13 0 0 0]". The initial volumes of the
liquid and gas phases are 7.156 m?® and 1.844 m?, respectively. It is desired to maintain
the pressure at 10 bar, for which a constant gas outlet of 511.2 kg h™! and a varying
inlet flow of Cl, are used.

The stoichiometric matrix and extended inlet matrices for the gas and liquid phases
read:

0 0 0 0.0141 0
—1-1101] _ :
N = [ ] : W,.,= 00141 —0.0141 0 |; W, , = [ 0 0 ] .
~2-1021 8 0 0.0274
0 0 —0.0274 0

[=}

0

(3.42)
The numbers of moles in the liquid phase and the partial pressures in the gas phase
are simulated using Egs. (3.15) and (3.16) and are considered as noise-free measured

2 Since ethanol neither reacts nor leaves the reactor, it is not considered in the mole balance.



58 Extents of reaction, mass transfer and flow in gas-liquid reaction systems

data (Figure 3.6). Figure 3.6¢ represents the inlet flowrate of Cly that is adjusted by
PID control to maintain the total pressure in the reactor at 10 bar.

Computed extents:

Since rank (meg) = 2 < py = 3, the assumption rank (meg, ngo) = py+1 = 4 needed
in Corollary 3.1 does not hold, and thus the extents of inlet and mass transfer for the
gas phase cannot be computed from n,. However, for the liquid phase, the extents of
reaction x, and of mass transfer x,,; can be computed and are shown in Figure 3.7.
Again, the extents of reaction z, ; and z, 5 correspond to the numbers of moles of MBA
and DBA, respectively. Initially, the transfer rate of Cl, to the liquid phase, as given by
the slope of z,, 1, is important due to the high partial pressure of Cl,, then it reduces
with the decrease in Cl, partial pressure. x,,, - increases steadily in magnitude as HCI
is continuously produced in the liquid phase and transfers to the gas phase.
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Figure 3.6 Case 2: Reactor with gas inlet and gas outlet. Time profiles of (a) the numbers of
moles in the liquid phase, (b) the partial and total (P;) pressures in the gas phase, and (c¢) the
inlet flowrate of Cls.

3.3.3 Case 3: Reactor with gas and liquid inlets and outlets

Simulation to generate the numbers of moles:

Compared to Case 2, the liquid phase is considered to be a CSTR with the inlet u,, ;
and the outlet u,,,; computed according to Eq. (3.14), hence p, = p, = 1.

Initially, 100 kmol of ethanol are charged in the reactor. The gas phase contains only
air at atmospheric pressure (1 bar). The gas phase is then raised and maintained at
10 bar by feeding Cl, with a constant gas outlet of 27 kg h™!. BA is fed for 5 h to
the liquid phase with the mass flowrate 324 kg h™. The mole balance for the solvent
(ethanol) needs to be taken into account since its amount in the reactor changes due
to the liquid outlet, which affects the mixture density; however, it does not take part

in the reactions. Hence, S; = 6 with 8§ = {Cl,, BA, MBA, HCI, DBA, Ethanol} and
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Figure 3.7 Case 2: Reactor with gas inlet and gas outlet. Time profiles of (a) the extents of
reaction x,, and (b) the extents of mass transfer x,, ;.

S, = 3 with 8§, = {air, Cl,, HCl}. The initial numbers of moles in the liquid phase
isnp=1[000 00 100]" kmol. The initial volumes of the gas and liquid phases are
3.177 m® and 5.823 m?, respectively.

The extended-inlet matrix Wm,g for the gas phase is identical to that in Case 2. The
stoichiometric and inlet matrices for the liquid phase read:

0 00141 0
0.0113 0 0
N [—1 —11010]; W, = 0 0 0 (3.43)
210210 0 0 0.02740
0 0 0
0 0 0 |

The numbers of moles in the liquid phase and the partial pressures in the gas phase
are simulated using Egs. (3.15) and (3.16) and are considered as noise-free measured
data (see Figure 3.8). The inlet flowrate of Cl, is shown in Figure 3.8c.

Computed extents:
Similar to Case 2, the extents of inlet and mass transfer for the gas phase cannot

be computed since rank (qu) < pg- The extents for the liquid phase, which are
computed using Eq. (3.17), are shown in Figure 3.9 and discussed next.
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Extents of reaction

Figure 3.9a shows the extents of reaction z,; and x,, corresponding to reactions R1
and R2. A comparison with Figure 3.8a shows that the extents of reaction indeed
correspond to the numbers of moles of MBA and DBA that remain in the reactor. Since
Cl, transfers continuously from the gas to the liquid, and BA is also fed continuously,
the extents z,; and z, , increase with time.

Extents of mass transfer

Figure 3.9b shows the extents of mass transfer x,,;; and x,,;» corresponding to the
transfers of Cl, and HCL. z,,,, increases rapidly initially due to the large driving force
Acey,. In contrast, the mass transfer of HCI from the liquid to the gas x,, ;2 is highly
correlated with the extents of reaction since HCI is produced by both reactions.

Extents of liquid inlet

Figure 3.9b also shows the extent of liquid inlet z,, ;. BA is fed at a constant rate, and
x,,, increases steadily. However, it is not exactly a linear increase with a constant slope
since z,,; only accounts for the amount of BA fed that remains in the reactor.
Extent of liquid outlet

Figure 3.9c shows the extent of liquid outlet z,,, ;, which indicates the fraction of initial

liquid (ethanol) that has left the reactor at time ¢ through the liquid outlet. It is seen
that 38% of the initial amount of ethanol has been removed from the reactor after 5 h.
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Figure 3.8 Case 3: Reactor with both gas and liquid inlets and outlets. Time profiles of (a)
the numbers of moles in the liquid phase, (b) the partial and total (P;) pressures in the gas
phase, and (c) the inlet flowrate of Cls.

3.4 Summary

This chapter has extended the concept of extents of reaction and flow, and invariants
for homogeneous reaction systems to G-L reaction systems. The numbers of moles in
both phases have been transformed linearly into extents of reaction, mass transfer, inlet
flow and outlet flow, and invariants. For each phase, the novel concept of extent of mass
transfer describes the amount of material transferred between phases that is still in the
corresponding phase. It has also been shown that, for a reactor without outlet such as
a batch or semi-batch reactor, the gas and liquid phases could be combined and treated
simultaneously.

The proposed linear transformation requires information regarding only the stoi-
chiometry, the inlet composition, the initial conditions, and the transferring species to
compute the extents of reaction, mass transfer, inlet and outlet flow from the numbers
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Figure 3.9 Case 3: Reactor with both gas and liquid inlets and outlets. Time profiles of (a
the extents of reaction x,, (b) the extents of liquid inlet z,,; and mass transfer x,,;, and (c
the extent of liquid outlet z,.,, .

of moles (Figure 3.10). Note that the typically unknown specificities regarding the ki-
netics, the mass—transfer rates, the energy balance and the constitutive equations (for
representing densities and partial pressures) do not play any role in the transformation,
which therefore fully holds for complex nonisothermal reactors. Furthermore, since the
mass—transfer model of the two-film theory can also be used to describe liquid-liquid
reaction systems [47, 98], the proposed transformation can also be applied to these sys-
tems. Although this work has considered G—L reactors with reactions only in the liquid
phase, the proposed transformation can be extended to the case where the reactions
occur in both phases.
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Figure 3.10 Schematic of the linear transformation to compute the various extents from the
numbers of moles. The transformation is based on the stoichiometric matrix N, the inlet
matrix W, r, the mass—transfer matrix W,, r, and the initial conditions nyq for the f phase,
f € {g,1}. Note that the transformation can be performed independently of the energy balance,
kinetic and mass—transfer rate information.



Chapter 4

Minimal state representation of reaction
systems

First-principles models can have a large number of states to describe the various dynam-
ics, possibly on different time scales. However, there can be several either redundant
or negligible dynamic elements in these models. A minimal state representation is a
dynamic model with no redundant states'. Such reduced-order representations simplify
the dynamic model and can provide deeper insight into the reaction system [42, 60].

In practice, measurements are used for online monitoring, control and optimization
of reaction systems. However, it is not possible to measure the concentrations of all
the species because of limitations in the current state of sensor technology. In addition,
the accurate description of reaction kinetics and mass-transfer rates are often not avail-
able. In such cases, it is necessary to reconstruct the unavailable concentrations from
the available measurements. Minimal state representations help identify the minimal
number of states (such as number of moles, concentrations) needed to be measured so
that the unavailable states can be reconstructed.

Chapters 2 and 3 have introduced transformations to convert dynamic models of ho-
mogeneous and G-L reaction systems to the extents of reaction, the extents of mass
transfer, the extents of flows and invariant states, respectively. Using the concept of lo-
cal state accessibility of nonlinear systems, the conditions under which the transformed
models of homogeneous and G—L reaction systems are minimal state representations
will be investigated in this chapter. Moreover, using the decompositions of the numbers
of moles into extents and measured flowrates, one can determine the minimal number
of measured concentrations (or number of moles) that are needed to reconstruct the un-
available concentrations (or number of moles) for both homogeneous and G-L reaction
systems.

This chapter considers homogeneous reaction systems in Section 4.2 and G-L reaction
systems in Section 4.3. Section 4.1 introduces a mathematical definition of minimal
state representation and local state accessibility. Sections 4.2.1 and 4.3.1 derive the
conditions under which the transformed models are minimal state representations for
homogeneous and G-L reaction systems, respectively. Approaches to reconstruct the
unavailable states using the minimal number of measured states using homogeneous and
G-L reaction systems are proposed in Sections 4.2.2 and 4.3.2. Section 4.4 illustrates
various concepts using the simulated reaction systems.

L' A mathematical definition of minimal state representation is given later in this chapter.

65
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4.1 Definitions

A minimal state representation contains the minimal number of states, while exhibiting
the identical dynamic behavior as the original representation. For assessing the minimal
nature of a given state representation in terms of the number of state variables, it is
necessary to have an appropriate definition of minimal state representation [49].

4.1.1 Definition of minimal state representation

Definition 4.1 (Minimal state representation)
Consider the following class of input-affine nonlinear systems:

w(t) =f(w(t)) + Z gi(w(t))ui(), w(0) = wo, (4.1)

where w(t) € R is the state vector and u € R is the input vector. It will be assumed
that f(w) : R — R and g;(w) : RS — R are Lipschitz with respect to w.
Consider the positive integer ¢ < S and the following two conditions:

1. Representation condition:

The transformation ¥ : R® — R independent of the inputs u,

§="(w), £=[£,6] (4.2)
transforms Eq. (4.1) to:
5 & =1(&)+ ) &i(&u, &(0) =&, (4.3)
q: i=1
gz(t) - 52,07 (4-4)

where £, € R?, £, e RS f: R¥ - RY, g;(¢) : R® — R?
The back transformation ¥~ ' : RS — R® independent of the inputs u,
w = W' (¢), transforms Eqgs. (4.3) and (4.4) back to Eq. (4.1).

2. Minimality condition: There does not exist another positive integer | < q such that
Y, is satisfied.

If there exists a positive integer q that satisfies the two aforementioned conditions, then
Eq. (4.3) is a minimal state representation of Eq. (4.1) and q is called the minimal order.

To satisfy the representation condition, one needs to construct a transformation W
of the states in Eq. (4.1) such that the original states w are transformed into ¢ variant
states &, evolving with time and (S — ¢) invariants &, constant with time.

To check that &, satisfies the minimality condition, we will use the concept of minimal
realization of nonlinear systems [76, 77, 78|, which is briefly sketched next. For linear
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systems, it is well known that minimal realizations are both observable and controllable
[69]. The concept of observability of linear systems can easily be extended to nonlinear
systems. For example, the observability of a realization can be checked by regrouping
— into equivalence classes — indistinguishable system trajectories that obey a given
input-output relationship. In this manner, the resulting equivalence classes are observ-
able, thereby leading to an observable realization (observable quotient system) [78]. In
contrast to observability, there is no simple extension of the concept of controllability
of linear systems to nonlinear systems [41, 79]. In [76, 79|, the concept of state acces-
sibility has been introduced, which is related to controllability. As in |76], minimality
according to Definition 4.1 is based on the concept of state accessibility, which is briefly
reviewed in the next section.

4.1.2 Definition of local state accessibility

Consider the class of input-affine nonlinear reaction systems defined in Eq. (4.1). The
definition of local state accessibility is as follows:

Definition 4.2 (Local state accessibility)

The system (4.1) is locally state accessible from w, € R? if there exists an open neigh-
borhood O C R® for which W(wq,U,T) = w € O, where U: [0,T] — R is a set of
vector-valued input functions and W(wq,U,t) denotes the solution at time t.

In other words, a system is locally state accessible if, for every initial state wg, the
set of states reachable from w, has a nonempty interior in the state space [79]. Let
us define the accessibility distribution as the span of the Lie algebra that contains the
set of vector fields f, g;,Vi = 1,...,v and all the repeated Lie brackets of vector fields
generated by f and g;. Then, the accessibility distribution (Ay) is defined as:

Ay, = span{[f', g,0 <1<k, 1<i<v}, (4.5)

where [., .] indicates the Lie bracket, and [f', g;] the iterated Lie bracket of [f, [~} g;]]
and [f07 gz] = &

Lemma 4.1 (Bastin and Lévine [12], Sussmann and Jurdjevic [79])
If dim(Ag(w)) = S for all w € R, then the system (4.1) is locally state accessible from
w.

4.2 Open homogeneous reaction systems

In Chapter 2, Theorem 2.2 introduced the linear transformation of dynamic models
of homogeneous reaction systems. In this section, the conditions under which the
transformed model is minimal state representation will be derived. Furthermore, an
approach for reconstructing the unavailable numbers of moles (or concentrations) from
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the available numbers of moles (or concentrations) will be developed using the measured
flowrates. Hence, this approach is labeled as flow-based approach.

4.2.1 Minimal state representation

Minimal state representation is proven in two parts. The first part deals with the repre-
sentation condition of Definition 4.1. It will be shown that the linear transformation of
Theorem 2.2 satisfies the representation condition. In the second part, the minimality
condition will be proven.

Representation condition

For the linear transformation of Theorem 2.2, ¥ in Definition 4.1 is given by Egs. (2.18)
and (2.23), respectively, with the transformed states &; = [xf, x’, )\} and £, = x,,. In

addition, the inverse transformation ™' to reconstruct the original states n from £ is
defined by Eq. (2.21). Hence, the representation condition of Definition 4.1 is fulfilled.

Since the invariant states x,, in Eq. (2.23) are constant, the transformed equations
can be written in terms of &, as follows:

Xy fT(E) ORXp T u
oc ][5 [ .
uo‘u.t
A 0 O1xp —2
Or
with the initial conditions &,(0) = |0, |. &, is the (R 4 v)-dimensional state vector,
1

with v = p 4+ v, where v = 1 if outlet is present and v = 0 otherwise, u = [, ] is the

Uout

v-dimensional input vector, and f,.(§) = Vr. Hence, Eq. (4.6) is in the form of Eq. (4.3).

Minimality condition

Using results on the local state accessibility of the system (4.3), the conditions for
minimal state representation of Eq. (2.1) will be proven next.

Lemma 4.2
If the system (4.3) is locally state accessible, its state dimension cannot be reduced.
(See Proof in Appendix A.3)
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-

Lemma 4.3 B 3
Consider the system (4.3) with the vector fields f = |0,| and G = [gl,...,gv] =
0

Opp — 2
_XP m
X ~ _ of, 1 (0f, of, Oy
I, —%=|. Define the matrix J = [f, e E(ax: X, + =X + 55N fT)], where
O1xp —%

the derivatives gf; , afff , and % are the sensitivities of the reaction rates f, with respect

to the extents of reaction and flow (or reaction and flow variants). If rank (J) = R, then
the system is locally state accessible. (See Proof in Appendix A.4)

Using Lemmas 4.2 and 4.3, the following theorem details the conditions under which the
transformed model described by Eq. (4.6) is a minimal state representation of Eq. (2.1).

Theorem 4.1 (Minimal state representation: Homogeneous reactors)
Consider the homogeneous reaction system (2.1) with v > 0, and define the R x (v+1)-
dimensional matrix J. If (i) rank (N W,, ng]) = R+ p + 1 for the linear transfor-
mation of Theorem 2.2, and (ii) rank (J(t)) = R for some finite time interval, then
the system Eq. (4.6) is a minimal state representation of Eq. (2.1). (See Proof in Ap-
pendix A.5)

Remarks.

1. rank (J(¢)) = R is only a sufficient condition, while rank ((N* W, no]) = R+p+1
or rank ([NT W, ]) = R + p are necessary and sufficient conditions. An example
illustrating the sufficient condition of rank (J(¢)) = R is given next [75]. Consider
the semi-batch reaction systems with five species (S = 5), three independent reactions
(R = 3), and one inlet (p = 1) and assume power-law kinetics for the reaction rates.
Although rank (J(¢)) = 2 < 3, it can easily be verified that the linearly transformed
model is minimal state representation.

2. If rank (J(¢)) < R and thus the accessibility distribution A; is rank deficient, i.e.
rank (4A;) < R+ v, the rank of the distribution with & > 1 should be computed to
check local accessibility.

Special reactors

Semi-batch reactors

In a semi-batch reactor, u,,, = 0, v = 0, v = p, and A is constant. Then, Eq. (4.6)

reduces to:
£ ] _ [5G
X, 0

in p

élz +

Orxr u,, (4.7)
IP

with the initial conditions &,(0) = Og,,. The minimal state representation of a semi-
batch reactor is of order (R + p).
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CSTRs

In a CSTR, w,,,(t) is computed from Eq. (2.28). The minimal state representation
of a CSTR is of order (R + p + 1). However, if the density is constant, \(¢) can be
computed algebraically from the states x,, as described in Section 2.3.3. It follows that
the state equation for A can be removed from Eq. (4.6), thus leading to minimal state
representation of order (R + p).

4.2.2 State reconstruction

A flow-based approach for reconstructing the unavailable numbers of moles from the
minimal number of available numbers of moles will be developed next using the measured
flowrates. This flow-based approach proceeds in two steps: (i) the computation of
extents of reaction from the available numbers of moles and the mass flowrates, and (ii)
the reconstruction of the unavailable numbers of moles from the computed extents of
reaction, the mass flowrates, and the initial conditions of the unavailable species.

Let n,(t) be the S,-dimensional vector of available numbers of moles at the time
instant £. The subscript “a” indicates that the corresponding quantities are related to
S, available (measured) species, while the subscript “u” indicates that the corresponding
quantities are related to S, = S — S, unavailable (unmeasured) species. In addition,
the inlet and outlet flowrates (u,, x(t), Vk =1,...,p and u,,,(t)) are measured at time
t. The next theorem specifies the minimal number of species S, needed to be measured
in order to reconstruct the unavailable numbers of moles.

Theorem 4.2 (State reconstruction: Homogeneous reaction systems)
Let the matrices N, W, and the initial conditions ng be known and, without loss of
generality, let N and n be partitioned as: N = {Na Nu} and n" = [nz ni] Fur-

thermore, let the quantities n,(t), u,,(t) and u,,, be measured without errors. If (i)
rank (N,) = R, then the unavailable numbers of moles n,(t) can be reconstructed from
the available n,(t) in two steps as follows:

1. Computation of the extents of reaction x,(t):

%) =u,, — ”m X, X.(0) =0, (4.8)
At) = —“;;u, A(0) = 1, (4.9)
x,(t) = (Ng) " (0, (t) = Wi, 0, (£) — 0o o). (4.10)

2. Reconstruction of the unavailable numbers of moles n,(t):
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n,(t) = Nix,(t) + W, .x,,(t) + ng A\ (4.11)

(See Proof in Appendix A.6)

Remarks

1. The condition rank (N,) = R in Theorem 4.2 specifies the minimal number of species
that need to be measured, i.e. S, > R.

2. If the concentrations of the available species ¢, and the volume of the reaction mixture
V' are available, Theorem 4.2 can be used to reconstruct the unavailable concentra-
tions. Note that since the computation of x,.(¢) in Eq. (4.10) is independent of the
initial conditions of the unavailable species ng ,, x,(t) can be computed accurately.

3. If ng, is known accurately, n,(¢) can be reconstructed accurately using Eq. (4.11).
However, if the initial numbers of moles of the unavailable species n; , are unknown,
then asymptotic observers as described in Appendix E can be used to reconstruct the
numbers of moles of the unavailable species under certain conditions. The asymptotic
observers of Appendix E are similar to those proposed in Bastin and Dochain [11]
and Srinivasan et al. |[75]. The only difference regards the use of the extents of inlet
flow and the discounting variable instead of the reaction invariants.

4.3 Open gas—liquid reaction systems

4.3.1 Minimal state representation

The linear transformations in Sections 3.2.1-3.2.2 for open G-L reaction systems lead
to (R + 2p, + pi + p, + 2) variant states. In this section, it will be shown that the
transformed model is minimal state representation, and conditions for minimality will
be given. Before deriving the minimality conditions, it will be shown next that this
transformed model satisfies the representation condition.

Representation condition

In the case of G-L reaction systems without outlet, the gas and liquid phases can be
treated simultaneously. As a result, it was shown in Section 3.2.3 that the linear trans-
formation leads to (R + p,, + pi + p,) variant states. In contrast, when the two phases
are treated separately, there are 2p,, extents of mass transfer. Since there are only p,,
mass transfers between the gas and the liquid, the question arises as to whether it is
possible to further reduce the number of extents of mass transfer from 2p,,, to p,, when
the liquid and gas phases are treated simultaneously. It will be shown next that such a
reduction in the number of extents of mass transfer is not possible.
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Theorem 4.3
Consider the subsystem of the transformed G-L reaction system given by Eqgs. (3.21)
and (3.27):

. Ut
X7n,l - C - m 7l X7n,l7 Xm,l(O) = 07
l
o=ty A(0) =1,
my
) Upr g (4.12)
Xmg = ¢— m X9 Xm,g(o) =0,
g
Jy = — e ) A, (0) = 1.
g m 9> g

g9

If the system (4.12) is locally state accessible, there does not exist a transformation ¥
that reduces the states of system (4.12). (See Proof in Appendix A.7)

Remark 4.1

Theorem 4.3 gives the condition under which further reduction of the transformed mod-
els Egs. (3.21) and (3.25) is not possible. However, if "%;9 = =2t X, (t) = X,,,4(t)
and A\ (t) = A\, (t) from Eq. (4.12). Hence, the number of states in system (4.12) reduces
from (2p,, +2) to (p,+1). These (p,, +1) states are x,, , and A, in Eq. (4.12). However,

this pathological case is rare in practice.

For the linear transformations given in Theorem 3.1 and Corollary 3.1, ¥ in Defi-
nition 4.1 is given by Egs. (3.17), (3.25), (3.24) and (3.30). In addition, one can also
define the inverse ¥ ' so that the states n; and n, can be reconstructed from the trans-
formed ones as described in Theorem 3.1 and Corollary 3.1. Hence, the representation
condition of Definition 4.1 is fulfilled.

To simplify the representation of the transformed model, let us define the p,,-
dimensional vector §,, = x,, , — X,,; expressing the differences in the extents of mass
transfer in the liquid and gas phases. The dynamic equations describing §,, are:

uout,l

§ = Mewls <u . M)X%g, 5.(0)=0,,. (4.13)

my my mg

Then, the transformed state vectors

Moreover, 6,, can be used to represent x,, ;.
&, and &, are: & = {xf X!, ‘ o, | X, ‘ X g ‘ Al ‘ )\gi| and & = [x],, ‘ X7, gl
Since the invariant states are constant, they can be dropped, and the linearly trans-
formed models (3.21) and (3.25) can be written in the form of Eq. (4.3) with &, , =

o[ oy, | op, o5 |05 |1 1] and

X
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where &, is the (R + 2p,, + v)-dimensional state vector with v = p, + p, + 2, f and
G =[g,..., 8, are the (R+2p,, +v)-dimensional vector fields, f, is the R-dimensional
vector field, € is the p,,-dimensional vector field, and u is the v-dimensional input vector.

Minimality condition

The conditions under which Eqgs. (4.3)-(4.14) is a minimal state representation of the
G-L reaction system (3.9)—(3.10) are given in the following theorem.

Theorem 4.4 (Minimal state representation: G—L reactors with outlet)
Consider the G-L reaction system (3.9)~(3.10). If (i) rank ([N W,,; ny]) = R+
p1 + pm + 1 for the linear transformation of Theorem 3.1 for the liquid phase, and (ii)
rank ([Wq ngo]) = py+pm+1 for the linear transformation of Corollary 3.1 for the gas
phase, and (iii) the system (4.3)-(4.14) is locally state accessible, then the transformed
system Eqs. (4.3)-(4.14) is a minimal state representation of the system (3.9)—(3.10).
(Proof follows from Lemma 4.2)

In G—L reaction systems, the accessibility distribution A has to be computed to check
the minimal state representation. Hence, there is no straightforward condition such as
rank (J(¢)) in homogeneous reaction systems to check the local state accessibility of the
system (4.3)-(4.14).

When the reactions take place only in the liquid phase, as assumed in this thesis, the
gas phase acts as an exchange layer between the gaseous inlets and the liquid phase on
the one hand, and the volatile products from the liquid phase and the gaseous outlet on
the other hand. Often, in such reaction systems, rank ([Wq ngo]) = rank ([Wq]) =
Sy < pg+pm. Hence, Corollary 3.1 cannot be applied to transform the number of moles
vector in the gas phase into extents and invariants. However, the numbers of moles in
the liquid phase can be transformed, provided Conditions in Theorem 3.1 are satisfied.
Then, the following corollary describes the conditions under which the systems (3.9)
and (3.21) are minimal state representations.

Corollary 4.1

Consider the G-L reaction system (3.9)—(3.10). If (i) the number of species in the
gas phase, S, < p, + P, (ii) rank ([NT W, nzo]) = R+ p; + p, + 1 for the linear
transformation of Theorem 3.1 for the liquid phase, and (iii) Egs. (3.9) and (3.21) are
locally state accessible, then Egs. (3.9) and (3.21) are a minimal state representation of
(3.9)-(3.10). (Proof follows from Lemma 4.2)
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4.3.2 State reconstruction

Similar to homogeneous reaction systems, a flow-based approach for reconstructing the
unavailable numbers of moles in the liquid phase using the minimal number of mea-
surements will be developed for G-L reaction system next. This flow-based approach
proceeds in two steps: (i) the computation of the extents of reaction, mass transfer, and
flows from the available numbers of moles in the liquid and gas phases and the mass
flowrates, and (ii) the reconstruction of the unavailable numbers of moles in the liquid
and gas phases from the computed extents of reaction, mass transfer and flows, and the
initial conditions of the unavailable species.

Let n,;,(t) and n, ,(t) be the S; , and S, ,-dimensional vectors of the available num-
bers of moles in the liquid phase and the gas phase, respectively. In addition, the inlet
and outlet flowrates in the liquid and gas phases (u,,;, W, g, Uy, and u,,, ;) are also
measured. The stoichiometric matrix N, the inlet matrices W, ; and W, ,, the mass-
transfer matrices W,, , and W, ; and the initial conditions n;, and ng are known.
The objective of this section is to reconstruct the unavailable numbers of moles in the
liquid (n;,) and the gas (n,,), and to compute the extents of reaction in the liquid
phase (x,), the extents of mass transfer (x,, , and x,,;), the extents of inlet flow (x,,,
and x,, ,), and the discounting variables (), and \;) using as few measured numbers of
moles as possible, and this without knowledge of the reaction-rate and mass-transfer-
rate expressions.

Without loss of generality, it is assumed that the S, , species available in the gas phase
are involved in the mass transfers 2. The extents of mass transfer will be computed
from information stemming from both phases, namely p,, extents will be computed
from the gas phase, while p,,, = p,, — pm, extents will be computed from the liquid
phase. In other words, the p,, transferring species are measured such that p,, species
are measured in the gas phase and p,,, are measured in the liquid phase. The extents of
mass transfer and the mass-transfer matrices are noted accordingly. For instance, x,,_ 4
and x,, ; represent the p,, -dimensional vectors of extents of mass transfer computed
from gas-phase measurements for the gas phase and the liquid phase, respectively; x,,, ;
is the p,,,-dimensional vector of extents of mass transfer computed from the liquid
measurements and for the liquid phase; W, g, is the (g 4 X p,, ) mass-transfer matrix
associated with the p,, mass transfers and the S, , species; W,, ;. is the (S1a X Pmy)
mass-transfer matrix associated with the p,,, mass transfers and the S; , species; W,, ;.
is the (S, X pm,) mass-transfer matrix associated with the p,, mass transfers and the
S} species.

With the (S, + S,.) available numbers of moles, the measured flowrates, and
the known information N, W, ;. W, + and njy, where f = {g,l}, the following
differential-algebraic equations can be written for the liquid and gas phases:

e Algebraic equations obtained through the available numbers of moles n; , and total
mass m; in the liquid phase:

2 The species not involved in mass transfer can be discarded without any information loss.



4.3 Open gas-liquid reaction systems 75

n,=Nx. +W, . X, +W,_,.X,+no.\, (4.15)
m; = 1TXm,l + 1TXm,l + )\lmlo. (416)

e Differential equations for the unknown extents of inlet flow x,,; and the unknown
discounting variable A; in the liquid phase:

uout,l

I’.(m,l =W, — m Kin,ly Xin,l(o) = Ypi» (4'17)
\ Ul
AN = — =\ N (0) = 1. 4.18
l m 1y l( ) ( )

e Algebraic equations for the measured numbers of moles n, , and the unknown total
mass m, in the gas phase:

Ngo= Wm,g,aximg - Wm,g,axmmg + ngO,a}‘g (4-19)

my =1"%x, ,+ 1'%, , + Agmyo. (4.20)

e Differential equations for the unknown extents of inlet flow x;, , and the unknown
discounting variables A, in the gas phase:

. uouth
Xin,g = Wing — m—q Xin,gs Xin_’g(O) = Op97
g
) Uporg (4.21)
Ag = — m’ Ag, Ag(0) = 1.

g

e Differential equations for the unknown difference in mass-transfer extents §,, in the
gas and liquid phases:

Ut (1)
my(t)

8..(1) + (u"’“"l(t) - u““**g(t))xmgyg(t), 5,.(0)=0,, .(4.22)

Slt) =~ () ()

e Algebraic equations for the unknown extents of mass transfer in the liquid phase x
computed using the gas measurements:

mg,l

X0, 0(6) = X, 4(8) = 8,.(0) (4.23)

The above differential-algebraic system consists of (S, + Sy.. +pm + 2) algebraic equa-
tions and (p; + py + pm + 2) differential equations. The number of unknown variables
is (R+ py + pi + 3pm +4). The following theorem specifies the minimal number of
composition measurements needed to reconstruct the unknown variables.

Theorem 4.5 (Minimal number of measurement in G-L reaction systems)

Let the matrices N, W, ,, W, . W, ;. W, .. and the initial conditions n;, and ngy
be known. Furthermore, let the quantities n, ,(t), 1;,(t), W, (%), W, 4(t), w,...(t), and
Uy g(t) be measured. If (i) S, + Sg0 > R+ ppm, (ii) rank (ng,g,a) = Dm,, and (iii)
rank (N7, W, 1.]) > R+ p,,,, then the differential-algebraic equations in (4.15)-(4.23)
can be solved to compute the (R + p, + p; + 3pm + 4) unknowns, namely, the extents
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of reaction x,(t), the extents of mass transfer in the liquid phase x,,,(t), the extents
of mass transfer in the gas phase x,, ,(t), the extents of liquid inlet x,, ;(t), the extents
of gas inlet x,, ,(t), and the discounting variables in the liquid \,(t) and the gas \,(t),
and the masses of the liquid m,(t) and the gas m,(t). (See proof in Appendix A.8)

If the initial conditions of the unavailable species in the liquid (n,,) and the gas
(ng0.) are available, the unavailable numbers of moles in the liquid (n;,(¢)) and the
gas (n,,(t)) can be computed from the computed x,(t), x,,.,(t), x,.:(t), X,. 4(t), X,...(t),
Ai(t) and Ay(t) in Theorem 4.5 as follows:

n,(t) = Nix,(t) + W, X (8) + WX, () + 140, M(2), (4.24)
N (1) = Wi guXing(t) = W guXg(t) + 0900 A (1) (4.25)

Remarks.

e Conditions (i)-(iii) specify the minimal number of concentration measurements needed
to compute the extents of reaction and mass transfer, i.e. S;, + S, = R+ D

e In addition to at least (R + p,,) concentration measurements, the p; liquid inlet
flowrates, the p, gas inlet flowrates, the liquid outlet flowrate and the gas outlet
flowrates need to be measured. Hence, the minimal number of measurements to
compute all the extents and the discounting variables is (R + p,,, + p, + pi +2). On
the other hand, it follows from Theorem 4.4 that the minimal number of states is
(R + 2p,, + py + p1 + 2). These results are not contradictory because, in addition to
the (R + pm + pi + py + 2) measurements, the p,, differential equations for the state
d,, are required to reconstruct the unavailable states.

e If the initial numbers of moles in the liquid phase nj,, are not known, then the
asymptotic observers described in Appendix E can be used to estimate the unavailable
concentrations in the liquid phase. Note that the computation of the various extents
in the liquid and gas phases are independent of ny ,,.

4.4 Tllustrative simulated examples

The concepts of minimal state representation and state reconstruction are illustrated
next based on simulated homogeneous and G-L reaction systems. The ethanolysis of
phathalyl chloride is considered as a homogeneous reaction system, while the chlorina-
tion of butanoic acid is considered as a G-L reaction systems.
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4.4.1 Homogeneous reaction system

The startup of the CSTR reactor for the ethanolysis of phthalyl chloride described in
Section 2.4.3 is considered to illustrate the concepts of minimal state representation and
state reconstruction.

Minimal state representation

Let us define the vectors x, = [z, 1, ©,2, x, 3]" and x,, = [z,, 4, ©,, 5]", where x, 1, %, 5
and z, 3 are the reaction variants (or extents) for Reactions R1, R2 and R3, respectively,
and z,, 4 and z,, p are the flow variants (or extents) corresponding to the inlets of species
A and B. The vector f, = %r(x) and the derivatives gf{: , 86:1:1 and &= can be
expressed as:

2 O _ m or _ mr—ap
P ox. anT ox,’
of, or op
2 O g — mr—=—
p o r1) + maxm]p mraxm ,
of or op
2 0Ly or, 0P
P —[Hr—l—ma)\]p mross (4.26)

where 0 = mg = 96.75 kg for the linear transformation of Theorem 2.2.

The conditions of Theorem 4.1, rank ([N W, ng]) = R+ p+ 1 = 6, is fulfilled.
Hence, the linear transformation of the numbers of moles does exist. Using the Symbolic
Math toolbox of MATLAB® and Eq. (4.26), it was verified that rank (J(t)) = R = 3.
Since the two conditions of Theorem 4.1 are satisfied, Eq. (4.6) is a minimal state
representation of order 6 for this reaction system.

State reconstruction

The reconstruction of unavailable numbers of moles from available ones and mass
flowrates is demonstrated next. The numbers of moles are simulated and corrupted
with additive zero-mean Gaussian noise. The standard deviation for each species is
taken as 2 % of the maximum number of moles of that species, i.e. o, = 0.02n7**
for s = {A, B, C, D, E, F,G}. The measurements of the numbers of moles of species
A, B, and C (S, = 3) are assumed to be available, every 1.25 h for 50 h, as shown
in Figure 4.1. In addition, the time profiles of the measured flowrates are available, as
shown in Figure 2.7c. The various matrices related to the available and the unavailable
species are given as follows:
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0.0049 0
W..=| 0 00217|; mng,=0s;
0 0
0
Wiw = 04x2; Mgy = ! (4.27)
’ ' 1.5
0

The aim is to reconstruct the numbers of moles of the unavailable species using the

available ones. Since S, = R = 3 and rank (N,)

R = 3, Theorem 4.2 can be applied

to reconstruct the unavailable numbers of moles. In Step (1), the extents of R1 (z, 1),
R2 (x,5) and R3 (z,3) are computed from the available measurements and shown in
Figure 4.2. The reconstructed numbers of moles are shown in Figure 4.3. It can be seen
that the reconstructed numbers of moles are comparable to the true ones for the species
E, F, and G. However, the numbers of moles of the species D is poorly reconstructed.

(a)

(b)
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-0.0h 5 10 15 20 25 30 35 40 45 50
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Figure 4.1 Ethanolysis of phthalyl chloride. Available numbers of moles: (a) number of moles
of species A, (b) number of moles of species B), and (c¢) number of moles of species C. The
solid lines indicate the simulated true numbers of moles and the markers indicate the measured

(available) noisy numbers of moles.
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Figure 4.2 Ethanolysis of phthalyl chloride. Computed extents of reaction: (a) extent of R1,
(b) extent of R2, and (c) extent of R3. The solid lines indicate the simulated true extents of
reaction and the markers indicate the extents of reaction computed from the measurements.

4.4.2 Gas—liquid reaction system

The G-L reaction system for the chlorination of butanoic acid described in Sec-
tion 3.3.2 is considered to illustrate the concept of state reconstruction. The noisy
numbers of moles are simulated and corrupted with additive zero-mean Gaussian noise.
The standard deviation for each species in the gas phase is taken as 0.003 kmol,
ie. o, = 0.003 kmol for s = {air, Cly, HCl}. Similarly, the standard deviation
for each species in the liquid phase is taken as 0.02 kmol, i.e. o, = 0.02 kmol for
s ={Cly, HCl,BA,MBA, DBA}.

The measurements of the numbers of moles of air, Cl, and HCI in the gas phase and
of BA and MBA in the liquid phase are assumed to be available, every 54 sec for 1.5
h, as shown in Figures 4.4 and 4.5, respectively. In addition, the time profile of the
measured inlet flowrate is available, as shown in Figure 3.6¢, and a constant gas outlet
of 511.2 kg h™! is considered. The various matrices related to the available and the
unavailable species are given as follows:
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Figure 4.3 Ethanolysis of phthalyl chloride. Reconstructed numbers of moles: (a) numbers of
moles of species D, (b) numbers of moles of species E, (¢) numbers of moles of species F, and
(d) numbers of moles of species G. The solid lines indicate the simulated true numbers of moles
and the markers indicate the reconstructed numbers of moles.
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Note that there are no inlet and outlet streams associated with the liquid phase, i.e. p; =
0.

The objective of this example is to reconstruct the numbers of moles in the liquid
phase using the available measurements in the gas and liquid phases. The reaction
system involves two mass transfers (Cl, and HCI, p,, = 2) and two reactions taking
place in the liquid phase (R = 2). In the gas phase, S;, = S, = 3 and p,, =
Pm = 2. This leads to p,, = 0. Hence, the extent of Cl, mass transfer and the
extent of HCl mass transfer can be computed from the gas measurements. In the
liquid phase, S;, = 2. Since S;, + Sy, = 3 +2 > R+ p,,, rank (ng,g,a) = 2, and
rank (N7, W,,, 1.]) =2 = R+p,,,, Theorem 4.5 can be applied to compute the various
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Figure 4.4 Chlorination of butanoic acid. Available numbers of moles in the gas phase: (a)
numbers of moles of air, (b) numbers of moles of Cly, and (c¢) numbers of moles of HCl. The
solid lines indicate the simulated true numbers of moles and the markers indicate the noisy
measured (available) numbers of moles.
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Figure 4.5 Chlorination of butanoic acid. Available numbers of moles in the liquid phase: (a)
numbers of moles of BA (n; p4), and (b) numbers of moles of MBA (n; prp4). The solid lines
indicate the simulated true numbers of moles and the markers indicate the measured (available)
noisy numbers of moles.

extents and reconstruct the unavailable numbers of moles in the liquid phase. The
differential-algebraic equations (4.15)—(4.23) for the chlorination of butanoic acid can
be solved as follows.

e Since all the species in the gas phase are measured, m, is computed using Eq. (3.13)
from the available number of moles in the gas phase and shown in Figure 4.6a.

e Using the gas inlet and outlet flowrates and the computed gas mass, the extents of
inlet z,, , c1, and the discounting variable A (t) are computed from Eq. (4.21). The
extents of Cl, mass transfer x,,, 4 ci, and HCl mass transfer z,, , ge in the gas phase
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are computed from Eq. (4.19) using the measured numbers of moles in the gas phase
and the computed z,, ; 1, and A, (t). The computed extents, Tpnyg.0l, a0 T, o ey,
are shown in Figures 4.6b—c.

The extent of Cl; mass transfer (z,,,;c:,) and the extent of HCl mass transfer
(2,.,0,5c1) in the liquid phase can be computed from Eqs. (4.22)-(4.23) using the
computed ,,, 1, and x,,, o g The computed 6, ¢y, and 9,, g are shown in
Figures 4.6d—e, while the computed z,,,1.c1, and z,,, 1 zci are shown in Figure 4.7.
Since p; = 0 and u,,,; = 0, Egs. (4.17) and (4.18) are dropped.

e Since rank (N,) = R = 2, the extent of R1 (z,;) and the extent of R2 (z,,) can be
computed from Eq. (4.15) using the computed extents Ty 1,01, and T, geor, and the
available numbers of moles in the liquid phase n; ,. The computed extents of R1 and
R2 are shown in Figure 4.8.

The computed extents in the liquid phase and information regarding the stoichio-
metric matrix, the mass-transfer matrix, and the initial conditions of the unavailable
species can be used to reconstruct the numbers of moles of Cl,, HCI, and DBA in
the liquid phase from Eq. (4.24). The reconstructed numbers of moles in the liquid
phase are shown in Figure 4.9. Note that the numbers of moles of Cly are poorly
reconstructed for the time interval [0.15, 1.2] h because of low signal-to-noise ratio.
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Figure 4.6 Chlorination of butanoic acid. Computed quantities using the measurements in
the gas phase: (a) gas mass, (b) extent of mass transfer of Cly in the gas phase, (¢) extent
of mass transfer of HCI in the gas phase, (d) difference variable associated with Clz, and (e)
difference variable associated with HCIl. The solid lines indicate the simulated true quantities
and the markers indicate the quantities in the gas phase computed using the measurements.
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Figure 4.7 Chlorination of butanoic acid. Computed extents of mass transfer in the liquid
phase: (a) extent of Cly mass transfer in the liquid phase, and (b) extent of HCIl mass trans-
fer in the liquid phase. The solid lines indicate the simulated true extents of mass transfer
and the markers indicate the extents of mass transfer in the liquid phase computed from the
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Figure 4.8 Chlorination of butanoic acid. Computed extents of reaction in the liquid phase:
(a) extent of R1 in the liquid phase, and (b) extent of R2 in the liquid phase. The solid lines
indicate the simulated true extents of reaction and the markers indicate the extents of reaction

in the liquid phase computed from the measurements.
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Figure 4.9 Chlorination of butanoic acid. Reconstructed numbers of moles in the liquid phase:
(a) numbers of moles of Cla, (b) numbers of moles of HCI, and (d) numbers of moles of DBA.
The dashed lines indicate the simulated true numbers of moles and the markers indicate the
reconstructed numbers of moles.

4.5 Summary

A minimal state representation is a dynamic model with no redundant states. The linear
transformations in Chapters 2 and 3 decompose the numbers of moles into extents and
invariant states. These invariants are constant since their dynamics have been removed.
Hence, homogeneous reaction systems can be described by (R+ p+ 1) reaction and flow
extents instead of the S original states, while G-L reaction systems can be described by
(R4 2p., + pi + py + 2) reaction, mass-transfer and flow extents instead of the (S, +.5))
original states. Conditions have been derived under which the transformed models are
indeed minimal state representations.

It has been shown that measured flowrates can be used to complement the transfor-
mations in order to reconstruct the unmeasured numbers of moles without knowledge
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of reaction kinetics and mass-transfer rates. Furthermore, it has been shown that the
minimal number of concentration measurements needed to reconstruct the unavailable
species is R for homogeneous reactors and (R + p,,) for G-L reactors.

The proposed flow-based approaches for reconstructing the unavailable concentrations
can be useful for the identification of reaction and mass-transfer rates from measured
data, as shown in the next chapter.






Chapter 5

Identification of reaction and
mass-transfer rates from measured
reaction data

The identification of a reliable kinetic model is important for building a first-principles
model of a reaction system. In practice, this kinetic model is identified from measured
reaction data obtained under a wide range of experimental conditions. The task of
identification from measured data can be divided into two steps as follows:

1. Data transformation: Transform measured data in such a way that the extents of
each reaction and each mass transfer can be computed. This way, each extent is
independent of the contribution of the other reactions and mass transfers, and of
operating conditions such as reactor type, initial conditions, inlet concentrations and
flowrates.

2. Identification of reaction and mass-transfer rates: Determine the parameters of each
reaction rate or each mass-transfer rate individually from the corresponding extent
computed in the data—transformation step.

This chapter presents the identification of reaction and mass-transfer rates from con-
centrations and spectral data obtained in homogeneous and G-L reaction systems. For
the analysis of concentrations from homogeneous and G—L reaction systems, two cases
are considered: (a) the concentrations of all the species are measured, and (b) the con-
centrations of subsets of the species are measured (in the gas and liquid phases for G-L
reaction systems). For Case (a), the linear transformations of Sections 2.3 and 3.2.1
are applied to compute the extents of reaction, mass transfer and flow directly from
concentration data measured in homogeneous reactors or in the liquid phase of G-L
reactors. For Case (b), the flow-based approaches of Sections 4.2.2 and 4.3.2 are ap-
plied, which use the measured flowrates and the concentrations of subsets of the species
to compute the extents of reaction and mass transfer. Moreover, the means and vari-
ances of the computed extents are computed to study the error propagation in the
data—transformation step for the case of concentration data corrupted with zero-mean
Gaussian noise.

The analysis of spectral data from G-L reaction systems is also considered in this
chapter. It is shown that the linear transformation in Section 3.2.1 can be explained to
the case of measured spectral data, provided the pure-component spectra are known.
Parameter estimation problems will be formulated to identify the parameters of each re-
action rate or each mass-transfer rate, independently from the other rates, from the cor-
responding computed extents using the integral method. Furthermore, it is shown that

87
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the incremental identification approach, which typically uses the differential method,
can be adapted to the integral method using the computed individual extents.

It is not possible, without knowledge of the rate expressions, to compute the extents of
reaction and mass transfer for the case of spectral data with unknown pure-component
spectra. In such cases, the contributions of the reactions and mass transfers can be
computed by removing the contributions of the inlet flows and the initial conditions.
This leads to the so-called reaction- and mass-transfer-variant (RMYV) form of spectral
data. However, if the RMV-form of spectral data is rank deficient, the rank must be
augmented before applying factor-analytical (FA) methods. In such cases, it is shown
that gas consumption data can be used to augment the rank. Furthermore, it is shown
that a parameter estimation problem can be formulated to identify simultaneously the
parameters of the reaction and mass-transfer rates using the integral method.

Section 5.1 presents various approaches to compute the extents of reaction and mass
transfer from concentrations in homogeneous and G-L reaction systems. In Section 5.2,
the contributions of reactions and mass transfers are computed from spectral data.
Section 5.3 formulates a parameter estimation problem that simultaneously identifies
reaction- and mass-transfer-rate parameters based on the RMV-form of spectral data.
In Section 5.4, estimation problems to identify the parameters of each reaction and each
mass-transfer rates from the corresponding computed extents are formulated using the
integral method. Section 5.5 illustrates two simulated examples for the identification of
reaction and mass-transfer rates from noisy concentrations. Furthermore, rank augmen-
tation of spectral data using gas consumption data is also illustrated for a G-L reaction
System.

5.1 Computation of extents of reaction and mass transfer

from concentrations

The linear transformations and the flow-based approaches developed in the previous
chapters are applied next to compute the extents of reaction and mass transfer for
homogeneous and G-L reaction systems.

5.1.1 Homogeneous reaction systems

Two cases will be distinguished depending upon the available measurements.
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5.1.1.1 All concentrations measured

Let c(t,) be the concentrations measured at the ¢, time instant, with h = 0,1,..., H.
Let V(t) denote the volume measured at time ¢'. Based on the linear transformation
derived in Section 2.3, the following corollary states the conditions required to compute
the extent of the ith reaction z, ;,Vi =1,..., R from c(t).

Corollary 5.1 (Linear transformation of c(t;,))

If (i) the matrices N, W, and nq are known, (ii) rank ([N*, W, ,ng]) = R+p+ 1, and
(iii) c(t,) and V (t),) are measured, then the extent of the ith reaction x, ;,Vi = 1,..., R,
at the t;, time instant can be computed as follows:

,.i(tn) = (Sg)iV (tn)e(tn), (5.1)

where (Sj); denotes the ith row of the S§ matrix and V (t,) is the volume measured at
the t;, time instant. (Proof follows from Theorem 2.2)

The extents of the kth inlet at the ¢), time instant (z,,x(tn), K = 1,...,p) and the
outlet extent (z,.,.(ts)) can also be computed from c(t,) and V (¢,) as follows:

out

Tk (th) = (M) V (tn)c(tn)

T, (th) = 1= qgV(tn)e(ty), (5.2)

where (Mj), denotes the kth row of the M matrix. Furthermore, note that, even if
the inlet and outlet flowrates are unknown, the linear transformation in Corollary 5.1
allows one to compute the individual extents of reaction and flow from the measured
concentrations.

5.1.1.2 Subset of concentrations measured

Let ¢, (t,) be the concentrations of S, available species at the ¢, time instant. Based
on the method proposed in Section 4.2.2, the following corollary states the conditions
required to compute the extents of reaction x, (¢;) from c, ().

Corollary 5.2 (Flow-based approach: Use of c,(t;))

If (i) the matrices N, and W, , are known, (ii) rank (N,) = R, and (iii) c,(ts), u,.(t),
U,..(t), and V(t) are measured, then the extent of the ith reaction (z,;, Vi=1,...,R)
at the t;, time instant can be computed in two steps as follows:

1 In practice, concentrations are typically measured only infrequently, whereas the flowrates and the volume are
available nearly continuously. This leads to low-resolution concentration data, denoted c(¢;), and high-resolution
inlet and outlet flowrates and volume data, denoted w;, (), wou:(t) and V (¢), respectively.
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1. Compute A(t), x,,(t), and m(t):

S um(t) B
(1) =, (6) - 7(’;) x.(0), .00 =0, >3
m(t) = 1,%,,(t) +moA(t).
2. Compute the extent of the ith reaction, x, ;(t):
zi(th) = (INZD) (V(th)ea(tn) — Wi aXin (th) — VocouA(th)), (5.4)

where (N7*); denotes the ith row of the (NT*) matrix. (Proof follows from Theorem 4.2)

The concentrations of the S, = S — S, unmeasured species, c,(t), can be recon-
structed from the computed extents of reaction and flow and the initial conditions of
the unavailable species as follows:

NEXT(th) + Wm,uxm(th) + n07u)\(th)

et = Vi)

(5.5)

Remark 5.1
For situations where Condition (ii) in Corollary 5.1 does not hold, e.g. when S <
R+ p+ 1, the extents of R reactions can be computed as described in Corollary 5.2.

Table 5.1 summarizes the computation of z, ; for special reactor configurations.

Table 5.1 Computation of the extents of reaction in various reactors from c,(t)

Reactor type Computation of extent of ith reaction, i =1,..., R
Batch x,i(tn) = (NIF), <Vc (tn) — Voco_,a>

Semi-batch x,i(ty) = (NI+); <V(th)ca(th) - W,, X, (th) — VoCo,a>
CSTR .altn) = (NT: (Vi) = W) — Vo, M)

5.1.1.3 Error propagation in computed extents of reaction from noisy
concentration measurements

In practice, concentration measurements are corrupted with noise. The error in con-
centration measurements may amplify during the computation of extents of reaction.
Hence, it is important to study the error propagation during this step. Let ¢, = c + e,
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denote the noisy measurements, where e. is the S-dimensional vector of zero-mean
Gaussian measurement noise with e, ~ N(0g,3,.), and X, is the (S x §)-dimensional
noise variance matrix. It is assumed that noise-free flowrates and initial conditions are
available. Then, the mean and variance of the extent of the ith reaction computed from
all concentrations are as follows:

Elz,..;] = (S;):Vec
varlz, ] = V2(S]):S.(S])!. (5.6)

where E[-] is the expectation operator and var[-] is the variance operator. Similarly,
the mean and variance of the extent of the ith reaction computed using a subset of
concentrations are as follows:

)

var(z, | = V(NG 1) E,, (NG )7 (5.7)

)

E[xr i] - (NZ+)i (V Cq — Wm,axm - nO,a)\)

Egs. (5.6) and (5.7) show that methods for the computation of the extents given in the
previous sections give unbiased estimates of z, ;. However, the variance of z,; depends
on the noise variances of all measured concentrations.

5.1.2 Gas-liquid reaction systems

The objective of this section is to compute the extents of reaction and mass transfer from
concentration measurements. Note that the extents of mass transfer can be computed
from either the gas or the liquid concentrations. However, the extents of reaction can
only be computed from the liquid concentrations. Again, two cases can be distinguished
depending upon the measurements available in the gas and liquid phases.

5.1.2.1 All liquid-phase concentrations measured

Let ¢;(t1,) be the concentrations measured at the ¢;, time instant for the S; species in the
liquid phase. Based on Section 3.2, the following corollary states the conditions required
to compute the extents of reaction x, (), and mass transfer x,, ;(¢,) from c;(t).

Corollary 5.3 (Linear transformation of c;(¢,))

If (i) the matrices N, W, ;, W, ;. and ¢;g are known, (ii) rank(IN™ W, ; W, ; ny]) =
R+ p, + pm + 1, and (iii) ¢;(ts) and Vi(t,) are measured, then the extent of the ith
reaction z, ;(t,) and the extent of the jth mass transfer in the liquid phase x,,; ;(ts)
can be computed using the following linear transformation:

z,i(th) | _ | (Sh)s
L-m,l,j@h)] ) [<M1,lo>j Vilin)eultn), (5.8)
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where (S}); denotes the ith row of the S} matrix, and (M, ,); is the jth row of the
M ,, matrix. (Proof follows from Theorem 3.1.)

Similarly, if the measurements of all the species in the gas phase c,(t)) are available,
the linear transformation in Corollary 3.1 can be applied to compute the extent of the

jth mass transfer z,, , ;(¢;) in the gas phase.

5.1.2.2 Subsets of concentrations measured in the gas and liquid phases

Let c,4(tn) and ¢, ,(t,) be the S, ,- and S ,-dimensional vectors of the measured con-
centrations in the gas and liquid phases at the ¢; time instant, respectively. Based on
Section 4.3.2, the following proposition states the conditions required to compute the
extents of reaction and mass transfer from c, ,(t,) and c; . ().

Proposition 5.1 (Flow-based approach: Use of ¢, () and c, ,(t3))

Let the matrices N,, W, o0, W 160, Wo a0 Wiia, Wi, g4, the reactor volume
Vi, and the initial conditions ny, , and ng , be known. Furthermore, let the quantities
Coa(tn), Cra(tn), Wi i(t), Wiy g(t), Uour (1), Upur g(t), Vi(t), my(t) and m,(t) be measured.
If (i) Si.a + Sg.a > R+ pm, (ii) rank (N,) = R, and (iii) rank (N7, W, 1.4]) = R+ pp,,
then the extents of reaction and mass transfer can be computed in three steps as follows:

1. Computation of the extents of mass transfer x in the gas phase:

X, o (t) = u,, (1) — “mizg) Xong(t)y X g(0) =0, , (5.92)
boft) = ~exel)y, A0 =1, (5.90)

_ng,g@ X7”g7g(th) - <V;f - Vl(th)>cg,a(th) - Win,gﬂxin,g(th) - )‘g(th)nQO,a' (5-9C)

2. Computation of the extents of mass transfer x,,,; in the liquid phase:

O (t) = —“ml(’g ) 8 (t) + <uml(lg) ~ “ng ))xmg,g(t), 8.,(0) =0,, (5.10a)

Xyt (th) = X, o (tn) — 0 (). (5.10b)

3. Computation of the extents of reaction x, and mass transfer x,,,, in the liquid
phase:
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. Upe i (T
X1 (t) = u,,, (1) — ml’(li)) X,.1(1), x.,:0)=0,, (511a)
\ Uyt t
A(t) = — m[(l;)) (), N(0) =1, (5.11b)
X, 1(t
[NZ7 Wml,l,ai| ((th) = Vi(th)era(tn) — Wi 1aXoi(8) — N (E)1yo 4
X, (tn)

W, 0 X, 0 (th)- (5.11c¢)

(See Proof in Appendix A.9).

The differential-algebraic equations (5.9a)—(5.11c) can be solved as follows:

1. Computation of the extents of mass transfer x,, , in the gas phase: In
the first step, since the matrix W,, ,, is full rank by construction, the differential-
algebraic system (5.9a)—(5.9¢) can be solved to compute the extents of mass transfer
X,,,.q involving the S, , measured species in the gas phase.

2. Computation of the extents of mass transfer x,, ; in the liquid phase: In
the second step, the extents of mass transfer x,, ; in the liquid phase corresponding
to the S, , species can be computed from Egs. (5.10a)-(5.10b).

3. Computation of the extents of reaction and mass transfer in the liquid
phase: In the third step, since the matrix [NT, W, ;] is full rank by Assumption
(iii) in Proposition 5.1, the remaining p,,, extents of mass transfer x,,,; and the R
extents of reaction x, can be computed by solving Egs. (5.11a)—(5.11c).

Remarks.

1. If the volumetric flowrates (qou..fy Qins; f € {g,1}) and the liquid volume V; are
measured, then =222 can be computed from 224, f = {g,1} in Eqs. (5.9a)~(5.11c).
Moreover, the masses of the liquid and gas phases need not be measured in this case.

2. The S, , unavailable concentrations in the liquid phase ¢;, and the S, , unavailable
concentrations in the gas phase ¢, , can be reconstructed from the estimated extents
as follows:

NIx, (th) + W uXe i (th) + WX, 1 (En) + 1y o N (E)

Cl,u(th) = W(th) s (512)
Win uXin (th) - Wnl uxm (th) + n 0 ’U,A (th)
t — 95 »g 95 g gY, g . 1
Cgau( h) ‘/'t o ‘/l(th) (5 3)

5.1.2.3 Special case: G—L reactors without outlet

The computation of extents of reaction and mass transfer for G-L reactors without out-
let, such as batch and semi-batch reactors, is discussed next. As shown in Section 3.2.3,
the gas and liquid phases can be treated simultaneously in such a case. When the con-



94 Identification of reaction and mass-transfer rates from measured data

centrations of all species in the liquid phase are measured, Corollary 5.3 can be applied
to compute the extents of reaction and mass transfer from the measurements.

The computation of the extents of reaction and mass transfer is described next when
subsets of concentrations are measured in the gas and liquid phases.

Lot &, (t) = [Zj((;:))

the gas and liquid phases at the ¢, time instant, where S, = Sg.a+ Sia- The S, x (py +
D1+ Ppm)-dimensional extended-inlet matrix of available species W, , can be partitioned

as: W,, ., = [Wm%a W..ia Wm@}, where W,, , , is the (S, X p,)-dimensional matrix

associated with the p, gas inlet flowrates, W,,,, is the (S, x pl)—dimensional matrix
associated with the p; liquid inlet flowrates, and W,, , is tlle (S, X P )-dimensional
matrix associated with the p,, mass transfers. Also, let N, := [NI, W, ] be the

S, x (R + p,,)-dimensional extended stoichiometric matrix.

] be an S,-dimensional vector of measured concentrations in

Corollary 5.4 B B -
If (i) the matrices N, and W, , are known, (ii) rank (N.) = R + p,,, and (iii) €,(t5),
Vi(t), u,,,4(t), and u,,,(t) are measured, then the extents of reaction (x, ;(t,), Vi =

1,...,R) and mass transfer (z,,;,Vj = 1,...,p,) can be computed in two steps as
follows:

(5.14)

2. Computation of extents of the ith reaction and the jth mass transfer:

(L'T,i(th) - (N:)i(va(th)éa(th) - Wm,g,axm,g(th) - Wm,l,axm,l(th) - Va(O)(_:a(O)),
xm,j(th) = (N:)R-i-j (Va(th)éa(th) =W, gaXing(tn) — Wm,l,axm,l(th) - Va(o)éa(o))7
(5.15)
where (N}); and (N7 )g,; are the ith row and the (R + j)th rows of the matrix (N7}),
respectively, and V, = diag ([(V; — Vi)1,4.4; Vil;.4]) is the (S, x S,)-dimensional matrix.

g,a
The S;, unavailable concentrations in the liquid phase ¢;, and the S, , unavailable

concentrations in the gas phase c,, can be reconstructed from the estimated extents as
follows:

NIx, (th) + Wi uXe i (th) + W, X, 0 (th) + 1yg 4
Vi(tn) ’
W guXing(tn) = W, X, (1) + Dgo.
Vi — Vi(tn) '

Cru(tn) = (5.16)

Cou(tn) = (5.17)



5.1 Computation of extents of reaction and mass transfer from concentrations 95

5.1.2.4 Error propagation in computed extents of reaction and mass
transfer from noisy concentration measurements

All liquid-phase concentrations measured

Let ¢;. = ¢; + €., denote the noisy concentration measurements in the liquid phase,
where e; . is the S;-dimensional vector of zero-mean Gaussian measurement noise with
e .~ N(0s,%,.), and X, . is the (S5, x.S;)-dimensional noise variance matrix. The mean
and variance of the extents of the ith reaction and the jth mass transfer computed from
the measured concentrations in the liquid phase are as follows:

e Means of z,; and z,,; ;:

Elz, ;] = (Sjo):iVicr,

Elz,..,] = (M, 0);Vici- (5.18)

e Variances of z, ; and z,,; ;:
var(z, ;] = Vi*(S5)iZu.c(Sw):i, (5.19)
var(z,, ;] = V2 (M, 10); Z1.6(M,, 10);- (5.20)

Subsets of concentrations measured in the gas and liquid phases

In G-L reaction systems, since the extents of mass transfer can be computed from
measurements in the liquid or/and gas phases, the measurement errors of one phase
can propagate to the second phase. Let c;., = c;, + e, with f € {g,l}, denote
the available concentrations in the f phase corrupted with noise, where ey, is the Sy, -
dimensional vector of zero-mean Gaussian measurement noise with ey, ~ N(0g,, Xy, ),
and X, is the (Sy, x S}, )-dimensional diagonal noise variance matrix. The mean and
variance of the extent of the jth mass transfer computed from measurements in the gas
phase are as follows:

e Mean and variance of x,,, 4 ;:

Elz,, 4] = —(W.! ) (Vgcg,a — Wi g.aXing(th) — Ag(th)ngoya), (5.21)
var[t,,, g1 = VEW, 1 0)iZea(W, ! 05 (5.22)

mg,9,a mg,g,a

e Mean and variance of x,,, ; ;:

E[xng,j:I = xmg,g,j — 5,,17]', (523)

var(z,,, . ;| = var(z,,, o] + var[d,, ;] — 2cov|z,,, 4. 6. 5] 5.24)

The means of the extents of the ith reaction and jth mass transfer computed from
measurements in the liquid and gas phases are as follows:
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e Means of z,; and z,,,; ;:

E[JUT 7,] = (Nz_a,e)i(‘/lcl,a - Wm,l,axm,l - )\lnlO,a - ng,l,a Xmg,l)7 (5-25)

)

E[2,.,15] = (N;fa,e)RJrj (VzCz,a — W, aXint — Aiioa — W, 14 Xmg,l), (5.26)

where N, . = [NT, Wml,l,a] is the S; ., X (R + pym,)-dimensional extended stoichio-

metric matrix. The variances of z,; and z,,,;; can also be computed.

As with homogeneous reaction systems, the computed extents of reaction and mass
transfer are unbiased in G—L reaction systems. However, their variances are affected by
the errors in the liquid- and gas-phase concentration measurements.

5.2 Computation of reaction and mass-transfer

contributions from spectral data

Spectrometers, such as mid-infrared MIR, near-infrared NIR and ultraviolet/visible
UV /VIS, measure indirectly the concentrations of many species on-line during the course
of a reaction with short sampling times and without disturbing the reaction. Hence,
huge amounts of information-rich spectral data are available at relatively low cost. The
objective of this section is to compute the contributions of reaction and mass transfer
from G-L reaction systems under certain conditions.

In addition to Assumptions (A1)—(A4) in Section 3.1.2, the following assumptions are
considered: (Ab) all reacting species absorb; (A6) the spectra depend linearly on the
liquid concentrations, i.e. Beer’s law is valid; (A7) the corresponding S; pure-component
spectra are linearly independent and also independent of temperature and pressure; and
(A8) the measured spectra are noise free.

Let a;(t;) denote the spectral (absorbance) vector for L channels at the ¢; time
instant measured in the liquid phase. With Assumptions (A5)—(A8), a;(t),) reads:

a/ (tn) = ¢/ (tn) E, (5.27)

where E is the (S; x L)-dimensional pure-component spectra matrix of the S; absorbing
and reacting species in the liquid phase. Upon multiplying both sides of Eq. (5.27) by
Vi(ts), the L-dimensional volume-weighted spectral vector a,(t;,) is defined as:

a,(ty) = Vi(tp)al = Vi(ty) < (t,) E = nl (t,)E. (5.28)

By substituting n,(¢) of Eq. (3.22) into Eq. (5.28), a,(ts) can be expressed in terms of
the extents of reaction, mass transfer and flow, and the discounting factor as follows:

a,(ty) = (xI(tn) N+ x5 (t)WE  + X0 (tn) W+ Ni(th)n))E,

= X;F(th)NE + Xi_]l(th)Am + X;Fnyl(th)A.m + )\[(th)ag, (529)
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where A, := W7 | E denotes the (p; x L)-dimensional matrix of the liquid-inlet spectra,
A, = WIE the (p,, x L)-dimensional matrix of the mass-transfer spectra, and aj :=
n;,E the L-dimensional vector of the initial spectrum.

For H observations, Egs. (5.28) and (5.29) can be written in matrix form as:

A, =V,A=V,CE=NE, (5.30)
Av = XT‘NE + Xm,lAm + Xm,lAm + Alaga (531)

where A and A, are the (H x L)-dimensional spectral and volume-weighted spectral
matrices, V; := diag (Vi(to), Vi(t1), ..., Vi(tn)) is the (H x H)-dimensional diagonal
matrix of V;, C; is the (H x S;)-dimensional matrix of the liquid concentrations, A
is the (H x S;)-dimensional matrix of numbers of moles in the liquid phase, X, is the
(H x R)-dimensional matrix of the extents of reaction, X,, ; is the (H X p,,)-dimensional
matrix of the extents of mass transfer, X, ; is the (H x p;)-dimensional matrix of the
extents of flow, and A; is the H-dimensional vector of the discounting variable. The hth
rows of the matrices X,, X,, ;, X,, ; and A; are determined by integrating the differential
equations (3.21) up to the ¢;, time instant. Note that the ith column of X, corresponds
to the extents of the ith reaction for the H time instants, while the jth column of X, ;
corresponds to the extents of the jth mass transfer for the H time instants.

Eq. (5.30) is the factorization of the volume-weighted spectral matrix into the num-
ber of moles matrix and the pure-component spectra matrix. On the other hand,
Eq. (5.31) separates the volume-weighted spectral matrix into four subspaces: (1) the
R-dimensional reaction space spanned by the rows of NE; (2) the p,,-dimensional mass-
transfer space spanned by the rows of A,,; (3) the p;-dimensional liquid-inlet flow space
spanned by the rows of A,,; and (4) the one-dimensional discounting variable space
associated with the initial spectrum.

Depending on whether the pure-component spectra are known, two cases are consid-
ered: (a) known pure-component spectra, and (b) unknown pure-component spectra.

5.2.1 Known pure-component spectra: Computation of extents of

reaction and mass transfer

If the pure-component spectra are known, the extents of reaction and mass transfer can
be computed from the spectral data straightforwardly as stated by the next corollary.

Corollary 5.5

If (i) the matrices N, W, ;, W, , and E are known, (ii) the volume of the liquid phase
is measured, and (iii) rank (IN* W,,; W, ; n,]) = R+ p,, +p; + 1, then the extents
of reaction and mass transfer can be computed from the volume-weighted spectral data

A, as follows:
XT T
Tl = (EN)TAL (5.32)
X M7 10
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(See Proof in Appendix A.10)

5.2.2 Unknown pure-component spectra: Transformation to spectral
data in RMV-form

In many practical situations, the pure-component spectra are not known with sufficient
accuracy and thus the transformation in Corollary 5.5 cannot be applied to spectral
data. However, it is often possible to measure the initial spectrum a, and the inlet
spectra A, on-line without knowledge of the pure-component spectra. Then, it becomes
possible to isolate the contributions of reaction and mass transfer from the spectral data
along the line of Amrhein [2].

The extents of reaction and mass transfer in Eq. (5.31) are typically unknown, while
the extents of flow and the discounting variables can be computed from the measured
flowrates. Nevertheless, A, can be transformed to spectral data in reaction- and mass-
transfer-variant form by removing the contributions of the inlet spectra A,, and the
initial spectrum ay. This leads to the (H x L) spectral matrix in RMV-form, H,,,:

H,, =A, - X, A, —Aal =X,NE+X, A, (5.33)

N

T
m,l

Note that H,.,,, = [XT mel] [ E =X,,N,,,E, where X,,, is the H x (R + p,,)-

dimensional matrix of the extents of reaction and mass transfer, and N, is the (R +
Pm) X Si-dimensional matrix. Note that w,,(t), w...(ts), and my(t), Vh =0,1,..., H
need to be known for the computation of X, ; and A, in Eq. (5.33). The spectral matrix
in RMV-form contains only the reaction-variant and mass-transfer-variant parts, which
are typically unknown and are the subject of further investigation. Furthermore, if
X, A,, is also unknown, then HY  can be defined as:

H:m = Av - Alag = erNrmE + Xin_,lAm- (534)

5.2.3 Extensions to non-reacting and non-absorbing species

The computation of the contributions of reaction and mass transfer based on spectral
data assumes that all species react and absorb. However, these assumptions rarely
hold in practice. In this section, the assumptions will be relaxed, and the presence of
non-reacting and non-absorbing species will be considered along the lines of Amrhein

12].
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Non-absorbing reacting species

In practice, some reacting species do not absorb in the spectral regions of interest. For
example, in G-L reaction systems, the species transferring from the gas phase to the
liquid phase may not absorb. Let S,, be the number of absorbing reacting species and
S, the number of non-absorbing reacting species. Hence, the total number of species
in the liquid phase S; = S,, + S,,. Then, the pure-component spectra matrix can be
redefined as: E := [ |, where the subscript (-),, and (-),, denote the quantities

related to the S,, and S,, species, respectively. The matrices C;, N;, N, W, and
W, and nj, can be partitioned accordingly:

C, = [Cm Cm], = [Nm Afm}, N — [Nm Nm], (5.35)
W, = {Wmm Wmm} W, = R}VV] , = [:Z] : (5.36)

With these matrices and E, the volume-weighted spectral matrix A, in Egs. (5.30) and
(5.31) will be:

A"U = VlClE = VlCraETa = NraETa (537)
- (XTN’I‘IIET(Z + Xm,lAm,ra + Xm,lAin,ra + Alaam) (538)

with
A—m,ra = Wi_’raErm Am,ra = W;FnyraEraa ag_,ra = anO_"raETa' (539)

Eq. (5.37) shows that a subset of concentrations can indirectly be measured by spec-
troscopy. For the case of spectral data with known pure-component spectra, the case
of non-absorbing reacting species corresponds to the case of measuring a subset of con-
centrations. For the case of unknown pure-component spectra, the contributions of
reaction and mass transfer can be computed as described in Section 5.2.2.

Non-reacting absorbing species

In practice, reactions are carried out in the presence of catalysts or in solvents. Solvents
do not take part in the reactions and catalysts do not react. However, solvents and
catalysts often absorb in the spectral regions of interest. Hence, they act as non-reacting
absorbing species. Let S, be the number of non-reacting but absorbing species and S,.,
be the number of absorbing reacting species. Then, the number of absorbing species S,
can be redefined as S; := S,, + S,,. The (S; x L) pure-component spectra matrix E
can be redefined as:

; (5.40)
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where E,,, is an (S,,, x L)-dimensional matrix of pure-component spectra of non-reacting
species. The matrices N, W, ; and W, ; are redefined as

W,
N := [N\ORXSM} W, = [—l] : (5.41)
’ Win,na
\%%
mel = [ m’l] , g 1= [ l ] . (542)
Wm,na nlO,na

The subscript (+),, denotes quantities related to the S, species. The matrices X,,
X1, X, and A, are defined as earlier.

If knowledge of the pure-component spectra of the non-reacting species and the react-
ing species are known, Corollary 5.5 can be applied to compute the extents of reaction,
mass transfer and flows. If the pure-component spectra of the non-reacting species are
unknown, then the extents of reaction and mass transfer can be computed from the
spectral data as stated by the next corollary.

Corollary 5.6

Let us assume that all the transferring species are involved in the reactions. If (i) the
matrices N, W,,, and W, ; are known, (ii) the pure-component spectra of all reacting
species are known, (iii) A, and ay are measured, (iv) rank ([N* W, ;]) = R+ p,,, and
(iv) Vi(t), u,,.(t), w,.., and m(t) are measured, then the extents of reaction and mass
transfer can be computed from the volume-weighted spectral data A in two steps as
follows:

Step 1: Computation of the spectral data in RMV-form H,.,,:
Hrm = Av - Xin,lAin - Alag = XT’ITLNT’ITLE = XTmErwu (543)

where E,,, = N,,,E is the (R + p,,) X L-dimensional matrix of reaction and mass-
transfer spectra.

Step 2: Computation of the extents of reaction and mass transfer:

XT
Xom = | yr
XT

m,l

= (E" )*H,,. (5.44)

(See Proof in Appendix A.11)

As shown in Step 1 of Corollary 5.6, the non-reacting absorbing species do not affect
the pre-treatment of spectral data to RMV-form.
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5.2.4 Rank augmentation of spectral data using gas consumption data

Factor-analytical (FA) methods can be used for the calibration-free estimation of the
extents of reaction and mass transfer from spectral data using prior knowledge about
the extents and/or concentrations and the unknown pure-component spectra. However,
if the spectral matrix is rank deficient, FA methods fail, and rank augmentation is
required [3]. Next, rank deficiency of A and H,,, can be defined as follows:

Definition 5.1 (Rank deficiency of A and H,,,)

A and H,,, are said to be rank deficient if rank (A) < S; and rank (H,.,,) < (R + p,),
respectively, where p, is the number of absorbing transferring species. It follows that
A and H,,, are said to be full rank if rank (A) = S, and rank (H,,,) = (R + p.),
respectively.

If A is rank deficient, the rank of A must be augmented up to .5;. Alternatively, if H,.,, is
of full rank (R+p,), FA methods can be applied to estimate the extents of reaction and
mass transfer. However, if the RMV-form is rank deficient, the rank must be augmented
to (R+p,). In this section, rank augmentation of spectral data in RMV-form using gas
consumption data is discussed.

Computation of gas consumption data

Eq. (3.28) decomposes the S,-dimensional vector of measured numbers of moles n, in the
gas phase into the extents of mass transfer x,, , and inlet flow x,, ,, and the discounting
variables A,. Since the mass flowrates in the gas phase are measured, x,, ,(t;) and
Ay (tn) can be computed. Then, the p,,-dimensional vector of gas consumption, w,, (t5),
can be computed from Eq. (3.28):

wm(th) = _Vuvm,g Xm,g(th) = ﬁg(th) - Win,g Xin-,g(th) - ﬁgO )‘g(th)v (545)

where VuVm,g is the (p,, X p,,)-dimensional mass-transfer matrix in the gas phase cor-
responding to the p,, transferring species, VuVm,g the (p,, x p,)-dimensional inlet-
composition matrix, and n, and n, the p,,-dimensional vectors of the measured and
the initial numbers of moles corresponding to the p,, transferring species. For H obser-
vations, the (H x p,,)-dimensional matrix of gas consumption data, €2,,, can be written
as:

(5.46)

} W, 0
Q= =X, W,y = = [X, 0 X, [ ot ]

0 W,
= _(X'm,glwm,gl _I_ Xm,lgwm,lg)v (5'47)

where X, , is the (H X p,,)-dimensional matrix of extent of mass transfer, X,, ;, and
X, 1y are the (H x p,;) and (H X p;,) matrices of extents of mass transfer of the p,, and
piy transferring species, and W, ,, and W, are the (p,, X pyi) and (p,, X pi,) matrices
of molecular weights corresponding to X,, ,; and X,, ;,, respectively. The jth column of
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X, g1 corresponds to the extents of the jth mass transfer with j =1,...,p, for the H
time instants, while the jth column of X, ;, corresponds to the extents of the jth mass
transfer with j = py, +1,...,p,, for the H time instants.

Rank augmentation of spectral data
Egs. (5.31) and (5.33) are derived under the assumption that the gaseous species in-
volved in mass transfer absorb. However, in many gas—liquid reaction systems, they

may not absorb (for example Hy and N, in UV spectroscopy). Hence, two cases are
distinguished next.

Case 1: Gaseous species involved in mass transfer do not absorb

If the gaseous species involved in mass transfer do not absorb, H,,, can be written as:
H,,, = X NE. (5.48)

H,,, contains the contribution of the unknown reaction rates but not that of the mass-
transfer rates. Therefore, H,,, is the spectral data in reaction-variant form, and thus
its rank is typically R [2]. Hence, the rank-augmentation methods for homogeneous
reaction systems can be applied to H,,, [2].

Case 2: Gaseous species involved in mass transfer do absorb

If gaseous species involved in mass transfer absorb and rank (H,.,,) = R+ p,, then H,,,
is full rank. If only the species transferring from the gas to the liquid phase absorb,
then p, = p,. If all the species transferring between the liquid and gas phases absorb,
Pa = Pgi + Pig = Pm. If H,,, is rank deficient, it is proposed to use gas consumption
data for rank augmentation to (R + p,).

Let €, be the part of 2, that corresponds to p,, with €, := =X, W' It A, ,

g, W, 1, Uty My, Vi and Q, are known or measured, the H x (L + p,) augmented
spectral matrix in the RMV-form can be computed as:

E 0"
01,

N 0

= X, NewEes  (5.49)
Wi Wi,

Hy = [Ho 4= [X, X, ] [

where N2 is the (R 4 p,) X (S; + p.) augmented stoichiometric matrix and E**9 the
(S} + pa) X (L + p,) augmented pure-component spectral matrix.

Since rank (X,,,) = (R, + p.), rank (E*9) = (S, + p,), and rank (N%"9) = R + p,,
then rank (H%%) = min (R + p,, S; + p.) = R + pa.
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5.3 Simultaneous identification of rate parameters using
the RMV-form of measured spectral data

This subsection discusses the simultaneous estimation of reaction and mass-transfer
parameters from spectral data in RMV-form when the reaction- and mass-transfer-rate
expressions are known and the pure-component spectra are possibly unknown.  For
such a scenario, various so-called hard-modeling methods have been proposed, which
solve a constrained nonlinear regression problem [2, 80]. If the liquid volume, the inlet
and outlet flowrates, and the masses in the liquid and the gas phases are measured, then
a constrained nonlinear regression problem can be solved to estimate the parameters of
the given reaction- and mass-transfer rates from the RMV-form of measured spectral
data as follows:

rm

win Ty, T = || [Tn = X,,.(0) X/, (0)] Hy

s.t. x,.(0,t,) =Vir(c,0) — Yound x,(0,t5), x,(0,0) = Og,
my
. uo‘u.t
Xm,l(oa th) - C(cla Cy, 0) - m ! Xm,l(07 th)a Xm,l(ga 0) = Opma
!
. Uous,
X () =y — ! X 1(th)s X,,1(0) = 0,,,
my
\ uout l
N(ty) = =22\ (¢ N(0)=1
1(th) - 1(th), 1(0) =1,
uout,‘
X”’7(7(th) umag - : Xim!](th)’ sz(](o) = OP”
mg
N uout.
Ag(tn) = === N\ (tn), Ag(0) =1,
My

8. (ty) = — 298 (1) + (u _ M)xw(@,th), 5..(0) =0,

my, my my,
X g(th) = X,,0(0,t,) +6,.(ts),

ONTX () + WX (th) + WX, () +mye(th))
Cl(e, th) = s
Vi(tn)
_ (WagXing(tn) — W gXon g () 4+ DgoAg (t1))
Cq(e, th) = )
' Vi = Vi(tn)
0" <6 <6Y,
(5.50)
where J,.,, is the cost to minimize by adjusting the unknown [-dimensional vector of
reaction- and mass-transfer-rate parameters 6, |- || a matrix norm, X,,,(0) the (H x L)-

dimensional matrix of the extents of reaction and mass transfer simulated using the
dynamic model, ¢;(0,t;) the S;-dimensional vector of the simulated concentrations in
the liquid phase at the ¢, time instant, and c,(8,t;) the S,-dimensional vector of the
simulated concentrations in the gas phase.

Jrm minimizes the projection errors of H,,, on the space spanned by the columns of
X,m(0) by adjusting the parameter vector . The estimation problem seeks the optimal
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vector @* with the corresponding optimal estimate of the extents of reaction and mass
transfer X,.,,,(60*). Additional constraints such as ranges of pure-component spectra,
and unimodality on rates can be added to the estimation problem.

In Eq. (5.50), c,(0,t;) is simulated by integrating the dynamic model. However, if
the concentrations in the gas phase c,(t;) are available, then c,(t,) can be used to
simulate the differential equation of x,, ; of Eq. (5.50), and the differential equations for
Ag, X, g and 6, can be removed from Eq. (5.50).

in,g

5.4 Individual identification of reaction and mass-transfer

rates using the integral method

In Section 5.1, measured data were transformed to compute the extents of reaction
and mass transfer. The next step is to identify the parameters of the reaction and
mass-transfer rates.

One approach consists in calculating the reaction and mass-transfer rates through
differentiation of the computed extents from concentration data. Parameter estimation
for the individual reactions and mass transfers can be performed by fitting the given
reaction kinetic or mass-transfer model to the computed rates [16]. This approach
corresponds to the so-called differential method of kinetic identification.

Alternatively, the unknown rate parameters can be estimated by comparing the model
predictions obtained by integrating the given rate expressions and the measured con-
centrations. This approach corresponds to the integral method of kinetic identification.
Note that the parameter estimates obtained using the integral method are statistically
optimal in the maximum likelihood sense in the absence of structural uncertainty and for
Gaussian measurement noise [10]. The integral method can also be used in conjunction
with computed extents instead of measured concentrations.

This section will first discuss the concept of incremental identification of a rate model
using the integral method. Then, the estimation of rate parameters using computed
extents will be formulated. Finally, various incremental identification approaches will
be proposed and compared.

5.4.1 Incremental identification of a rate model using the integral
method

In the literature, the incremental identification approach is closely related to the dif-
ferential method of kinetic identification, whereby the reaction and mass-transfer rates
are obtained by differentiation of concentration data, as shown in Figure 1.3 [56, 17].
In Section 5.1, various transformations have been developed to compute the extents
of reaction and mass transfer from measurements without knowledge of the reaction and
mass-transfer rates. This fact can been exploited to investigate kinetic models using the
integral method and the computed individual extents. The incremental identification
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approach of Figure 1.3 that uses the differential method can be adapted to the integral
method as shown in Figure 5.1. The contributions of reaction and mass transfer to
each species are computed using concentration, volume and flowrate measurements and
balance equations. If the reaction stoichiometry is unknown, candidate reactions can
be tested using target factor analysis as described in [4, 15]. The extents of the individ-
ual reactions and mass transfers can be computed from the concentrations, volume and
flowrate measurements using information regarding the stoichiometric, the inlet compo-
sitions, knowledge of the species transferring between phases, and the initial conditions
as described in Section 5.1. The computed extents can then be used to discriminate a
set of model candidates and estimate parameters as described in the next section.

Since the transformations to compute the extents of reaction and mass transfer in
Section 5.1.1 do not introduce bias in the computed extents, the parameter refinement
step of [17] to eliminate bias in the rate parameters is not required. Hence, the identified
kinetic model can directly be validated using appropriate validation methods, as shown
in Figure 5.1. If the validated model is acceptable, the identification process terminates.
If the validated model is not acceptable, new experiments have to be performed. New
experiments are commonly designed for two cases: (i) identification of model structure
(model discrimination), and (ii) parameter estimation |7, 44].

Experiments/Measurements -« design variables

concentrations, volume, flowrates

l

balance —_— balances
equations *

E reaction &
mass-transfer
contribution for
each 1pecies

concentrations
.
H

¥

candidate ‘{ balances stoichiometry design
stoichiometries . of

' ' experiments

! reaction & extents of

concentrations mass-transfer reaction and

! contributions mass transfer

H '
candidate ; ;

kinetic expressions
balances stoichiometry rate
expressions No

T
H
' reaction & rate

: reaction and
concentrations mass-transfer parameters
H mass transfer

contriputions

extents of

v ¥ ¥

~

. . Y .
Rate expressions r(-,0) and ((-,0), and parameters 0 4>\Vahd/es‘vahdated
model? model

Figure 5.1 Incremental identification of a rate model using the integral (extent-based) method
(x: the reaction and mass-transfer contributions are expressed in terms of concentrations, and
not rates).
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5.4.2 Rate parameter estimation using the computed extents of

reaction and mass transfer

For the ith reaction, let %,,; and x,; denote the H-dimensional vectors of computed
(according to the linear transformations of Section 5.1) and simulated (according to a
postulated rate law involving the parameters 0,.;) extents of reaction at H time instants.
The following parameter estimation problem can be formulated:

min Jz - ()A(r,i - Xr,i(er,i))TWr(f(T,i - Xr,i(ar,i))

. U1 (T
st. @i(th, 0,0) = ri(ci(tn), 0,,) Vi(ty) — ﬁ(;)
1(th

0;,<0,,<0,

7,00

wr,i(th)a wr,i(o) - 07

(5.51)
where J; is the cost to be minimized, W, is the (H x H)-dimensional weighting ma-
trix, r; is the rate of the ith reaction, which is a known function of the measured molar
concentrations ¢; and the [-dimensional unknown parameter vector 0, ; that can vary be-
tween the bounds Gf, ;, and OTUJ-. Similarly, let x,, ; ; and x,, ; ; denote the H-dimensional
vectors of computed and simulated extents of the jth mass transfer in the liquid phase.
The parameter estimation problem for the mass transfer rates can be formulated as:

min J; = (X, = X1, (0m ;) W (Xt — X050 5))

m,Jj
. U, (t )
st. X,05(th, O i) = Clei(tn), cy(th), 0m ;) — me,z,j,

6, ,<6,,<0,

J m,j’

Xm,lJ(O) = 0,

(5.52)
where J; is the cost to be minimized, and (; is the jth mass-transfer rate, which is
a known function of both measured c; and ¢, and of the g-dimensional parameter
vector 8, ; that can vary between the bounds OTLRJ and 0;]%]4, and W,, is the (H x H)-
dimensional weighting matrix.

Eq. (5.51) can be used to estimate the parameters of each reaction rate for homo-
geneous reaction systems and for G-L reaction systems. Eq. (5.52) can be used to
estimate the parameters of each mass-transfer rate for G-I reaction systems. If only
a subset of the concentrations is measured, the unmeasured concentrations can be re-
constructed from the available measurements using Eq. (5.5) for homogeneous reactors,
and Eqgs. (5.13) and (5.12) for G-L reaction systems.

The rate expressions r;(c;, 0,.;) and (;(c;, c,, 8, ;) are functions of ¢; and ¢, in addi-
tion to the parameters 6. Hence, integrating the differential equations of z,; and z,,; ;
requires the knowledge of the concentrations in the liquid and gas phases. To guarantee
individual estimate of the rates, the noisy concentration measurements are directly used
in Egs. (5.51) and (5.52). Since noisy measurements are used to simulate the profiles for
x,; and x,,, ;, error propagation can affect the accuracy of the estimated parameters.



5.4 Individual identification of reaction and mass-transfer rates 107

5.4.3 Comparison of various incremental identification approaches

This section discusses the features of various incremental identification approaches avail-
able in the literature and the one proposed in this work. The incremental identification
approaches using the differential method transform concentration measurements into in-
dividual reaction and mass-transfer rates, while those using the integral method trans-
form concentration measurements into individual reaction and mass-transfer extents.
Hence, the methods can be grouped into two categories: (i) extent-based methods,
and (ii) rate-based methods. Some of these methods are compared in Table 5.2 for
homogeneous reactions systems and in Table 5.3 for G-L reaction systems.

The first parts of Tables 5.2 and 5.3 give information regarding the required measured
data, quantities that are computed from measured data (called computed data) and are
required for the identification, and the required prior information. In a first data-
transformation step, the extent- and rate-based methods isolate the contributions of
each reaction and each mass transfer. For example, in Table 5.2, method R1 proceeds
in two steps to compute the rate of the ith reaction via differentiation of n(¢)? and
use of the measured inlet and outlet flowrates. Similarly, method V2 proceeds in two
steps to compute the extent of the ith reaction using the available concentrations c,
and integration of inlet and outlet flowrates. Then, the reaction and mass-transfer
rates can be identified by solving a regression problem. For the extent-based methods,
the regression problem involves a dynamic model as a constraint, while the regression
problem for rate-based methods involves a static model. For example, in Table 5.2,
method P2 involves a dynamic model of the extent of the ¢ reaction.

Extent-based methods

Two types of extents of reaction and mass transfer are distinguished for extent-based
methods: (i) the "overall" extents , and (ii) the "vessel" extents. The "vessel" extents
of reaction and mass transfer are identical to the extents defined in Chapters 2 and 3.
The "vessel" extents of the ith reaction and the jth mass transfer are given as follows:

Gy= Vi — sl g 2..(0)=0, Yi=1,..R,
i (5.53)

Uput .
! xm,l,j7 me,j(O) = 07 v] = 17 7pm

my

Tpij =G —

The "overall" extent of the ith reaction, &, ;, represents the total number of moles
produced by the ith reaction and can be expressed in terms of the rate of the ith reaction
as follows:

Coi vy £(0)=0,i=1,....R. (5.54)
dt

The "overall" extents of the jth mass transfer, ,, ;, represents the total number of

moles transferred from the gas phase to the liquid phase by the jth mass transfer and

can be expressed in terms of the rate of the jth mass transfer as follows:

2 (+) denotes the continuous approximation of discrete measurements
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dg;ﬂ — G s (0)=0,j=1,. (5.55)
The "overall" and "vessel" extents of reactions are identical for batch and semi-batch
reactors because of the absence of the outlet flowrate. However, for continuous reactors,
the "overall" and "vessel" extents of reactions are different.

These two types of extents lead to the three methods O1, V1 and V2. Method O1
allows computing the "overall" extents of each reaction and each mass transfer from
the measured data, while methods V1 and V2 allow computing the "vessel" extents of
reaction and mass transfer from measured data based on the approaches described in
Section 5.1. Note that method V2 calls for the integration of high-resolution data, i.e.
u,,(t) and u,,,(t). Method O1 can be combined with method P1 for the identification
of a kinetic model. Similarly, methods V1 and V2 combine with method P2 and allow
one to identify a kinetic model. The method P2 is based on the methods described in
Section 5.4.2. The regression problem in method P1 is an adaptation of the estimation
problems formulated in Section 5.4.2, where the dynamic models in Egs. (5.54) and
(5.55) are used as the constraints. Note that the extent-based methods are related to
the integral method of kinetic identification.

Rate-based methods

The rate-based methods compute the reaction and mass-transfer rates through differen-
tiation of either the reaction and mass-transfer fluxes or the extents of reaction and mass
transfer. The reaction and mass-transfer fluxes for the various species are computed
from the contributions of reaction and mass transfer in the total numbers of moles as
follows:

e The contribution of reactions to the numbers of moles produced or consumed by
the reactions at time ¢ in homogeneous reaction systems, d(t), can be expressed
in terms of the reaction fluxes (f"), which relate to the unknown reaction rates as

fr(t) = NTV(t)r(t) as follows:
d(t) == /fT(T) dr = /NTV(T)I'(T) dr. (5.56)

Furthermore, d(¢) can also be computed from the change in the measured numbers
of moles n(t) — ng, by discounting the contributions of the inlet and outlet streams.
Hence, one can write:

d(t) :=n(t) —no — / (Wmum(T) - “"“(T)n(T)> dr, (5.57)

where (A) indicates quantities computed from measurements.
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e The contribution of reactions and mass transfers to the numbers of moles in the
liquid phase at time ¢, d;(¢), can be expressed in terms of the reaction and mass-
transfer fluxes £/, which relate to the reaction rates r and the mass-transfer rates ¢
as £ =N"Vir+ W, ( as:

t t

d(t) == /fle(T) dr = / (NTW(T)I‘(T) —l—Wm,zC(T)) dr, (5.58)

where £7™ is the S)-dimensional vector of reaction and mass-transfer fluxes. d;(¢) can
also be computed from the change in numbers of moles n,(t) — n; o, by discounting
the contributions of the liquid inlet and outlet streams as follows:

my ()

di(t) == my(t) —myo — /t (mezumyl(T) - Mn;(ﬂ) dr. (5.59)

e Similarly, the contribution of mass transfers to the numbers of moles in the gas phase
at time ¢, d,(t), can be expressed in terms of the mass-transfer fluxes £, which relate
to the mass-transfer rates ¢ as f;" = —W,, (. Hence, one can write:

t

d,(t) = / £7(r) dr = — / W, x,.,(7) dr, (5.60)

0

where £ is the S;-dimensional vector of mass-transfer fluxes. Furthermore, &g (t) can
also be computed from the change in numbers of moles n,(t) — n, o, by discounting
the contributions of the gas inlet and outlet streams as follows:

t

dy(t) :=ny(t) — nyo — / (Wm,gum,g(r) - %nﬁ)) dr.  (5.61)

In G-L reaction systems, the fluxes f/™ can be expressed as:

Vir
¢

Vir
¢

T
Tm

7= £ = [NTW, ] : (5.62)

where f]" and /" are the S;-dimensional vectors of reaction fluxes and mass-transfer
fluxes, respectively. N,.,, is the (R + p,,) x Si-dimensional extended stoichiometric
matrix.

The fluxes f/™ and f" can be combined as follows:



110 Identification of reaction and mass-transfer rates from measured data

P L <2
&

where f* is the (S; + S, )-dimensional vector of reaction and mass-transfer fluxes in G-L
reaction systems. Note that the mass-transfer rates can be computed from either gas
or liquid measurements. N, is the (R+p,,) X (S; + S,)-dimensional total stoichiometric

Vir
¢

Vir

¢ | (5.63)

OSQXR _Wnl,g

_[ NT W, ]

matrix.

The rate-based methods lead to methods R1, R2 and R3. Method R1 computes the
reaction rates (or mass-transfer rates) through differentiation of the concentration data.
Method R2 computes the reaction rates through differentiation of the total numbers
of moles produced or consumed by the reactions and/or mass transfers (d or dy, f €
{g9,1}). In method R3, the rate of each reaction or each mass transfer is obtained
individually via time differentiation of the corresponding computed extent. Then, the
reaction kinetics can be identified through solving the regression problem with a static
model formulated in method P3. Note that the rate-based methods are related to the
differential method of kinetic identification.
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5.4 Individual identification of reaction and mass-transfer rates
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5.5 Illustrative simulated examples

The computation of extents of reaction and mass transfer and the identification of
reaction and mass-transfer rates are illustrated next based on simulated concentration
measurements from homogeneous and gas—liquid reaction systems. The rank augmenta-
tion of spectral data using the gas consumption data is also illustrated for G—L reaction
system. The acetoacetylation of pyrrole is considered as a homogeneous reaction sys-
tem, while the chlorination of butanoic acid is considered as a G-L reaction system
continued from Section 3.3.

5.5.1 Homogeneous reaction system: Identification of the

acetoacetylation of pyrrole from measured concentrations

Generation of simulated data:

The acetoacetylation of pyrrole (A) with diketene (B) involves one main reaction and
three side reactions. |70] The main reaction (R1) between pyrrole and diketene pro-
duces 2-acetoacetyl pyrrole (C). The side reactions include (R2), the dimerization of
diketene to dehydroacetic acid (D); (R3), the oligomerization of diketene to oligomers
(E); and (R4), a consecutive reaction between diketene and 2-acetoacetyl pyrrole to the
by-product F. The reactions R1, R2 and R4 are catalyzed by pyridine (K). The reaction
stoichiometry reads:

RI: A+ B C
R2: B +B -5 D
R3: B— E
R4: C + B 55 F,

from which one can write the stoichiometric matrix IN:

—1-11 00 0
IR} (5.69)
0 -1-10 0 1
The kinetic expressions are as follows:
T = kl CpCBCk (565)

ro = ko C2BCK
T3 = k‘g Cp

ry = kyccocpeg,

with the true parameter values used for the data generation given in the 2nd column of

Table 5.5.|70]
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The startup of an isothermal CSTR is considered. The initial concentrations of the

6 species are ¢g = (0.3 1 0.1 0.01 0 0| mol L™ The species A and B are added

continuously through one inlet with composition ¢,, = (2 3.5 0 0 0 0] mol L.

The volumetric inlet flowrate is ¢,, = 0.1 L min~'. Under the assumption of constant

density, the volumetric outlet flowrate is ¢,,, = 0.1 L min~!. The volume of the reaction
mixture is 1 L. There is initially 0.5 mol of catalyst in the reactor. The concentrations
of all species are measured every 30 sec for 1 h. The measurements are corrupted
with additive zero-mean Gaussian noise. The standard deviation for each species is
taken as 5% of the maximum concentration of that species, i.e. o5 = 0.05¢*" for s =
{A, B, C, D, E, F}. The noisy concentration measurements are shown in Figure 5.2.

(a) (b)

.
2 T
- =
Q —_—
[e]
£ 2
I 0.2 a
°© Y 05
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 04 06 0.8
Time [h] Time [h]
(c) (d)
0.25 ‘
= —
‘ o
|
= 0.
(@] —_
Q
£ g
R =)
< 8]
Q0.
‘ ‘ ‘ ‘ ‘
0
0 0.2 0.4 0.6 0.8 1 0.8
Time [h]
(e)
0.15
S 01l T4l
= =
= S
= 0.05[ B 2f
S &
D Q
: L L L L h L L L L
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Time [h] Time [h]

Figure 5.2 Concentrations of the 6 species in the acetoacetylation of pyrrole. The solid lines
indicate the generated (true) concentrations, while the markers indicate the noisy measure-
ments.



118 Identification of reaction and mass-transfer rates from measured data

Identification of rate expressions:

Since the concentrations of all species are measured and rank ([N* c,, ng]) = R+p+
1=4+1+4+1 =6, Corollary 5.1 can be used to compute the extents of reaction from
concentration data. The computed extents, shown in Figure 5.3, are within the 95%
confidence intervals computed using the information of the noise variance used for data
generation.

Is)
£
8
0-1g 0.2 0.4 0.6 0.8 1 0054 0.2 0.4 0.6 0.8 1
Time [h]
x10-4 (d)
0.14 7
0.12f of
. oaf 5f
S 0.08f ks ar
E o6 g st
§ 0.04 A &S 2
0.02 1f-
o[/ or”
002 0.2 04 06 0.8 1 R 0.2 0.4 0.6 0.8 1
Time [h] Time [h]

Figure 5.3 Extents of (a) reaction R1, (b) reaction R2, (¢) reaction R3, and (d) reaction R4
computed from measured concentrations. The solid lines indicate the true extents, while the
markers indicate the extents computed from noisy concentration measurements. The dash lines
indicate the 95% confidence intervals.

The next step is to identify the rate expressions from among the set of rate candidates
given for each reaction in Table 5.4. Note that each kinetic expression involves a single
unknown parameter and thus 0,; = k;, 0,2 = ks, 0,3 = k3, and 0,4 = k4. For each
reaction, each candidate rate expression is fitted to the corresponding computed extent
using the estimation problem (5.51). For example, for the main reaction R1, the quality
of fit of rate expression candidates (4), (6), and (8) is shown in Figure 5.4. Fitting r{*
leads to the lowest least square cost for W, = I;. Similarly, the rate expressions r§5),
r§2) and rff) are identified as the suitable rate expressions of reactions R2, R3, and R4,
which are indeed the rate expressions used for generating the data. The true values,
the initial guesses, the estimated values and their 99% confidence intervals are given in
Table 5.5. The estimated values are close to the true values.
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Table 5.4 Rate expression candidates for the acetoacetylation of pyrrole. Candidates r;

r§5), T§2) and 13(16)

correspond to the true rate expressions

Reaction R1:

Reaction R2: Reaction R3: Reaction R4:

T T T T
=k Y =k U= D=k
1 2 2 3 3 4 4
(2 _ (2) _ (2) _ (2) _
ryo= kl Cp ry B = kg Cp ry = k3 Cp ry = k4 Cp
(3) _ (3) _ 2 (3) _ 2 (3) _
r” =kica ry =kocy 1y =kscy 1y =kice
(4) _ (4) _ (4) _ (4) _
ro= kl Ck ry B = kg CpCk T3 —k3 CpCr Ty —k4 Cix
5 5 5 5
M =kieacs Y =k e Y = ks e v = kycpco
6 6 6 6
ri):kchcK ré):kch ré):k3cK ri):k4cKchc
7 7
Tg):/ﬁCBCK ri):/ﬁchcB
8 8
Tg):kchchK Ti):k4CKCC
9 9
D =k A cp ri):k4cKch%
10 10
P = kyea cd i1 = kyex & co
0.35
0.3 [ 7
025 [ ' . . L '7
e o CIE I R B
B e =~ . . . |
= 0.2 ’;\,,r . . e '
E ROV
- ’z’/.
8 L s |
0.15 S o
II _/l
L
’ ,’
)
0.1 [ /) ," e + Extents of R1 computed from concentration measurements b
/! ‘,~' /. - - Best of fit R1 using rate expression (4)
/ AN +=-Best of fit R1 using rate expression (6)
1 - " . N
005 I l,!! —Best of fit R1 using rate expression (8) B
'II‘I
'n
j
. Pt ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time |h]

Figure 5.4 Fit of three

rate expressions to the computed extent for R1.
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Table 5.5 Parameter estimation using the integral method: True, initial and estimated values

of the four kinetic parameters for the selected rate expressions T§6), T§5), ng), and 7’4(16). The last
column indicates the 99% confidence interval for the estimated parameters.

Parameter True value|Initial value|Estimated value|Confidence interval
k1 [L? mol=2 min—!|| 0.0530 0.8000 0.0532 [0.0515, 0.0550]
ko [L? mol=2 min—!|| 0.1280 0.8000 0.1287 [0.1272, 0.1301]
k3 [L min—!] 0.0280 0.8000 0.0281 [0.0278, 0.0284]
k4 [L? mol=2 min~!|| 0.0010 0.8000 0.0010 [0.0009, 0.0011]

5.5.2 Gas—liquid reaction system: Identification of the chlorination of

butanoic acid from measured concentration data

Generation of simulated data:

The chlorination of butanoic acid (BA) described in Section 3.3 is considered as a G-L
reaction system with the simplified kinetic expressions:

r1 = ks Ci1,BA Ci,Cly \/CI,MBA » (5-66)

ro = k4T ClL.Cly-

The values of the rate constants are given in Table 5.7. The mass-transfer rates (in kg
s™!) are calculated using the following equations:

* *
ng,012 = k?cb AV, Mw,cz2 (6012 - Cz,cz2), Col, = 73012/ch2 )

Cz_q,ch = kucu AV, Mw,ch (Cl,ch - C%cz)a C;iCl = PHCI/HHCI s (5~67)

where A is the specific interfacial area, cf,, and cj;; are the equilibrium molar con-
centrations at the interface, ¢; ¢, and ¢; gy are the molar concentrations in the liquid
bulk, H¢y, and Hye; are Henry’s law constants, Peq, and Py, are the partial pressures
in the gas phase and are calculated using the ideal gas law from the numbers of moles
in the gas phase.

The measurements are generated by simulating the chlorination of butanoic acid with
inlet and outlet flows for an operation of 5 h. The initial pressure in the reactor is at 1
atm. The total pressure is regulated at 10 atm by manipulating the inlet flowrate of Cl,
as shown in Figure 5.5d. The gaseous outlet flowrate u,,, , is constant at 3600 kg h=*.
The liquid inlet flowrate of BA u,, pa is 324 kg h™!, while the liquid outlet flow u,,,; is
manipulated to regulate the total mass of the liquid at 483 kg as shown in Figure 5.5b.
It is assumed that the concentration measurements of Cl,, BA and MBA in the liquid
phase (5, = 3) and HCI (S, , = 1) in the gas phase are available. They are corrupted
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with additive zero-mean Gaussian noise having a noise standard deviation of 2% of the
maximum concentration of the corresponding species.

Identification of rate expressions of reactions and mass transfers

The liquid volume, and the inlet flowrate of Cl,, the liquid outlet flowrate, and the total
pressure are measured (see Figure 5.5). The measured concentrations and numbers of
moles are shown in Figure 5.6. Since the reactions R1 and R2 are autocatalytic, they
start slowly because of the small amount of MBA initially present in the reactor. This
leads to accumulation of Cl, and BA in the liquid phase (see Figure 5.6a-b). After
about 0.15 h, the rates of both reactions increase, which leads to a sharp decrease in
the amount of Cly in the liquid phase. The amount of BA in the liquid phase decreases
momentarily to increase later since the amount of BA added by the liquid inlet surpasses
its removal due to the reactions and the liquid outlet. Moreover, the behavior of ny ey
in Figure 5.6d indicates that the gas phase has reached near steady state after 0.2 h.
The extended inlet-composition matrices W,, , and Wl are given in Egs. (3.42) and
(3.43).

The stoichiometric and inlet-composition matrices corresponding to the measured
quantities are as follows:

in,g

-1 -1 1
Na E [ 5 1 0] ; sz_’l’a = |:0 0.0141 0:| 3 Ne = |:NZ Wml,l,ai| )

W..,00= [—0-0274} P Woga =00 W, .= [0.0274] Wote = [0.0113] .

The measurements satisfy Conditions (i)-(iii) in Proposition 5.1. Hence, the ex-
tents of the reactions R1 (z,;) and R2 (z,2) and the extents of mass transfer for Cl,
(m1.01,) and HCI (z,, 4 ne1) can be computed from measurements as mentioned in
Proposition 5.1. The plots of the computed extents are shown in Figure 5.7. The small
value of z, 5 indicates that the rate of the reaction R2 is smaller than that of the reaction
R1 (Figure 5.7a-b). Since HCI transfers from the liquid to the gas, z,, ;, gc; is negative
and, furthermore, it is nearly constant after 0.2 h because of near steady-state condition
in the gas phase (Figure 5.7c). The mass-transfer extent x,,,; ¢, increases with time
because of the large driving force maintained by the consumption of Cly in the reac-
tions. The number of moles of Cl, in the gas phase and the concentration of HCI in the
liquid phase are reconstructed from the available measurements using Eqs. (5.16) and
(5.17) and shown in Figure 5.8. Note that these reconstructed quantities are required
for parameter estimation.
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u'in,g,cl2 [kg hgl]

Vi[m?]
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(a)

04405 1T

2 25 335 4 45 5

Time [h]

15
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Figure 5.5 Chlorination of butanoic acid. Measured mass flowrates, volume of liquid phase
and total pressure: (a) Inlet flowrate of Cly in the gas phase, (b) outlet flowrate in the liquid
phase, and (c) liquid volume, and (d) total pressure in the gas phase.
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Figure 5.6 Chlorination of butanoic acid: (a) Concentration of Cls in the liquid phase (¢ ¢1,),
(b) concentration of BA in the liquid phase (¢;,54), and (c) concentration of MBA (¢; prp4) in
the liquid phase; (d) number of moles HCI in the gas phase. The solid lines indicate the true
concentrations, while the markers indicate the noisy measured concentrations.
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Figure 5.7 Chlorination of butanoic acid: (a) Extent of R1, (b) extent of R2, (¢) extent of
HCI mass transfer in the gas phase, and (d) extent of Cly mass transfer to the liquid phase. The
solid lines indicate the true extents of reaction and mass transfer, while the markers indicate
the extents of reaction and mass transfer computed from the noisy measured concentrations.

Table 5.6 Reaction rate expression candidates for the chlorination of butanoic acid. Candi-

dates 7“54) and 7“54) correspond to the true reaction rate expressions.

Reaction R1: Reaction R2:
(1) _ (1) _ 2
ro= k4 C1,BA Cl,Cl, ro= ko C1,BA C oy,
(2) _ (2) _
ro= k4 ClClsy Tyt = ko C1,BA ClL,Cly

(3) _ (3) _ 2
ro= k4 C.BACIL,Cl, CiMBA  To & = ky ko C,BA C 01, Cl,MBA

4) _ (4) _
ro= k4 C1,BACI,Cly \/CI,MBA Ty = = koky C1,BA Ci,Cly \/CI,MBA

The next step is to identify the reaction rate expressions from the set of rate ex-
pression candidates in Table 5.6. Note that the candidates r§4) and r§4) correspond to
the true rate expressions. It will be assumed in this example that the structures of
the mass-transfer rates are known. Additional mass-transfer rate expressions could be
found elsewhere [87]. For each reaction, each candidate rate expression is fitted to the
corresponding computed extent using the estimation problem (5.51). For the main re-
action R1, the quality of fit of rate expression candidates (1), (2), (3), and (4) is shown
in Figure 5.9. Fitting r§4) leads to the lowest least square cost for W, = I ;. Similarly,
for the side reaction R2, The rate expression r§4) is found suitable. The identified rate
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Figure 5.8 Chlorination of butanoic acid: (a) Number of moles of Cly (ng4.ci,) in the gas
phase, and (b) concentration of HCl (¢;,g¢i) in the liquid phase. The solid line indicates
the true concentration and numbers of moles, while the marker indicates the reconstructed
concentration and numbers of moles.

Table 5.7 Parameter estimation using the integral method: True, initial and estimated values
of the two reaction rate and the two mass-transfer rate parameters. The last column indicates
the 99% confidence interval for the estimated parameters.

Parameter True value |Initial value|Estimated value Confidence interval
ki [m3 kmol™'||  1.3577 0.8000 1.3543 [1.3207,1.3879]
ks || 0.1 0.0200 0.105 [0.0884,0.1216]

kcy, [ms™1  |0.666x10~4| 0.0002 0.594x10~4  [[0.514x10*,0.674x 10|

kpor [ms™t  10.845x107%  0.0002 0.813x10™* {[0.762x107*,0.863x 1074

expressions correspond to the rate expressions used for generating the data. The true
values, the initial guesses, the estimated values and their 99% confidence intervals are
given in Table 5.7. True and estimated values are very close to each other.
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Figure 5.9 Fit of three rate expressions to the computed extent for R1.

5.5.3 Rank augmentation of the RMV-form of spectral data using gas

consumption data

Case 2 in Section 3.3.2 is considered to illustrate rank augmentation of the RMV-
form of spectral data. Here, the chlorination of butanoic acid (BA) takes place in
the organic solvent (Q) in the liquid phase. The total volume and the flowrate of
the gaseous purge outlet are considered to be constant. The reaction system is kept
isothermal by a heating-cooling system, and Assumptions (A5)-(A8) in Section 5.2 are
valid. Table 5.8 indicates the ranks of the noise-free data matrices H,,,, and H¢! for
Case 2 in Section 5.2.4, the number of absorbing species (denoted S) and p,,.

It is assumed that @, BA, and Cl, absorb. Hence, the total number of absorbing
reacting species is two, and the two reactions can be observed from the spectral matrix
in RMV-form. Since two reactions and the mass transfer of Cl, cannot be observed
from the two absorbing species, H,,, is rank deficient with rank (H,,,) = S, = 2 <
R + pyu = 3. However, augmentation to full rank can be achieved by appending gas
consumption data to H,,,, thus leading to rank (H**9) = R + p, = 3 (see Column 5
in Table 5.8). Note that A is of full rank S. However, only after appending the gas
consumption data does the augmented matrix contain information on all R reactions

and p, mass transfers. Similarly, the gas consumption data can be used to augment the
rank of H,.,, for the case when @, MBA, and Cl, or ), DBA, and Cl, absorb.
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Table 5.8 Computed ranks of H,,, and H%“9 as functions of S, the number of absorbing

species, and p,, the number of species trang?érring between phases that do absorb. Rank

deficiency is indicated by {. (R; = 2, pg =1, pig = 1).

Rank of
S| Pa Absorbing species H,,., HYY
(using €2,)
3pa[{Q, BA, Cl} or {Q, MBA, CL,} or {Q, DBA, CL,}| 21 3

5.6 Summary

Being able to compute the contributions of reactions and mass transfers from measured
reaction data is key for investigating reaction systems. Concentration data from homo-
geneous and G—L reaction systems and spectral data from G-L reaction systems have
been considered in this chapter. Various approaches to compute the extents of reaction
and mass transfer from concentrations and spectral data with known pure-component
spectra can also be proposed.

For homogeneous reaction systems, the linear transformation of Section 2.3 has been
applied to compute the extents of reaction when the concentrations of all species are
measured. When the concentrations of only a subset of species are measured, the flow-
based approach of Section 4.2.2 using the inlet and outlet flowrates has been used to
compute the extents of reaction. For the case of concentrations corrupted with zero-
mean Gaussian noise, it has been shown that the computed extents of reaction are
unbiased.

For G-L reaction systems, the linear transformation of Section 3.2.1 has been applied
to compute the extents of reaction, mass transfer and flow from the concentration
measurements of all species in the liquid phase. When the concentrations are measured
only for subsets of the species in the gas and liquid phases, the flow-based approach of
Section 4.3.2 has been applied to compute the extents of reaction and mass transfer by
solving a set of differential-algebraic equations using the inlet and outlet flowrates and
the liquid and gas masses. For the case of concentrations corrupted with zero-mean
Gaussian noise, it has been shown that the computed extents of reaction and mass
transfer are unbiased.

It has also been shown that the linear transformation of Section 3.2.1 can be ex-
tended to spectral data when the pure component spectra are known. When the
pure-component spectra are unknown, a transformation to compute spectral data in
RMV-form using the inlet and initial spectra and the inlet and outlet flowrates has
been proposed. The resulting RMV-form contains only the contributions of the un-
known reactions and mass transfers. Furthermore, it has been shown that spectral data
in RMV-form are typically full rank and thus do not require rank augmentation for
the application of FA methods. However, in case of rank deficiency of the transformed
spectral data due to unobserved absorbing transferring species, a method for rank aug-
mentation by appending gas consumption data to the spectral data has been proposed.
Furthermore, a parameter estimation problem has been formulated that estimates simul-
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taneously the parameters of reaction- and mass-transfer-rate expressions based on the
RMV-form of spectral data. This method is called simultaneous identification approach.

Using the computed extents of reaction and mass transfer and the integral method,
parameter estimation problems have been formulated to identify the parameters of
each reaction-rate and each mass-transfer-rate expression individually. It has been
shown that the incremental identification approach using the differential method can
be adapted to the integral method using the approaches proposed in Sections 5.1 and
5.4. This leads to a novel incremental identification approach using the integral method.
Furthermore, the main steps of various incremental identification approaches available
in the literature and the one proposed in this chapter are summarized for homogeneous
and G-L reaction systems. This summary can be seen as a starting point toward the
comparison of various incremental identification approaches. The outlook of Chapter
6 discusses several issues to be investigated in future work based on the comparison in
Section 5.4.3.






Chapter 6

Conclusions

6.1 Summary of main results

The concept of extents of reaction and mass transfer developed in this dissertation is a
further step toward building reliable process models. The developed concepts help speed
up process development and provide a better understanding of the reaction systems.

Extents of reaction, mass transfer and flow

The reaction variants and invariants in the literature for open homogeneous reaction
systems are merely mathematical quantities devoid of any physical meaning. A way to
improve interpretation was investigated in Chapter 2 for open homogeneous reaction
systems. A linear transformation of the number of moles vector was proposed that
enables to view the reaction variants as extents of reaction, the inlet-flow variants as
extents of inlet flow, and the outlet-flow variant as extent of outlet flow. The linear
transformation was developed using information about the stoichiometry, the inlet com-
positions and the initial conditions. Furthermore, the invariant states remain constant
at zero, which allows dropping them from the transformed dynamic model, thereby
leading to model-order reduction.

The developed linear transformation for open homogeneous reactors was extended
to open G-L reaction systems in Chapter 3. The numbers of moles in the liquid and
gas phases were transformed linearly into extents of reaction, extents of mass transfer,
and extents of inlet and outlet flows. The extension to open G-L reaction systems has
led to a novel concept of extent of mass transfer in the liquid and gas phases. Hence,
a major contribution of this dissertation is the development of a linear transformation
that decouples the effects of each reaction and each mass transfer and enables one to
compute the extent of each reaction and each mass transfer from the numbers of moles.

Minimal state representation and state reconstruction

Minimal state representations of homogeneous and G-L reaction systems were stud-
ied in Chapter 4 using the transformed models. The conditions under which linearly

129
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transformed models are minimal state representations were derived using the concept of
accessibility of nonlinear systems. It has been shown that minimal state representations
are of the order (R+p+ 1) for open homogeneous reactors and (R + 2p,, + p; + p, +2)
for open G—L reactors. Furthermore, the reconstruction of unmeasured concentrations
from the measured ones was studied using the proposed transformations in Chapter 4.
Using measured flowrates, the transformations can be used to reconstruct unmeasured
concentrations. Moreover, it has been shown that the minimal number of concentration
measurements required to reconstruct unmeasured species is R for open homogeneous
reactors and (R + p,,,) for open G-L reactors.

Use of concentrations and spectral data

Obtaining reliable descriptions of kinetics and transport phenomena is a challenging
task in the modeling of chemical reaction systems. In practice, the description of these
phenomena is obtained through the analysis of measured concentrations and spectral
data. The linear transformations developed in Chapters 2 and 3, and the methods
developed in Chapter 4 were used for the analysis of measured data in Chapter 5.
For measured concentrations, and spectral data with knowledge of the pure-component
spectra, the linear transformation has been applied to compute the extents of reaction
and mass transfer. The methods developed in Chapter 4 have been applied to compute
extents for the special case where concentrations are only available for a subset of the
reacting species. Moreover, the computed extents of reaction and mass transfer have
been used to identify the unknown reaction and mass-transfer rates individually using
the integral method. The error propagation in the computation of extents has been
treated for the case of concentrations corrupted with zero-mean Gaussian noise. It has
been shown that the extents computed by the approaches proposed in Chapter 5 give
unbiased estimates of extents. Furthermore, it has been shown that the incremental
identification approach using the differential method can be adapted to the integral
method. This leads to a novel incremental identification approach using the integral
method.

The case of spectral data with unknown pure-component spectra was briefly treated
in Chapter 5. Using the measured inlet and initial spectra, RMV-form of spectral data
has been computed from the raw spectral data. The RMV-form is typically of full rank
and, hence, the factor-analytical methods in the literature can be applied. However, it
was shown that the gas consumption data can be used to augment the rank of spectral
data in the RMV-form, if RMV-form of spectral data matrix is rank deficient. An
approach to identify each reaction and mass-transfer rate parameters simultaneously
from spectral data in RMV-form has been formulated.

To put the present work in perspective, the simultaneous and incremental identifica-
tion approaches in the literature and the incremental identification approach proposed
in this work are compared schematically in Figure 6.1.

Path "1" indicates the simultaneous identification approach using the integral method,
whereby rate expressions for all the reactions are integrated to simulate the concen-
trations that are fitted to the measured ones via a least-squares problem.
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Path "2" represents the incremental identification approach using the differential
method, whereby the rate of the ith reaction is computed by differentiation of the
concentration measurements and use of information regarding the stoichiometry, the
inlet composition, the volume, and the inlet and outlet flowrates. The ith rate model,
which is chosen from the database of rate expressions, is fitted to the computed rate
via a least-squares problem.

Path "3" represents the incremental identification approach using the integral method
proposed in this thesis, whereby the extent of ith reaction is computed using the linear
transformation from the concentration measurements and information regarding the
stoichiometry, the inlet composition, the volume, and the initial conditions. The ith
rate model, which is chosen from the database of rate expressions, is identified from
the corresponding computed extent via a least-squares problem using the integral
method. The proposed incremental identification approach using integral method
combines the strengths of the incremental approach (can handle each reaction indi-
vidually) and the integral method (optimal handling of the noise).

Table 6.1 summarizes the problems addressed in this dissertation, the tools proposed
or used to solve them, and the corresponding implications.
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Figure 6.1 Schematic comparison of the simultaneous and incremental identification ap-
proaches of homogeneous reaction systems. Path 1, simultaneous approach that uses the integral
method to integrate the candidate of all rate expressions; Path 2, incremental approach that
uses the differential method to differentiate concentrations; Path 3, incremental approach pro-

posed in this thesis that uses the integral method to integrate a single rate expression at the
time.
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6.2 Outlook

The concept of extents of reaction, mass transfer, and flow was developed in Chapters 2
and 3 through analysis of dynamic reaction models. The uses of extents for minimal
state representation, state reconstruction and the identification of a kinetic model based
on concentrations and spectral data were investigated in the previous chapters. How-
ever, there are still important questions that could be addressed in future work. This
section presents some follow-up questions and implications of the developed concepts,
regarding the identification of a kinetic model from measured reaction data and model
reduction.

6.2.1 Comparison of various incremental identification approaches

Several issues concerning extent- and rate-based methods presented in Section 5.4.3
could be distinguished as follows:

1. Numerical differentiation vs. integration of data: The rate-based methods
are related to the differential method and require time differentiation of noisy data,
which is a difficult task that calls for appropriate regularization [100]. The extent-
based methods, which are related to the integral method, require integration that
involves both low- and high-resolution data.

In practice, concentrations are typically measured only infrequently, whereas the
flowrates and volume are available almost continuously. This leads to low-resolution
concentration data, c(t,), and high-resolution flowrate and volume data, u,,(t),
U, (t) and V(t), respectively. Methods O1, R2, P1 and P2 in Tables 5.2, and 5.3
require integration of low-resolution data and are thus of limited accuracy, whereas
method V2 calls for the integration of high-resolution data.

Continuous approximation of discrete low-resolution measurements is often required
for the differentiation in methods R1, R2 and R3' and for the integration in meth-
ods O1, R2, P1 and P2. This continuous approximation involves additional meta-

H
parameters. For example, ¢(t) = > c(t5)¢n(t), where ¢(t) represents a continuous

function approximation of the concentrations based on the low-resolution data c(t;,)
and the basis functions ¢, (t), h=0,...,H.

Hence, a detailed investigation of the relative merits and drawbacks of numerical inte-
gration and differentiation of measured reaction data in the identification of kinetics
would be interesting in the further development of these methods.

2. Error propagation: In the presence of only a limited number of noisy concentration
measurements, the integral method typically has statistical advantage over the differ-
ential method. Nowadays, concentrations can be estimated frequently from on-line
spectral data using multivariate calibration (MVC) or multivariate curve resolution

1 Depending on the numerical method, differentiation may not require a function representation of low-resolution
data.
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(MCR). However, both concentration measurements and estimates contain errors due
to measurement noise or modeling errors in MVC and MCR.

Methods V1 and V2 give unbiased estimates of extents while methods R1, R2 and
R3 give biased estimates of rates. For method O1, the error propagation from con-
centrations to the estimated extents needs to be investigated. A study of the effect of
error propagation from the estimated extents and rates the estimated rate parameters
should be investigated in detail similar to that was done in [10, 13].

3. Model discrimination: Methods P1 and P2 involve a regression problem with a
dynamic model, while the method P3 involves a regression problem with a static
model. The discrimination power of the extent- and rate-based methods based on
a proper metric and computational efficiency, when two or more competing kinetic
structures are proposed, should be investigated.

4. Experimental data: In this dissertation, simulated examples have been presented
to illustrate the identification of kinetic models. These methods should be applied to
experimental data, using also spectral measurements.

6.2.2 Use of spectral, calorimetric and gas consumption data

Computation of extents of reaction and mass transfer

In Chapter 5, an approach to estimate kinetic parameters from spectral data in RMV-
form was presented. This approach assumes that the structures of reaction and mass-
transfer rates are known. However, these structures are rarely known in practice. FA
methods (e.g. multivariate curve resolution) can be applied to spectral data to estimate
the unknown concentration profiles and the pure-component spectra. The estimated
concentrations can be used for incremental identification as described in the previous
section. However, FA methods cannot be applied to rank-deficient spectral data. In
contrast to spectral data, the RMV-form of spectral data is typically of full rank. Hence,
a constrained optimization approach based on FA methods to compute the extents of
reaction and mass transfer from the RMV-form of spectral data would be interesting to
investigate, with emphasis on the following two aspects:

e Constraints formulation: Importance is given to the formulation of appropriate
constraints such as the kinetic model, the available initial and final concentration
measurements [2|, the pure-component spectra of a subset of species, non-negativity,
continuous increasing or decreasing (monotonous) profiles of extents, unimodality.
Additional measurements such as calorimetric data and the compositions measured
in an exhaust gas can also be formulated as constraints.

e Drift-correction: The pure-component spectra of a subset of species can often be
measured independently of the reaction runs. However, these pure-component spectra
change in the reacting mixture. It is proposed to use drift-correction methods to
compensate for these drifts [39].



136 Conclusions

6.2.3 Model reduction

The model order can also be reduced by eliminating the fast modes using, for example,
singular perturbation theory [34, 94|. Since the reactions (and not the numbers of moles)
exhibit fast and slow dynamics behavior, the numbers of moles typically cannot be
classified as fast or slow states. Hence, the mole balances in Eq. (2.1) for homogeneous
reactors and Eqgs. (3.9) and (3.10) for G-L reactors are less suited for application of
singular perturbation. In contrast, the extents of reaction x, and the extents of mass
transfer x,, ¢, f = {g,1} are direct functions of the reaction rates and the mass-transfer
rate, and thus can be separated into fast and slow dynamics.

For homogeneous reaction systems, the extents of reaction can be transformed into
a form suited to singular perturbation theory. The rate of the ith reaction can be
expressed as the product of a rate constant k; and a nonlinear function r;(n). Let us
assume that there are R, slow reactions and (R — R,) fast reactions. The reactions are
ordered according to their relative speed, that is ¢ = 1,..., R, for the slow reactions
and ¢ = R, + 1,..., R for the fast reactions. It is also assumed that kRk—Z“ >> 0(1) for
1=1,...,R, and % =~ 0O(1) fori = R,+1,..., R, where O(1) indicates the order
of magnitude of one. With this formulation the extents of reaction vector X, can be

S
T

7[> where x7 and x/ are the R,- and (R — R,)-dimensional
X

written as follows: x, =

vectors corresponding to the R, slow and (R — R,) fast reactions, respectively. The
dynamics of x* and x/ can be written in terms of the corresponding reaction rates as
follows:

u
X8 =Vrt — xs,
m
. Ut
%/ =vrel - —x] (6.1)
m

The fast reaction rates r/ can be expressed as follows:

r/ = Kr/, (6.2)
= kp Kt/ (6.3)
where K—diag <[1, :i—ﬁ, T :R'H]) the (R — R,)-dimensional diagonal matrix and

t/ is the (R — R,)-dimensional vector of nonlinear functions. With r/ and defining
€ =1/kg, 41, Eq. (6.1) can be formulated as follows:

X =Vrs — ;';”xf,
_ Uy €
ex!/ = VKr/ — =22 —x/ (6.4)
m

Eq. (6.4) corresponds to the standard singular perturbation model [46]. Hence, the
extents of reaction and mass transfer are well suited to the singular perturbation theory
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and it would be interesting to investigate the utility of the extents of reaction and mass
transfer for further order-reduction through singular perturbation.

6.2.4 Other implications

Parametric sensitivity analysis:

Parametric sensitivity analysis is simplified by working with the extents of reaction
instead of the numbers of moles, since the extent of reaction z, ;(t) contains all, but also
only, information regarding V() r;(t). Another nice feature of the extents of reaction
and mass transfer is the fact that they are orthogonal to the inlet space, thereby leading
to 0x,/0u,, = Ogy, and 0x,,,/0u,, = 0,, «,.

Attainable-region approach:

Determining the optimal reaction network is the main objective in reactor synthesis
problems. The basic question regards the amount of material that can be produced
from all possible steady-state reactor configurations. The set of all possible concentra-
tions that can be achieved with any of the available reactor configurations under given
constraints is called the attainable region |29, 36, 37|. For a set of reactors at steady
state, Omtveit et al. [61] proposed a method to construct the attainable region in the
concentration space of a few linearly independent species using the concept of reaction
invariants. It may be convenient to work with the lower-dimensional space of the ex-
tents of reaction and flow to construct the attainable region and examine the various
reactor configurations.






Appendix A

Proofs

A.1 Proof of Theorem 2.1

Let the S x (S — R — p) matrix Q, the S x p matrix L and the S x p matrix M obey
the following conditions:

Cl: The S x S matrix [N™ L Q] is of rank S,
C2: The columns of Q are orthonormal and span the null space of [N* W |7,

T

C3: The columns of L are orthonormal and span the null space of [NT Q]*,
C4: M'™W,, =1,, which can be achieved by choosing M = L(W} L)*.

With S* = N™ (I — W, M"), the conditions C1-C4 enforce the conditions shown
under the braces in Eq. (2.12). Applying the transformation (2.13) to Eq. (2.1) gives:

U oot

z,=Vr— Z,, z,(0) = S™ny,
Zin =u;, — % Z;,, Zm(o) = MTHOa (Al)
Z;, = _uout Z;,, Zw(o) = QTHO-

m

Next, Eq. (2.15) needs to be proven. For this, the following properties resulting from
Conditions C1-C4 are used:

N'N*t" + LL" + QQ" =1Ig (complementary orthonormal spaces),
in == x inlet space rotated orthogonally to y construction o
"W, M" =0g.5 1 d orth lly to QQT b £
(A.2)
M=L(W{ L"),

LLTWMMT =LL" (equivalent spaces).

Pre-multiplying both sides of Eq. (2.13) with [N™ W, Q] gives:
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Nz, +W,.z,, + Qz,, = (N'S" + W, M" + QQ")n

(NN (Is =W, M")+ W, M"+QQ")n

= (N'N"™ + (LL" + QQ" )W, M" + QQ")n (A.3)
=(N"N""+LL"+QQ")n=n

<~ n=N"z, +W,z, +Qz,.

An algorithm for computing the matrices S, M and Q is given in Appendix C.

A.2 Proof of Theorem 2.2

The proof has three parts. In the first part of the proof, it is shown that 175 5, Q"ng #
0 is guaranteed through the working assumption rank ([N W, ng]) = R+ p+ 1. This
assumption indicates that ny does not belong to the column space of [N™ W, ], which,
with Condition C2, is equivalent to saying that ny does not belong to the null space
of Q*. Hence, Q™ny # 0. Since Q is of full rank (S — R —p), 1(5_z_, Q" # 05 and
1(s_p_pQ'my # 0 follow.

In the second part of the proof, Egs. (2.20) and (2.23) are derived. For this, the
following properties resulting from Conditions C1-C4 are used: qiN"* = 0%, gt W,, =
0,, and qyng = 1. Applying the transformation (2.18) and

,=Qin with Q;=Q"(Is —noqp) (A4)
to Eq. (2.1) gives:
X, =Vr— 2y  x.(0)=0p
X, = U,, — Hou ins Xin(o) = Op7
" (A.5)
A= -2, A0) =1,
).(iv - _uOut X'Lu? sz(o) - OS—R—Z)'

Since x,,(0) = O0s_g_p, X,,(t) = 0s_p_, for all time ¢. Hence, x,, can be dropped
fromEq. (A.5).

In the last part of the proof, Eq. (2.21) is derived. For this, the following properties
are used: (i) Eq. (A.2), (ii) Qx,,(t) = Os since x,,(t) = 0s_r_p, and (iii) (NTS™ +
W, M" + QQ") = Is from Eq. (A.3). Pre-multiplying both sides of Eq. (2.18) with
[NT W, ng] leads to:

N'x, + W, x,. + \ng = N'x, + W, x,. + Ang + Qx,,
=(N"S"+ W, M" +QQ")(Is —ngqy)n+ nyqyn
=(Is —npqy)n+nygin=n
< n(t) = N"x,.(t) + W, x,,(t) + ng A(t).

(A.6)
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A.3 Proof of Lemma 4.2

The proof of Lemma 4.2 follows by contradiction. Let assume that there exists a trans-
formation ®: &, — [y.] independent of for all inputs w;, @ = 1,...,v such that the

dynamics of the system (4.6) can further be reduced as follows:

yi=Er(0) + &) (A7)

y2=0
In Eq. (A.7), since y, states are constant and hence are not affected by the inputs
u;, Vi = 1,...,v, the states y, are inaccessible states. However, the system (4.6) is
locally accessible by assumption. Hence, there does not exist a transformation ® that

leads to decomposition of &, states into accessible states y; and inaccessible states ys.
Thus, the dimension of states in € cannot further be reduced.

A .4 Proof of Lemma 4.3

The proof of Lemma 4.3 follows by construction. Let consider the accessibility distri-
bution in Eq. (4.5) with k& = 1:
A =G [,

Ony =2 —J(1) (A.8)

J— X
- Ip 7;1” Ova+1

A
01><p _E 01><v+1

Since A # 0 and the rank of J = R by assumption, dim(4;) =(R + v). Hence, the
result of Lemma 4.1 proves that the system is locally accessible.

A.5 Proof of Theorem 4.1

The idea of the proof is to show that Eq. (4.6) does not contain redundant states. Since
the rank of J(¢) = R by assumption, the distribution A; has full rank (R + v). Hence,
the reaction system in Eq. (4.6) is accessible as proved in Lemma 4.3. As a consequence
of Lemma 4.2 and the accessibility of the reaction system in Eq. (4.6), the dimension
of Eq. (4.6) cannot be reduced and thus Eq. (4.6) does not contain redundant states.
This proves Theorem 4.1.
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A.6 Proof of Theorem 4.2

The numbers of moles vector can be partitioned into the available and unavailable
numbers of moles as follows:
n,(t Nt W... ng,
n

W] [N W N,

] A) (A.9)

Since u,, and u,,, are available, the states x,, (t) and A(t) can be computed from Eqs. 4.8
and 4.9, respectively. Since it is assumed that the number of available measurements
S, > R and rank (N,) = R, (N7)" exists. Hence the unknown part in Eq. (A.9), the
extents of reaction x,, can be computed from the available numbers of moles and the
computed x,,(¢t) and A(t) from the Eq. 4.10. In addition to N, and W, ,,, the initial
conditions of unmeasured species, ng,, are also available. Hence, using Eq. (4.11), n,(t)
can be reconstructed from computed quantities as in Eq. (A.9).

A.7 Proof of Theorem 4.3

By deﬁning Y1 = Xm,l7 Y2 = Xm,g7 Ys = Al7 Yy = )‘g and u; = C) U2 = _uout,l/mla
U = —Uout,g/ My, Eq. (4.12) becomes:

Y = g1U; + ZaUs + G3Us + Salla, (A.10)
where
Imepm _yl Opm
0 —y 0
g1 = y 81 = ’ )83 = (A-H)
Ipm XDPm O;Dm Y2
0 0 —Ya

If the set of (2p,, + 2) states in Eq. (A.10) is accessible in finite time, then it can be
inferred that there are no redundant elements according to Lemma 4.2. Let A be a
distribution of Eq. (A.10). Then, the rank of A must be 2p,, + 2:

dlmA_ = Span{gl, go...., [g17g2]7 [g17 gg] ...... } = 2pm —I— 2, (AIQ)

where [g;, g,] is the Lie-bracket of g; and g,. It can easily be shown that A has full
rank already with [g,, g3]:

Lo =Y1 Op Lpispn, Opyxpon
A_ — OlXpnl _y3 O 01><;Dm 01><;Dm (A13)
Ipm XPm Opm _y2 Opm XPm Ipm XPm

lepm 0 —Ya lepm lepm
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since y3 # 0 and y, # 0, the rank (A_) = 2p,, + 2. Hence, the subsystem in Eq. (4.12)
is accessible and hence, the G-L reaction system with outlet cannot further be reduced
by any transformation.

A.8 Proof of Proposition 4.5

The S, , algebraic equations can be written through the measured numbers of moles
in the gas phase as in Eq. (4.19). u,, ,(t) and w,,, ,(t) are available, hence, (p, + 1)
differential equations can be written for x,, ,, and A\, as in Eq. (4.21).

The S, , algebraic equations can be written through measured numbers of moles in
the liquid phase n; ,, as in Eq. (4.15). u,, ;(t) and u,,, (t) are available, hence, (p; + 1)
differential equations can be written for x,,,;, and A;, as in Eq. (4.17).

The liquid and gas masses m; and m, can be expressed in terms of the extents of
mass transfer and inlet flow, and the discounting variables, as in Eqs. (4.16) and (4.20).
It will lead to two algebraic equations. The relationship between x,, ,, x,,; and 6,, will
lead to p,, differential equations in Eq. (4.22) and p,, algebraic equations in Eq. (4.23).

Hence, there are total (S, , + Si.. + pm + 2) algebraic equations and there are (p; +
Dy + Pm + 2) differential equations. Since rank (ng,g,a) = Pm, by Assumption (ii), its
inverse exists. Hence, there are at least p,,, independent algebraic equations out of S ,
equations in the gas phase. Similarly, by Assumption (iii) rank (N7, W, ;.]) > R+ppm, -
Thus there are at least (R + p,,,) independent algebraic equations out of S, , equations
in the liquid phase. By assumption of the independent inlets and mass-transfer, the
(Pt + pg + pm + 2) differential equations are also independent. This leads (R + py,, +
D, +P1+Dg+2pm+4) independent differential-algebraic equations for the computation of
the (R+p,+pi+3pm +4) unknown variables. Hence, one needs to satisfy p,, +pi, > pm.-
Since this condition satisfies by the construction, the number of independent differential-
algebraic equations is equal to the number of unknown variables. Hence, the formulated
differential-algebraic equations in (4.15)-(4.23) can be solved to compute the unknown
variables. This proves the theorem.

A.9 Proof of Proposition 5.1

The numbers of moles for the available species in the gas phase n,, can be computed
from ¢, as follows: ny,(t,) = (V; — Vi(tn))Cy.a(tn). The available numbers of moles
can be written in terms of various extents as follows:

00(t) = =W gaXpg(t) + Wi ga Xing(t) + Dgo.a Ag(t)- (A.14)
Since w,, 4(t), Uy 4(t) and my(t) are available, x,, ,(t) and A,(t) can be computed
from Egs. (5.9a) and (5.9¢). Since it is assumed that S, , = p,,, species measured

in the gas phase are involved in mass transfer, W, ,, can be partitioned as follows:
W, 00=[W 0 |. Then, Eq. (A.14) can be written as:

mg,9,a Pmg X(Pm—pmg)
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ng@(t) - _ngag;a Xmg,g(t) —"_ W’”l,g,a Xin79(t) + n907a )‘q(t) (A15)

By rearranging the terms, Eq. (5.9¢) can be obtained. Since rank (W, g.4) = Pm,, its
inverse exists. Thus, the extents of p,, mass transfer in the gas phase x,,, ,(t) can be
computed from Eq. (5.9c) by inverting W, .

Since u,, (1), U,..i(t) and m;(t) are also measured in addition to the gas flowrates,
the extents of p,, mass transfer in the liquid phase x,,, ;() can be computed from
Egs. 5.10a and 5.10b.

The numbers of moles for the available species in the liquid phase n;, can be com-
puted from c;, as follows: n;,(t,) = Vi(tn)cra(tn). The available numbers of moles in
the liquid phase can be written in terms of various extents as follows:

0o (th) = NoX, (th) + W10 X (th) + W X (th) + 1ug.a Ai(th) (A.16)
= Nox, (th) + [Wmit.aWng.ia ] [;c:; ll(tt:)] + Wta X (th)
+150,0 Ai(th) (A.17)
= NUX, () + W naXom i (tn) + W 16X, 0 (h) + W o X0 (t)
+150.0 Ai(th) (A.18)

By rearranging Eq. (A.18), Eq. (5.11c) can be obtained. Since u,, ;(t), u,.. (t) and
my(t) are available, x,, ;(t5) and X\;(¢5) can be computed from Egs. (5.11a) and (5.11b).
Since S;4 > R+4pp, —pm, and rank (N7, W, ; .]) = R+ p,,, by assumption, the pseudo
inverse of matrix [NT, W _ ;] exists and hence, the extents of reaction x,.(¢) and x,,, ;
can be computed from Eq. (5.11c¢) by inverting the matrix [N}, W, ;.]. This proves
the theorem.

A.10 Proof of Corollary 5.5

Eq. (5.30) factorizes the volume-weighted spectral matrix A, to the matrices N; and E.
Since the matrix E is known and rank (E) = S, its inverse exists. Hence, the numbers
of moles matrix A/; can be computed from Eq. (5.30) as follows:

N[ =(E")TA". (A.19)

The hth column of the N , corresponds to the S; number of moles at the ¢, time instant,
i.e. ny(ty). Since Conditions (i) and (ii) satisfy, Theorem 3.1 can be applied to n;(t;)
compute the extents of reaction and mass transfer. For H observations, it leads to the
matrices X, and X, ;. Hence, the corollary is proven.
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A.11 Proof of Corollary 5.6

Since u,, ;(t), U,..1, and m;(t) are measured, the matrices X,, ; and A; can be computed.
Using the computed matrices X, ; and A;, and the measured A,, and ay, the spectral
data in RMV-form H,,, can be computed in Step 1 from A,,.

Since all transferring species react, W,, ., = 0, «s,,. Hence, WI E = [wW} o] [g" | =
W? E. Note that NE = [N 0nxs,, | [g°, ] = NE. Hence, H,,, contains the contribu-
tions of the extents of reaction and mass transfer only. Since the pure-component
spectra of reacting species are known, and rank ((N* W, ;]) = R + p,,, the inverse of
E,,, exists. Hence, the matrix of the extents of reaction and mass transfer X,,, can be
computed in Step 2 from H,.,,. This proves the corollary.






Appendix B

Modeling specificities for gas-phase and
liquid-phase reaction systems

The specificities such as the expressions for the reaction rates and the volume of the
reaction mixture are described next, thus leading to a complete model suited for simu-
lation.

Homogeneous liquid-phase reaction systems:

In homogeneous liquid-phase reaction systems, r(t) and V () can be expressed as follows:

r(t) =r(c(t), T(t)), V() = %
with e()= 2D ) — o (). T(0)), 1)

V()
T(t) = fL (T(t)v Il(t), Win (t)7 uout(t)7 Qezt (t))v T(O) = TO)

where L denotes the liquid phase, ¢ the S-dimensional vector of molar concentrations,
T the temperature, Tj the initial temperature, and ().,: the net external heat flow due
to heating, cooling, mixing, etc.

In the case of nonisothermal reaction systems, the function fr is typically derived
from an enthalpy balance. In the liquid phase, the pressure can be assumed constant and
thus f; is not an explicit function of pressure. The functions ry and p;, are constitutive
relationships that are specific to the underlying reaction system. Furthermore, wu,,,(t)
is often not a manipulated input but a dependent variable. For example, for a CSTR
with a constant volume, the outlet mass flowrate varies with the mixture density p as
given by Eq. (2.28) which reduces to u,,,(t) = 1, u,,(t) for the constant-density case or
when the reactor is at steady state.

Homogeneous gas-phase reaction systems:

For homogeneous gas-phase reaction systems, four scenarios can be observed: (i) varying
volume and pressure, (ii) constant volume determined by the reactor geometry and
varying pressure, (iii) constant pressure by adjusting the volume, and (iv) constant
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volume and constant pressure, the latter being enforced by regulating the outlet flow.
The scenario (ii) of constant volume and varying pressure is discussed next. The other
scenarios are left to the reader. The reaction rates r(t) can be expressed as follows:

r(t) =re(P(1),T(1))
with P(t) = Pen(),T(t),  P(t) =15P(t) (B.2)

T(t) = fo(T @), n(t), Pe(t), win(t), o (1), Qeae (1)),  T(0) = To,

where G denotes the gas phase, P the S-dimensional vector of partial pressures, and
P, the total pressure in the reactor. In contrast to liquid-phase reaction systems, the
vector function rgs depends on the partial pressures P rather than the concentrations
c, and fg also depends on the total pressure in the reactor. The vector function Py is
represented by the equation of state, e.g. the ideal gas law.



Appendix C
Algorithm to compute S, M and Q

The algorithm assumes rank ([N* W,,]) = R + p, although it can easily be extended
to the case of rank ([N W, ]) < R+ p. The objective is to compute the matrices Q,
L, M and S that fulfill the conditions C1-C4 given in Appendix A.1.

1. Apply the singular value decomposition (SVD) to the matrix [N* W, |:
[NT Wm] - U181V§

Let U; = [Uy; Uy, where Uy ; and U, are of dimension S x (R + p) and S x
(S — R — p), respectively. Then, Q = Uy ,.
2. Note that rank ([N Q]) =S — p. Apply SVD to the matrix [N* Q]

[NT Q] - UQSQVE
Let Uy = [Uy; Usypl, where Uy and U,y are of dimension S x (S —p) and S X p,
respectively. Then, L = Us .

3. Compute M = L(WT L)".
4. Compute S* = N™ (I — W, M7).
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Appendix D

Nonlinear transformation of the numbers
of moles to reaction variants, flow variants
and 1mvariants

The construction of the linear transformations to the extents of reaction, mass trans-
fer and flow proposed in Chapters 2 and 3 requires information regarding the initial
conditions in addition to the stoichiometry and the inlet composition. Hence, in con-
trast to the nonlinear transformation in [75], the proposed linear transformation is not
one-to-one. In this appendix, novel one-to-one nonlinear transformations will be pro-
posed using only information regarding the stoichiometry, and the inlet composition,
i.e. independent of the initial conditions, which transform the number of moles vector
to reaction variants, mass-transfer variants, inlet-flow variants, outlet-flow variant, and
invariant states. First, a nonlinear transformation proposed by Srinivasan et al. [75] will
be revisited. Then, a novel one-to-one nonlinear transformation will be proposed for
homogeneous reaction systems. This novel nonlinear transformation will be extended
to gas—liquid reaction systems.

D.1 Homogeneous reaction systems

In this section, one-to-one nonlinear transformations of the numbers of moles will be
discussed for homogeneous reactors. First, the nonlinear transformation proposed by
Srinivasan et al. [75] will be revisited and then, a novel nonlinear transformation will
be proposed.

D.1.1 Four-way decomposition: Reaction variants, inlet-flow variants,
outlet-flow variant, and invariants using a nonlinear

transformation proposed by Srinivasan et al. [75]

Srinivasan et al. |75] proposed a nonlinear transformation of the numbers of moles into
reaction variants, flow variants, and invariants using the continuity equation (2.2). The
following theorem introduces this one-to-one nonlinear transformation of the numbers
of moles.
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Theorem D.1 (Nonlinear transformation of n(t))
If rank ([N", W,,|) = (R + p), then a diffeomorphism 7T : [}] < [X] exists that
transforms model Eqs. (2.1)-(2.2) into:

. h(x.,) . '
x = p(x) r(x), x,(0) =1 S"ny, (reaction variants)
X, =u,,/\ x,,(0) = nM"ny, (ﬁow \'/ariants) (0.1)
x,,(0) =17 Q" ny, (invariants)
Xiv = 0s-R—p; A0) =1/ (f jant)
A= —u,../h(x,), =4/ ow varian
where
hx.) = (o — 15MPg) + 13, n2)

and where x,., x,, and \ are the reaction variants, the flow variants, and the outlet-
flow variant of dimensions R, p and 1, respectively, while x,, are the reaction and flow
invariants of dimension (S — R — p). n is a nonzero arbitrary constant, and r the R-
dimensional reaction rate vector expressed in terms of x. The matrices S, M and Q
are computed using the algorithm given in Appendix C

The transformation to normal form T is one-to-one and can be written as follows
using g(n,m) = n(mo — 1, M"ny)/(m — 1 M™n):

) . X, g(n,m)S™n
n] - [X S e I (D.3)
_m )\_ Xiv g(n7 m) QT n
B 1/g(n,m)
_X] . [n_ : _n] _ [)‘ (NT x, + W, x,, + Qxiu) (D4)
_)\ m]| |m Ah(x,,)

(See Proof in Appendix A of Srinivasan et al. [75])

Note that the transformed states in Eq. (D.1) are abstract mathematical quantities that
are devoid of any physical meaning.

D.1.2 Four-way decomposition: Reaction variants, inlet-flow variants,
outlet-flow variant, and invariants using a nonlinear

transformation in this thesis

An alternative one-to-one novel nonlinear transformation will be developed next that
does not require the continuity equation or information regarding the initial condi-
tions. The linear transformation in Theorem 2.1 decomposes the numbers of moles
into reaction variants, inlet-flow variants and reaction and inlet-flow invariants, respec-
tively. The reaction and inlet-flow invariants z,, in Eq. (2.14) vary with the outlet when
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U, > 0. In this section, z,,(t) will be transformed nonlinearly to result in reaction
and flow invariants when u,,, > 0. By selecting the scalar variable A(t) = z.,,(t)
with z,,:(0) # 0 and transforming the remaining reaction and inlet-flow invariants
Z,;(t),¥j=1,...,8 —R—p—1, j # i, nonlinearly as follows:

x| (Hzasd| _ {5
in—>[)\]-[ A ][zmi]’ (D.5)

x,, becomes an (S — R — p — 1)-dimensional vector of reaction and flow invariants.
The scalar dimensionless A is the outlet-flow variant. The nonlinear transformation is
detailed in the next theorem. The reaction and inlet-flow variants z, and z,, are denoted
x, and X,,, respectively.

Theorem D.2 (Nonlinear transformation of n(¢) proposed in this thesis)
Consider a homogeneous reaction system involving S species, R independent reactions,
p independent inlets and one outlet, and let rank ((N* W,,]) = R + p. Then, there

X

exists a diffcomorphism W: [n] « [X],

X, S™n
r X X. MTn
— : = , D.6
| L_ x.|  [9mQin )
1
A ey
X 1 . 1
)\] — [n : n(t) =N Xr(t) + Wm Xin(t) + Q ] )‘(t)v (D7)
- X'Lu

where g(n) is defined as follows:

_ (1/d'n Vq'm#0,
g(n) = { n Vq™n = 0. (D.8)

The diffeomorphism W transforms Eq. (2.1) to the following form:

%X, =Vr— You s x,(0) = S"ny, (reaction variants)
X, =, — % Xy,  X,(0) = M'ng, (inlet-flow variants)
X, =0s_p_p_1, x,,(0) = g(ny) Q7 no, (invariants)

A= —u;;t)\, A(0) = 1/g(ny), (outlet-flow variant)

(D.9)
where x,., x,, and \ are the reaction variants, the inlet-flow variants, and the outlet-
flow variant of dimensions R, p and 1, respectively, while x,, are the reaction and flow
invariants of dimension (S— R—p—1). Without loss of generality, q is an S-dimensional

vector corresponding to one column of Q, Q,, is S X (S — R—p— 1)-dimensional matrix
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corresponding to the remaining (S — R — p — 1) columns of Q, and n is a non-zero
arbitrary real constant.

Proof: The proof of Theorem D.2 will be given in three parts. The first part proving
that there exists the linear transformation of Eq. (2.1) to Eq. (2.14), is already given in
Theorem 2.1.

In the second part of the proof, it will be shown that g(n) is always defined. Let
define a = q"n by choosing q"ng # 0. Then, a(t) = A(t) and by differentiating a(t), it
follows that @ = \ = —teuq(t). Since a(0) = q"ng # 0 and u,,, and m are positive,
a(t) # 0 for all time ¢. If one does not find any q"n # 0, i.e. ¢"n = 0, then by choosing
a(t) =n, g(n) = n, n is any arbitrary non-zero constant. Then, since x,,(0) = 0s_r_.,,
x,,(t) = 0s_g_, for all t and )\(t) = 0 with A(0) = 1/7.

In the last part of the proof, Eq. (D.7) is derived. The states x and A in Thoerem D.2
can be written in terms of z as follows:

AX,
r = X‘T? Zin = Xin7 Z'Lu = [ le] (Dl())

Using Eq. (2.15) in Theorem 2.1 and Eq. (D.10), the numbers of moles n in the
reactor at time ¢ can be computed as follows:

n(t) =N"z.(t) + W,, z,,(t) + Qz,(t)

1]A@) (D.11)

X,

iv

=N"x.(t)+ W, x,.(t) + Q

Hence, the theorem is proved. O

Remarks.

1. The reaction variants and the inlet-flow variants in Theorem D.2 and those in Theo-
rem 2.1 are same, i.e X, =z, and x,, = z,,.

2. The transformed reaction system is of dimension (R + p + 1) and not S. Since the
dynamics of (S — R — p — 1) invariant states x,, are removed, x,, are constant.

3. The nonlinear transformation decomposes the reaction and inlet-flow invariants z,,
into the invariants x,, and the outlet-flow variant \. Hence, x, evolves in the R-
dimensional space N*S”, x,, in the p-dimensional space W, M*, x,, in (S—R—p—1)-
dimensional space Q,,QT,, and A evolves in the one dimensional space qq”. Note that
N'S"™+W, M"+Q,,Q +qq" = Is. The nonlinear transformation of Theorem D.2
is illustrated in Figure D.1.

4. If g"n = 0, then g(n) needs to redefined. q"n = 0 indicates that the reaction and
inlet-flow invariants (z,,) are equal to zero. In such a case, g(n) be defined by choosing
any nonzero arbitrary constant 7 and the transformation in Theorem D.2 holds with
nonzero constant 7.

5. The nonlinear transformation proposed in Theorem D.1 is different from the one
proposed in Theorem D.2. In contrast to the nonlinear transformation of 75|, the
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construction of the nonlinear transformation in Theorem D.2 does not use the conti-
nuity equation. Moreover, the reaction and flow variants in |75] tend to infinity with
time for continuous reactor if the meta parameter 7 is not chosen properly. However,
this is not the case with the transformed states in Theorem D.2 since the reaction
and inlet-flow variants are not affected by the choice of 7.

6. Since the linear transformation (2.18) is not one-to-one, a transformation constructed
for given initial conditions cannot be applied to a different set of initial conditions.
In contrast, the nonlinear transformation in Theorems D.1-D.2 do not require infor-
mation regarding the initial condition ny and they can be applied to a different set
of initial conditions.

7. The transformed states in Theorem 2.2 are the extents of reaction and flows, whereas
the transformed states in Theorem D.2 are abstract mathematical quantities that are
devoid of any physical meaning.

8. The nonlinear and linear transformations in Theorems D.2 and 2.2 both lead to
(R+p+1) variant states. However, the linear transformation leads to the (S— R—p)
invariant states, while the nonlinear transformation leads to the (S — R — p — 1)
invariant states. Note that the invariant states obtained by the linear and nonlinear
transformations live in the (S — R — p — 1)-dimensional subspace.

9. The nonlinear transformation is one-to-one. This transformation is particularly well
suited for analysis and control studies that deal such as feedback linearization, com-
putation of flat outputs, and nonlinear analysis in general [75, 81].

T
Q.QJ
Invariant space

Xiv = g(no)Q’zI;; nO
S—R—p-—1

NT*S*

reaction space

W, M"*

in

made orthogonal to rotated inlet space

rotated inlet space

Figure D.1 Nonlinear transformation of the S-dimensional space of numbers of moles into an
R-dimensional reaction space, a p-dimensional inlet-flow space, an (S — R — p — 1)-dimensional
invariant space, and a one-dimensional outlet-flow space. All spaces are orthogonal to each
other with N"S™ + W, M" + Q,,Q}, + qq" = Is.
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D.2 Gas—liquid reaction systems

The aim of this section is to extend the one-to-one nonlinear transformation proposed in
this thesis for homogeneous reaction systems to G-L reaction systems. The extension to
G-L reaction systems leads to the concept of mass—transfer variants. The mass—transfer
variants can be defined as follows:

Definition D.1 (Mass-transfer variants)
Any set of p,, linearly independent variables that evolve in the mass—transfer space
constitutes a mass—transfer variant set.

The nonlinear transformation will be developed separately for n;(¢) and n,(t) in
Egs. (3.10) and (3.9):

e Nonlinear transformation of n,(t) to reaction variants, mass-transfer variants, inlet-
flow variants, outlet-flow variant, and invariants in the liquid phase.

e Nonlinear transformation of n,(¢) to mass-transfer variants, inlet-flow variants,
outlet-flow variant, and invariants in the gas phase.

D.2.1 Five-way decomposition of n;(t): Reaction, mass—transfer,
inlet-flow and outlet-flow variants, and invariants using a

nonlinear transformation

The next theorem introduces a nonlinear transformation of the numbers of moles in
the liquid phase to reaction variants, mass—transfer variants , inlet-flow variants and
outlet-flow variant, and reaction, mass—transfer and flow invariants.

Theorem D.3 (Nonlinear transformation of n,(t))

Consider the liquid phase of the G-L reaction system given by Eq. (3.16) involving
S) species, R independent reactions, p, independent inlets, one outlet, and p,, mass
transfers between the gas and liquid phases. If rank ([NT W[]) = R+ p; + pm, there
exists a diffeomorphism W: [m] < [X] such that:

X, SlTnz
{nl] NE e M . (D-12)
)‘l Xiv,l gl(nl) Qw,l 1
Al 1/gi(ny)
with
1/a/n; Vqin, #0, (D.13)
gl(nl) = T
n Vqin, =0, (D.14)

and Sf = N/ (Is, — W,,; M}). The diffeomorphism transforms n; in Eq. (3.16) to the
reaction variants X, the extended-inlet variants X,, ;, the outlet flow variant \;, and the
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invariants X,,; in the liquid phase. The extended-inlet variants X,, ; can be expressed in
terms of the mass—transfer variants in the liquid phase x,, ;, and the inlet-flow variants
in the liquid phase x,, ;, thus leading to the following transformed state equations:

uout,l

%= Vir— 2y x,(0) = ST,
my
. uout,l T
X, =C— —=X,., X,..(0) = Mm,lnw’
my
u
Xin,l =W, — Dutylxin.,la Xin,l(o) = M;Fn,lnl07 (D15)
my
kiv,l - OSL—R—pm—pl—h Xiv,l(o) = gl(nlo) Q’irv,l 1,0,
; Uyt 1
A= ——20) N(0) = ——
: my b 1(0) gl(nlo)’

where M, ; is the (S, X p,,)-dimensional matrix corresponding to the first p,, columns of
M,, while M., ; is the (S; x p;)-dimensional matrix corresponding to the last p; columns
of M;. Without loss of generality, q; is an S;-dimensional vector corresponding to one
column of Q;, Q,,; is S; X (S; — R — p,, — pi — 1)-dimensional matrix corresponding
to the remaining (S, — R — pp,, — p1 — 1) columns of Q. The matrices S;, M; and Q,
are computed using the algorithm given in Appendix C. The back transformation ¥~':

X
i . n; leads to the reconstruction of the numbers of moles n; from the states x;

!
and )\; as follows:

[);i] — [nl} tmy(t) = N x,(6) + W X,0(t) + WX, (8) + Qi [, | Mi(2) (D.16)

(Proof follows from Theorem D.2.)

Interpretation of the nonlinear transformation.

The decomposition of the S;-dimensional space into subspaces is illustrated in Fig-
ure D.2. The transformation can be interpreted in two steps. The first step is illustrated
in Figure 3.3a.

In the second step, the reaction, mass—transfer and inlet-flow invariants space Q;Q}
is partitioned into the (S — R — p,, — p; — 1)-dimensional invariant space Q,,;Q}, ; and
the one-dimensional outlet space q;q;, as shown in Figure D.2. Then, using the outlet
variant A;, the nonlinear transformation in Eq. (D.12) is constructed that generates the
invariant states x;,; in the invariant space Q,, Q7 ;.

The reaction variants x, evolve in the R-dimensional rotated reaction space N"S/,
the mass-transfer variants x,, in the p,,-dimensional rotated mass-transfer space
W, M? ., the inlet-flow variants x,, ; in the p;-dimensional rotated inlet space W,, ;M

m,l in,l?

and the outlet variant ), in the one-dimensional space q;q;. The transformed states
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Q Qf

reaction, mass—transfer and

inlet-flow invariant space

Ziv,l (St — R —pm —pp)

NTsF

reaction space made orthogonal

to rotated inlet and

mass—transfer spaces

Figure D.2 Mathematical five-way decomposition of n;(t) into four orthogonal variants spaces
and one orthogonal invariant space using a nonlinear transformation: an R-dimensional reaction
sapce, a pp,-dimensional mass-transfer space, a p;-dimensional inlet space, an (S; — R — p; —
pm — 1)-dimensional invariant space, and a one-dimensional outlet variant space.

in Theorem D.3 are abstract mathematical quantities that are devoid of any physical
meaning.

D.2.2 Four-way decomposition of ng(t): Mass—transfer, inlet-flow and
outlet-flow variants, and invariants using a nonlinear

transformation

The next corollary introduces a transformation of the numbers of moles in the gas phase
to mass—transfer variants, flow variants, and mass—transfer and flow invariants.

Corollary D.1 (Nonlinear transformation of n,(t))

Consider the gas phase of the G-L reaction system given by Eq. (3.15) involving S,
species, p, independent inlets, one outlet, and p,, mass transfers between the gas and
liquid phases. If rank (Wm,g) = Py + D, there exists a diffeomorphism W: [ng] < [};j]
such that:

. Xing 1\_/I§ng
[ng] - )\g : Xivg | = gg(ng) QiTv,g n, (D.17)
g
Ag 1/g,(ny)

with
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(n,) = 1/‘13119 Vagn, #0, (D.18)
99iBa) =9 Vqrn, = 0. (D.19)

The diffeomorphism transforms n, in Eq. (3.15) to the extended-inlet variants x,, ,,
the outlet flow variant \,, and the reaction, mass—transfer and flow invariants x,, , in
the gas phase. The extended-inlet variants X,,; can be expressed in terms of the mass—
transfer variants in the gas phase x,, ,, and the inlet-flow variants in the gas phase x,,, 4,
thus leading to the following transformed state equations:

. uou N
Xpg =€ — - lxm,gv Xm@(o) = Mi,gngm
My
iy u LT,
Xin,g = Win,g — - qximgv Ximg(o) = MiTn,,gngoa
Mg (D.20)
Xi“vg - Osg_pg_pm_17 Xw7g(0) = gg(ngo) Q;I;,g ngo7
S Uoyt,l 1
By = Lol \ A (0) = ———
g mg g’ g( ) gg(ngo)’

where M, , is the (S, X p,,)-dimensional matrix corresponding to the first p,, columns of
M, while M,, , is the (S; x p,)-dimensional matrix corresponding to the last p, columns
of M,. Without loss of generality, q, is an S,-dimensional vector corresponding to one
column of Q, Q., 4 is Sy X (S; — pm — p, — 1)-dimensional matrix corresponding to the
remaining (Sy — pm — py — 1) columns of Q,. The matrices 1\_/Ig and Q, are computed
using the algorithm given in Appendix C. The back transformation ¥~ ': [};j ] — n,
leads to the reconstruction of the numbers of moles n, from the states x, and \, as
follows:

[Xg] - {ng} : ng(t) = _Wm,gxm,g(t) + Wm,g Xm,g(t) + Qg [xii,g] )‘g(t)(D'Ql)

(Proof follows from Theorem D.2).






Appendix E

Asymptotic observers in homogeneous and
gas—liquid reaction systems

E.1 Homogeneous reaction systems

In homogeneous reaction systems, the parametric uncertainties and nonlinearities of the
process models lie in the reaction kinetics. The known stoichiometries and the knowledge
of reaction invariants can be used to design asymptotic observers without knowledge of
reaction kinetics using a subset of concentration measurements [11, 27, 28, 20, 75|. The
objective of this section is to design asymptotic observers using the extents of flows (x,,
and \) similar to those proposed in [11, 27, 75].

The trajectories of the numbers of moles in homogeneous reaction systems are given
by Eq. (2.1). The parameter uncertainties and nonlinearities in the process models
residing in V' (¢) r(¢), called reaction terms, are usually unknown. The transformation
in Eq. (2.18) separates the contributions of the reaction terms from the inlet and out-
let flows. Hence, if the contribution of the reaction terms can indirectly be measured
through concentration measurements of some species, then the unmeasured concentra-
tions in homogeneous reaction systems can be estimated using an asymptotic observer.

To design asymptotic observers, the following assumptions are introduced: (E1) the
stoichiometric matrix N and the inlet matrix W,, are known; (E2) the concentrations
of S, species (c,) are measured such that rank (N,) = R where N, is the R x S,-
dimensional stoichiometric matrix corresponding to the measured species; (E3) u,,, u,..
and V' are measured without errors; and (E4) an estimate of the initial concentrations
(€g) of species is available. Then, the extents of reaction (x,) can be estimated from
the measured concentrations, volume, inlet and outlet flowrates as shown in Eq. (4.10).

Hence, the S, = (S — S,) unmeasured numbers of moles n, and concentrations
¢, =n,/V can be computed from Eq. (4.11) and other measurements. The details are
explained in the following propositions.

Proposition E.1 (Asymptotic observers: Homogeneous reaction systems)
If Assumptions (E1)—(E4) are valid for a homogeneous reaction system described by
Eq. (2.1), then the following equations:

m (E.1)

161
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and
C, = KC, + KyX,, + I%noj\, (E.2)

form an asymptotic observer for the S, unmeasured species, where ¢, is an S,-
dimensional vector of estimated concentrations of the unmeasured species, kK = %,
Ky = M, Rno = w, and the subscripts a and u denote quantities
corresponding to the S, available (measured) and S, unavailable (unmeasured) species,
respectively.

The vector of estimation errors of the unmeasured concentrations, e, = ¢, — C,,, with

c, the true unmeasured concentrations, is given by

X, . Lt
e, = (NZV — KC,) + Kw (X, — Xi0) + KnoA — Ko (E.3)
If at least one of the inlet flowrates is nonzero for a long enough time, then the estimated
errors of the unmeasured concentrations are asymptotically stable and converge to zeros.

Proof: The concentrations can be partitioned into measured and unmeasured concen-
trations and expressed in terms of x,, x,, and A as follows:

[ca [NZ
C = =
(o No

Since the unique left pseudo-inverse of N exists, the extents of inlet x,, and the outlet
variant A can be computed from the measured mass flowrates. The substitution of
Eq. (4.10) into the unmeasured concentrations (c,) in Eq. (E.4) leads to Eq. (E.2).
Since the concentrations c, do not contain any error by assumption, the vector of
estimation errors e, = ¢, — ¢, can be expressed as described in Eq. (E.3). Since u,,,
u,,, and V are measured without any error by assumption, the error dynamics are given

by:

W,

in,a

Wm,u

_1 n,

- X‘T + Xin +
V

n, ng

)

n°=“] A (E.4)

&, = —<“m n ;>eu (E.5)
= (M g) (E-6)

The integration of Eq. (E.6) leads to:

e, (t) = % exp< / — lTTZi" dt), (E.7)

where e, (0) is the S,-dimensional vector of errors in the initial conditions, p(t) is the
density at time ¢ and exp(:) indicates a exponential function. If at least one of the
inlet flowrates is nonzero for a long enough time (i.e. t — oc0), then % > (. Hence,
the errors e, converge asymptotically to Og, as t — oo for any e,(0). Thus, after



E.2 Gas-liquid reaction systems 163

a long enough time, the estimated concentrations ¢, also converge towards the true
concentrations c,.

E.2 Gas-liquid reaction systems

In G-L reaction systems, the mass-transfer rates are often unknown in addition to the
reaction kinetics in the liquid phase. The number of moles n, in the gas phase can often
be measured using gas analyzers at the gas outlet. Then, the extents of mass transfer
in the gas phase can be computed from the number of moles measured in the gas phase
under the assumption that the mass-transfer phenomena are described by the two-film
theory with no accumulation in the boundary layer, as shown in Eq. (5.9¢).

To design asymptotic observers, the following assumptions are introduced: (E5) the
stoichiometric matrix N, the inlet-composition matrices (W,,;, and W,, /), and the
mass-transfer matrices (W,,; and W, ) are known; (E6) the S, , concentrations in the
gas phase (¢, ,) and S, concentrations in the liquid phase (c; ,) are measured such that
(i) Sta+Sga = R+pm, (ii) Wi, g = P, and (iii) rank ([N}, , W, 1 4]) = R+pn,; (E7)
W, 05 Wi gy U gs Uour ity My, My and V; are measured without errors; and (E8) estimates
of the initial concentrations (¢;p and ¢;y) of species in the liquid and gas phases are
available. The asymptotic observers in G-L reaction systems can then be designed as
detailed in the following corollary:

Corollary E.1 (Asymptotic observers: G—L reaction systems)

For a G-L reaction system described by Egs. (3.9)—(3.10) under Assumptions (A1)-(A4).
If Assumptions (E5)— (E8) are also valid, then Egs. (5.9a)—(5.11c) and the following
equations

TS S S S y 5
NuXT + Wml,l,uxml + ng,l,uxmg,l + Win,l,uxin,l + )‘lnlO,u
)

¥ (E.8)

Cl,u -

form an asymptotic observer for S, unmeasured species in the liquid phase, where ¢;,,
is the S, ,-dimensional vector of the estimated concentrations of unmeasured species.
The vector of the estimation errors of the unmeasured concentrations, €;,, = C;, — €,
with c;,, being the true concentrations of unmeasured species in the liquid phase, is
given by

€, = (NE(XT - )A(T) + Wml,l,u(xml - f(ml) + ng,l,u(xmg,l - Xmg,l)
AW (X — X)) + Niyg,, — 5\lfllo,u) /Vi. (E.9)
If at least one of the inlet flowrates in the liquid phase is nonzero for a long enough

time, then the estimated errors of the unmeasured concentrations are asymptotically
stable and converge to zeros. (Proof follows from Proposition E.1)
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