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Abstract

This thesis is about the numerical simulation and optimization of the alumina repartition in the
bath of an aluminium electrolysis pot.

A mathematical model is set up which contains the feeding of alumina particles to the bath,
the dissolution of the particles, the motion of the alumina in the bath, and the consumption of
the alumina by electrolysis. The arising convection-diffusion equations are solved using stabilized
finite elements. Different weak formulations of the convection-diffusion equation are compared
and we find a formulation which ensures mass conservation even if the velocity field is not
divergence free. A comparison of the complete numerical simulation with real world experiments
is carried out, showing that the numerical results are in very good agreement with the measured
values.

In a second part we optimize the feeding of the particles, with the aim of getting a more
uniform distribution of the alumina concentration in the bath. A mathematical model of the
optimization problem is proposed and subsequently solved using particle swarm optimization
and Newton’s method.

Keywords: Finite element method, convection-diffusion equation, mass conservation, alu-
minium electrolysis, particle dissolution, numerical simulation, numerical optimization.

i



ii



Résumé

Le sujet de cette thèse est la simulation et l’optimisation numériques de la répartition de
l’alumine dans le bain d’une cuve d’électrolyse d’aluminium.

Un modèle mathématique est introduit qui contient l’alimentation du bain avec des particules
d’alumine, la dissolution des particules, le mouvement de l’alumine dans le bain et la consomma-
tion de l’alumine par l’électrolyse. Les équations de convection-diffusion qui apparaissent dans le
modèle sont résolues en utilisant une approximation par des éléments finis stabilisés. Différentes
formulations faibles de l’équation de convection-diffusion sont comparées afin de trouver une
formulation qui assure la conservation de la masse même en présence d’un champ de vitesse qui
n’est pas à divergence nulle. Une comparaison de la simulation numérique complète avec des
expériences réelles est accomplie, montrant que les résultats numériques sont en très bon accord
avec les valeurs mesurées.

Dans la deuxième partie du travail nous considérons l’optimisation de l’alimentation du bain,
dans le but d’obtenir une distribution de l’alumine plus uniforme dans le bain. Nous proposons
un modèle mathématique du problème d’optimisation qui est résolu en utilisant l’optimisation
par essaims particulaires et la méthode de Newton.

Mots clés: Méthode des éléments finis, équation de convection-diffusion, conservation de la
masse, électrolyse d’aluminium, dissolution de particules, simulation numérique, optimisation
numérique.
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Introduction

Aluminium is the most abundant metal in the Earth’s crust (8.3% by weight) [18], but because
of its strong affinity to oxygen it is rare in its free form. In the Earth’s crust bauxite is the
most important ore of aluminium. With the Bayer process bauxite is refined to alumina, an
aluminium oxyde (Al2O3). Aluminium is then extracted by electrolysis, in the so called Hall-
Héroult process. In this process, alumina is dissolved in an electrolytic bath and then reduced
to aluminium. The overall reaction of this electrolysis is

2Al2O3 + 3C → 4Al + 3CO2.

A schematic representation of the electrolysis pot is shown on Figures 1 and 2.
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Figure 1: Schematic representation of an aluminium reduction pot. Inspired by [2].
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Figure 2: Schematic representation of the aluminium cell seen from above, with the alumina
feeders and the feeding order during one feeding cycle.

The Hall-Héroult process

We will now present a description of the Hall-Héroult process. For more details we refer to the
work by Grjotheim et al. [20].

The alumina reduction occurs in a vessel, which consists of several parts. There is an outer
steel shell, containing the whole setup. On the bottom, we have some layers of thermally in-
sulating bricks to reduce heat losses from the bath. On top of these, we have some layers of
refractory bricks which are very resistant to the high cell temperatures. The molten bath and
aluminium are in a container made of carbon. The bottom part of the carbon container is called
cathode, even if from an electrochemical point of view it is the molten aluminium which acts as
the cathode. Under each cathode there is an iron bar, called collector bar, which transports the
current out of the cell.

The bath and the aluminium are liquid due to the high temperature, and they are separated
because of their different densities. The chemical reactions for the alumina reduction occur in
the molten bath. The electrical current necessary for the electrolysis is transported to the bath
through the carbon anodes which are partially immersed into the bath. Anode rods, which are
mostly made of aluminium and hold the anodes, are fixed to a large structure. The bridge leads
the current to the anodes and makes it possible to raise or lower all of the anodes at the same
time. In this way the cell voltage can be controlled. Since the carbon of the anodes takes part
in the chemical reaction, the anodes are slowly consumed and have to be replaced regularly.
The anodes cover almost the whole surface of the bath. On top of them and covering also the
channels between the anodes and between the anodes and the boundary of the cell is a protective
layer, consisting of solidified bath and alumina, to prevent heat losses. It is called crust.

The CO2 created during the reaction escapes from the bath as gas bubbles. Since most of
the surface of the bath is covered by the anodes, a bubble layer of CO2 is built underneath the
anodes, in the bath. The aluminium formed by the reduction of alumina sinks to the bottom
and increases the height of the liquids in the cell as the production goes on. The aluminium at
the bottom has to be pumped out regularly. During the electrolysis, the alumina dissolved in
the bath is consumed and has to be restored periodically. Therefore, the cell is equipped with
an alumina bin and a feeding system which delivers alumina to the electrolyte. The feeding
system consists of a crust breaker and a feeder. Every time alumina has to be added to the
bath, the crust breaker, which is basically a steel rod, opens a hole in the crust. Then, the feeder
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Figure 3: View of a potroom. Siphoning of aluminium is done at the right. Photo Courtesy of
Rio Tinto Alcan.

dumps a predefined amount of alumina into the bath. Depending on the size of the pot, there
are several crust breakers and feeders, usually 4 to 5. Fumes, which escape from the pot crust,
are collected and directed to a gas treatment centre. To prevent the fumes from escaping, the
cells are completely closed, partly by removable pot covers. The cells are about 15 metres long,
3 metres large, and 1 metre high. In an aluminium production plant, there are usually hundreds
of aluminium cells connected electrically in series. The current is supplied to the cells through
heavy aluminium busbars. A picture of a potroom is shown in Figure 3. There we also see how
the aluminium produced is siphoned off.

In order to keep the bath at liquid state, the temperature of the bath has to be at about
960◦C. This temperature is created by the electric resistance (Joule effect), mainly in the bath,
but also in the anodes, the cathodes and the metal pad. To reach the right temperature with
a current of about 350 kA, the height of the bath under the anode is only about 4 cm. The
electric resistance is partly due to the gas bubble layers underneath the anodes, and depends
also on the alumina concentration in the bath.

The liquid aluminium and the electrolytic bath are moving because they are subject to elec-
tromagnetic forces. These electromagnetic forces (Lorentz forces) arise from the combination of
the current density running through the fluids, and the magnetic induction due to the electric
configuration of a hall containing many cells.
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The efficiency of an aluminium reduction cell depends mainly on the alumina concentration
in the bath. This concentration should be between 1.5 and 3 weight percents (wt%). The current
efficiency measures the percentage of current which is used for the aluminium reduction. It is
usually about 95%, the rest of the current being used mostly for the inverse reaction. It is not
possible to know the current efficieny exactly, and therefore it is not possible to know how much
alumina is consumed. Hence, it is difficult to add the right amount of alumina to the bath,
while this is crucial. If the alumina concentration becomes too high, the added solid alumina
does not dissolve anymore and sinks to the bottom of the cell, forming sludge and disturbing
the current flow with decreased current efficiency as a result. On the other hand, if the alumina
concentration becomes too low the cell goes into a state called anode effect. In this state, the
normal aluminium producing reactions are interrupted and other reactions take place, creating
gases such as CF4 (PFC-14, tetrafluoromethane) and C2F6 (PFC-116, hexafluoroethane). These
gases adhere to the bottom of the anodes and form an insulating layer, which then provokes an
increase of the cell voltage. Thus, we have a decrease of the current efficiency, and at the same
time creation of green house gases which have a more than 1000 times higher global warming
potential than CO2 [15, section 2.10].

Avoiding the anode effect is therefore very important both economically and ecologically. To
this end it is not sufficient to control the overall alumina concentration in the bath, but also the
local concentration, which should be between 1.5 and 3 [wt%]. For this reason there are several
alumina feeders in each cell, and the moving liquids help additionally distributing the alumina
concentration.

The aluminium production process is energy-intensive. With todays technology, the overall
energy efficiency of the electrolysis is about 50%, with excess energy being dissipated as heat
loss from the cell. To produce one ton of aluminium about 13.5 MWh are needed. Thus, for
a production site producing 100’000 tons of aluminium per year, a power of about 154 MW
is needed, which is roughly one sixth of the power of a standard nuclear power plant. World
production of primary aluminium in 2008 was 39.4 million tons [9, p.8].

Optimization of the aluminium production

Under such conditions, aluminium companies try to optimize their pots. For example, they
want to increase the amperage of the cell, since the aluminium produced is proportional to the
current, at least with constant current efficiency. Higher amperage does not mean that less
energy is consumed per unit of aluminium. But there is an economic gain through reduced
capital expenditure per unit annual production [38]. More current in a cell implies that the
distance between the anodes and the metal pad has to be decreased, otherwise the heating by
Joule effect is too important. This decrease of the anode - metal pad distance comes with a
number of issues, one being less efficient dissolving and mixing of the alumina in the bath. It is
therefore important to choose good configurations for the alumina feeders.

As pointed out before, the alumina feeding is done at several locations. As an example,
on Figure 2 we have four feeder positions. A feeding cycle length has to be defined, which is
usually about one minute. During each feeding cycle, every feeder dumps a predefined amount
of alumina into the bath. The order of the feeding could be chosen as on Figure 2, and the
feeding times are normally uniformly distributed over the cycle. Hence, if the cycle length is one
minute, feeding takes place at 0, 15, 30 and 45 seconds. Then the feeding cycle is repeated. The
feeder configuration consists thus in the feeder positions, the feeding time of each feeder during
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one feeding cycle, the cycle length, and the amount of alumina added by each feeder. The total
amount of alumina added has to match the quantity of alumina transformed into aluminium.

Finding optimal feeder configurations requires knowing the alumina repartition in the bath
for given feeder configurations. But it is not easy to accurately measure the alumina concen-
tration in the bath. The liquids are at 960◦C, they are covered by the anodes and the crust,
the bath is very corrosive, and there are strong magnetic fields near the pots, all of which limits
considerably the choice of measurement equipment. Then, to have a good idea of the concentra-
tion distribution in the bath, it is necessary to make measurements over the whole bath at the
same time, without disturbing the electrolytic process too much since this should go on during
the whole measurement. At last, since the aim is to change things in order to see whether
the concentration gets more uniform, one has to make modifications to the production process,
which could also be rather complicated if for example the feeder positions should be varied. All
these factors make real experiments complicated and time consuming, and thus expensive, and
the results are probably not very precise.

Aim of this work

Hence, other methods to improve aluminium production could be more useful. One other method
is numerical simulation. Here, one tries to make a physical and then a mathematical model of
the most important processes. The mathematical problem arising is then solved by numerical
methods. The advantage is that there are fewer persons involved and that the technology used
is essentially limited to computing power, which makes the numerical simulation rather cheap.
The problem of this solution is certainly that it is strongly dependent on the quality of the
model, i.e., on the simplifications and assumptions made. Also, the arising mathematical prob-
lem could be too complicated to be solved reasonably well within a reasonable time, although
both the computers and the numerical methods become more and more powerful. Finally, nu-
merical simulation will not be able to completely replace real world experiments. Simulation
results can only serve as guidelines and must be taken with some care. But these guidelines can
be very useful and greatly reduce the number of experiments to reach a certain result.

The aim of this work is to find optimal feeder configurations which give the most uniform
concentration in the bath, using numerical methods. We will proceed in two steps. In a first
step, we will set up a simulation of the addition of the alumina to the bath, the dissolution
of the solid alumina, the repartition of the liquid alumina concentration and the decrease of
concentration due to electrolysis. Then, based on this simulation, we will optimize the feeder
configuration to reach the most uniform alumina concentration in the bath possible.

The simulation of the concentration depends very much on the steady-state velocity field
in the bath. The velocity field which will be used is obtained by numerical methods. Since
it influences the position of the interface between the bath and the metal pad, the electrical
potential of the cell, the current density and thus the induced magnetic field, all these quantities
have also to be computed when computing the velocity field. Therefore, the complete model to
compute the velocities of the liquids is quite involved, see [14] for a detailed description.

Organisation of the document

The present document is separated in two parts. The first part is devoted to the simulation of
the alumina concentration in the bath. We will start in Chapter 1 by describing the physical
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and mathematical model that will be used. Solid and liquid alumina will be treated separately.
Simplifications and details not contained in the description of the overall aluminium production
process above will be given. Since the velocity field is important in our model, we describe at
the end of the chapter the algorithm to compute the interface position and the velocity field.
In the second chapter, we will consider a model convection-diffusion problem. We state some
properties that the numerical solution of this problem should show. Then, we introduce several
different numerical schemes to compute the solution to the convection-diffusion problem, and
for every scheme we verify if the desired properties are satisfied. We discretize the equations
from the mathematical model in Chapter 3, using the numerical scheme that we judged most
appropriate in the second chapter. We continue in Chapter 4 by showing numerical details of
the different parts of the simulation. Numerical results will be presented in the fifth chapter.
There, we will start by showing that the method converges in the correct theoretical order. We
compare the solutions obtained using the various numerical schemes presented in the second
chapter, and we do a long term computation to see whether our solution converges to some
realistic periodic solution. In Chapter 6, we compare our results with real world experiments.
We finish the first part by conclusions.

In the second part, we will optimize the alumina feeder configuration, using the simulation of
the first part. We will, in Chapter 8, describe the precise problem and put it in a mathematical
form. In Chapter 9, we present the general optimization algorithms we are going to use. We
show numerical results in Chapter 10. There, we start by comparing different formulations
of the objective functions and we justify our choice. We continue by showing results of the
optimization of the feeder positions and the load weights. At the end of this chapter, we look
at the influence of the final time of the simulation on our optimization results. The second part
ends with conclusions concerning the optimization.
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Part I

Simulation of the dissolution of
alumina
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Chapter 1

Model

The first chapter is devoted to the modeling of the dissolution of alumina particles in the
electrolytic bath. Having in mind the description of the Hall-Héroult process given in the
introduction, we will present in the first section the physical model of our simulation problem.
We then give the mathematical equations which approximate this model in Section 1.2. Some
important properties of the model are shown at the end of the second section. Since our model
relies heavily on the velocity field present in the bath, we give in the third section a description
of how the velocity field is numerically computed. This helps to understand some numerical
properties of the velocity and the interface between the bath and the metal pad.

1.1 Physical model

In the aluminium production pot, alumina is found in the electrolytic bath. When the alumina
is added to the bath, it is in a solid state, in the form of a powder. We will model this powder
as a set of spherical particles with different radii. Initially the particle mass-size distribution
must fulfil some requirements set up by the aluminium production company. In particular, the
function ensures that the amount of very small particles is limited, because these particles tend
to be blown away during feeding because of the heat. The maximal size of the particles is about
200 μm.

The particles are added at several locations between the anodes in the central channel. Com-
pared to the width and length of the bath, the central channel is rather narrow, and therefore it
contains only few vertices of the mesh. For this reason, we add the particles under the anodes
in the bath. They are then transported by the moving bath. The bath moves due to the strong
electric current which passes through the bath, and which induces electromagnetical forces on
the liquid aluminium and on the bath. The computation of the velocity field is not part of
this thesis. We will use discrete velocity fields computed in a steady-state algorithm which was
developed by J. Descloux, M. Flueck and M. V. Romerio, and which is described in [34, Section
4.1]. The part of the algorithm which computes the velocity will be described in Section 1.3.
The velocity field is incompressible and there is no outflow or inflow at the boundaries of the
bath. We suppose that the particles are transported along streamlines of the velocity field at
the same speed and without affecting them, since the particles are very small. For the same
reason, the buoyancy force on the particles is small and we do not take it into account.

The particles dissolve while being transported by the bath. The dissolution kinetics are not
completely known, i.e., it is not known whether the particles dissolve because of a chemical reac-
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10 CHAPTER 1. MODEL

tion, diffusion, or some other reason. Specialists think that the main reason for the dissolution
is the chemical reaction. We will also show a mathematical model which is based on diffusion
as the only dissolution kinetics.

The alumina particles dissolve and what appears will then be modeled as a liquid alumina
concentration. When the particles dissolve, they are chemically transformed into ions, but we
will always speak about liquid alumina concentration, or only concentration, for simplicity. This
concentration is again convected by the moving bath and it is slightly diffusing at the same time.
The diffusion coefficient of alumina in the bath is about 1.5·10−9 m2/sec, while the velocity of
the bath is about 0.1 m/sec. However, the velocity field is supposed to be turbulent, at a scale
which is not resolved by the mesh. Therefore, engineers propose to use a turbulent diffusion
coefficient, which is in the range [9.4 · 10−7, 4.7 · 10−4] [m2/s](see [21]). In the present work we
always use a diffusion coefficient of D = 5 ·10−4 [m2/s], unless noted otherwise. We will suppose
that the alumina concentration has no influence on the rest of the cell. This implies that we do
not recompute the current or the velocity field based on the concentrations in the bath, and we
suppose that the current efficiency remains constant.

The last part that we model is the electrolysis, which consumes the liquid alumina concen-
tration. Electrolysis takes place at the interfaces bath-anode and bath - cathode. In our case the
interface bath-cathode is replaced by the interface bath - metal pad, since liquid aluminium is
a good electrical conductor and acts therefore like the cathode for the bath. We know that alu-
mina, respectively the ions that were created during the dissolution, is not directly transformed
into aluminium, but the precise chemical reactions which transform alumina into aluminium are
not known. We therefore assume that the electrolytic process takes place in the whole bath, i.e.,
the alumina concentration diminishes in the whole bath due to the electrolysis. We will work
with two different models, one assuming uniform consumption over the whole bath, the other
depending on the current density which passes through the bath. The aluminium that is created
by the electrolysis sinks to the bottom of the pot because it has a higher density than the bath.
In our model the newly formed aluminium is neglected.

1.2 Mathematical model

We will denote the domain of the bath by Ωel ⊂ R
3. Let c = c(�x, t) be the liquid alumina

concentration depending on �x ∈ Ωel and the time t, and np = np(�x,R, t) the alumina particle
density, which additionally depends on R, the radius of the particles. The physical unit of the
concentration is [mol·m−3] and for the particle density it is [(number of particles)·m−4].

The model can be essentially described by two equations, one for the particle density and
one for the concentration. The particle density follows a convection equation [6],

∂np(�x,R, t)
∂t

+ �u(�x).�∇xnp(�x,R, t) +
∂

∂R
(np(�x,R, t)f(R, c(�x, t)) = S(�x,R, t). (1.2.1)

Here, �u is the steady-state velocity of the bath, and S stands for a source due to the addition
of the particles by the feeders. The function f(R, c) describes the dissolution rate of alumina
particles with radius R in a liquid with concentration c. Formally we have

Ṙ(t) = f(R(t), c(�x, t)) (1.2.2)

which gives the dissolution dynamics at position �x. The source S and the dissolution rate f will
be explained in more detail in the following sections.



1.2. MATHEMATICAL MODEL 11

The motion of liquid alumina concentration can be described by a convection-diffusion equa-
tion,

∂c(�x, t)
∂t

+ �u(�x).�∇c(�x, t) − DΔc(�x, t) = Q̇(�x, t). (1.2.3)

Here, D is the diffusion coefficient of alumina in the bath and Q̇(�x, t) = q̇1(�x, t) + q̇2(�x, t) is
the source of liquid alumina which consists of two parts. On one hand, we have the creation of
concentration due to the dissolution of the particles, which we will denote by q̇1. On the other
hand, we have the consumption of concentration because of the electrolysis, denoted by q̇2. We
will now describe the different parts appearing in the equations.

Feeding of alumina particles

We consider first the source term S of the convection equation for the alumina particles (1.2.1),
which is due to the feeding of the particles. The function S can be written as a product of three
functions, one for each variable:

S(�x,R, t) = CSS1(�x)S2(R)S3(t).

The total mass added to the bath at each feeding is adjusted by the constant CS . We will first
describe the functions S1, S2 and S3 and then define CS.

The feeding takes place at specified times {τ i}, and thus the feeding function in time is a
sum of Dirac-functions. Hence, S3 can be written as

S3(t) =
∑

i

δτ i(t).

The function S2 is the particle size distribution of the alumina powder. The aluminium
industry has requirements on the mass distribution as a function of the particle size, but these
requirements only specify the mass percentage for certain discrete particle sizes and not as a
continuous curve. The data is given as a cumulative distribution function, i.e., for each data
point (si, yi), i = 1, . . . , k, si is the particle diameter and yi is the mass of all the particles of
diameter smaller than si. The total mass of the particles is normalized to 1. In this form,
the discrete distribution can be approximated by a continuous probability distribution. For the
approximation we take the cumulative log-normal distribution function, which is given by

y = g(s;μ, σ) =
1
2

+
1√
π

∫ log s−μ√
2σ2

0
e−t2dt, s > 0, (1.2.4)

where μ ∈ R and σ > 0 are parameters (see [11] for more details). The parameters are determined
by a nonlinear fit in the following way. Given k data points, where each data point is a couple
of values (si, yi), the nonlinear fit finds values of the parameters μ and σ such that

k∑
n=1

(g(sn;μ, σ) − yn)2 (1.2.5)

is minimized. We compute this nonlinear fit using the program MapleTM [27]. The mass density
function (4/3)πρs3S2(s) is then equal to the log-normal density function with the parameters
found, which is given by

4
3
πρs3S2(s) =

1
sσ

√
2π

exp
(
−(log s − μ)2

2σ2

)
, s > 0. (1.2.6)
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The relation between the cumulative log-normal distribution function g and the function S2 is

g(s;μ, σ) =
4
3
πρ

∫ s

0
τ3S2(τ)dτ. (1.2.7)

In Figure 1.1 we show the data (from [36]) in the form of a cumulative distribution function, as
well as the cumulative distribution g, both as functions of the particle diameter 2R. For g the
values of the parameters are fixed to μ = −0.31 and σ = 0.38.

Alumina is added under the channel between the anodes. We suppose that S1 is of the form
(with �x = (x, y, z))

S1(�x) = exp
(
− 1

1 − (x − x0)2/a2
1 − y2/a2

2 − (z − z0)2/a2
3

)
(1.2.8)

if the denominator of the fraction is greater than zero, and S1(�x) = 0 otherwise. Thus S1 is
nonzero in an ellipsoid centred at (x0, 0, z0) and with semi-principal axes of length (a1, a2, a3).
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Figure 1.1: The initial mass distribution of the alumina particles with respect to the particle
diameter, data [36] and approximated curve.

The mass of alumina which is added at each time τ j is equal to a constant Cm, which depends
on the consumption of liquid alumina concentration by electrolysis, which in turn depends on
the current passing through the bath. We have

Cm =
IM

6F
, (1.2.9)

where I is the electric current, M the molar mass of alumina, and F the Faraday constant. In
order to add the right amount of alumina we compute

C ′
m =

∫
Ωel

S1(�x)dΩ (1.2.10)
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and we set
CS =

Cm

C ′
m

. (1.2.11)

In this way the mass added is equal to Cm. We note that the mass contribution of S2(R) is
equal to 1 because it is issue of a probability density function.

Dissolution process

The dissolution kinetics is supposed to be the chemical reaction, but since the reactions are not
precisely known, and since they are hard to compute, we take a measured dissolution curve [32]
to simulate the dissolution. The curve specifies the time t of complete dissolution as a function
of the particle size R. The measure was executed in a big recipient to avoid that the appearing
concentration saturated the bath and thus slowed down the dissolution process. Hence, we
obtained the curve

t = h(R), (1.2.12)

which is shown on Figure 1.2 and which does not depend on the concentration. The particles
are always getting smaller, i.e., h′(t) > 0,∀t, and thus the function h is bijective and invertible
with inverse function h−1(t) = R(t). We know that

dR(t)
dt

=
(
h−1

)′ (t) =
1

h′(h−1(t))
=

1
h′(R(t))

. (1.2.13)

By the definition of f , for each �x ∈ Ωel we have

f(R(t), c(�x, t)) =
dR(t)

dt
=

1
h′(R(t))

. (1.2.14)

Since the dissolution process depends on the concentration, at least if the concentration is close
to saturation, we multiply the function f by the factor (csat−c(�x, t)), where csat is the saturation
concentration. With this factor we assure that the concentration will not go beyond saturation.

To give a more concrete example of the dissolution, we can take f of the form

f(R, c) = −DM(csat − c)
ρR

, (1.2.15)

where D is the diffusion coefficient of alumina in the bath, M is the molar mass of alumina,
and ρ is its mass density. This is the dissolution law if the dissolution kinetics is diffusion. In
this case the particle radius diminishes faster as the particle gets smaller. For a derivation of
the model, see for example Haverkamp and Welch [22] or Wang and Flanagan [37]. We will in
general work with the measured dissolution curve, but the details of the discretization of the
diffusion law will be given in Section 4.1.

Source terms of the concentration

The concentration which appears due to the dissolution of the particles is given by

q̇1(�x, t) = −4π
ρ

M

∫ ∞

0
np(�x,R, t)f(R, c(�x, t))R2dR. (1.2.16)

At the same time, concentration diminishes by the electrolytic process. This is supposed to
happen with uniform intensity in the part of the bath which lies between the bottom of the
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anodes and the interface bath - aluminium. Since the transformation of Al2O3 to Al requires 6
electrons, the consumption of the concentration is given by

q̇2 = − I

6FV
, (1.2.17)

where I is the total electric current, F the Faraday constant, and V the part of the volume of
the bath Ωel which lies between the bottom of the anodes and the interface bath - aluminium.

Boundary conditions

The velocity field �u is supposed to verify either �u.�n = 0 or �u = 0 on the boundary of the bath,
denoted by ∂Ωel. Therefore, equation (1.2.1) does not need any boundary conditions.
For the convection-diffusion equation of the concentration we want to avoid outflow and inflow
at the boundaries and we therefore impose

∂c

∂n
= 0, on ∂Ωel × (0, T ).

Complete mathematical model

The complete mathematical model is thus:
Problem 1.2.1. Find c = c(�x, t) and np = np(�x,R, t) verifying

∂c

∂t
+ �u.�∇c − DΔc = q̇1 + q̇2 = Q̇, in Ωel × (0, T ), (1.2.18)

∂c

∂n
= 0, on ∂Ωel × (0, T ), (1.2.19)

∂np

∂t
+ �u.�∇xnp +

∂

∂R
(npf(·, c)) = S, in Ωel × (0,∞) × (0, T ), (1.2.20)
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Figure 1.2: The dissolution time t for alumina particles as a function of the particle diameter
2R. Curve received from [32].
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with initial conditions c(�x, t = 0) = c0(�x) and np(�x,R, t = 0) = n0
p(�x,R), and where

Q̇(�x, t) = −4π
ρ

M

∫ ∞

0
np(�x,R, t)f(R, c(�x, t))R2dR − I

6FV
, (1.2.21)

and

S((x, y, z), R, t) = CS exp
(
− 1

1 − (x − x0)2/a2
1 − y2/a2

2 − (z − z0)2/a2
3

)
3

4
√

2(2R)4σρπ3/2
exp

(
−(log(2R) − μ)2

2σ2

)(∑
i

δτ i(t)

)
. (1.2.22)

The parameters CS , a1, a2, a3, x0, z0, μ, σ, τ i are explained on pages 11-13. The particle dis-
solution function f is described on page 13.

Properties of the model

We consider first the convection equation for the particles without source term:

∂np(�x,R, t)
∂t

+ �u(�x).�∇xnp(�x,R, t) +
∂

∂R
(np(�x,R, t)f(R, c(�x, t)) = 0. (1.2.23)

Over time, this equation does not change the number of particles, since div �u = 0 and �u.�n = 0 on
the boundary ∂Ωel of the bath Ωel, but it does diminish the total mass of the particles because
particle radii become smaller by dissolution. We show first that the number of particles remains
constant. The number of particles is computed by integrating np with respect to space and
radius. Thus, integrating the two last terms of equation (1.2.23) with respect to �x and to R we
get∫ ∞

0

∫
Ωel

�u.�∇xnpdΩdR =
∫ ∞

0

∫
Ωel

(div(�unp) − np div �u) dΩdR =
∫ ∞

0

∫
∂Ωel

np�u.�ndΩdR = 0,

(1.2.24)∫
Ωel

∫ ∞

0

∂

∂R
(npf)dRdΩ =

∫
Ωel

(
lim

R→∞
(npf) − (npf)|R=0

)
dΩ = 0. (1.2.25)

Here we used the facts that particles of radius zero do not dissolve, i.e., f(0, c) = 0, and that the
particles have finite size, i.e., limR→∞ np(�x,R, t) = 0. Integrating now the first term of equation
(1.2.23) and using the two previous equations we obtain

d

dt

∫
Ωel

∫ ∞

0
npdRdΩ = 0. (1.2.26)

Hence, the number of particles is conserved.

The mass of the particles is given by

4
3
πρ

∫
Ωel

∫ ∞

0
npR

3dRdΩ.

Therefore, to show the decrease of the mass for increasing time t we multiply equation (1.2.23) by
R3 before integrating. The integration of the convection term is analogous to the computation
of (1.2.24). Integrating the term with the derivative in R we get∫

Ωel

∫ ∞

0

∂(npf)
∂R

R3dRdΩ = −
∫

Ωel

∫ ∞

0
3R2npfdRdΩ. (1.2.27)
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We have R ≥ 0, np ≥ 0 and, since the particles get smaller, f < 0. Hence, we find that∫
Ωel

∫ ∞

0

∂np

∂t
R3dRdΩ =

∫
Ωel

∫ ∞

0
3R2npfdRdΩ < 0, (1.2.28)

thus, the total mass of the particles decreases in time.

We now look at the mass in the complete model. We want to show that without the feeding
of alumina particles (i.e. S = 0 in (1.2.20)) and without electrolysis (i.e. q̇2 = 0 in (1.2.18))
the total mass of alumina in the bath does not change over time. The change of the total mass
of alumina is obtained by multiplying equation (1.2.18) by M and integrating over space, by
multiplying equation (1.2.20) by 4/3πρR3 and integrating over space and radius, and finally
taking the sum of the two equations. The contribution of (1.2.18) is

d

dt

∫
Ωel

McdΩ = −
∫

Ωel

4πρ

∫ ∞

0
npfR2dRdΩ, (1.2.29)

(the convection and the diffusion term do not contribute to the change of the total mass in the
bath). From equation (1.2.20) we get

4
3
πρ

d

dt

∫
Ωel

∫ ∞

0
npR

3dRdΩ = −4
3
πρ

∫
Ωel

∫ ∞

0

∂(npf)
∂R

R3dR = 4πρ

∫
Ωel

∫ ∞

0
R2npfdRdΩ.

(1.2.30)
Adding the two last equations leads to

d

dt

(
M

∫
Ωel

cdΩ +
4
3
πρ

∫
Ωel

(∫ ∞

0
npR

3dR

)
dΩ

)
= 0, (1.2.31)

and thus the total mass of alumina does not change over time. This shows that our model
verifies an important conservation law.

1.3 Computation of the velocity field

We present here briefly how the numerical approximation of the velocity field �uh, which we use
in our model, has been computed. The following is a summary of [13].

The velocity field is computed in the whole domain of the liquids Ω, i.e., in the domain of
the bath Ωel and in the domain of the liquid aluminium Ωal. To find �u and the pressure p, the
steady-state Navier-Stokes equations are solved in Ω. At the same time, the interface Γ between
the two liquids has to be determined.

A quantity v is denoted by v1 if we refer to the part defined in Ωel and by v2 if we refer to
the part defined in Ωal. We denote by [v]Γ = v1 − v2 the jump of v through the interface Γ.

Some conditions appear at the interface Γ between the two liquids. The liquids are immis-
cible, which at steady-state gives the condition

�u.�n = 0, on Γ, (1.3.1)

where �n is the unit normal of Γ pointing upwards. Then, the liquids have to satisfy no-slip
conditions on the interface,

[�u]Γ = 0. (1.3.2)

And finally, the interface has to be in a mechanical equilibrium position, i.e.,

[σ�n]Γ = �0, (1.3.3)
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where σij(�u, p) = −pδij +2ηεij(�u). The velocity gradient is εij(�u) = 1
2

(
∂uj

∂xi
+ ∂ui

∂xj

)
and δij is the

Kronecker symbol. For our computations we have two possible viscosity tensors η. It is either
a laminar viscosity tensor, given by

η =

⎛⎜⎜⎝
αη αη βη

αη αη βη

βη βη γη

⎞⎟⎟⎠ , (1.3.4)

with αη = 10 [Pa s], βη = 0.5 [Pa s] and γη = 1 [Pa s]. This particular form of the viscosity
tensor was chosen for geometric reasons (the horizontal dimensions of Ω are much larger than
the height of Ω), and the actual values were validated with real experiments by Romerio [31].
Or, using a different model, it can be a turbulent viscosity tensor, of the form

ηij = ηl + αρ
√

2ε(�u) : ε(�u), (1.3.5)

where ηl is a laminar tensor with ηij,l = 0.002 [Pa s] and α is a numerical coefficient which has
been validated to be in the order 10−4 [m2] [34].

The computation of the velocity field is done as an iteration over two stages. In the first
stage the Navier-Stokes problem is solved with a fixed interface, and in the second stage the
interface is corrected to adjust for the jump of the normal stresses. The two stages are iteratively
solved until the jump of the normal stresses is constant on Γ. This algorithm is called interface
algorithm since it aims at computing the steady-state interface between the bath and the metal
pad. Once this algorithm has converged we have the steady-state velocity field which verifies
equations (1.3.1) - (1.3.3).

The first stage consists thus in solving the following problem:

Problem 1.3.1. For Γ fixed, compute the body force �f which is the sum of electromagnetic forces
and gravity forces (see [34]). Then find �u : Ω → R

3 and p : Ω → R such that

div σ + �f = ρ(�u.�∇)�u, in Ωel ∪ Ωal, (1.3.6)
div �u = 0, in Ωel ∪ Ωal, (1.3.7)
�u = 0, on ∂Ω, (1.3.8)
�u.�n = 0, on Γ, (1.3.9)
[�u]Γ = 0, (1.3.10)

[�nT σ�t]Γ = 0, ∀�t such that �t.�n = 0. (1.3.11)

The pressure p can have a jump across Γ.
In the second stage the parametrisation of the interface Γ, which is given by (x, y) �→

(x, y, h(x, y)), is corrected by changing h to h + δh, with

δh = −ψ + C

[f3]Γ
. (1.3.12)

Here the constant C ensures volume conservation of Ωel, ψ = [�nT σ�n]Γ is the jump of the normal
stresses, and f3 is the third component of �f .

We set W = (H1
0 (Ω))3, Q = L2

0(Ω), and Y = L2(Γ), where H1
0 (Ω) = {u ∈ L2(Ω) : ∂u/∂xi ∈

L2(Ω), i = 1, 2, 3, u = 0 on ∂Ω}, and L2
0(Ω) = {v ∈ L2(Ω)|

∫
Ω vdΩ = 0}. The weak formulation

of Problem 1.3.1 can be written as:



18 CHAPTER 1. MODEL

Problem 1.3.2. Find �u ∈ W , p ∈ Q and ψ ∈ Y such that

3∑
i,j=1

∫
Ω

σijεij(�v)dΩ +
3∑

i,j=1

∫
Ω

ρuj
∂ui

∂xj
vidΩ +

∫
Γ

ψ(�v.�n)dσ =
∫

Ω

�f.�vdΩ, ∀�v ∈ W, (1.3.13)∫
Ω

q div �udΩ = 0, ∀q ∈ Q, (1.3.14)∫
Γ

ξ�u.�ndσ = 0, ∀ξ ∈ Y. (1.3.15)

Two different discretizations of Problem 1.3.2 are used. In the first, a Galerkin least-squares
(GLS) stabilization which was proposed by Franca and Hughes [16] is applied. Let h > 0 and
let Th be a tetrahedral mesh of Ω, with all the tetrahedrons K of Th of diameter smaller than
h. Defining the spaces Wh, Qh and Yh as P1-approximations of W , Q and Y , the discretized
problem is:

Problem 1.3.3. Starting with �wh = 0, we find �uh ∈ Wh, ph ∈ Qh and ψh ∈ Yh such that
∀�vh ∈ Wh, ∀qh ∈ Qh and ∀ξh ∈ Yh

3∑
i,j=1

∫
Ω

σh,ijεij(�vh)dΩ +
3∑

i,j=1

∫
Ω

ρwh,j
∂uh,i

∂xj
vh,idΩ +

∫
Γ

ψh(�vh.�n)dσ

+
∑

K∈Th

∫
K

�ν1ρ
(
ρ(�wh.�∇)�uh − div σh − fh

)
(�vh.�∇)�vhdΩ =

∫
Ω

�fh.�vhdΩ, (1.3.16)

∫
Ω

qh div �uhdΩ +
∑

K∈Th

∫
K

ν2

(
ρ(�wh.�∇)�uh − div σh − fh

)
�∇qhdΩ = 0, (1.3.17)

∫
Γ

ξh(�uh.�n)dσ = 0, (1.3.18)

where, setting μη = min{αη, βη , γη} = 0.5,

�ν1 =

{
hK

12ρuK
(1, 1, 1), if ρuKhK

μη
≥ 1,

h2
K

12μη
(1, 1, 1), otherwise,

ν2 =

{
2ρhKuK , if ρuKhK

μη
≥ 1,

6μη, otherwise,
(1.3.19)

with uK the mean of the Euclidean norm of �wh on K. We then iterate by Picard’s method,
setting �wh = �uh and solving the problem again until convergence of �uh to �wh.

Once we obtain the velocity field, the interface is corrected according to (1.3.12). This
correction modifies the mesh by slightly moving the nodes of the interface. The body force
�fh changes because the interface position is modified, it is therefore recomputed and Problem
1.3.3 is solved on the new mesh and with the new force term. This iteration is executed until
convergence of the interface.

The velocity field �uh we obtain by solving this problem is in general (i.e., for nontrivial �uh

and for nontrivial qh ∈ Qh) such that∫
Ωel

qh div �uh �= 0, qh ∈ Qh, (1.3.20)

because of the stabilization terms.
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In the second approximation we take again a tetrahedral mesh Th as before, we define the
space of bubble functions

Bh = {�vh : �vh|K ∈ (P4(K))3 ∩ (H1
0 (K))3,∀K ∈ Th}, (1.3.21)

and we set Xh = Wh ⊕Bh. This was proposed by Arnold, Brezzi and Fortin [3]. The discretiza-
tion of Problem 1.3.2 becomes

Problem 1.3.4. Find �uh ∈ Xh, ph ∈ Qh and ψh ∈ Yh such that ∀�vh ∈ Xh, ∀qh ∈ Qh and ∀ξh ∈ Yh

3∑
i,j=1

∫
Ω

σh,ijεij(�vh)dΩ +
3∑

i,j=1

∫
Ω

ρuh,i
∂uh,i

∂xj
vh,jdΩ +

∫
Γ

ψh(�vh.�n)dσ =
∫

Ω

�fh.�vhdΩ, (1.3.22)

∫
Ω

qh div �uhdΩ = 0, (1.3.23)∫
Γ

ξh(�uh.�n)dσ = 0. (1.3.24)

We solve this problem using Newton’s method on the nonlinear term. As before, we then
correct the interface, giving a new mesh, and we compute the new force term and solve again
Problem 1.3.4. We iterate those two stages until the interface converges.

By solving this problem we find a velocity field which verifies∫
Ωel

qh div �uhdΩ = 0, ∀qh ∈ Qh. (1.3.25)

Remark 1.3.5. In case we need to distinguish between the two velocity fields we will denote
the one obtained using the GLS discretization by �uGLS

h and the one obtained using the bubble
discretization by �ububble

h . We note that assertion (1.3.25) is only true if �ububble
h is taken in Xh,

i.e., if we keep the bubble functions in �ububble
h . If we only take �ububble

h ∈ Wh, implying that
�ububble

h is linear on each tetrahedron, the velocity field is not better than �uGLS
h when considering∫

Ωel
qh div �uhdΩ.

Remark 1.3.6. When solving the discretized Problems 1.3.2 and 1.3.4, the solutions do not
exactly verify the equations because the computations are not exact on a computer. Thus,
even for �ububble

h the crucial integrals
∫
Ω qh div �uhdΩ and

∫
Γ ξh(�uh.�n)dσ will not exactly vanish.

However, this error might be negligible.

Remark 1.3.7. It is also possible to solve the unsteady Navier-Stokes equations in order to get
the velocity field, as is done in [34].



20 CHAPTER 1. MODEL



Chapter 2

Numerical approximation of a
convection-diffusion equation

The model presented in the preceding chapter contains a convection and a convection-diffusion
equation, both of them using the same approximation of a velocity field. In the present chapter
we will study a model convection-diffusion equation, using a velocity field approximated in the
same manner as for the alumina problem. We will first describe the problem and state the
properties which the approximated solution should have. We then proceed by giving several
finite element approximations of the convection-diffusion equation. For each scheme, we will
check if its solution shows the desired properties. We conclude this chapter by choosing the
scheme that we will use subsequently.

2.1 Model problem and desired properties of the solution

In this chapter we want to find the solution of the following convection-diffusion problem:

Problem 2.1.1. Find c = c(�x, t) verifying

∂c

∂t
− DΔc + �u.�∇c = f, in Ω × (0, T ), (2.1.1)

∂c

∂n
= 0, on ∂Ω × (0, T ), (2.1.2)

c = c0, in Ω × {0}. (2.1.3)

We assume Ω ⊂ R
3, the velocity �u = �u(�x) is not depending on time and verifies

div(�u) = 0 in Ω and �u.�n = 0 on ∂Ω, (2.1.4)

where �n is the external unit normal of Ω. The final time is denoted by T .
We want to compute an approximation ch of c which has the following three properties:

• Mass conservation
d

dt

∫
Ω

chdΩ =
∫

Ω
fdΩ; (2.1.5)

• Conservation of the trivial solution

if f = 0 and c0 = constant, then ch = c0; (2.1.6)

21
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• L2-stability
d

dt
‖ch(t)‖L2(Ω) ≤ ‖f(t)‖L2(Ω),∀t > 0. (2.1.7)

It is reasonable to ask for these properties, because the solution to Problem 2.1.1, with a velocity
field �u that verifies conditions (2.1.4), shows them all.
Note that the first property is called ”mass conservation”, because if f = 0 it states that the
mass of ch in Ω is conserved.
When computing ch we will not work with the original velocity field �u but with some computed
approximation �uh. This approximation will in general not verify conditions (2.1.4), maybe be-
cause of the way �uh was approximated, but also because of small numerical errors. These small
errors make it hard to attain the goals which we just stated.
For this reason, we will in the following sections present different semi-discretized weak formu-
lations of Problem 2.1.1. For every formulation we will check whether the solution shows mass
conservation, whether the trivial solution is a solution of the problem and whether the solution
is L2-stable. If there are any particularities related to a method we will also state them. We will
do this examination assuming that the velocity field �uh is such that div �uh in Ω and �uh.�n on ∂Ω
are not exactly vanishing.
For the semidiscretization in space let h > 0 and let Th be a tetrahedral mesh of Ω, where all the
tetrahedrons K of the mesh are of diameter diam(K) ≤ h. We define the finite element space
Vh of piecewise polynomial functions P1(K) of degree 1 on K by

Vh = {g ∈ C0(Ω) : g|K ∈ P1(K),∀K ∈ Th}. (2.1.8)

The initial condition for all schemes is ch(0) = c0 if c0 is given in Vh, and if this is not the case
we take a projection c0

h ∈ Vh of c0 as initial condition ch(0).
We will use standard notations for the spaces H1(0, T ;Vh), C1([0, T ];H2(Ω)), . . ., which are
defined in [12].
A numerical comparison of the solutions of the different formulations will be done in Section
5.2.

2.2 Direct weak formulation

A standard finite element approximation in space for computing an approximation ch of c is to
look for ch ∈ H1(0, T ;Vh) such that for all v ∈ Vh∫

Ω

∂ch

∂t
vdΩ + D

∫
Ω

�∇ch
�∇vdΩ +

∫
Ω

�uh.�∇chvdΩ =
∫

Ω
fvdΩ. (2.2.1)

(see [30]). We check the three conditions stated above:

Mass conservation. We take v ≡ 1. Then (2.2.1) simplifies to

d

dt

∫
Ω

chdΩ +
∫

Ω
�uh.�∇chdΩ =

∫
Ω

fdΩ. (2.2.2)

But ∫
Ω

�uh.�∇chdΩ =
∫

∂Ω
ch�uh.�ndσ −

∫
Ω

div(�uh)chdΩ, (2.2.3)

and the right hand side does generally not vanish under our assumptions, hence mass conserva-
tion cannot be guaranteed.
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Conservation of trivial solution. If we suppose that f = 0 and c0 = 1 then ch(�x, t) = c0(�x)
is the unique solution of (2.2.1).

L2-stability. We take v = ch. Then (2.2.1) becomes
1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ − 1
2

∫
Ω

�uh.�∇(c2
h)dΩ. (2.2.4)

Since ∫
Ω

�uh.�∇(c2
h)dΩ =

∫
∂Ω

c2
h�uh.�ndσ −

∫
Ω

div(�uh)c2
hdΩ (2.2.5)

is generally not vanishing we can not ensure the L2-stability.

Remark 2.2.1. In the above examination we supposed that �uh does not verify both of the
conditions of equation (2.1.4). When we presented the computation of �uh in Section 1.3 we
pointed out that for �ububble

h we have∫
Ω

qh div �ububble
h dΩ = 0, ∀qh ∈ Qh, (2.2.6)∫

Γ
ξh�ububble

h .�ndσ = 0, ∀ξh ∈ Yh. (2.2.7)

If we apply these two results to our model problem this implies that∫
Ω

ch div �ububble
h dΩ = 0,

∫
Γ

ch�ububble
h .�ndσ = 0, (2.2.8)

hence, in (2.2.3) we have equality and thus the mass is conserved. This is correct up to the
tolerance which was chosen when solving the linear system arising from problem (1.3.4). We
also note that we still do not get L2-stability, because in (2.2.5) we have the factor c2

h. This is
not a linear function, and thus it is not in the abovementioned spaces Qh and Yh.

2.3 Simple mass conserving formulation

We take the formulation from the preceding section, but now we integrate the velocity integral
by parts. The new formulation is thus to find ch ∈ H1(0, T ;Vh) such that for all v ∈ Vh∫

Ω

∂ch

∂t
vdΩ + D

∫
Ω

�∇ch
�∇vdΩ −

∫
Ω

�uh.�∇vchdΩ =
∫

Ω
fvdΩ. (2.3.1)

We check the three conditions:

Mass conservation. Setting v ≡ 1 in (2.3.1) we get
d

dt

∫
Ω

chdΩ =
∫

Ω
fdΩ, (2.3.2)

which is exactly what we want and justifies the title of the section.

Conservation of trivial solution. If f = 0 and c0 = 1 then∫
Ω

∂ch

∂t
dΩ −

∫
Ω

�uh.vdΩ = 0. (2.3.3)

This velocity integral will in general not vanish and thus the solution will be time-dependent.

L2-stability. We take v = ch. Equation (2.3.1) becomes
1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ +
1
2

∫
Ω

�uh.�∇(c2
h)dΩ. (2.3.4)

This is almost the same result as we had in the previous section, and for the same reason we
will therefore not get the L2-stability.
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2.4 Simple L2-stable formulation

Here we mix the two previous formulations, taking half of the first and half of the second
formulation. The problem becomes to find ch ∈ H1(0, T ;Vh) such that for all v ∈ Vh∫

Ω

∂ch

∂t
vdΩ + D

∫
Ω

�∇ch
�∇vdΩ +

1
2

∫
Ω

�uh.�∇chvdΩ − 1
2

∫
Ω

�uh.�∇vchdΩ =
∫

Ω
fvdΩ. (2.4.1)

We check our three conditions:

Mass conservation. We take v ≡ 1 and equation (2.4.1) becomes

d

dt

∫
Ω

chdΩ +
1
2

∫
Ω

�uh.�∇chdΩ =
∫

Ω
fdΩ. (2.4.2)

As for the direct formulation we are left with
∫
Ω �uh.�∇chdΩ, which can not be guaranteed to be

equal to zero and therefore spoils the mass conservation.

Conservation of trivial solution. Setting f = 0 and c0 = 1 we get∫
Ω

∂ch

∂t
dΩ − 1

2

∫
Ω

�uh.vdΩ = 0. (2.4.3)

Here we have the same problem as for the previous formulation and thus the trivial solution is
generally not conserved.

L2-stability. We set v = ch in equation (2.4.1) and we obtain

1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ. (2.4.4)

Writing this equation using norms and applying the Cauchy-Schwarz inequality we get the
desired result,

d

dt
‖ch(t)‖L2(Ω) ≤ ‖f(t)‖L2(Ω),∀t > 0, (2.4.5)

because the positive term
∫
Ω |�∇ch|2dΩ can be dropped. Thus, the result justifies the title.

2.5 Velocity projection on sine and cosine functions

Here we want to project the velocity field �uh on divergence free functions formed by a combi-
nation of sine and cosine functions, to obtain a projected velocity field Πsin�uh. We then use the
direct weak formulation of Section 2.2 with the modified velocity field.
In order to do this we have to suppose that Ω is a cuboid such that �x ∈ Ω = [0, L1] × [0, L2] ×
[0, L3]. We suppose that a projection of �uh can be written as

Π�uh(�x) =
∑
�k

u�k
�F�k(�x), (2.5.1)

with

�F�k
(�x) =

⎛⎜⎜⎝
α�k

sin(k1
π
L1

x1) cos(k2
π
L2

x2) cos(k3
π
L3

x3)

β�k cos(k1
π
L1

x1) sin(k2
π
L2

x2) cos(k3
π
L3

x3)

γ�k
cos(k1

π
L1

x1) cos(k2
π
L2

x2) sin(k3
π
L3

x3)

⎞⎟⎟⎠ (2.5.2)
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and �x = (x1, x2, x3) ∈ [0, L1] × [0, L2] × [0, L3], �k = (k1, k2, k3), ki = 0, 1, . . .. Since we want the
velocity field to be divergence free we impose div �F�k

(�x) = 0, for every �x, which leads to the
condition

k1

L1
α�k

+
k2

L2
β�k

+
k3

L3
γ�k

= 0. (2.5.3)

We also want to have orthonormality of the basis functions, i.e., given �k and �j we want to have∫ L1

0

∫ L2

0

∫ L3

0

�F�k
(�x)�F�j(�x)dΩ = δk1,j1δk2,j2δk3,j3, (2.5.4)

where δij denotes the Kronecker symbol. This gives a second condition on the coefficients,

α2
�k

+ β2
�k

+ γ2
�k

=
8

L1L2L3
. (2.5.5)

For each vector �k verifying k1k2k3 �= 0, two linearly independent nonzero vectors (α�k
, β�k

, γ�k
)

which verify the two preceding conditions exist, and thus two basis vectors �F�k,1
and �F�k,2

exist.
The coefficients u�k,1

and u�k,2
, which are the components of the projection of �uh on the vectors

�F�k,1
and �F�k,2

are obtained by computing

u�k,i =
∫ L1

0

∫ L2

0

∫ L3

0
�uh. �F�k,idΩ, (2.5.6)

i = 1, 2. The frequencies ki of the sine and cosine functions are chosen such that at least 5
vertices of the mesh per period are available.
We call

Πsin�uh(�x) =
∑
�k

u�k,1
�F�k,1

(�x) +
∑
�k

u�k,2
�F�k,2

(�x) (2.5.7)

the projected velocity field.
Replacing �uh by Πsin�uh in equation (2.2.1) we check if our three conditions are verified:

Mass conservation. Taking v ≡ 1 we get

d

dt

∫
Ω

chdΩ +
∫

Ω
Πsin�uh.�∇chdΩ =

∫
Ω

fdΩ. (2.5.8)

Here by construction we have
∫
Ω Πsin�uh.�∇chdΩ = 0, hence we ensure mass conservation.

Conservation of trivial solution. The reasoning of Section 2.2 is independent of the velocity
field. Therefore the trivial solution is conserved.

L2-stability. We take v = ch and we get

1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ − 1
2

∫
Ω

Πsin�uh.�∇(c2
h)dΩ. (2.5.9)

Again the integral
∫
Ω Πsin�uh.�∇(c2

h)dΩ vanishes by construction of Πsin�uh, and then by the argu-
ment given in Section 2.4 we obtain the L2-stability.

Remark 2.5.1. Although this projection on sine and cosine functions has the desired properties,
some remarks have to be made.
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1. This approach might need a simplification of the geometry of Ω, since the domain has to
be a cuboid. In particular, in the alumina problem which we want to solve later on this
will not be the case.

2. The projection of �uh on the sine and cosine functions modifies the velocity field. In
particular, we cannot take any frequencies in the sine and cosine functions because the
mesh will not represent high frequencies satisfactorily. We will choose the highest frequency
in such a way that there are at least five nodes per period. Hence we are not solving the
original problem, and depending on the velocity field the difference could be quite sensible.

2.6 Velocity projection on a divergence free, non-conforming
finite element basis

In this section we project the velocity field �uh on a divergence free, non-conforming finite element
basis to obtain a projected velocity field ΠFE�uh. As in the previous section we will then use the
direct weak formulation of Section 2.2 with the modified velocity field.
A three-dimensional, divergence free, non-conforming finite element space Wh has been proposed
by Hecht [23]. It is defined by

Wh = {�uh ∈ (L2(Ω))3 : �uh|K̊ ∈ (P1(K))3,div �uh|K̊ = 0,∀K ∈ Th;

for all faces Tj ∈ Th : if K,K ′ ∈ Th such that K ∩ K ′ = Tj then �uh(�xj)|K = �uh(�xj)|K ′ ;∫
T

�uh.�ndσ = 0,∀T ∈ Gh}, (2.6.1)

where �xj is the barycentre of triangle Tj , Th is the tetrahedral mesh of Ω and Gh is the triangular
mesh of ∂Ω. The basis functions are associated to the barycentres of the faces and to a subset
of the edges. The resulting field

ΠFE�uh = projection of �uh on Wh (2.6.2)

is piecewise polynomial of degree 1 per element, discontinuous at each face except at the barycen-
tre, and it verifies div(ΠFE�uh) = 0 per element. For more details on the basis functions, see
Hecht [23].
We replace �uh by ΠFE�uh in equation (2.2.1) and we check if our three conditions are verified:

Mass conservation. We set v ≡ 1 and we obtain
d

dt

∫
Ω

chdΩ +
∫

Ω
ΠFE�uh.�∇chdΩ =

∫
Ω

fdΩ. (2.6.3)

We compute∫
Ω

ΠFE�uh.�∇chdΩ =
∑

K∈Th

∫
K

ch div(ΠFE�uh)dΩ +
∑

K∈Th

∫
∂K

chΠFE�uh.�ndσ, (2.6.4)

where we have to separate the integral over Ω in the sum of integrals over the tetrahedrons
K because the projected velocity ΠFE�uh is only in (L2(Ω))3. The first term of the right hand
side equals zero because div(ΠFE�uh) = 0 in each tetrahedron. But the second term of the
right hand side is not equal to zero, because the velocity is continuous only at the barycentres
of the triangles which form the boundary of the tetrahedrons, but not on the whole triangles.
Therefore, we find that ∫

Ω
ΠFE�uh.�∇chdΩ �= 0 (2.6.5)

in general, implying that the total mass will not be conserved.



2.7. HELMHOLTZ DECOMPOSITION OF THE VELOCITY FIELD 27

Conservation of trivial solution. The reasoning of Section 2.2 is independent of the velocity
field. Therefore the trivial solution is conserved.

L2-stability. Taking v = ch we have

1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ − 1
2

∫
Ω

ΠFE�uh.�∇(c2
h)dΩ. (2.6.6)

Using the same argument as for the mass conservation the integral
∫
Ω ΠFE�uh.�∇(c2

h)dΩ does in
general not vanish and thus we do not get the L2-stability.

Remark 2.6.1. In addition to the fact that the projected velocity field ΠFE�uh is a priori not
better than the original velocity �uh it has to be stressed that the number of basis functions
of Wh is much larger than the number of basis functions of Vh. Hence, the projection of the
velocity can become difficult or impossible on a fine mesh. We also note that the velocity field
is modified by the projection, and thus the problem we solve is not equivalent to the original
problem.

2.7 An approximated Helmholtz decomposition of the velocity
field

There is a decomposition theorem which states that every vector field �u ∈ (L2(U))3, for some
open domain U ∈ R

3, can be written as the sum of a divergence free part and an irrotational
part,

�u = −�∇q + curl �φ (2.7.1)

where q ∈ H1(U)/R is the only solution of∫
U

�∇q.�∇vdU =
∫

U
�u.�∇vdU, ∀v ∈ H1(U), (2.7.2)

and �φ ∈ (H1(U))3 satisfies div(�φ) = 0 [17]. This decomposition is also known as the Helmholtz
decomposition. Here we want to use this property to decompose our velocity field �uh and replace
it by the divergence free part.
We define

�wh = �uh − �∇ψh, (2.7.3)

where ψh ∈ Vh verifies: ∫
Ω

�∇ψh.�∇vdΩ =
∫

Ω
�uh.�∇vdΩ, ∀v ∈ Vh. (2.7.4)

Here �uh = �wh + �∇ψh can be interpreted as an approximated Helmholtz decomposition of �uh. If
�uh satisfies (2.1.4) then �∇ψh = 0 and �uh = �wh.
Again we replace �uh by �wh in equation (2.2.1) and we check our three conditions:

Mass conservation. Taking v ≡ 1 we get

d

dt

∫
Ω

chdΩ +
∫

Ω
wh.�∇chdΩ =

∫
Ω

fdΩ. (2.7.5)

We have wh = uh− �∇ψh and using equation (2.7.4) we see that
∫
Ω wh.�∇chdΩ = 0, which implies

the mass conservation.
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Conservation of trivial solution. The reasoning of Section 2.2 is independent of the velocity
field. Therefore the trivial solution is conserved.

L2-stability. We set v = ch. We obtain

1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ − 1
2

∫
Ω

wh.�∇(c2
h)dΩ. (2.7.6)

Here the integral
∫
Ω wh.�∇(c2

h)dΩ does not vanish, because when we compute �∇ψh we take the
test function v ∈ Vh, which is only in P1. Thus with the present discretization we do not have
L2-stability, but if we take test functions which are at least in P2 we can get it.

Remark 2.7.1. Observe that if we discretize (2.7.4) with ψh in Vh, �∇ψh is constant in each tetra-
hedron and discontinuous on the boundaries. This implies that the velocity �wh is discontinuous.
We also note that we change the velocity field when we pass from �uh to �wh and are thus not
solving the original problem.

2.8 Meanfree mass conserving formulation

The following scheme is the origin of the scheme proposed in [25]. We consider here the following
modified problem: Find ch ∈ H1(0, T ;Vh) such that for all v ∈ Vh∫

Ω

∂ch

∂t
vdΩ +

∫
Ω

�uh.�∇ch(v − v̄)dΩ + D

∫
Ω

�∇ch.�∇vdΩ =
∫

Ω
fvdΩ, (2.8.1)

with v̄ = 1
|Ω|

∫
Ω vdΩ the mean of v over Ω. Remark that if the approximated velocity field �uh

verifies (2.1.4), then
∫
Ω �uh.�∇chv̄dΩ = 0 and problem (2.8.1) is equivalent to problem (2.2.1).

We check our three conditions:

Mass conservation. We take v ≡ 1 in equation (2.8.1), getting

d

dt

∫
Ω

chdΩ =
∫

Ω
fdΩ, (2.8.2)

which gives the mass conservation. The velocity term cancels out because here v = 1 = v̄.

Conservation of trivial solution. If we suppose that f = 0 and c0 = 1 then ch(�x, t) = c0(�x)
is the unique solution of (2.8.1).

L2-stability. Let v = ch in equation (2.8.1). We obtain

1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ − 1
2

∫
Ω

�uh.�∇(c2
h)dΩ + c̄h

∫
Ω

�uh.�∇chdΩ. (2.8.3)

Since the last two integrals do not cancel we can not assert the L2-stability.

This seems to be an elegant way to get the mass conservation and the conservation of the
trivial solution. But the weak formulation contains the mean of the test function, which implies
that the linear system arising of the discretization will contain a full matrix. For a finite element
discretization this is certainly not desirable. In what follows, we will give two algorithms of how
we can find a solution to this weak formulation without having to cope with the full matrix.
For these algorithms we first discretize equation (2.8.1) in time with the implicit Euler scheme.
The problem becomes to find cn+1

h ∈ Vh such that for all v ∈ Vh∫
Ω

cn+1
h − cn

h

Δt
vdΩ +

∫
Ω

�uh.�∇cn+1
h (v − v̄)dΩ + D

∫
Ω

�∇cn+1
h .�∇vdΩ =

∫
Ω

f(tn+1)vdΩ. (2.8.4)
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Direct algorithm using GMRES

If we directly discretize the weak formulation (2.8.4) then we have to deal with the term∫
Ω

�uh.�∇cn+1
h v̄dΩ. (2.8.5)

v̄ is a constant defined on the whole mesh and it is not equal to zero when v is a finite element
function. Discretizing this convection term in space results in a full matrix. It is not reasonable
to store this matrix, but this is not necessary. We want to solve some system

A�x = �b, (2.8.6)

with A the sparse matrix resulting from the discretization of equation (2.8.4) without the term
of equation (2.8.5). If we subtract the term of equation (2.8.5) we can write the discrete problem
as

A�x + B�x = �d, (2.8.7)

where B is the full matrix resulting from the discretization of the additional term containing v̄.
If we solve this linear system using GMRES algorithm ([33]), all we have to do is to compute
matrix vector products. Let �x be a vector. Computing A�x is easy since A is supposed to be
a sparse matrix. Let’s discretize the term (2.8.5). To do this, let v1, v2, . . . , vN be the finite
element basis of Vh. Writing cn+1

h =
∑N

j=1 cjvj, gj =
∫
Ω �uh.�∇vjdΩ, v̄j = 1

|Ω|
∫
Ω vjdΩ we have:

∫
Ω

�uh.�∇cn+1
h v̄idΩ =

∫
Ω

N∑
j=1

cj�uh.�∇vj v̄idΩ = v̄i

N∑
j=1

cj

∫
Ω

�uh.�∇vjdΩ = v̄i

N∑
j=1

cjgj . (2.8.8)

Defining �vm = (v̄1, v̄2, . . . , v̄N ), �g = (g1, g2, . . . , gN ) and �c = (c1, c2, . . . , cN ) we can write the
discretization of (2.8.5) as

(�vm.�gT )�c. (2.8.9)

Note that �vm.�gT is a N×N matrix, in fact the matrix B, with elements Bij = v̄igj . The product
B�x can be written as

(B�x)i =
N∑

j=1

Bijxj =
N∑

j=1

v̄igjxj = v̄i

N∑
j=1

gjxj , i = 1, . . . , N. (2.8.10)

Hence, in order to get B�x we can first compute a = �g.�x and then �vma = B�x, and we only need
to store two vectors of length N to be able to do this. The drawback of this method is that it
does not work if we want to solve the linear system with a direct method, or some other method
which explicitly needs the complete matrix.

Generally applicable algorithm

A more generally applicable algorithm, where the linear system can even be solved with methods
which explicitly need the matrix, is the following:

Algorithm 2.8.1. Let c̃n
h = cn

h − c̄n
h and f̃n+1 = f(tn+1) − f̄(tn+1). We find ĉn+1 ∈ Vh verifying

for each v ∈ Vh∫
Ω

ĉn+1 − c̃n
h

Δt
vdΩ +

∫
Ω

�uh.�∇ĉn+1vdΩ + D

∫
Ω

�∇ĉn+1.�∇vdΩ =
∫

Ω
f̃n+1vdΩ. (2.8.11)

Then we set
cn+1
h = ĉn+1 − ¯̂cn+1 + c̄n

h + Δtf̄(tn+1). (2.8.12)
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Here the sparsity pattern of the matrix is still the same as for the discretization of problem
(2.2.1), i.e., only neighbouring nodes create entries in the matrix.
We show now that the solution of Algorithm 2.8.1 is equivalent to the solution of problem (2.8.4).
From (2.8.12) we get

ĉn+1 = cn+1
h + ¯̂cn+1 − c̄n

h − Δtf̄(tn+1). (2.8.13)

Replacing ĉn+1 in (2.8.11) we get∫
Ω

cn+1
h + ¯̂cn+1 − c̄n

h − c̃n
h − Δtf̄(tn+1)

Δt
vdΩ +

∫
Ω

�uh.�∇ĉn+1vdΩ + D

∫
Ω

�∇ĉn+1�∇vdΩ

=
∫

Ω
f(tn+1)vdΩ −

∫
Ω

f̄(tn+1)vdΩ. (2.8.14)

Noting that �∇ĉn+1 = �∇cn+1
h since the other terms in (2.8.12) are constants, substituting c̄n

h + c̃n
h

by cn
h and adding

∫
Ω f̄(tn+1)vdΩ we are left with∫

Ω

cn+1
h + ¯̂cn+1 − cn

h

Δt
vdΩ +

∫
Ω

�uh.�∇cn+1
h vdΩ + D

∫
Ω

�∇cn+1
h

�∇vdΩ =
∫

Ω
f(tn+1)vdΩ. (2.8.15)

Now we set v ≡ 1 in (2.8.11). We obtain

|Ω|
Δt

¯̂cn+1 = −
∫

Ω
�uh.�∇cn+1

h dΩ, (2.8.16)

i.e., ∫
Ω

¯̂cn+1

Δt
vdΩ =

¯̂cn+1

Δt

∫
Ω

vdΩ =
|Ω|
Δt

¯̂cn+1v̄ = −
∫

Ω
�uh.�∇cn+1

h v̄dΩ. (2.8.17)

Substituting this in (2.8.15) and rearranging the terms we get (2.8.4). Thus, the solution of
Algorithm 2.8.1 is the same as the solution of (2.8.4).

Remark 2.8.2. We want to solve a convection-diffusion problem with a velocity field which
does not verify conditions (2.1.4). The formulation presented in this section shows some nice
properties, even if it does not produce a solution which is L2-stable. However, looking at
Algorithm 2.8.1 we see that the mass conservation is attained simply by redistributing the mass
error over the whole domain, i.e., by correcting the local errors globally. It is clear that if the
approximated velocity field almost satisfies conditions (2.1.4), then already the local errors will
be small and the global correction applied by Algorithm 2.8.1 will make them almost invisible.
But the initial ”error” of the velocity field will not disappear, and especially if conditions (2.1.4)
are strongly violated the solution could show a strange behaviour at large times. The formulation
presented here does not wipe out the initial error of �uh, it only attains that the error will not
be visible in the mass balance.

2.9 Meanfree L2-stable mass conserving formulation

Finally we consider the following problem, which was proposed in [25]: Find ch ∈ H1(0, T ;Vh)
such that for all v ∈ Vh∫

Ω

∂ch

∂t
vdΩ + D

∫
Ω

�∇ch
�∇vdΩ +

1
2

∫
Ω

�uh.�∇ch(v − v̄)dΩ − 1
2

∫
Ω

�uh.�∇v(ch − c̄h)dΩ =
∫

Ω
fvdΩ.

(2.9.1)
Again we denote by v̄ = 1

|Ω|
∫
Ω vdΩ the mean of a function v over Ω. We note that if the

approximated velocity field �uh verifies the conditions (2.1.4) then the formulation (2.9.1) is
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equivalent to the direct formulation (2.2.1) since the integrals containing v̄ and c̄h will vanish,
and the original convection term can be obtained by integration by parts.
We check the three conditions:

Mass conservation. Let v ≡ 1 in equation (2.9.1). We obtain∫
Ω

∂ch

∂t
vdΩ =

∫
Ω

fvdΩ. (2.9.2)

Thus, mass conservation is attained.

Conservation of trivial solution. If we suppose that f = 0 and c0 = 1 then ch(�x, t) = c0(�x)
is the unique solution of (2.9.1).

L2-stability. We take v = ch in (2.9.1) and we get
1
2

d

dt

∫
Ω

c2
hdΩ + D

∫
Ω
|�∇ch|2dΩ =

∫
Ω

fchdΩ. (2.9.3)

Writing this equation using norms and applying Cauchy-Schwarz’s inequality we get the desired
result,

d

dt
‖ch(t)‖L2(Ω) ≤ ‖f(t)‖L2(Ω),∀t > 0, (2.9.4)

because the positive term
∫
Ω |�∇ch|2dΩ can be dropped. Hence the solution is L2-stable as we

state in the title of the section.

So here we have a formulation to which the solution is L2-stable and mass conserving and
which admits the trivial solution. As in the last section the formulation contains mean functions
which are nonzero over the whole domain, implying that straightforward discretization of the
weak formulation leads to a full matrix. Again we will give two different algorithms to circumvent
the problem, and again one of them will be useful only with special solvers of linear systems
while the other leads to a linear system which can be solved by a broader class of methods. We
discretize first the problem (2.9.14) in time by the implicit Euler method. The problem becomes
to find cn+1

h ∈ Vh such that for all v ∈ Vh∫
Ω

cn+1
h − cn

h

Δt
vdΩ + D

∫
Ω

�∇cn+1
h

�∇vdΩ +
1
2

∫
Ω

�uh.�∇cn+1
h (v − v̄)dΩ

− 1
2

∫
Ω

�uh.�∇v(cn+1
h − c̄n+1

h )dΩ =
∫

Ω
f(tn+1)vdΩ. (2.9.5)

Before continuing by the algorithms of how to solve this problem, we give some properties of
the solution of this problem. For a functional space W , let W̃ = {g ∈ W :

∫
Ω gdx = 0}. Let

Rh : H̃1(Ω) → Ṽh be the elliptic operator defined by∫
Ω

�∇(η − Rhη).�∇ψdΩ = 0, ∀ψ ∈ Ṽh,∀η ∈ H̃1(Ω). (2.9.6)

In [25] we prove the following

Theorem 2.9.1. If c ∈ C1([0, T ];H2(Ω)) ∩ C2([0, T ];L2(Ω)) and if there exists a constant C
independent of h and n such that ‖cn

h‖L∞(Ω) ≤ C; if in addition there exists another constant
C2 such that ‖�u − �uh‖L2(Ω) + h‖�∇(�u − �uh)‖L2(Ω) ≤ Ch2, c0 ∈ H2(Ω) and c0

h = c̄0 + Rh(c0 − c̄0).
Then there exists a constant C2 independent of h which satisfies

‖c(tn) − cn
h‖L2(Ω) + ‖�∇(c(tn) − cn

h)‖L2(Ω) ≤ C2(h + Δt), ∀1 ≤ n ≤ N. (2.9.7)

Here, N = T/Δt.

Hence, the convergence of the numerical solution is ensured.
Now we return to the algorithms that solve Problem (2.9.5).
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Direct algorithm using GMRES

We consider the following algorithm:

Algorithm 2.9.2. Let c̃n
h = cn

h − c̄n
h and f̃n+1 = f(tn+1) − f̄(tn+1). We look for ĉn+1 ∈ Vh such

that for all v ∈ Vh∫
Ω

ĉn+1 − c̃n
h

Δt
vdΩ + D

∫
Ω

�∇ĉn+1�∇vdΩ +
1
2

∫
Ω

�uh.�∇ĉn+1(v − v̄)dΩ

− 1
2

∫
Ω

�uh.�∇vĉn+1dΩ =
∫

Ω
f̃n+1vdΩ. (2.9.8)

We then set
cn+1
h = ĉn+1 + c̄n + Δtf̄(tn+1). (2.9.9)

To solve equation (2.9.8) we use the same trick as in Section 2.8. Therefore one has to use
GMRES or a similar solver to solve the linear system.
It remains to show that the solution of Algorithm 2.9.2 is equivalent to the solution of problem
(2.9.5). To this end we write equation (2.9.9) as

ĉn+1 = cn+1
h − c̄n − Δtf̄(tn+1). (2.9.10)

We substitute ĉn+1 in (2.9.8), getting, after some simplifications similar to those done in the
previous section,∫

Ω

cn+1
h − cn

h

Δt
vdΩ + D

∫
Ω

�∇cn+1
h

�∇vdΩ +
1
2

∫
Ω

�uh.�∇cn+1
h (v − v̄)dΩ

− 1
2

∫
Ω

�uh.�∇v(cn+1
h − c̄n − Δtf̄(tn+1))dΩ =

∫
Ω

f(tn+1)vdΩ. (2.9.11)

Starting from (2.9.9) we compute

c̄n+1
h = ¯̂cn+1 + c̄n + Δtf̄(tn+1) = c̄n + Δtf̄(tn+1), (2.9.12)

where the last equality is true because by setting v ≡ 1 in (2.9.8) we get

¯̂cn+1 = 0. (2.9.13)

Replacing c̄n+Δtf̄(tn+1) by c̄n+1
h in (2.9.11) we get equation (2.9.5), proving that the Algorithm

2.9.2 leads to the same solution as problem (2.9.5).

Generally applicable algorithm

In case we want to use for example a direct linear solver to solve the discretized problem (2.9.1)
we propose the following algorithm (where a Lagrange multiplier is used to guarantee that
v̄ = 1

|Ω|
∫
Ω vdΩ, see [25]).

Algorithm 2.9.3. Let c̃n
h = cn

h − c̄n
h and f̃n+1 = f(tn+1) − f̄(tn+1). We look for ĉn+1 ∈ Vh and

α ∈ R such that for all v ∈ Vh∫
Ω

ĉn+1 − c̃n
h

Δt
vdΩ + D

∫
Ω

�∇ĉn+1�∇vdΩ +
1
2

∫
Ω

�uh.�∇ĉn+1vdΩ

− 1
2

∫
Ω

�uh.�∇vĉn+1dΩ + α

∫
Ω

vdΩ =
∫

Ω
f̃n+1vdΩ, (2.9.14)
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and ∫
Ω

ĉn+1dΩ = 0. (2.9.15)

Then we set
cn+1
h = ĉn+1 + c̄n

h + Δtf̄(tn+1). (2.9.16)

If ch is a vector of length N , then the discretization of problem (2.9.14)-(2.9.15) leads to a
(N + 1) × (N + 1)-matrix with an additional unknown α. Taking v ≡ 1 in (2.9.14) we obtain

α = − 1
2|Ω|

∫
Ω

�uh.�∇ĉn+1dΩ, (2.9.17)

hence α will be zero if the velocity field �uh verifies conditions (2.1.4).
In order to show the equivalence of the solutions of Algorithm 2.9.3 and of problem (2.9.5) we
rearrange (2.9.16) to obtain

ĉn+1 = cn+1
h − c̄n − Δtf̄(tn+1). (2.9.18)

We substitute this expression in (2.9.14), and after some simplifications we get

∫
Ω

cn+1
h − cn

h

Δt
vdΩ + D

∫
Ω

�∇cn+1
h

�∇vdΩ +
1
2

∫
Ω

�uh.�∇cn+1
h vdΩ

− 1
2

∫
Ω

�uh.�∇v(cn+1
h − c̄n − Δtf̄(tn+1))dΩ + α

∫
Ω

vdΩ =
∫

Ω
f(tn+1)vdΩ. (2.9.19)

We use (2.9.16) and (2.9.15) to compute

c̄n+1
h = c̄n + Δtf̄(tn+1), (2.9.20)

and (2.9.17) to obtain

α

∫
Ω

vdΩ = −1
2

∫
Ω

�uh.�∇cn+1
h v̄dΩ, (2.9.21)

and substituting these two expressions in (2.9.19) we get to (2.9.5), which is what we wanted.

Remark 2.9.4. Similar considerations as given in the remark at the end of the previous section
can be made. The algorithms presented here reach the goals that we defined at the beginning of
the chapter. They move the visible defaults of the solution of the convection-diffusion equation
away from the mass conservation or the L2-stability. But these defaults will appear elsewhere,
and depending on the properties one wants the solution to fulfil this might be more troublesome.

Remark 2.9.5. A similar algorithm to algorithm 2.9.3 is derived in [25] for the case when the
Neumann boundary conditions are replaced by Robin conditions,

D
∂c

∂n
= ξ(cr − c), on ∂Ω × (0, T ), (2.9.22)

where ξ is a positive parameter and cr is a given reference value. The same goals as presented
here are attained for this problem using this algorithm.

2.10 Conclusion

In the beginning of this chapter we stated that we wanted a solution to the convection-diffusion
Problem 2.1.1 which has the three properties called mass conservation, conservation of the
trivial solution and L2-stability. Of all the formulations that we proposed, only the solution
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of two of them will reach this aim using linear finite elements, the direct formulation with a
projected velocity field on sine and cosine functions, and the last formulation. The problem of
the projection of the velocity field is clearly that the domain Ω has to be a cuboid, which is not
true for the alumina problem. Therefore this possibility is not really useful. On the other hand
the formulation presented in this section does not have any restrictions. We therefore decide
to work with this formulation when we solve the alumina Problem 1.2.1. This choice is also
justified by the numerical results given in Section 5.2.



Chapter 3

Discretization

In this chapter we will discretize the mathematical problem presented in the first chapter. We
will start in the first section by computing approximations of c and np in time. In Section 3.2 we
will discretize the computation of np in the radius variable R. Finally in Section 3.3 we compute
finite elements approximations of c and np in space on a tetrahedral mesh Th of Ωel.

3.1 Discretization in time

Let us choose a discretization of the time t by choosing a time step Δt and setting tn = nΔt,
for n = 0, 1, 2, . . .. If ck(�x), nk

p(�x,R) are known approximations of c(�x, tk) and np(�x,R, tk) at
time tk, we compute ck+1 and nk+1

p at time tk+1 = tk + Δt as follows. For each time step Δt
we solve successively the equation for the particles and the equation for the concentration. For
solving the first equation we use a splitting method in time in order to separate the space-time
part from the radius-time part in equation (1.2.20). Numerically we compute:

• Convection equation in space discretized in time on (tk, tk+1),

ñk+1
p (�x,R) − nk

p(�x,R)
Δt

+ �u(�x).�∇ñk+1
p (�x,R) = S(�x,R, tk+1), �x ∈ Ωel, R > 0, (3.1.1)

where ñk+1
p (�x,R) is a prediction of the quantity nk+1

p (�x,R).

• Particle dissolution (not discretized on (tk, tk+1)),

∂np(�x,R, t)
∂t

+
∂

∂R

(
np(�x,R, t)f(R, ck(�x))

)
= 0, �x ∈ Ωel, R > 0, t ∈ (tk, tk+1), (3.1.2)

np(�x,R, tk) = ñk+1
p (�x,R). (3.1.3)

We set nk+1
p (�x,R) = np(�x,R, tk+1).

• Source terms of the convection-diffusion equation at time tk,

q̇k
1 (�x) = −4π

ρ

M

∫ ∞

0
nk+1

p (�x,R)f(R, ck(�x))R2dR, (3.1.4)

q̇k
2 = − I

6FV
, (3.1.5)

Q̇k(�x) = q̇k
1(�x) + q̇k

2 , (3.1.6)

35
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• Convection-diffusion equation discretized in time on (tk, tk+1),

ck+1(�x) − ck(�x)
Δt

+ �u(�x).�∇ck+1(�x) − DΔck+1(�x) = Q̇k(�x), in Ωel, (3.1.7)

�∇ck+1(�x).�n(�x) = 0, on ∂Ωel. (3.1.8)

To compute the particle dissolution (3.1.2), we fix �x ∈ Ωel and to simplify the notation we
introduce

φ(R, t) = np(�x,R, t), (3.1.9)

g(R) = f(R, ck(�x)), (3.1.10)

Equation (3.1.2) becomes
∂φ

∂t
(R, t) +

∂

∂R
(g(R)φ(R, t)) = 0, (3.1.11)

which we solve by the method of characteristics [30]. Let

Ṙ(t) = g(R(t)), t ∈ [tk, tk+1]. (3.1.12)

Setting ψ(t) = φ(R(t), t) we get, if ψ̇(t) = dψ(t)
dt :

ψ̇(t) =
∂φ

∂t
(R(t), t) +

∂φ

∂R
(R(t), t)Ṙ(t) =

∂φ

∂t
(R(t), t) +

∂φ

∂R
(R(t), t)g(R(t)), (3.1.13)

and using (3.1.11) we obtain

ψ̇(t) = −ψ(t)
∂g

∂R
(R(t)). (3.1.14)

Solving this equation we find

ψ(tk+1) = ψ(tk) exp
(
−

∫ tk+1

tk

∂g

∂R
(R(s))ds

)
. (3.1.15)

Thus

nk+1
p (�x,R(tk+1)) = ñk+1

p (�x,R(tk)) exp
(
−

∫ tk+1

tk

∂f

∂R
(R(s), ck(�x))ds

)
, (3.1.16)

with

Ṙ(t) = f(R(t), ck(�x)), t ∈ [tk, tk+1], (3.1.17)
R(tk) given, for every �x ∈ Ωel. (3.1.18)

3.2 Discretization in R

For the discretization in the radius R we introduce m radii,

0 < R1 < R2 < · · · < Rm. (3.2.1)

We set R0 = 0. The particle density nk
p is approximated by

nk
p,j(�x) ≈ nk

p(�x,Rj) (3.2.2)
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The source term of the convection-diffusion equation q̇k
1 , defined in equation (3.1.4), is ap-

proximated by

q̇k
1 (�x) ≈ −4π

ρ

M

m∑
i=1

nk+1
p,i (�x)f(Ri, c

k(�x))R2
i ΔRi, (3.2.3)

where ΔRi = Ri − Ri−1.
To discretize the particle dissolution we take into account equations (3.1.12) and (3.1.15).

Suppose that the radius of a particle at position �x ∈ Ωel and time tk+1 is Rk+1
j . At time tk

the radius of this particle was, using (3.1.12) with first order accuracy, (backwards method of
characteristics of order 1)

R̃k
j = Rk+1

j − Δtg(Rk+1
j ). (3.2.4)

Again with first order accuracy we get from (3.1.15)

ψ(tk+1) ≈ ψ(tk) exp
(
−Δt

∂g

∂R
(Rk+1

j )
)

≈ ψ(tk)
(

1 − Δt
∂g

∂R
(Rk+1

j )
)

. (3.2.5)

We compute ψ(tk) = φ(R(tk)) by interpolation. Let sj be such that Rsj ≤ R̃k
j < Rsj+1. Since

ψ(t) = φ(R(t), t) = np(�x,R(t), t),∀�x ∈ Ωel, we have

ψ(tk) ≈
Rsj+1 − R̃k

j

Rsj+1 − Rsj

φ(Rsj , tk) +
R̃k

j − Rsj

Rsj+1 − Rsj

φ(Rsj+1, tk). (3.2.6)

Finally the discrete solution to the particle dissolution problem (3.1.2)-(3.1.3) is, for j = 1, . . . ,m,

nk+1
p,j (�x) =

(
Rsj+1 − R̃k

j

Rsj+1 − Rsj

ñk+1
p,sj

(�x) +
R̃k

j − Rsj

Rsj+1 − Rsj

ñk+1
p,sj+1(�x)

) (
1 − Δt

∂f

∂R
(Rk+1

j , ck(�x))
)

.

(3.2.7)

3.3 Discretization in space

The convection-diffusion equation (3.1.7) and the convection equation (3.1.1) are numerically
solved by a stabilized Galerkin method on continuous piecewise linear finite elements. We use
the SUPG stabilization method, which was introduced by Brooks and Hughes [8]. Let h > 0 and
let Th be a tetrahedral mesh of Ωel, where all the tetrahedrons Ki of the mesh are of diameter
diam(Ki) ≤ h. Let Vh be the finite element space defined by

Vh = {v ∈ C0(Ωel) : v|K ∈ P1(K),∀K ∈ Th}

where P1(K) is the space of all linear polynomials in tetrahedron K. We denote by v̄ =
1

|Ωel|
∫
Ωel

vdΩ the mean of a function v over Ωel. Suppose that cn
h ∈ Vh and ñn

p,j,h ∈ Vh, j =

1, . . . ,m, are known for n = 0, . . . , k. Then ck+1
h and ñk+1

p,j,h belong to Vh and satisfy for all
v ∈ Vh:∫

Ωel

ck+1
h vdΩ +

1
2
Δt

∫
Ωel

�uh.�∇ck+1
h (v − v̄)dΩ − 1

2
Δt

∫
Ωel

�uh.�∇v(ck+1
h − c̄k+1

h )dΩ

+ DΔt

∫
Ωel

�∇ck+1
h .�∇vdΩ + βcΔt

∑
K∈Th

∫
K

τK
hK

2‖�uh‖
(�uh.�∇ck+1

h )(�uh.�∇v)dΩ

= Δt

∫
Ωel

Q̇k
hvdΩ +

∫
Ωel

ck
hvdΩ + βcΔt

∑
K∈Th

∫
K

τK
hK

2‖�uh‖
Q̇k

h�uh.�∇vdΩ (3.3.1)
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and∫
Ωel

ñk+1
p,j,hvdΩ +

1
2
Δt

∫
Ωel

�uh.�∇ñk+1
p,j,h(v − v̄)dΩ − 1

2
Δt

∫
Ωel

�uh.�∇v(ñk+1
p,j,h − ¯̃nk+1

p,j,h)dΩ

+ βnpΔt
∑

K∈Th

∫
K

hK

2‖�uh‖
(�uh.�∇ñk+1

p,j,h)(�uh.�∇v)dΩ

= Δt

∫
Ωel

Sj,hvdΩ +
∫

Ωel

nk
p,j,hvdΩ + βnpΔt

∑
K∈Th

∫
K

hK

2‖�uh‖
Sj,h�uh.�∇vdΩ. (3.3.2)

The meshsize parameter hK is defined by [35]

hK =
2‖�uh‖∑4

i=1 |�uh.�∇φi(CK)|
. (3.3.3)

Here φ1, . . . , φ4 are the linear basis functions of K associated to the vertices, and CK denotes
the barycentre of K. The norm ‖.‖ denotes the Euclidean norm.

The source term Q̇k
h is approximated by

Q̇k
h(�x) ≈ −4π

ρ

M

m∑
i=1

nk+1
p,i,h(�x)f(Ri, c

k(�x))R2
i ΔRi −

I

6FV
. (3.3.4)

For the approximated feeding function Sk
j,h we compute first the percentages of the mass to be

added for each radius

pj =
∫ Rj

Rj−1

1
rσ

√
2π

exp
(
−(log r − μ)2

2σ2

)
dr, j = 1, . . . ,m. (3.3.5)

The integrals are approximated numerically. We compute am =
∑m

j=1 pj. This quantity should
be equal to one, but because we are working with a finite number of radii this is not the case
and the mass will have to be corrected accordingly. As for the model we will correct the mass
added to the bath at the end using constants Cs,j (see below).
We approximate S1(�x), defined in (1.2.8), by S1,h(�x). The function S2(R) from (1.2.6) is ap-
proximated by piecewise constant functions S2,j.
For each radius we compute the mass which we would add during Δt, using S1,h and S2,j ≡ 1,
giving

C ′
m,j =

4
3
πρR3

jΔRjΔt

∫
Ωel

S1,hdΩ, j = 1, . . . ,m. (3.3.6)

Remembering that the total mass we want to add is equal to Cm, the correction factor for each
radius is

CS,j =
Cmpj

C ′
m,jam

, j = 1, . . . ,m. (3.3.7)

Finally the approximated feeding function is given by

Sk
j,h =

{
CS,jS1,h, if tk ∈ {τ i},
0, otherwise.

(3.3.8)

We set τK = max(0, 1−2D/(hK‖�u‖)). The parameters βc and βnp are set equal to 1, a value
which ensures the stability of the scheme.
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Remark 3.3.1. We note here that the SUPG stabilization used is not strongly consistent, in the
sense of [30]. This means that the solutions c and np of Problem 1.2.1 do not verify equations
(3.3.1) - (3.3.2) because we omit the stabilization term

βc

∑
K∈Th

∫
K

τK
hK

2‖�u‖(ck+1
h − ck

h)(�u.�∇v)dΩ (3.3.9)

in equation (3.3.1) and the analogous term in (3.3.2). Bochev et al. [7] showed that the formu-
lation including the term (3.3.9) remains well-posed for all timesteps. However, the stabilization
we use is consistent in the sense that the order of convergence of the approximated solution to
the correct solution is not changed by the stabilization. Hence, we will normally show results
obtained without this term because they show less spurious oscillations.

The two problems (3.3.1) and (3.3.2) are discretized using Algorithm 2.9.3 described in
Chapter 2, and the linear systems arising from the discretization are solved using GMRES
algorithm [33].
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Chapter 4

Numerical aspects

In the first section we discuss some details concerning the efficiency and accuracy of the nu-
merical computations of the particle dissolution problem (3.1.2). We also give the solution of
the dissolution problem if the dissolution kinetics is diffusion. Section 4.2 is devoted to the nu-
merical aspects of the alumina consumption by electrolysis. We show and justify three different
consumption models.

4.1 Particle dissolution

Mass conservation for the particle dissolution

We consider the following problem: Find c and np such that

∂c

∂t
+ �u.�∇c − DΔc = q̇1, in Ωel × (0, T ), (4.1.1)

∂c

∂n
= 0, on ∂Ωel × (0, T ), (4.1.2)

∂np

∂t
+ �u.�∇np +

∂

∂R
(npf(R, c)) = 0, in Ωel × (0,∞) × (0, T ), (4.1.3)

with initial conditions c(�x, t = 0) = c0(�x) and np(�x,R, t = 0) = n0
p(�x,R). The dissolution is

defined by
Ṙ(t) = f(R(t), c(�x, t)), (4.1.4)

and the source term for the convection-diffusion equation in c is given by

q̇1(�x, t) = −4π
ρ

M

∫ ∞

0
np(�x,R, t)f(R, c(�x, t))R2dR. (4.1.5)

We showed in equation (1.2.30) that the mass lost by dissolution in (4.1.3) is equal to the mass
of the source term of (4.1.1). This result implies that the mass of alumina is conserved.
The dissolution in equation (4.1.3) is discretized by (3.2.7). On the other hand, the source term
of equation (4.1.1) is discretized by computing

q̇k
1,h(�x) ≈ −4π

ρ

M

m∑
i=1

nk+1
p,i,h(�x)f(Ri, c

k(�x))R2
i ΔRi. (4.1.6)

The mass balance is not exact. The mass lost or gained will tend to zero if Δt and ΔRi tend to
zero, but it is not equal to zero. Since the computational effort grows linearly with the number
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of radii used to discretize R, it would be advantageous to take a small number of discretization
radii. In order to do this without having a bad mass balance we discretize q̇1 by

q̇k
1,h(�x) = − 1

Δt

4
3
π

ρ

M

m∑
i=1

(
nk+1

p,i,h(�x) − nk
p,i,h(�x)

)
R3

i ΔRi, (4.1.7)

i.e., we simply discretize the first term of equation (1.2.30) instead of the last term. Thus, the
mass conservation is exact independently of the number of radii used for the discretization of R.

Efficiency and accuracy of the dissolution

The particle dissolution is described as
dR(t)

dt
= f(R(t), c(�x, t)). (4.1.8)

Particles are introduced at different times. For example, one particle population is introduced at
time t1 and another population at time t2. It is computationally much easier if these populations
can be merged instead of treating them separately. If, given a particle with size R at time t3, we
can compute the size at time t3 +Δt without knowing whether the particle has been introduced
at time t1 or t2 we can combine the two populations. This property is satisfied if the function
f , with c fixed, is bijective from R to R. This seems to be a reasonable assumption because
particles should dissolve and not get bigger.

But since the particle dissolution is an endothermic reaction, after the feeding to the bath
the particles solidify the bath surrounding them and they grow in size. Their alumina mass
does not change because the additional solid part is from the bath. For the computation of the
dissolution we assume therefore that the particle size remains constant during a certain time,
called latency time, and afterwards the particle size is strictly decreasing, following the equation
(4.1.8). The algorithm computing the particle dissolution distinguishes therefore between the
new particles, which do not change in size, and the old particles, which do dissolve. Each particle
population which is younger than the latency time is kept separately from the others. Once a
population is in the bath for more than the latency time it is added to the old particles which
dissolve.

Computing the particle dissolution is essentially done using the method of characteristics.
Thus, at each time step we make an error. Since the mass balance is exact, the error acts
only on the dissolution time. The time of complete dissolution of a particle gets longer if we
compute more time steps. We would therefore like to make as few timesteps as possible. On
the other hand, for the convection-diffusion problem for the concentration we cannot take too
large timesteps because the numerical diffusion becomes too important. We take therefore one
timestep Δt1 for the convection-diffusion problems and a second timestep Δt2 > Δt1 for the
particle dissolution. The error for the total dissolution time does effectively diminish. Δt2
can not be chosen too large because otherwise the particles move too far before they dissolve.
Since the total dissolution time of a particle and the dissolution function f , which are obtained
experimentally, are not precisely known, it is not very important to have the exact dissolution
time in the simulation.

Discretization of the dissolution if the kinetics is diffusion

In Section 1.2 we introduced the dissolution law if dissolution kinetics is governed by diffusion.
This law is given by

f(R, c) = −α

R
, (4.1.9)
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with α = DM(csat − c)/ρ. To discretize the particle dissolution (3.1.2) in time using the above
dissolution law we proceed as in Section 3.1. We fix �x ∈ Ωel and we introduce, to simplify
notation,

φ(R, t) = np(�x,R, t),

g(R) = f(R, ck(�x)).

Equation (3.1.2) becomes
∂φ

∂t
(R, t) +

∂

∂R
(g(R)φ(R, t)) = 0, (4.1.10)

which we solve by the method of characteristics. Here we have

Ṙ(t) = g(R(t)) = − αk

R(t)
, t ∈ [tk, tk+1], (4.1.11)

which leads to R(t) =
√

β − 2αkt with β a constant. We discretized here αk = DM(csat −
ck(�x))/ρ. Using the initial condition R(tk) we find β = 2αktk + R2(tk). This gives

R(tk+1) =
√

2αk(tk − tk+1) + R2(tk) =
√

R2(tk) − 2αkΔt, (4.1.12)

or, written differently,

R(tk) =
√

R2(tk+1) + 2αkΔt. (4.1.13)

We set ψ(t) = φ(R(t), t). Denoting ψ̇(t) = dψ(t)
dt we have

ψ̇(t) =
∂φ

∂t
(R(t), t) +

∂φ

∂R
(R(t), t)Ṙ(t) =

∂φ

∂t
(R(t), t) +

∂φ

∂R
(R(t), t)g(R(t)). (4.1.14)

Using (4.1.10) and then the fact that g(R(t)) = Ṙ(t) we obtain

ψ̇(t) = −ψ(t)
dg

dR
(R(t)) = ψ(t)

αk

R2(t)
= −ψ(t)

g(R(t))
R(t)

= −ψ(t)
Ṙ(t)
R(t)

, (4.1.15)

and it is easy to verify that ψ(t) = CR(t), C being a constant defined by

C =
ψ(tk)
R(tk)

=
φ(R(tk), tk)

R(tk)
. (4.1.16)

So

ψ(tk+1) =
R(tk+1)
R(tk)

φ(R(tk), tk), (4.1.17)

and

φ(R(tk+1), tk+1) =
R(tk+1)√

R2(tk+1) + 2αkΔt
φ(R(tk), tk). (4.1.18)

Computing the solution of the particle dissolution is thus explicit and we get

nk+1
p (�x,R) =

R(tk+1)√
R2(tk+1) + 2αkΔt

ñk+1
p (�x,R). (4.1.19)

For the discretization in R we proceed again in the same fashion as in Section 3.3. We
introduce m radii 0 < R1 < . . . < Rm. Suppose that the radius of a particle at position �x ∈ Ωel
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and time tk+1 is Rk+1
j . From equation (4.1.13) we know that the radius of this particle at time

tk was

R̃k
j =

√
(Rk+1

j )2 + 2αkΔt. (4.1.20)

Let sj be such that Rsj ≤ R̃k
j < Rsj+1. We interpolate to find

n̂k+1
p,j (�x) = ñk+1

p,sj
(�x)

Rsj+1 − R̃k
j

Rsj+1 − Rsj

+ ñk+1
p,sj+1(�x)

R̃k
j − Rsj

Rsj+1 − Rsj

. (4.1.21)

Using (4.1.19) we compute the particle density at time tk+1 by

nk+1
p,j (�x) =

Rj√
R2

j + 2αkΔt
n̂k+1

p,j (�x), j = 1, . . . ,m. (4.1.22)

4.2 Liquid alumina consumption

Electrolysis takes place at the interface between the anode and the electrolyte and at the interface
between the cathode and the electrolyte. Our first idea was therefore to model liquid alumina
consumption as a boundary outflow condition, setting

D
∂c

∂n
= −κ (4.2.1)

at the boundary which forms the interface anode - bath, with

−κ = −1
6

�j.�n

F
. (4.2.2)

We recall that �j stands for the current density and F is the Faraday constant. The problem of
this formulation is that the concentration gradient, which is going to appear at the anode - bath
interface, will be concentrated on a length of about 10−9 meters, due to the diffusion coefficient.
This means that in order to resolve the gradient a mesh of meshsize 10−9 near this interface
has to be used. The generation of such a mesh, as well as the computations on it, would be
complicated. We did not attempt to work with such a mesh.

Simple spatial model

Instead we use much simpler models where consumption takes place nearly everywhere in the
bath. This is justified by the fact that chemical reactions which are part of the overall trans-
formation of alumina to aluminium take place in the whole bath. One possibility would be to
make a numerical model of the chemical reactions. We will not do this for two reasons. First,
such models tend to be rather complicated, and since there are several chemical reactions to
model, the computational cost to solve all these equations would be very high compared to the
time spent solving the more inportant rest of the alumina model. Secondly, the precise chemical
reactions in the bath are not known. We could still set up some simplified chain of reactions, but
then the result would not be precise anyway and thus we can as well use a simpler consumption
model.

In the simplest consumption model we compute the total decrease of alumina concentration in
the bath per time unit, divide this result by the volume of the bath and subtract this quantity
of the alumina concentration in the whole bath. To make the model a bit more realistic we
suppose that the consumption takes place only between the bottom of the anodes and the
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interface between the bath and the metal pad. We get the model that we described in Chapter
1,

q̇2 = − I

6FV
, (4.2.3)

(see (1.2.17)).

Threshold model

Now, depending on the velocity field, it could happen that some parts of the bath are under-
fed with alumina, i.e., the concentration increase due to dissolving particles and concentration
transport is smaller than the decrease due to the electrolysis model. This implies that in such
parts the concentration decreases over time, reaching negative values, which are not physically
sound. In reality this can certainly not happen, but if the alumina concentration at some point
of the bath becomes close to zero, the electric current will rather pass through some other part
of the bath with a higher alumina concentration, because the electrical resistance there is lower.
Thus, in a second model we determine at each time step the domain where the concentration is
higher than a certain value ε > 0,

Ωk,ε
el = {�x ∈ Ωel, between the bottom of the anodes and Γ : ck(�x) > ε}. (4.2.4)

Then we set V k,ε = |Ωk,ε
el | and

q̇k
2 (�x) =

{
− I

6FV k,ε , �x ∈ Ωk,ε
el ,

0, otherwise.
(4.2.5)

In this way the concentration will always remain greater than ε.

Remark 4.2.1. We note that if the alumina concentration does not go below the threshold ε,
the two consumption models described so far are equivalent. However, if we do not know if the
velocity field will convect the concentration well over the whole bath or not it is safer to use the
second model.

Current density model

In an apparently even more realistic model we have an alumina consumption which depends on
the current density �j. We say apparently, because there are two problems. The first problem is
related to the physical meaning of the current density. If we take any surface Γel which stretches
over the whole bath, we have that

I =
∫

Γel

�j.d�σ. (4.2.6)

Hence the use of �j implies that the consumption should take place on a surface. But as a
boundary conditions this is not possible, for the reasons cited above, and we do not know where
to choose a surface in the bath. Therefore we decide to use a spatial consumption model. Thus
we have to transform the current density to some scalar value.
The second problem is related to the values of the current density that come from a numerical
computation. The current density depends on the distance between the anodes and the metal
pad. This distance changes due to the wear of the anodes, and the computations done to obtain
the current density do not take this effect into account. Thus, the current density �jh we use is
a rather rough approximation of the real current density �j.
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For this model we suppose again that the consumption takes place only if the concentration
is greater than some value ε. To transform the vectorial �jh to a scalar we first compute at each
time step a total current density in the bath,

|�jk
h| =

∫
Ωk,ε

el

�jh.�jhdΩ, (4.2.7)

and we set the local current density equal to I(�jh(�x).�jh(�x))/|�jk
h |, which ensures that the integral

of the local density over the part of the bath where the consumption takes place is equal to I.
Then

q̇k
2 (�x) =

⎧⎨⎩− I�jh(�x).�jh(�x)

6FV k,ε|�jk
h|

, �x ∈ Ωk,ε
el

0, otherwise.
(4.2.8)

It is difficult to judge whether this consumption model is better than the two previous or
not. In the following we will in general work with the threshold model, even if normally the
concentrations do not get close to zero.



Chapter 5

Numerical Results

Here we present some numerical results obtained using the model, the numerical schemes and the
discretization of the first chapters. First we present the convergence of an academic convection
problem with known solution, to show that our code attains optimal convergence. In Section
5.2 we numerically compare the different numerical schemes that were presented in Chapter 2.
With the best scheme, which is the scheme presented in Section 2.9, we then compute solutions
to the complete model of Chapter 1. We do this for different velocity fields, and we show that
the numerical solution becomes periodic in time.

5.1 Convergence test with known solution

We consider the convection problem with Dirichlet boundary conditions on the incoming bound-
ary, where �u.�n < 0, which we denote by Γ−. Our problem is thus: Find c = c(�x, t) such that

∂c

∂t
+ �u.�∇c = 0, in Ω × (0, T ), (5.1.1)

c = 0, on Γ− × (0, T ), (5.1.2)

c = c0, in Ω × {0}. (5.1.3)

For this test we use a consistent stabilization in the discretization, i.e., the stabilization term is

βcΔt
∑
K

∫
K

hK

‖�u‖

[
∂c

∂t
(�u.�∇v) + (�u.�∇c)(�u.�∇v)

]
dΩ. (5.1.4)

We set Ω = [−1, 1]3, �u = (− 3
πy, 3

πx, 0),

c0 =

⎧⎨⎩200 exp
(

−0.6
0.3 − (x − 0.5)2 − y2 − z2

)
, if (x − 0.5)2 + y2 + z2 < 0.3,

0, if (x − 0.5)2 + y2 + z2 ≥ 0.3,
(5.1.5)

βc = 1. We compute the relative error in the L2-norm after T = 6 seconds, i.e., we compute

ec :=
‖c(T ) − ch(T )‖L2(Ω)

‖c(T )‖L2(Ω)
. (5.1.6)

Here the exact solution is equal to the initial condition, i.e., c(T ) = c0. We know that con-
vergence of the approximated solution ch to the exact solution c should be in O(h3/2 + Δt)
(see [10]). On Figure 5.1 we show the relative error for h = 1/16, 1/32, 1/64, 1/128, with
Δt = 1/64, 1/181, 1/512, 1/1449, hence Δt ≈ h3/2. The relative error, shown as a function
of h on the figure, decreases in h3/2. We have thus numerically verified the optimal convergence
of the approximation to the solution.
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Figure 5.1: The relative error ec with respect to h. We have Δt ≈ h3/2.

5.2 Comparison of different weak formulations of the convection-
diffusion equation

In this section we will compare the different numerical schemes described in Chapter 2. The
source term of the convection-diffusion problem is set to zero, and since the diffusion is reducing
the differences between the results we omit it here. Hence, we consider the following problem:
Find the solution c = c(�x, t) of the problem

∂c

∂t
+ �u.�∇c = 0, in Ω × (0, T ), (5.2.1)

∂c

∂n
= 0, on ∂Ω × (0, T ), (5.2.2)

c = c0, in Ω × {0}. (5.2.3)

Here we take �u(x1, x2, x3) = (− cos(π
2 x1) sin(π

2 x2), sin(π
2 x1) cos(π

2 x2), 0) and Ω = [−1, 1] ×
[−1, 1] × [−0.1, 0, 1]. The final time T will be specified below.
The velocity field �uh we actually use is an approximation of �u, obtained by solving problem
1.3.2, and hence it is such that div(�uh) in Ω and �uh.�n on ∂Ω are small, but not equal to zero.
We state the three properties which the approximation ch should have:

d

dt

∫
Ω

chdΩ = 0, (5.2.4)

if c0 = constant, then ch = c0, (5.2.5)
d

dt
‖ch(t)‖L2(Ω) ≤ 0,∀t > 0. (5.2.6)

We introduce the following quantities:

• The mass variation, denoted by VΔt and computed as

VΔt(ch(t)) :=
M∑
i=1

∣∣∫
Ω ch(ti)(�x)dΩ −

∫
Ω ch(ti−1)(�x)dΩ

∣∣∫
Ω c0(�x)dΩ

, (5.2.7)
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where t = MΔt and ti = iΔt. If the condition (5.2.4) is true, then the mass variation is
zero.

• The variance, denoted by Var and computed as

Var(ch(t)) :=
1
t

M∑
i=1

∫
Ω(ch(ti)(�x) − c̄h(ti))2dΩ∫

Ω dΩ
, (5.2.8)

where c̄h(t) = 1
|Ω|

∫
Ω ch(t)(�x)dΩ. If condition (5.2.5) is true, then the variance is zero.

• The positive L2-variation, denoted by VL2+
Δt and computed as

VL2+
Δt (ch(t)) =

M∑
i=1

max{0, ‖ch(ti)‖L2(Ω) − ‖ch(ti−1)‖L2(Ω)}∫
Ω c0(�x)dΩ

. (5.2.9)

If the condition (5.2.6) is true, then the positive L2-variation is zero.

In order to check the three properties of the solution of each scheme presented in Section 2 we
solve the problem (5.2.1) - (5.2.3) with two different initial conditions. In the first case we start
with c0 = 1, and we look if the variance of ch is small. In the second case we start with

c0(�x) =

{
200e−0.02/(0.01−(x1−x0

1)
2−(x2−x0

2)
2), if (x1 − x0

1)
2 + (x2 − x0

2)
2 < 0.01,

0, if (x1 − x0
1)

2 + (x2 − x0
2)

2 ≥ 0.01.
(5.2.10)

Here we look at the mass variation and at the positive L2-variation of the solution. We will
compute the solution of each case on a regular, nonstructured grid of the domain Ω. The final
time for the first case is T = 100 seconds, for the second case it is T = 10000 seconds. In
addition, for the schemes which use a modified velocity field we compute the relative difference
between the modified velocity field, which is always a projection Π�uh, and �uh,

e�uh
=

‖�uh − Π�uh‖L2(Ω)

‖�uh‖L2(Ω)
. (5.2.11)

We label the different schemes according to Table 5.1 to refer to them more easily. The
results for the different schemes are given in Table 5.2. In order to discuss the results we first
look at the variance of the numerical solution. Here for most of the schemes the solution is
equal to the constant initial condition. As predicted theoretically only schemes 2 and 3 do not
conserve the trivial solution.

For the positive L2-variance we also get the result we expected, i.e., the schemes 3, 4, 9 and
10 are L2-stable and all the other schemes are not. We note however that especially the solution
of scheme 5 is really not L2-stable, and also the direct formulation 1 does not do very well.

Maybe the most surprising result is the mass variation. The schemes which were shown
theoretically to not conserve mass, 1, 3 and 5, clearly do not conserve the mass. But the other
schemes, which should conserve the mass do not have zero mass variation either. Especially the
projected velocity field on sine and cosine functions (scheme 4) seems not to be that useful. For
the other schemes the mass variation is 10−7 or smaller, which is maybe not what we expected
but considering the final time of T = 10000 seconds it is nevertheless a good result. Since we
are going to do simulations with a final time of this order the precision we attain is sufficient.
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Label Short description Section

1 direct weak formulation 2.2

2 simple mass conserving formulation 2.3

3 simple L2-stable formulation 2.4

4 velocity field projected on sinus- and cosinus-functions 2.5

5 velocity field projected on divergence free finite elements 2.6

6 approximated Helmholtz decomposition of the velocity field 2.7

7 meanfree mass conserving formulation, for GMRES 2.8

8 meanfree mass conserving formulation, general 2.8

9 meanfree L2-stable mass conserving formulation, for GMRES 2.9

10 meanfree L2-stable mass conserving formulation, general 2.9

Table 5.1: Labels for different schemes to be used for the presentation of the results

scheme VΔt(ch(10000)) Var(ch(100)) VL2+
Δt (ch(10000)) e�uh

1 0.11 0 0.013 0

2 3.4·10−7 1.7·10−3 3.1·10−3 0

3 0.076 4.2·10−4 0 0

4 2.1·10−4 0 0 6.6·10−6

5 2.1 0 35 6.1·10−7

6 2.7·10−7 0 4.3·10−5 2.3·10−7

7 2.7·10−7 0 1.2·10−3 0

8 3.5·10−10 0 1.2·10−3 0

9 8.8·10−8 0 0 0

10 8.1·10−9 0 0 0

Table 5.2: Comparison of the different numerical schemes presented in Chapter 2.
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In conclusion we repeat what we already found after the theoretical considerations in Chapter
2, that the best schemes are the two last ones. Remembering that scheme 10 leads to matrices
which are sparse and the associated linear system can be solved by general linear solvers, also
direct ones, whereas this is not the case for the scheme 9, we conclude that the most appropriate
scheme to our ends is scheme 10.

5.3 Simulation of a real case

In this section we want to do a simulation of the complete alumina problem defined in Chapter 1
in a real aluminium electrolysis cell. We want to see how the alumina concentration changes
in the long run, and we verify if the numerical cell behaves qualitatively like a real cell. In
particular we want to reach a state of the cell when the concentration evolution is periodic in
time. This behaviour is observed in real cells, and we will explain it in the following. We then
give the setting of the simulation and introduce the different velocity fields that we will use.
Numerical results are presented afterwards, and we end the section by concluding remarks. This
section is the basis for the validation presented in the next chapter.

Periodic behaviour of the concentration in the bath

In our model of Chapter 1 we assume that the current efficiency is constant, and therefore
alumina consumption by electrolysis is constant over time. Since we know this, we add alumina
quantities which ensure that the mass of alumina in the bath at the beginning and at the end
of a feeding cycle is the same.

We already pointed out in the introduction that this is not possible in a real aluminium cell
since the current efficiency, and thus the quantity of alumina consumed by electrolysis, is not
known. In a real cell the bath is either under- or overfed, i.e., either the quantity of alumina
added during one feeding cycle is smaller than the quantity consumed by electrolysis, or it is
larger. Without going into details, the cell is underfed until some measurements of the electric
resistance indicate that the alumina concentration in the bath is too low. Then the cell is
overfed, again until one notices indirectly that the alumina concentration is starting to get too
high. The reason for this under- and overfeeding is that the measurements of the resistance can
be done more precisely when the alumina concentration is changing than if it remains almost
constant. Hence, the cell is underfed and then overfed, always during several feeding cycles,
the number of cycles being variable. Engineers know that after about 10 minutes, during which
the cell has been run with the same feeding mode, the cell state becomes almost periodic. By
periodic we mean that the alumina concentration at some point in the bath is the same at time
t and at time t + ΔT . The cell state cannot become really periodic, since either the alumina
concentration is increasing or decreasing in the long run due to the over- or underfeeding. But
apart from this decrease or increase, there is no apparent change in the alumina distribution in
the bath (also this information has not been found out by measuring the alumina concentration
directly, but comes indirectly from observations of for example the current efficiency or the
current distribution).

We are led to the conclusion that we should reach a periodic state in our computations
because we ensure that the alumina concentration in the bath is constant. The question is
obviously whether this is true with our model. We will not do a theoretical research on this
subject, which would consist in proving that our model admits periodic solutions. But we will do
long simulations of our complete model in order to see whether some periodic solution appears
or not. We note here that a periodic state of the cell is only possible because we ensure mass
conservation. Without this property we would never reach periodicity.
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x 0 [m]

48 [s] 16 [s] 32 [s] 0 [s]

busbar

anode

Figure 5.2: Schematic representation of the aluminium cell seen from above, with the feeders
and the feeding times of each feeder during one feeding cycle.

Figure 5.3: A simplified aluminium cell
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Setting of the simulation

Hence, what we do here is simulating an aluminium pot over a long time. We start with a
completely uniform concentration of 3 [wt%] in the whole bath. We set the feeding cycle length
to 64 seconds. There are 4 alumina feeders, at x-positions -4.4, -1.6, 1.6, 4.4 [m], where we
have set the zero of the x-axis in the middle of the cell. The alumina load of each feeder is
approximately 0.9 [kg]. The order of the feeders is -4.4, 1.6, -1.6, 4.4 [m], adding their load to
the bath in each feeding cycle at times 0, 16, 32, 48 [s] respectively. A schematic representation
of the aluminium cell, showing the feeder positions and their feeding time during one feeding
cycle is shown on Figure 5.2. On Figure 5.3 we show a simplified aluminium cell to give an
overall picture of the situation. There we see electrical conductors around the cell in light grey.
Of the parts which are not shown in the lightest grey tone, we have from top to bottom the
anodes, the bath, the metal pad (in black) and the cathode. The feeders are not shown. The
cell shown is different from the one we use for our computations.

We note that for all the computations done hereafter we multiply the particle dissolution
curve shown on Figure 1.2 by a factor 10/6. Thus, the dissolution time of the biggest particles
is now 10 seconds. This dissolution time is more adapted for our computations, on the basis of
a research done by Groulier [21].

Velocity fields used for the simulation

We do this simulation for three different velocity fields. We recall that in Section 1.3 we had
some boundary conditions on �u, especially �u = 0 on ∂Ω, and �u.�n = 0 on Γ, where Ω is the
domain of the fluids and Γ is the interface between the bath and the metal pad. We do not
touch the condition on the interface, but we change the other condition to the following boundary
conditions, which will lead to three different velocity fields:

�ua: �u = 0 on ∂Ω,

�ub: �u = 0 on ∂Ω, except at the bottom of the anodes, where we impose �u.�n = 0,

�uc: �u = 0 on ∂Ω, except at the exterior boundary of the cell, where we impose �u.�n = 0 (in all
corners we numerically set �u = 0 since we do not have a normal at these points).

All these velocity fields are computed by solving problem 1.3.4, i.e., we obtain three different
�ububble

h . However, we remove the bubble functions from �uh, because the validation of the next
chapter is more accurate without the bubble functions.

In the third velocity field we will have a faster moving liquid close to the boundary of the
bath, which could considerably change the way the concentration is distributed. The velocities
are higher when we use velocity field �ub. We therefore expect a better stirring of the alumina
concentration, and thus globally more uniform concentration distributions.

We also computed the veolcity field with �u.�n = 0 on the whole boundary ∂Ω, but it turned
out that the velocities became much higher than with the other boundary conditions. Since the
velocities for the other boundary conditions were closer to velocity measurements we will not
use the one obtained by imposing �u.�n = 0 on the whole boundary ∂Ω.

We show the nodal velocities at the interface Γ on Figure 5.4. First we remark that the
last velocity field has velocities on two more nodes in each direction. This is because on the
other velocity fields we imposed �u = 0 on the outer boundary, and hence these nodes do not
appear on the figure. Otherwise we note that the general flow field of the three velocity fields
is the same, with �ub being the fastest, which is not surprising since the bath is not very deep in
z-direction and hence the influence of the boundary condition at the bottom of the anodes has
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a big influence on the speed of the velocities. The last velocity field moves faster close to the
boundary, which is exactly what we expected. The maximum speeds are about 8 [cm/s] for �ua,
11 [cm/s] for �ub, and 10 [cm/s] for �uc. The maximum for �uc is only reached close to the corners,
otherwise the speed of �uc is very similar to �ua. We notice that there are a lot of small vortices
in all the velocity fields. The maximal velocity speed in z-direction is about 1.5 [cm/s] for all
velocity fields, which is very fast, in comparison with the height of the bath of less than 4 [cm].

�ua: �u = 0 on ∂Ω

�ub: �u = 0 on ∂Ω, �u.�n = 0 at the bottom of the anodes

�uc: �u = 0 on ∂Ω, �u.�n = 0 at the exterior boundary

Figure 5.4: The different velocity fields, shown at the bath - aluminium interface, seen from
above. The scale of the velocities is the same for the three images.
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Results

In order to show the evolution of the alumina concentration in the bath we first show the variance
Var(c(t)) over time on Figures 5.5 - 5.7. Observe that the scales of the graphs are not the same
for all the figures. We see that the variance increases rapidly at the beginning. At the end
the values of the variance are always contained in a fixed interval. For the velocity field �ua

this convergence of the interval takes about 4000 seconds, whereas for the velocity fields �ub and
�uc the final interval is already reached after 2000 seconds. The variance of the concentration
is much smaller using �ub than using the two other velocity fields. Hence, the concentration is
much better distributed over the bath using �ub. Since the bath moves faster for this velocity
field this result is not very surprising.
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Figure 5.5: The variance of the alumina concentration in the bath as a function of time, for
velocity field �ua.

Since we expect the alumina concentration in the bath to become periodic in time, we show
on Figure 5.8 the variance of c(t) for all three velocity fields at multiples of the feeding period,
i.e., for times t = kΔT, k = 0, 1, . . ., with ΔT = 64[s] the feeding period. We notice that the
variance Var(c(kΔT )) converges to some value depending on the velocity field. Hence, at least
the variance of the concentration starts to get periodic, with a period of at most ΔT . We also
see that the form of the two variance curves obtained using �ua and �uc is the same: first, the
variance increases rapidly, and after about 300-500 seconds it starts to converge slowly to the
final value. The fact that the variance of the concentration using velocity field �ua is slightly
higher than using velocity field �uc can also be explained by the faster moving velocity �uc.

On Figure 5.9 we show the concentration variance during one feeding period towards the
final time of the simulation. The variance curves are on different graphs because the y-scales are
very different. Here we see that the periodicity of the variance is exactly ΔT , and each addition
of alumina particles to the bath is clearly visible on the variance plot.

Finally we show the concentration at the interface between the bath and the metal pad and
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Figure 5.6: The variance of the alumina concentration in the bath as a function of time, for
velocity field �ub.
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Figure 5.7: The variance of the alumina concentration in the bath as a function of time, for
velocity field �uc.
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Figure 5.8: The variance of the alumina concentration in the bath at multiples of the feeding
period, for the different velocity fields.

at the time t = 5000 seconds for the three different velocity fields. On Figure 5.10 we take the
linear scale min(c(t)) - max(c(t)) for the concentration obtained using velocity field �ub, and on
Figure 5.11 we use the linear scale bound by the minimum and maximum of the concentration
computed using velocity field �ua. We see that the concentrations for velocity fields �ua and �uc

are very similar, and also the concentration for velocity field �ub shows similarities to the other
results, only that here the concentration is much better distributed.

Conclusion

We conclude that the concentration distribution reaches a periodic state, and this final state
depends very much on the underlying velocity field. According to engineers the periodic state
of a real aluminium cell is reached in about 10 minutes. Looking again at Figure 5.8 we see
that the variance has almost converged after about 10 minutes for all the velocity fields. The
combination of the velocity fields and the model seems thus very reasonable from this point of
view.

Another question is now if the final periodic state is independent of the initial condition.
This is certainly not the case if we allow any initial condition, but if we fix the initial alumina
quantity in the bath and we vary only the initial distribution of the concentration, do we always
converge to the same periodic solution? Again we will not study this question theoretically, but
our computational results indicate that the answer to this question is yes.
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These two properties, the convergence to a periodic solution and the independence of the
initial distribution of the concentration, are quite useful. They imply that we can start with
a uniformly distributed initial concentration, and that we will get a final result after a finite
simulation time. Of course the convergence to the periodic solution is not attained in a final
time in an analytic sense, but for a numerical computation we do not have infinite precision
anyway, so we can stop the computations after some reasonable time.
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Figure 5.9: The concentration variance in the bath during one feeding cycle for the different
velocity fields.
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2.83 3.21 3.60 3.98 4.36

�ua: �u = 0 on ∂Ω2.83 3.21 3.60 3.98 4.36

�ub: �u = 0 on ∂Ω, �u.�n = 0 at the bottom of the anodes2.83 3.21 3.60 3.98 4.36

�uc: �u = 0 on ∂Ω, �u.�n = 0 at the exterior boundary

Figure 5.10: Alumina concentration at the periodic state, shown at the bath - aluminium inter-
face, seen from above. Scale with mininum/maximum of the result using �ub for all images.
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2.51 3.25 3.98 4.72 5.46

�ua: �u = 0 on ∂Ω2.51 3.25 3.98 4.72 5.46

�ub: �u = 0 on ∂Ω, �u.�n = 0 at the bottom of the anodes2.51 3.25 3.98 4.72 5.46

�uc: �u = 0 on ∂Ω, �u.�n = 0 at the exterior boundary

Figure 5.11: Alumina concentration at the periodic state, shown at the bath - aluminium inter-
face, seen from above. Scale with mininum/maximum of the result using �ua for all images.



Chapter 6

Validation of the numerical solution

In order to validate our model and its numerical solution, two experiments on real aluminium
electrolysis pots were carried out. We describe shortly the setting of the experiments. Then we
compare numerically computed and measured concentrations for both experiments. The chapter
ends with a conlusion of the comparison results.

6.1 Description

The experiments were done on a normal working aluminium electrolysis cell. The aim was to
measure the total alumina concentration at different points in the bath, over a certain time.
During these measurements, the cell was in two different feeding modes.

In the first experiment, the feeding was periodic and such that the alumina concentration
should have remained constant over time in the bath. Feeding was done at four different po-
sitions, in the order -4.4, 1.6, -1.6, 4.4 [m]. The feeding period was 64 seconds and the four
alumina additions took place in each period at times 0, 16, 32, 48 [s], respectively. Each mea-
sure was taken when the feeder at -4.4 [m] added its load to the bath. The measures were done
at 9 different positions. These positions are depicted by black dots on Figure 6.1, and they are
numbered from 1 to 9. Four measures for each position were taken. Each measure was cut into
three pieces, and the alumina concentration of every piece was determined. Since the cell was
supposed to be in a periodic state, all the results at one position should have been the same. We
therefore computed the mean and the standard deviation σ of the 12 results at each position.
Those two quantities are reported in columns 2 and 3 of Table 6.1, in the unit weight percents.

In the second experiment we were interested in the alumina distribution when the feeding
was turned off, which is called ”control tracking”. The feeding of the cell was stopped, and after
5 minutes 4 measures at the same 9 positions as in the first experiment were taken, the time
between two successive measures being one minute. We consider only the last measure, which
was thus taken 8 minutes after the feeding was stopped. Since again each measure was cut into
three pieces, we compute the mean and the standard deviation σ of the results at each position,
which we show in Table 6.2.

For this second experiment we have to adjust our alumina consumption. In the real cell
there is a crust of solid cryolite at the boundary of the bath. This crust is not contained in
the mesh we use, and therefore the volume of the numerical bath is bigger than the volume of
the real bath. The numerical alumina consumption is computed such that the mass of alumina
consumed in the numerical problem is equal to the same real quantity. If we denote the total
mass of alumina in the bath by m and mh for the real and the numerical bath, respectively,
then the above statement implies that ṁ = ṁh (the dots denote time derivatives). The average

61



62 CHAPTER 6. VALIDATION OF THE NUMERICAL SOLUTION

alumina concentration in the bath is computed by

c̄ =
m

MV
.

Since the real volume V is smaller than the numerical volume Vh, we find that

˙̄c =
ṁ

MV
>

ṁh

MVh
= ˙̄ch,

i.e., the average concentration varies less in the numerical bath than in reality, or here, when we
stop the feeding, the average concentration decreases more slowly in the numerical problem than
in reality. Since this affects exactly the result we want to verify with the experiment we have
to correct the alumina consumption. The weight of the bath is about 7.8 tons in the numerical
bath, and about 5.5 tons in the real bath. Hence we multiply the consumption by the factor
7.8/5.5.

The initial concentration of alumina in the bath is not known. When doing the comparisons
we start with 3 [wt%] for the first experiment and 2.7 [wt%] for the second experiment. This
assumption gives reasonable results, but it could be wrong.

1 2 3 4

9

8765

busbar

anode

Figure 6.1: A schematic representation of the electrolysis cell, seen from above, and of the
positions 1 to 9 at which the measurements of the two experiments were done. The measurement
positions are at a distance of about 50 centimetres from the boundary.

6.2 Comparison with the first experiment

When doing the numerical computation we take the setting of the experiment and compute the
periodic state. For the first experiment, once this state is attained, we simulate one more feeding
cycle and compute the values of the total alumina concentration, i.e., the particle density plus
the liquid alumina concentration, at the 9 measurement positions and at the time when the first
feeder dumps its load to the bath. Since the results of the experiments are expressed in weight
percents, we have to compute the conversion of the concentration c and the particle density np

to wt%. We first compute the mass of the alumina in a volume V by

mh = M

∫
V

chdΩ +
4
3
πρ

m∑
j=1

R3
jΔRj

∫
V

np,j,hdΩ. (6.2.1)
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position measure σ �ua �ub �uc

1 3.11 0.14 2.97 2.97 2.93

2 3.24 0.12 3.01 2.97 2.98

3 3.04 0.12 3.01 2.99 2.98

4 2.92 0.10 2.94 3.01 2.98

5 3.02 0.08 2.93 2.95 2.86

6 2.90 0.06 2.92 3.27 2.86

7 2.91 0.11 2.87 2.92 2.79

8 2.84 0.20 2.95 3.00 2.88

9 2.89 0.08 2.72 3.00 3.09

Table 6.1: Results of the first experiment. We show the measured average alumina concentration
in the bath as well as the standard deviation σ of the measured values, followed by the numerical
results obtained using different velocity fields. All quantities are in the unit [wt%].

Denoting then the concentration in the unit wt% by cw, the conversion formula is the following:

cw =
mh

mh

(
1 − ρb

ρ

)
+ ρbV

, (6.2.2)

where ρ is the density of alumina and ρb the density of the bath. We compute the total alumina
concentration in the bath for the three velocity fields �ua, �ub and �uc introduced in Section 5.3.
The results are shown in Table 6.1, and, graphically, on Figure 6.2.

Some comments about the results are in order. We note that the behaviour of the results of
�ua and �uc are similar, except at point 9. This can also be seen on Figure 6.3, where we show the
total alumina concentration in the bath at the bath - metal pad interface for the two velocity
fields. When looking at Figure 6.3 we see the difference at point 9, and a similar difference at
the opposite end of the cell, but otherwise the concentration distribution is very similar and
also the minimum and maximum values are nearly the same. We notice that the concentration
is rather uniformly distributed except for the regions near the feeder positions. The general
behaviour of the measured values is quite different from the one computed using �ua or �uc, i.e.,
the relations between the alumina concentration at different points are often not the same for
the measurements and the numerical computations. The largest error for velocity field �ua is at
position 2, and it is about 7%. For �uc this maximal error is about 8% and it is also attained
at position 2. In view of the fact that the measurement errors are supposed to be in the order
of 10%, these differences between measured and computed values are very satisfying. Thus, the
overall behaviour of the numerical solution is different from the measured alumina concentration,
but if we compare the values point by point the errors are very small.

The results using velocity field �ub are almost equal (except for position 6, see below), and if
we check the alumina concentration in the whole bath, shown on Figure 6.4, we see that it is
nearly uniformly distributed. We notice that the maximum is lower and the minimum higher
than for the two other velocity fields. Again the behaviour of the measure and the numerical
solution are different, and again the differences point by point are small. The second largest
error, attained at position 2, is about 8% only.

The maximal error is attained at position 6 with 13%. But if we check the alumina distri-
bution at this point on Figure 6.4 we see that position 6 lies in the trace of a freshly added
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Figure 6.2: Results of the first experiment shown as a bar plot. The measured average alumina
concentrations are in black, and the numerical results are in dark grey, light grey and white for
the velocity fields �ua, �ub and �uc respectively.

particle load. Since this trace will vanish and reappear during each feeding cycle we suppose
that the concentration varies strongly over time at this point. To verify this, we plot the time
evolution of the concentration at this point over one feeding cycle, shown on Figure 6.5. The
value of the concentration in Table 6.1 is taken at time 5008 [s]. We notice that if we had
taken the value at 5040 [s], which is half a feeding period later, the alumina concentration would
be about 3.16 [wt%]. This shows that the influence of the feeders on the alumina distribution
can be important, at least in the numerical model, but probably also in reality. At least the
differences between the standard deviations of the measurements are explained by this reason
by the engineers who did the experiments.

The measurements were all taken at a distance of about 50 centimetres from the boundary
of the bath. Hence, for the numerical results shown in Table 6.1 all the concentrations were
computed at 50 centimetres from the boundary. But since the distance between the measurement
positions and the boundary of the bath is not exactly 50 centimetres we also compute the alumina
concentration at other distances from the boundary. These concentrations, again for position 6
and velocity field �ub, are plotted on Figure 6.6. We see that the concentration varies strongly
during one feeding cycle if the distance to the boundary is between 40 and 60 centimetres, but
closer to the boundary the variation is relatively small. We conclude that the distance between
the boundary of the bath and the measurement position can have an important impact on the
measured concentration. We also note that for most of the measurement points taken here this
is not the case in the numerical solution, as can easily be seen on the Figures 6.3, 6.4.

We varied different parameters of the numerical computation in order to get more accurate
results. We changed the feeding function in space, adding the load in a smaller or bigger ellipsoid,
we used the consumption model including the current density, we varied the diffusivity constant
in the range [4·10−5,10−8], we changed the time for the dissolution of the biggest particles from
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2.51 3.27 4.03 4.79 5.55

2.47 3.21 3.95 4.69 5.43

Figure 6.3: Total alumina concentration at the bath - metal pad interface, for the first exper-
iment. Numerical results obtained using �ua (above) and �uc (below), in their respective linear
scales. View from above.

10 to 6 [s], and we used a latency time for the particle dissolution of up to 2 seconds. However,
the differences between the various solutions were always very small, in the order of less than
1%. It thus seems that the influence of the velocity field is much stronger than all the other
parameters of the model.

We also change the way the velocity field was computed. The fields used here are computed
by solving Problem 1.3.4 with the turbulent viscosity model (1.3.5), and we discard the part
associated with the bubble functions at the end. If we include the bubble functions in our velocity
field, the alumina concentration distribution becomes much less uniform. But especially if we
use the laminar viscosity model (1.3.4), the alumina distribution changes a lot compared to the
results presented here. The difference between the velocity fields obtained with the turbulent
viscosity model and those obtained with the laminar viscosity model is mostly that there are
many small vortices when using the turbulent viscosity, which are not present when we use the
laminar viscosity. We conclude that the alumina distribution depends very much on the velocity
field.
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2.83 3.17 3.52 3.86 4.20

Figure 6.4: Total alumina concentration at the bath - metal pad interface, for the first experi-
ment. Numerical result obtained using �ub. View from above.
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Figure 6.5: The total alumina concentration at position 6, for �ub.
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Figure 6.6: The total alumina concentration at position 6, for �ub. The distance between position
6 and the boundary of the bath is varied from 30 to 60 [cm].
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position measure σ �ua �ub �uc

1 2.34 0.06 2.33 2.26 2.32

2 2.39 0.04 2.34 2.25 2.33

3 2.21 0.04 2.34 2.26 2.31

4 2.20 0.06 2.29 2.30 2.36

5 2.38 0.03 2.27 2.20 2.23

6 2.34 0.06 2.26 2.11 2.19

7 2.32 0.06 2.23 2.18 2.14

8 2.18 0.01 2.31 2.18 2.27

9 2.08 0.03 2.03 2.17 2.14

Table 6.2: Results of the second experiment. We show the measured average alumina concen-
tration in the bath as well as the standard deviation σ of the measured values, followed by the
numerical results obtained using different velocity fields. All quantities are in the unit [wt%].

6.3 Comparison with the second experiment

Now we turn to the second experiment, where we also start from the periodic state, but then
stop the alumina feeding. We compute the alumina repartition in the bath 8 minutes after we
stopped the feeding and compute the total alumina concentration at the measurement positions.
The results obtained for the three velocity fields are in Table 6.2 and, graphically, on Figure 6.7.

The comparison between the measurements and the numerical results of the second experi-
ment lead to a similar conclusion as for the first experiment. The results for velocity fields �ua

and �uc behave quite similarly, see Figure 6.8, but not always in the same way as the measured
values. Since the feeding was stopped the concentration is now more uniform than in the first
experiment. We notice that the concentration is lowest in the centres of the vortices of the ve-
locity field, by comparing with Figure 5.4. Again, the differences point by point are very small.
The maximal error for �ua is only 6%, at position 3, and for �uc it is 8%, attained at position 7.

Using velocity field �ub we still have a very uniform alumina distribution over the whole bath,
as shown on Figure 6.9. On the figure there are only two zones where the concentration is much
lower than in the rest of the bath, and if we compare with Figure 5.4 we see that these zones are
the centres of the large vortices. The smaller vortices seem to have less effect on the alumina
concentration than using �ua and �uc. Even if the concentration looks rather uniform the values at
the measurement positions vary sensibly, and differently than in the experiment. The maximal
error is 10% at position 6, which is still a very good agreement.

Also for this second experiment we changed the parameters of the numerical computation,
trying to get results that are closer to the measured values, but again the values at the mea-
surement positions changed less than 0.02 [wt%].

6.4 Conclusion

We used the results of two real world experiments to validate our numerical results and our
model. The measurement errors are supposed to be in the order of 10%. In view of this the
point by point errors of the numerical solutions, which are in the order of 5 to 10%, are very
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Figure 6.7: Results of the second experiment shown as a bar plot. The measured average alumina
concentrations are in black, and the numerical results are in dark grey, light grey and white for
the velocity fields �ua, �ub and �uc respectively.

good. However, the relative concentration differences between different positions do not match
well, i.e., the overall behaviour in the experiment and the numerical solution is rather different.
The initial average concentration in the bath is not known for the experiments. We have made
assumptions which give well matching results when doing our validation, but we note that the
validation would be more significant if the initial average concentration was known.

We notice that the numerical result is sensitive to the distance between the boundary and
the measurement position. We also notice that the feeding in the first experiment can have a
non-neglectable influence on the pointwise results. This influence is important in the model, but
engineers suppose that it is also important when doing the measurements. It is crucial to know
the exact consumption when comparing the result of the second experiment with the numerical
results.

We find that the numerical result depends mostly on the velocity field. Changing other
parameters like the feeding function, the consumption model, the diffusivity coefficient or the
particle dissolution speed does not significatively alter the result. Changing the way of how to
compute the velocity field can change drastically the alumina concentration distribution.

If further improvements of the model are to be made, more precise measurements are needed,
including information about the initial average alumina concentration in the bath. In this case
it is also important to validate more precisely the velocity field.
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1.86 2.00 2.13 2.26 2.40

1.87 2.00 2.13 2.27 2.40

Figure 6.8: Total alumina concentration at the bath - metal pad interface, for the second
experiment. Numerical results obtained using �ua (above) and �uc (below), in their respective
linear scales. View from above.

1.94 2.04 2.14 2.24 2.35

Figure 6.9: Total alumina concentration at the bath - metal pad interface, for the second
experiment. Numerical result obtained using �ub. View from above.



Chapter 7

Conclusion

We developed a model which describes what happens to the alumina in the electrolytic bath
of an aluminium production cell. The model starts with the feeding of the alumina, continues
with the convection and the dissolution of the particles, treats the convection-diffusion of the
emerging liquid alumina concentration and ends with the consumption of the concentration by
electrolysis.

The model is discretized using finite elements stabilized by the SUPG method. It is easy
to solve the linear systems that appear. However, the underlying velocity field of the bath,
computed by solving a P1 − P1 stabilized discretization of the Navier-Stokes equations, is not
divergence free, in such a way that the mass balance of the numerical solution of the alumina
problem is not acceptable. One solution of this problem was to stabilize the Navier-Stokes
equations by bubble functions, which gave much smaller values for the divergence of the velocity
field. Another possibility to ensure a correct mass balance was the use of an original weak
formulation of the convection and convection-diffusion problems. This formulation does not
only guarantee the correct mass balance, even if the divergence of the velocity field is nonzero,
but it also stabilizes the scheme and ensures that the L2-norm of the solution is bounded by the
source term.

With the final discretization, the numerical solution of the alumina problem becomes peri-
odic, and does not depend on the initial condition. This is a very positive result for two reasons.
First, we expect the solution to be periodic since this is also the case in reality. And secondly,
this allows to optimize a definitive result in the second part, not only some intermediate state,
i.e., if we choose the final time of the simulation sufficiently large, the result of the optimization
will be independent of this final time and of the initial condition.

Finally, a validation of the numerical results was done by comparing them to results of real
world experiments. The conclusion of this comparison was that our numerical results are very
close to the measurements, and that they depend mostly on the velocity field.

In summary, we have a simple model of the alumina evolution in the bath, whose discretiza-
tion is easy to solve and which gives numerical results that are satisfyingly accurate.

If further work was to be done concerning this alumina problem, more precise measurements
of real world experiments are needed, and the velocity field has to be validated more precisely.
To refine the model, if this was necessary, we would start with the improvement of the feeding of
the particles to the bath, and the consumption of liquid alumina by electrolysis. The model of
these two parts are rather coarse so far. Then, one could think of the introduction of buoyancy
forces acting on the particles, or consider the inertia and the clustering of the particles.
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Chapter 8

Problem formulation

As pointed out in the introduction, we would like the alumina concentration in the bath to be
as uniform as possible. In this part, we proceed to reach this aim by optimization. We will
first describe the physical problem. In Section 8.2, we will give a very short introduction to
optimization theory. Then we will formulate our problem mathematically. At the end, several
specific optimization problems will be presented.

8.1 Physical problem

In the initial description of the aluminium reduction process, we noted the importance of having
the alumina concentration in the bath constantly between 1.5 and 3 [wt%]. If the concentration
is above this interval, the solid alumina added to the bath will not dissolve and sink to the
bottom of the cell, with the result that the current efficiency decreases. In the case of too low
concentration, the cell goes into anode effect, meaning that the aluminium production will be
interrupted and green house gases will be produced instead.

A rather uniform alumina concentration in the bath is therefore important for the efficiency
of the aluminium production. Based on the simulation of the concentration presented in the first
part, we will now vary different parameters of the alumina feeding system in order to optimize
the uniformity of the concentration in the bath. Our aim is a constant concentration over the
whole bath, varying only periodically in time according to the feeding period. This constant
concentration should be attained when the cell is in its periodic state.

There are several parameters which define the feeding and which can be changed. We suppose
that the feeding is done periodically, with each period having the same length and having the
same parameters. For example, if we have four feeders in a cell, we can fix the length of one
feeding period, in which each feeder will add one alumina load to the bath. We also have to fix
the position of each feeder, the time, when each feeder gives its alumina load to the bath, and
the size of each alumina load. But we can only fix the parameters of the first feeding period,
and all the following periods will be exactly the same as the first one. The parameters to vary
are thus the feeder positions, the feeding times, the load sizes and the feeding period length.

We will again make the simplifying assumption that the alumina concentration does not have
any influence on the cell. In particular, we suppose that the current efficieny remains constant
and that the alumina consumption by electrolysis is uniform over the part of the bath lying under
the anodes. The only exception to this last statement occurs when the local concentration goes
below zero, in which case the consumption in the domain with negative concentration is zero
and the total consumption is uniformly distributed on the rest of the bath below the anodes,
i.e., we use the threshold consumption model of Section 4.2.
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8.2 Short introduction to optimization

The mathematical formulation of an unconstrained optimization problem is given by

min
�x

J(�x), (8.2.1)

where �x ∈ R
n is the vector of optimization variables and J is the objective function.

We are trying to find a global minimizer of J . We have the following

Definition 8.2.1. A point �x∗ is a global minimizer if

J(�x∗) ≤ J(�x), ∀�x ∈ R
n. (8.2.2)

Since we do not have information about the overall shape of J we usually cannot assure that
the solution found is a global minimum. Most algorithms are able to find only local minima.

Definition 8.2.2. A point �x∗ is a local minimizer if there exists a neighbourhood N of �x∗ such
that

J(�x∗) ≤ J(�x), ∀�x ∈ N. (8.2.3)

Analogically, we have a strict local minimizer defined by

Definition 8.2.3. A point �x∗ is a strict local minimizer if there exists a neighbourhood N of
�x∗ such that

J(�x∗) < J(�x), ∀�x ∈ N with �x �= �x∗. (8.2.4)

Following these definitions, one would have to check all possible �x in a neighbourhood to
assure a local minimum. When the function J is smooth, there are more efficient ways to identify
local minima. We are most interested by sufficient conditions which guarantee that �x∗ is a local
minimizer. One such condition is given by the following

Theorem 8.2.4. Suppose that ∇2J is continuous in an open neighbourhood of �x∗ and that
�∇J(�x∗) = 0 and ∇2J(�x∗) is positive definite. Then �x∗ is a strict local minimizer of J .

Here, ∇2J denotes the Hessian matrix of J . For a proof of the theorem, see for example [29,
theorem 2.4].

8.3 Mathematical formulation of the optimization problem

The aim is a uniform concentration in the bath, varying only periodically in time according to
the feeding period. It will certainly not be possible to reach a uniform concentration, because of
the accumulations created by freshly added particles that are dissolving, but we want to have as
little variations as possible in the concentration field. The idea is to define an objective function
J which measures the distance of the concentration distribution to a uniform concentration.
The objective function will be positive, and when it is zero the concentration is uniform in the
bath. We then want to minimize J .

There are several ways to compute the variation of the concentration. In analogy with the
computation of statistical variance we propose

J = ‖c − c̄‖a, (8.3.1)
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with ‖.‖a a norm that we will specify below. The objective function J will be considered as
a function of the optimization variables, which in any case will not appear explicitly in the
concentration. We denote by c̄(t) the mean of the concentration over the bath at time t, i.e.,

c̄(t) =
1

|Ωel|

∫
Ωel

c(�x, t)dΩ. (8.3.2)

The choice of the time t at which to measure J is arbitrary if we are at the periodic state of
the cell, when c is periodic. The objective function J will then forcibly be a periodic function.
In order to control the variance of c over one complete feeding period, we will take the mean
of ‖c(t) − c̄(t)‖b over one period, where ‖.‖b is some norm in space. Thus, denoting the feeding
period by ΔT , we define the norm ‖.‖a by

‖c‖a =
1

ΔT

∫ T

T−ΔT
‖c(t)‖bdt. (8.3.3)

Here, T is the final time of the simulation. We also have to define the norm in space. We
would like to have a norm which gives a ”nice” objective function when varying the optimiza-
tion parameters. Here, ”nice” means smooth and with clear differences between minima and
maxima, and if possible there should be a small number of local minima in order to simplify the
minimization. All of the Lp norms seem to be adequate candidates and we choose the mean of
the L2 norm. Different Lp norms will be used for comparison in Section 10.1 and we will justify
our choice. Hence, our objective function will in general be defined by

J =
1

ΔT |Ωel|

∫ T

T−ΔT

∫
Ωel

(ch(�x)(t) − c̄h(t))2dΩdt. (8.3.4)

We showed in the first part in Section 5.3 that a periodic solution of the concentration is
reached. But starting from a uniform concentration, the time to reach this periodic state might
be rather long. For example, when working with velocity field �ua or �uc, defined in Section 5.3, we
saw that it takes about 4000 simulated seconds to reach the periodic state, and the computation
time for this simulation is about two hours. Computing the value of the objective function J
means simulating the alumina feeding up to the periodic state. At this point J will be constant,
since we take the mean over the feeding period. For an optimization, where we want to compute
the objective function many times for different values of the optimization variables, this final
time is large, the optimization would take a very long time. When looking at the simulation,
we see that the concentration reaches an almost periodic state long before it remains strictly
periodic, meaning that the objective function will not change much from a certain point on. We
will therefore work with a final time T which is only 10 times the length of the feeding period.
A debate about the validity of this assumption will be held in the results section.

We are not so much interested in the minimal value of the objective function that we can
reach, but more in the values of the optimization variables which give that minimal value. These
results should be independent of the discretization of the simulation. This implies that we have
to use a fine discretization when we optimize. At the same time, as noted above, we will have
to compute the simulation many times and thus we want to have a coarse discretization which
gives fast results.

In the following we will give specific optimization problems with different optimization vari-
ables. When minimizing the objective function with respect to certain variables, for example
the feeder positions, then all the other variables of the feeder configuration, for example the load
weights and the feeding times, are fixed. We could also minimize J with respect to all variables
of the feeder configuration, but it would take a very long time to do this, because the number of
variables is much larger, and thus the complexity of the optimization problem is much higher.
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Optimization of the feeder positions

First, we will consider an optimization with respect to the position of the alumina feeders. We
suppose that the feeders can take any position in the central channel. Thus, for any feeder we
can define the x-component of its position. We set the origin of the x-axis in the middle of the
cell and define 2L to be the length of the cell. Denoting the optimization variables by x1, . . . , xn

we have the following optimization problem:

min
(x1,...,xn)

J(x1, . . . , xn) (8.3.5)

− L ≤ xi ≤ L, 1 ≤ i ≤ n. (8.3.6)

Since we prefer to have an unconstrained problem, we introduce the following change of variables:

x′
i = tan

(π

2
xi

L

)
, 1 ≤ i ≤ n. (8.3.7)

Hence, −∞ < x′
i < ∞, and the optimization problem becomes simply

min
(x′

1,...,x′
n)

J ′(x′
1, . . . , x

′
n). (8.3.8)

We note here that the optimum to be determined is not found for xi = ±L, i.e., for x′
i = ±∞,

and thus the optimum can be determined in the modified variables.

Optimization of the feeding times

Here, we want to optimize the objective function with respect to the alumina feeding times. The
feeding period is fixed to ΔT . One feeding time is arbitrary since we have a feeding cycle. All
other feeding times are between 0 and ΔT . Denoting the optimization variables by τ1, . . . , τn−1

we have the following optimization problem:

min
(τ1,...,τn−1)

J(τ1, . . . , τn) (8.3.9)

0 ≤ τ i ≤ ΔT, 1 ≤ i ≤ n − 1. (8.3.10)

Again we can make a change of variables

τ i′ = tan
(

π
τ i

ΔT
− π

2

)
, 1 ≤ i ≤ n − 1, (8.3.11)

to get an unconstrained optimization problem

min
(τ1′,...,τn−1′)

J ′′(τ1′, . . . , τn′). (8.3.12)

However, when we computed some values of J for different feeding times we noticed that the
difference of these values is very small, i.e., in the order of 1-2%. We did some further tests
on this problem. Our conclusion regarding this optimization problem is twofold. First, if we
want to solve this problem we have to work with integer values for the optimization variables
τ i, because otherwise the objective function shows a singularity when τ i passes from noninteger
to integer values. The function is continuous, but it is not differentiable, and the optimization
of this function, which has a peak at every integer value of τ i, is very difficult. And secondly,
more important, we noticed that if the added total weight of alumina was correct, the influence
of the feeding times on J was very small, no matter which feeding times were chosen. Since
it does not make sense to minimize a function where the minimum value is more than 95% of
the maximum value, or, put differently, where the maximum gain is less than 5%, we will not
pursue this problem.
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Optimization of the load weights

Another parameter we can change is the alumina load weight of each feeder. Since we suppose
that the current efficiency is constant, the total mass of alumina consumed is known. Thus
we have to make sure that the sum of the alumina loads of all feeders corresponds to the mass
consumed during one feeding period, denoted by M . We denote the alumina loads by w1, . . . , wn.
The optimization problems becomes the following:

min
(w1,...,wn)

J(w1, . . . , wn) (8.3.13)

0 ≤ wi ≤ M, 1 ≤ i ≤ n, (8.3.14)
n∑

i=1

wi = M. (8.3.15)

So here we not only have bounds on each variable but also a constraint on the sum of the
variables. We introduce a similar change of variables as before

w′
i = tan

(
π

wi

M
− π

2

)
, 1 ≤ i ≤ n − 1, (8.3.16)

which gives us −∞ < w′
i < ∞, i = 1, . . . , n − 1. The problem here is that we do not control

the sum of the weights. If we set wn = M −
∑n−1

i=1 wi we are sure that
∑n

i=1 wi = M , but it is
possible that wn < 0, which is not realistic. And if we impose

wn = max(M −
n−1∑
i=1

wi, 0) (8.3.17)

then we ensure
∑n

i=1 wi ≥ M , but the inequality can be strict, hence, it is possible that we
add too much alumina. However, when doing computations with setting wn as in (8.3.17), the
value of J increases when the sum of the weights goes beyond M . Thus, when minimizing
J with respect to the load weights, the minimum is always found for weights which respect∑n

i=1 wi = M . This is not a complete surprise, because if we add too much alumina during
each feeding cycle, the total amount of alumina in the bath will increase. Hence, the differences
between regions with a high or low alumina concentration will become more pronounced, and
the variance J will thus be higher. In what follows we will therefore consider the problem

min
(w′

1,...,w′
n−1)

J∗(w′
1, . . . , w

′
n) (8.3.18)

w′
n = tan

(
max

(
1 − n

2
π −

n−1∑
i=1

arctan(w′
i), 0

)
− π

2

)
, (8.3.19)

where (8.3.19) is equivalent to (8.3.17), but is here written in the new variables.
If the objective function would not admit such a simplification, we would have to work with a
constrained optimization problem, which could be solved using Lagrange multipliers.

Optimization of the feeding period

Finally, we can also change the feeding period. We have to fix a minimum feeding period ΔTm

because the feeders can not add alumina continuously. And we also fix a maximum period ΔTM .
By making the change of variables

ΔT ′ = tan
(

π
ΔT − ΔTm

ΔTM − ΔTm
− π

2

)
(8.3.20)
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we get the unconstrained optimization problem

min
ΔT ′

J∗∗(ΔT ′). (8.3.21)

We note that this is an optimization problem with one single variable. Doing some tests we
notice that the minimum of J is always attained for the minimum feeding period ΔTm. This is
not so much surprising, because we think that the alumina particles are best distributed if they
are continuously added to the bath, which is not possible for technical reasons. Thus, we will
skip this problem because the solution is always the shortest technically possible period.



Chapter 9

Optimization algorithms

We will start this chapter by explaining the basics of line search methods and in particular
of Newton’s method. In the following sections, we will give a short overview of automatic
differentiation and continue by describing the Particle Swarm Optimization (PSO) algorithm.
In the last section, we will discuss some of the fundamental differences between Newton’s method
and PSO.

9.1 Newton’s method and line search

Line search methods are iterative methods for solving optimization problems. At each step, one
chooses a direction �pk, and, from the current iterate �xk, tries to find a step length α which solves

min
α>0

J(�xk + α�pk). (9.1.1)

The next iterate is then �xk+1 = �xk + α�pk. This one-dimensional minimization problem is not
solved exactly because this might be too expensive and it is usually not necessary. Instead, a
step length is computed by the line search algorithm which approximates the minimum. At
the new iterate a new search direction and a new step length are computed, and this process is
repeated.

Since we do not want to solve the line search problem exactly, we need a criterion that tells
us whether a certain step length approximates sufficiently well the minimizer or not. We face a
tradeoff because we want to reduce J as much as possible but in as few iterations as possible.
One possibility is the following. Let φ(α) = J(�xk + α�pk), α ≥ 0. If φ′(0) < 0, given μ, η ∈ (0, 1)
we want to find α > 0 such that

φ(α) ≤ φ(0) + αμφ′(0), (9.1.2)
|φ′(α)| ≤ η|φ′(0)|. (9.1.3)

The first condition forces a sufficient decrease in the function, see Figure 9.1 for an illustration.
However, this condition allows arbitrary small choices of α > 0. The second condition rules out
small choices of α. It is a curvature condition because it implies that φ′(α)−φ′(0) ≥ (1−η)|φ′(0)|,
and thus, that the average curvature of φ on (0, α) is positive. An illustration of this condition is
shown on Figure 9.2. Moré and Thuente [28] describe an algorithm which produces a sequence
of iterates that converge to an α which satisfies conditions (9.1.2) and (9.1.3) when μ ≤ η.

In Newton’s method, the search direction is given by

�pk = −(∇2J(�xk))−1�∇J(�xk). (9.1.4)
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Figure 9.1: Sufficient decrease condition

φ(α) = J(�xk + α�pk)

ηφ′(0)

α

acceptable acceptable
acceptable

Figure 9.2: Sufficient curvature condition
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We know that for all �x in a neighbourhood of a minimum �x∗ such that ∇2J(�x∗) is positive
definite, the Hessian ∇2J(�x) will also be positive definite. Newton’s method will be well defined
in this region. We have the following

Theorem 9.1.1. Suppose that J is twice differentiable and that ∇2J(�x) is Lipschitz continuous
in a neighbourhood of a solution �x∗ at which the sufficient conditions of Theorem 8.2.4 are
satisfied. Consider the iteration �xk+1 = �xk + �pk, where �pk is defined by (9.1.4). Then

1. if the starting point �x0 is sufficiently close to �x∗, the sequence of iterates converges to �x∗;

2. the rate of convergence of {xk} is quadratic.

For a proof, see for example [29, theorem 3.5].
For our computer implementation we use the library TAO (Toolkit for Advanced Optimiza-

tion) [5], which is part ot the PETSc project developed by Argonne National Laboratory [4].
TAO implements the line search algorithm with the stopping criteria described in [28]. The algo-
rithm needs to evaluate the function, gradient and Hessian of the objective function for certain
values of the optimization variables, and using this information it computes new directions using
Newton’s algorithm. We compute the gradient and Hessian of J using automatic differentiation.
A short introduction to this method is given in the next section.

9.2 Automatic differentiation

We want to differentiate the function J which depends on several variables, for example on the
positions of the feeders xi. The values of J are computed with a computer program which takes
xi as input variables and gives J(xi) as the output. The program might do a lot of steps during
the computation, but every step is a very elementary operation, for example a multiplication, or
computing the sinus of an argument. To differentiate J with respect to xi we can apply the chain
rule to the computer program, i.e., every elementary operation will be differentiated separately
and multiplied by the result of the previous step. Only numerical values are stored, we do not
compute a symbolic derivative. The differentiation will take a lot of steps, but every step is
easy to compute, like in the underlying computer program. This way of obtaining the derivative
is called automatic differentiation. According to [19], automatic differentiation started already
with Newton and Leibniz, and has since then been rediscovered several times.

There are two ways of computing derivatives: the forward mode and the reverse mode. In
the next two subsections we explain by examples how the forward and the reverse modes work.
For more details about automatic differentiation the reader is referred to the book written by
Griewank and Walther [19].

At the end of this section, we discuss the choice of the differentiation mode for our optimiza-
tion problem.

Forward mode by example

We want to differentiate y = f(x) = sin(x2) for x = 2. y could be computed in the following
way:

v0 = x = 2

v1 = v2
0 = 4

y = v2 = sin(v1) = −0.75680.
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We introduce for each variable vi the variable v̇i = ∂vi
∂x . ẋ is initialized to 1 since we want to

differentiate f with respect to x. We compute

v̇0 = ẋ = 1
v̇1 = 2v0v̇0 = 4
v̇2 = cos(v1)v̇1 = −2.6146.

Thus, we find f ′(x)|x=2 = −2.6146. Every step of the differentiation could be done just after
the corresponding step of the function evaluation, i.e., v̇i can be computed just after vi has been
calculated. Therefore, computing the derivative of f with respect to x can be done at the same
time as evaluating f(x). The time to compute the derivative is proportional to the time to
evaluate the function.

If the function �f is a vector-valued function, the forward mode computes the derivative of
each component in one sweep, i.e., the time to compute the derivative does not depend on the
number of components of �f .

On the other hand, if f depends on a vector �x we have to repeat the derivative step for
every component of �x. This implies that the time to compute the derivative is multiplied by the
number of components of �x.

As an illustration for the two last assertions we consider the vector-valued function(
y1

y2

)
= �F (x1, x2) =

(
x2 sin(x2

1)

ex1x2

)
, (9.2.1)

which we want to evaluate at (x1, x2) = (2, 3). We set

v0 = x1 = 2
v1 = x2 = 3

and we compute

v2 = v2
0 = 4

v3 = sin(v2) = −0.75680
v4 = v0v1 = 6
y1 = v5 = v1v3 = −2.2704
y2 = v6 = ev4 = 403.43.

To compute the derivative with respect to x1 we set

v̇0 = ẋ1 = 1
v̇1 = ẋ2 = 0

and we compute

v̇2 = 2v0v̇0 = 4
v̇3 = cos(v2)v̇2 = −2.6146
v̇4 = v̇0v1 + v0v̇1 = 3
v̇5 = v̇1v3 + v1v̇3 = −7.8437
v̇6 = v̇4e

v4 = 1210.3.
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We get the partial derivative of both components of �F = (F1, F2) with respect to x1,

∂F1

∂x1
(2, 3) = −7.8437,

∂F2

∂x1
(2, 3) = 1210.3.

The cost of the computation of these two derivatives is equal to the cost of the function evalua-
tion.

If we wanted to compute the derivatives with respect to x2 we would have to do analogous
computations as for x1 again, multiplying thus the computational effort for the differentiation
by 2.

Reverse mode by example

Again we want to differentiate the function y = f(x) = sin(x2) introduced in the previous
section. We recall the way y is computed for x = 2:

v0 = x = 2

v1 = v2
0 = 4

y = v2 = sin(v1) = −0.75680.

This time, we introduce to each variable vi the variable v̄i = ∂y
∂vi

. We initialize ȳ to 1 since we
want to differentiate y with respect to x. We compute

v̄2 = ȳ = 1
v̄1 = cos(v1)v̄2 = −0.65364
v̄0 = 2v0v̄1 = −2.6146.

We find the same value for f ′(x)|x=2, but this time we had to know all the intermediate compu-
tations for f to be able to differentiate. This implies that the function has first to be evaluated
and only then it is possible to compute the derivative using reverse mode.

There are two main possibilities to compute the derivative in reverse mode: either we first
compute f and store all intermediate values, or we compute the intermediate values each time
we need them. The first possibility is illustrated on Figure 9.3. We compute v1, v2, . . . , vn and
we store all these values. Then we compute v̄n, v̄n−1, . . . , v̄0. The time to compute the derivative
is proportional to the time to evaluate the function, but since all intermediate values of the
function have to be stored, the memory requirement could be very high. The second possibility
is illustrated on Figure 9.4. Here we compute vn, v̄n, vn−1, v̄n−1, and so on, until v̄0. The time
to compute the derivative is proportional to the square of the time to evaluate the function, but
very little memory is used.

Hence, we either store all intermediate values and use a lot of memory, or we compute all
intermediate values when needed and use a lot of time. The choice depends on the computation
which needs to be done. It is also possible to combine the two possibilities, i.e., to store only a
part of the intermediate results and to recompute the other values when needed.

If the function �f is a vector-valued function, the reverse mode has to be computed once for
every component of �f , i.e., the time to compute the derivative is proportional to the number of
components of �f .

On the other hand, if f depends on a vector �x, the derivative is computed in one sweep,
implying that the time to compute the derivative is independent of the number of components
of �x.
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Again to illustrate the two last assertions we consider the function defined in (9.2.1). The
function evaluation is still the same. To compute the derivative of F1 we set

v̄6 = ȳ2 = 0
v̄5 = ȳ1 = 1

and we compute

v̄4 = v̄6e
v4 = 0

v̄3 = v1v̄5 = 3
v̄2 = cos(v2)v̄3 = −1.9609
v̄1 = v0v̄4 + v3v̄5 = −0.75680
v̄0 = v1v̄4 + 2v0v̄2 = −7.8437.

Hence we get

∂F1

∂x1
(2, 3) = −7.8437,

∂F1

∂x2
(2, 3) = −0.75680.

To compute these derivatives the computational effort is the same as for evaluating the function.

ti
m

e

v̄nv̄n−1v̄2v̄1v̄0

v3v2v1v0 vnvn−1

Figure 9.3: Illustration of the reverse mode: Computation of the derivative storing all interme-
diate results. At every black dot the intermediate result is stored. Inspired by [1].

ti
m

e

· · ·

vn

v̄n

v̄n−1

v̄n−2

vn−1

vn−2

v̄2

v̄1v̄0

v2

v1

Figure 9.4: Illustration of the reverse mode: Computation of the derivative without saving
intermediate results. Inspired by [1].
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If we wanted to differentiate F2 we would again have to do analogous computations as for
the derivative of F1, multiplying thus the computational cost for the differentiation by 2.

In this small example, there is not much difference in computing time between the forward
and the reverse mode, but if the number of variables is large, it is preferrable to use the reverse
mode because the function evaluation time would be multiplied by the number of variables. Also,
if the objective function is vector-valued and has a lot of components, it is faster to compute
the derivative with the forward mode than with the reverse mode.

Discussion

The automatic differentiation library we use in our implementation is called Sacado. It is part
of the Trilinos project developed by Sandia National Laboratories [24].

The function J we want to differentiate is scalar-valued and depends on several variables
(xi, ti, wi). Since the computation time in reverse mode is independent of the number of inde-
pendent variables, it seems profitable to use the reverse mode to compute the derivative. There,
we have the choice between storing all intermediate values and recomputing them if required.
However, with a computation time proportional to the square of the function evaluation time,
the computation of one derivative would take too much time, and therefore the possibility of
recomputing intermediate values when needed is too expensive. Thus, we would have to store all
intermediate results. But preliminary tests showed that this is not feasible because the memory
requirement is much too high. It seems that our function J is too involved for the reverse mode.

On the other hand, since the number of independent variables is small, the forward mode is
still fast. The computation time simply gets multiplied by the number of independent variables,
but this is acceptable and much less expensive than squaring the function evaluation time, and
we do not have any memory issues. It is even possible to compute the Hessian of J . The function
evaluation time is now multiplied by the square of the number of independent variables, which
is still much less than the square of the function evaluation time, and again the memory is not a
problem. The Hessian gives us the possibility to use Newton’s algorithm. We therefore decided
to work with the forward mode.

9.3 Particle swarm optimization

Particle swarm optimization (PSO) was introduced in 1995 by Kennedy and Eberhart [26]. The
idea behind the algorithm is to simulate a swarm of animals, for example birds. The birds
fly randomly around, trying to find a place with a lot of food. Their flight is guided by the
point where they found most food themselves. In addition, the birds communicate with each
other. Therefore, they know where the best place for food visited by any bird lies, and they
are also attracted by this point. As a justification of the algorithm, Kennedy and Eberhart
cite sociobiologist Wilson, who wrote in a reference about fish schooling: ”In theory at least,
individual members of the school can profit from the discoveries and previous experience of all
other members of the school during the search for food. This advantage can become decisive,
outweighing the disadvantages of competition for food items, whenever the resource is unpre-
dictably distributed in patches” [39, p.209]. Kennedy and Eberhart took from the statement,
that ”social sharing of information among conspeciates offers an evolutionary advantage: this
hypothesis was fundamental to the development of particle swarm optimization” [26, p.1943].
In the following algorithm the animals will be replaced by ”particles”.
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Algorithm

We consider the minimization problem

min
�q

J(�q), (9.3.1)

with an objective function J and optimization variables �q = (q1, . . . , qn). We suppose that
ai ≤ qi ≤ bi. For example, if we want to optimize J with respect to the feeder positions, then
the variables qi would correspond to the feeder positions xi. In the following algorithm, a particle
will denote a possible vector of optimization variables �q.

The algorithm has an initialization step, followed by a loop which can be split into two steps:
a moving step and an updating step.

Initialization goes as follows: We choose N particles �x0
i , i = 1, . . . , N . Every particle has n

components, �x0
i = (x0

i,1, . . . , x
0
i,n), with ai ≤ xi,j ≤ bi, for j = 1, . . . , n. To every particle �x0

i

we associate a velocity �v0
i . The velocity has n components �v0

i = (vi,1, . . . , vi,n), one for every
variable, and it is initialized to zero. For each particle �x0

i we compute J(�x0
i ). We initialize the

individual best result of each particle pbesti = �x0
i , and compute the best result of all particles

gbest = argmin{J(�x0
i )|i = 1, . . . , N}.

We now enter the loop. For k = 0, 1, . . . we compute

• moving: for j = 1, . . . , n and i = 1, . . . , N

vk+1
i,j = wvk

i,j + c1r1(pbesti − xk
i ) + c2r2(gbest − xk

i ), (9.3.2)

xk+1
i,j = xk

i,j + vk+1
i,j , (9.3.3)

• updating:

pbesti = argmin
j=0,...,k+1

{J(�xj
i )}, gbest = argmin

i=1,...,N
{J(pbesti)}. (9.3.4)

The factors r1 and r2 are uniform random variables in the interval (0, 1). They take new values
for every i, j and k. The parameter w is an inertia factor which determines how fast the particles
are decelerated. It is usually chosen between 0.7 and 1. The parameters c1 and c2 determine the
weight of the attraction to the personal respectively the global best point. Usually, c1 = c2 = 2.
If a particle goes beyond the boundary of a certain parameter, for example if xk

i,j + vk+1
i,j > bi,

then we let it rebound at the boundary. In such a case we thus set xk+1
i,j = 2bi − xk

i,j − vk+1
i,j ,

respectively xk+1
i,j = 2ai − xk

i,j − vk+1
i,j if we had xk

i,j + vk+1
i,j < ai. Another choice would be to set

xk+1
i,j = bi, respectively ai.

The loop is executed until either a fixed number of steps is computed, or some predefined
value for J is attained, or gbest remains the same during a fixed number of steps, or the maximum
velocity reaches a lower bound, etc.

One can also introduce a local best point lbesti. Thus, for each particle �xk
i we look for the

best point in the neighbourhood of the particle. To do this, we have to specify a distance ‖.‖
and a radius ρ which define the neighbourhood of a particle. Using the local best point as a
third attractor we initialize lbesti = �x0

i , we compute �vk+1
i in the loop above by

vk+1
i,j = wvk

i,j + c1r1(pbesti − xk
i ) + c2r2(gbest − xk

i ) + c3r3(lbesti − xk
i ), (9.3.5)

and lbesti is updated by

lbesti = argmin{J(�xj
r)| ‖�xk+1

i − �xj
r‖ < ρ, 0 ≤ j ≤ k + 1, 1 ≤ r ≤ N}. (9.3.6)
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To illustrate the algorithm we show a small example on Figure 9.5. First we show the
objective function J , which here depends on two variables �q = (q1, q2), with q1 in x-direction and
q2 in y-direction. The darker the color the lower is the value of J . When doing an optimization
this overall picture of the function is not known.

The parameters 0.5 < w < 1, c1 = 2 and c2 = 2 are set. We will work with a rebounding
boundary condition. In the initialization step, the positions of two particles �x1 and �x2 are chosen
randomly, and they are called �x0

1 and �x0
2 respectively. The velocities of the particles are set to

zero. After the initialization we have gbest = �x1.
In the first step the first particle �x1 is attracted by itself, and thus it does not move and

�x0
1 = �x1

1. The second particle �x2 is attracted by �x1. Since every component of �x2 is influenced by
independent random variables, the particle will not necessarily move on a straight line between
�x0

2 and �x0
1. In the example the attraction of the second component x0

1,2 is much stronger than
the attraction of the first component x0

1,1. At the end of the first step we have pbest1 = �x0
1,

pbest2 = �x1
2, and gbest = �x1

2.
The particle �x1 is now attracted by �x1

2. Again the two components of the tuple are attracted
differently. In the example the random variable determining the second component �x2

1,2 is greater
than 0.5, and thus �x1 is going beyond �x1

2 in the y-direction. The second particle �x2 is attracted
by its actual position, but since its speed is nonzero it is still moving along the same direction
as in the first step, by inertia. Now we have pbest1 = �x0

1, pbest2 = �x1
2, and gbest = �x1

2.
For the third step the possible outcomes can be very different. The first particle �x1 is now

attracted by �x0
1 and by �x1

2, and it will also move along the previous direction due to the inertia.
In the example the particle is moving to the left, towards �x1

2, but it could also have moved to
the top, to the bottom or to the right, or not at all. The second particle �x2 is only attracted
by �x1

2, which gives a smaller area of possible destinations for this third step. In the example
the particle is moving to the top, towards �x1

2. We have now pbest1 = �x3
1, pbest2 = �x3

2, and
gbest = �x3

2.
In the fourth step the particle �x1 is only attracted by �x3

2, and since the velocity of the previous
step is pointing approximately to this point, using the rebounding boundary, the particle in the
example comes very close to �x3

2. The second particle �x2 is attracted by itself and is thus only
moving due to the inertia. After the fourth step we have pbest1 = �x4

1, pbest2 = �x3
2, and

gbest = �x3
2. The velocities are now quite small. This does not forcibly imply that the algorithm

is going to converge soon, but if the particles are close to the actual global best result and their
velocity is low, the probability that local minima far away from the actual global best result will
be found is low.

We note that the evolution of this algorithm depends very much on the random numbers
that are used at every step. Using the same parameters, the algorithm could have led to a
completely different result than the one given in this example, even if we start from the same
initial condition.
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Step 3 (left) and 4 (right).

Figure 9.5: Example of PSO for a two-dimensional objective function and two particles.
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9.4 Comparison of Newton’s method and particle swarm opti-
mization

The purpose of both Newton’s method and PSO is to solve an unconstrained optimization
problem, but the way the two methods work are completely different.

Newton’s method is a deterministic optimization method, i.e., given a starting point the
algorithm will always perform the same computation and arrive at the same result. In Newton’s
method we have to choose a starting point which is close to the solution of the problem. If
we can do this, the methode converges quickly to the solution. But to make a good choice
we need to have a good idea of how the objective function looks like. For a convex objective
function, Newton’s method always converges to the solution, but for more complicated objective
functions the initial point is very important for convergence. When our starting point is far
from the solution, we might not even get close to the minimizer, depending on the objective
function. We say that Newton’s method has good local convergence properties, but it is a bad
global optimization algorithm. In addition, the objective function has to be twice differentiable,
otherwise the method cannot be applied.

PSO, on the other hand, is a stochastic optimization method. This means that some parts
of the computation are stochastic, and therefore given a starting point the algorithm will in
general perform different computations and will maybe not arrive at the same result. In PSO,
we have to choose a whole population of initial points, and convergence to a solution is quite
slow. But the method tries a broader variety of candidate solutions, and even if the solution
is far from all the initial points one can hope that the algorithm reaches it. Thus for global
optimization, without having an idea of where to look for the solution, PSO is a good choice.
By contrast, if we want to do a local search, PSO is not as efficient as Newton’s method. PSO
can be applied to discontinuous objective functions.

A possible way to attack an optimization problem with a difficult objective function is
therefore to do a global search by PSO, not forcibly until convergence. Some of the best points
found can then be used as starting points in Newton’s method, in the hope that one of them
is close to the minimum. This is the strategy that we will use when optimizing the feeder
positions.
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Chapter 10

Numerical results

Here we present some numerical results concerning the optimization problems. The aim of this
chapter is not to find optimal solutions to a specific aluminium cell. It is rather to investigate the
optimization of a realistic test case, in order to draw conclusions that apply to any reasonably
similar cell. We start by comparing different formulations of the objective function. Then,
we try to optimize the position of the feeders. In Section 10.3 we show results obtained when
optimizing the load weight of the feeders. We end the chapter with a discussion about the final
time for the simulation that we have to choose in order to get useful results.

10.1 Comparison of the norm for the objective function

In Section 8.3 we decided that our objective function J would be computed by

J =
1

ΔT |Ωel|

∫ T

T−ΔT

∫
Ωel

(ch(�x)(t) − c̄h(t))2 dΩdt. (10.1.1)

We also mentioned that instead of the L2(Ωel)-norm of ch − c̄h over space we could use some
other norm. What we need is an objective function which reaches its minimum if and only if the
concentration ch is constant over the whole bath. Hence, if we take a norm, which is positive,
and which is only zero if its argument is equal to zero, we have to consider ch − c̄h. Another
possibility is to use the L2(Ωel)-norm of the gradient of ch. This is not a norm for ch, but it
verfies our condition given above.

We will thus compute

JLp =
1

ΔT |Ωel|

∫ T

T−ΔT
‖ch(t) − c̄h(t)‖Lp(Ωel)dt, (10.1.2)

for p = 1, 2,∞, and also

JH1 =
1

ΔT |Ωel|

∫ T

T−ΔT
‖�∇ch(t)‖L2(Ωel)dt. (10.1.3)

We will do this for velocity fields �ua and �ub defined in Section 5.3. The results for �uc are similar
to those for �ua, and therefore we will not discuss them here. In order to compare these different
objective functions, we fix the position of three feeders, and we vary the fourth feeder position,
x3, over the whole length of the cell. This does not show the complete function, but it gives a
good idea about how J changes when the feeder positions move, and it is easy to visualize.

On Figure 10.1 we show JL1 , JL2 , JL∞ and JH1 , computed for �ua. The four functions are
normalized by setting their value at x3 = −7.14 [m] to 1, and they are shown at the same scale.
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Figure 10.1: A cut of the objective function J , for JL1 , JL2 , JL∞ , JH1 . Three feeding positions
are fixed, the position x3 varies over the whole length of the cell. The objective function J is
normalized by setting the value at x3 = −7.14 [m] to 1. For velocity field �ua.

We notice that JL∞ and JH1 show a lot of very small variations, and they do not seem to be
coninuously differentiable. Therefore, these two functions are not well suited for an opimization.
The function JL1 and JL2 are much smoother, and their number of local minima is small. They
could both be used for the optimization. We show the four functions again on Figure 10.2,
here for velocity field �ub. Also here JL∞ and JH1 are rather irregular functions with many local
minima. The functions JL1 and JL2 are again much smoother. The number of local minima of
JL1 and JL2 is about the same, but the minima of JL2 are more distinct. Due to this, it is easier
to distinguish the global minimum of JL2 than the one of JL1 . We therefore think that it could
be advantageous to use the L2(Ωel)-norm to compute the objective function. Since JL2 looks
smooth, we can also expect that Newton’s method will work well.

We note that the minimum that we find can, and in general will, be dependent on the norm
with which we measure the deviation of ch from c̄h. Whether the norm we just decided to use
is also useful from the point of view of the application should be validated by some experiment.

We used here the same positions for the feeders as in Chapter 6. We see that the minimum
is attained for x3 = −1.4 [m] or x3 = 0 [m]. The original setting is x3=-1.6 [m]. Thus, if x1, x2

and x4 are fixed, the optimal position of the third feeder x3 is very close to the actually chosen
position, at least according to our computation. However, when all positions are allowed to
change, the result will be different as shown later on.
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Figure 10.2: A cut of the objective function J , for JL1 , JL2 , JL∞ , JH1 . Three feeding positions
are fixed, the position x3 varies over the whole length of the cell. The objective function J is
normalized by setting the value at x3 = −7.14 [m] to 1. For velocity field �ub.
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10.2 Optimization of the feeder positions

Here, we try to solve problem (8.3.8). We work with a feeding period of 64 seconds, the feeding
occurs at 0, 16, 32 and 48 seconds of each feeding cycle, and the load weight of each feeder is
one fourth of the total amount needed. We will use the three velocity fields �ua, �ub and �uc defined
in Section 5.3. The final time of one simulation is set to 640 seconds, which corresponds to 10
feeding cycles. A debate of whether this final time is large enough or not will be held in Section
10.4.

We minimize the objective function in two steps. First we do a particle swarm optimization,
where we initialize a random population of 64 particles and compute their evolution during 14
generations. The best result found by the PSO will be used as the starting point for Newton’s
method.

As we could already guess from Figures 10.1 and 10.2, the objective function J is not easy to
minimize. We can therefore not expect to find the global minimum of J at every trial. Hence,
we execute our algorithm several times and compare the results that we obtain. Since the PSO
works with random numbers, the final result depends on the sequence of random numbers that
are used. When we initialize the random population for the PSO, we have to choose a seed
for the random number generator. This seed completely determines the sequence of random
numbers. We compute the result of the above algorithm with the seeds 1 to 10. These results
are listed in Table 10.1 for �ua, in Table 10.2 for �ub, and in Table 10.3 for �uc. In those tables,
for each seed, we give the ”optimal” positions that were found, and the value of the objective
function. We notice that the ”optimal” positions found are rarely the same for different seeds,
i.e., the algorithm is not able to find the optimum for every initial condition. The values of J
that are attained are not even close to each other. Thus, the convergence of the algorithm is
not very good.

However, if we look closer at the positions that were found, we notice that they are very
similar. We plot these positions on Figures 10.3, 10.4 and 10.5 for the different velocity fields.
For each seed, reported on the ordinate, the four feeder positions x1, x2, x3, x4 are marked by
different symbols to show their order. We see that for each velocity field only eight to nine
different positions are found, in different orders. For �ua, essentially two positions are present
in every solution, and all the other positions appear several times. Using �ub and �uc there are
four positions which are found by almost every optimization attempt, plus some other positions.
Hence, we are not sure if the optimization algorithm converges to the optimal solution, but if we
execute the algorithm several times we get a strong indication to where the optimal positions
for the feeders are located.

We notice that most of the feeder positions found using �ua or �uc are almost the same. There
are two more positions present when using �uc, close to the boundary, which are probably found
because the speed of �uc is faster close to the boundary.

Finally, for each velocity field we compute the periodic state for the best solution found and
we show the distribution of the alumina concentration on Figure 10.6. The value of J for �ua

when using the standard feeding of Chapter 6 is 364. The value found for the best optimization
result at the periodic state is 309. When using �ub we find J = 316 in Chapter 6 and J = 238
after optimization, and for �uc we have J = 67.6 for the standard feeding and J = 55.9 at the
periodic state after optimization. Hence, there is an important decrease of the value of the
objective function when optimizing the position. Observe that the values at the periodic state
after optimization are higher than the values found when doing the optimization and reported
on Tables 10.1 - 10.3. We will comment on this in Section 10.4.
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seed x1[m] x2[m] x3[m] x4[m] J

1 5.30 -4.79 1.35 -1.48 281

2 -0.06 -2.82 5.31 -5.28 276

3 -4.79 1.35 -1.48 5.31 279

4 1.33 -2.80 -4.89 5.31 286

5 5.31 -2.82 -0.06 -5.28 277

6 5.31 -5.27 -1.50 1.34 282

7 5.31 -0.15 1.42 -5.27 287

8 -1.50 5.31 1.35 -5.28 277

9 -0.06 5.31 -5.28 -2.82 278

10 5.30 -0.14 -4.78 2.70 288

Table 10.1: Results of the optimization of the feeder positions for �ua.
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Figure 10.3: Positions of feeders found for �ua. + first feeder, +× second feeder, � third feeder, ×
fourth feeder.
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seed x1[m] x2[m] x3[m] x4[m] J

1 3.60 -0.25 1.48 -6.57 54.9

2 1.41 -1.30 6.65 -2.85 56.2

3 -6.57 3.60 1.48 -0.25 55.1

4 1.39 -2.79 3.65 -1.20 58.2

5 1.41 6.66 -2.79 -1.23 56.0

6 4.33 -0.15 2.75 -2.67 56.0

7 -1.11 1.40 3.63 -2.78 57.7

8 3.61 -0.85 -2.78 1.42 57.9

9 -0.91 1.41 3.62 -2.77 57.6

10 -2.85 -1.31 1.41 4.23 58.9

Table 10.2: Results of the optimization of the feeder positions for �ub.
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Figure 10.4: Positions of feeders found for �ub. + first feeder, +× second feeder, � third feeder, ×
fourth feeder.
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seed x1[m] x2[m] x3[m] x4[m] J

1 5.40 1.26 -1.50 -6.96 242

2 1.24 -2.76 6.86 -5.35 251

3 5.40 -5.37 -1.51 1.26 245

4 -1.51 -5.37 6.86 1.26 238

5 -6.99 6.87 1.25 -1.50 239

6 6.86 -1.51 1.26 -5.38 237

7 1.26 -1.49 5.41 -6.98 241

8 -0.03 6.85 -1.50 -6.98 249

9 -0.10 6.86 -5.34 -2.78 255

10 6.87 -1.51 -5.38 1.26 238

Table 10.3: Results of the optimization of the feeder positions for �uc.
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Figure 10.5: Positions of feeders found for �uc. + first feeder, +× second feeder, � third feeder, ×
fourth feeder.
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2.36 3.03 3.70 4.37 5.04

2.76 3.18 3.59 4.01 4.43

2.45 2.99 3.53 4.06 4.60

Figure 10.6: Alumina concentration in the bath for the best feeder positions using �ua (on top,
with seed 2), using �ub (in the middle, with seed 1), and using �uc (on the bottom, with seed 6),
at the bath - metal pad interface. View from above.



10.3. OPTIMIZATION OF THE LOAD WEIGHTS 101

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

J
(n

or
m

al
iz

ed
)

load weight w1 [kg]

Figure 10.7: A cut of the objective function J when varying the load weight, computed using
the L2-norm for ‖.‖b. Two load weights are fixed, the weight w1 varies from 0 to 1.8 [kg]. The
objective function J is normalized by setting the value at w1 = 0 [kg] to 1. For velocity field �ua.

10.3 Optimization of the load weights

Compared to the optimization of the feeder positions the optimization of the load weights is
easy. This is due to the fact that the objective function with respect to the load weights is
strictly convex. At least that is what we conclude from the results. First, we show a cut of
the objective function on Figure 10.7. This plot is obtained in a similar manner as the plots
in Section 10.1, i.e., the weights of two feeders are fixed, and w1, the weight of the first feeder,
varies from 0 to 1.8 [kg]. The graph shown is obtained using velocity field �ua, but for �ub and �uc

the results are qualitatively the same. We see that the function J is smooth and convex. For
a sufficiently smooth and convex function, Newton’s method always converges to the minimum,
independently of the starting point. We therefore choose different initial weight distributions
and compute the solution, solely using Newton’s method. The result is always the same. Hence
we conclude that J is a globally convex function.

Finally we compute the minima for our three velocity fields �ua, �ub and �uc. We start from
the normal feeder configuration of a aluminium cell, i.e., the feeding period is 64 seconds, the
feeder positions are (x1, x2, x3, x4) = (−4.4, 1.6,−1.6, 4.4) [m], the weight of alumina added by
each feeder is one fourth of the total weight needed, and the loads are added at 0, 16, 32 and
48 seconds of each feeding cycle. The solutions are reported on Table 10.4. We show for each
velocity field the optimal weights found, the value of J at the optimum, and the relative decrease
of the value of J from the starting position, where the value of the objective function is denoted
by Jinit.

The optimal weight distribution between the feeders are not very different from the uniform
distribution, where wi = 0.87 [kg], i = 1, . . . , 4. Also the decrease of J is not important, being
less than 2% when using �ua and �uc, and only 7.4% when using �ub. Concluding from our results
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velocity field w1 [kg] w2 [kg] w3 [kg] w4 [kg] J Jinit−J
J

�ua 0.78 0.98 0.97 0.74 343 1.9%

�ub 0.72 0.63 1.09 1.03 61 7.4%

�uc 0.81 0.82 1.00 0.84 304 1.1%

Table 10.4: Results of the optimization of the load weights for the different velocity fields

the configuration used in real aluminium reduction pots is therefore well chosen. We notice
however from the curve on Figure 10.7 that the value of J can vary a lot when the weight
distribution is changed, implying that it is important to choose good weight distributions.

We conclude that the optimization of the load weight is theoretically easy, and that it is
useful to do this optimization since the variations of the objective function are important.

10.4 Discussion of the final time of the simulation

In Section 5.3, we noticed that the alumina distribution in the bath becomes periodic if the
simulation time is large enough. The simulation time one has to use to get a periodic result
depends on the velocity field. For velocity fields �ub and �uc, the periodic state of the alumina
concentration is reached after about 2000 seconds, whereas for velocity field �ua this takes about
4000 seconds.

When we optimize the distribution of the alumina concentration, we would like to use a small
final time of the simulation, because we have to compute many simulations until the minimum
of the objective function is found. For example, for the optimization of the feeder positions we
computed 896 simulations up to the final time only for the PSO. For the computations shown
in Sections 10.1 - 10.3, we therefore worked with a final time which was 10 times the length
of the feeding cycle, T = 10ΔT . Since we did not change the feeding period, we always had
ΔT = 64 [s]. Hence, the periodic state is not reached after the final time of the optimization
T = 640 [s]. In the following, we want to evaluate if this too short final time during the
optimization has an important impact or not.

We first consider the results obtained using velocity fields �ub and �uc, since the periodic state
is attained earlier than using �ua. In Section 10.2, we computed the periodic state for the feeder
positions which gave the smallest value for J . When we did the optimization, with T = 640 [s],
the value of J was 54.9 for �ub and 237.0 for �uc. At the periodic state, these values were 55.9 for
�ub and 238.3 for �uc, which is a difference of 1.8%, respectively 0.5%. Thus, the value of J does
not change a lot after the final time T .

Another test is to look whether the value of J changes if the order of the feeders is unchanged,
but the starting position is different. When we are at the periodic state of the cell, the starting
position does not have any influence on the result. On Tables 10.5 - 10.6 we show the value of J
at T for all possible starting positions of the best result found in Section 10.2. We notice that
the values of J vary. This implies that during the optimization, these four feeder configurations
were considered differently, whereas they should have been equivalent.

When optimizing the load weights in Section 10.3 we also had T = 640 [s]. Now we compute
the solution of the optimization with T = 1280 [s], in order to see how much the solution
changes. The result is shown on Tables 10.7 - 10.8. We notice that the weights do not change
significantly, at most the difference is 2.8%, and the value of the objective function increases in
the same order. But since T = 1280 [s] is still not the time at which the cell is in its periodic
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state, the optimal result could change again if T was even larger.
We conclude that the final time T = 640 seconds is slightly too small for the optimization

if we work with the velocity fields �ub and �uc. The results would be more reliable when the
optimization was done for the periodic state of the cell.

x1[m] x2[m] x3[m] x4[m] J

3.60 -0.25 1.48 -6.57 54.9

-6.57 3.60 -0.25 1.48 55.1

1.48 -6.57 3.60 -0.25 55.2

-0.25 1.48 -6.57 3.60 55.1

Table 10.5: The value of the objective function J when changing the starting position of the
feeding, for �ub.

x1[m] x2[m] x3[m] x4[m] J

6.86 -1.51 1.26 -5.38 237.0

-5.38 6.86 -1.51 1.26 239.5

1.26 -5.38 6.86 -1.51 237.5

-1.51 1.26 -5.38 6.86 236.1

Table 10.6: The value of the objective function J when changing the starting position of the
feeding, for �uc.

T [s] w1 [kg] w2 [kg] w3 [kg] w4 [kg] J

640 0.724 0.632 1.094 1.028 61.4

1280 0.719 0.621 1.103 1.034 62.2

Table 10.7: Comparison of the optimal load weights found for the final times T = 640, 1280 [s],
using velocity field �ub.

T [s] w1 [kg] w2 [kg] w3 [kg] w4 [kg] J

640 0.809 0.824 1.003 0.841 304

1280 0.797 0.847 0.995 0.837 311

Table 10.8: Comparison of the optimal load weights found for the final times T = 640, 1280 [s],
using velocity field �uc.

Knowing that the periodic state is reached after only about 4000 seconds using velocity field
�ua, we now do the same checks as before for �ub and �uc. The value of J for the best solution of
the feeder position optimization in Section 10.2 was 276. When computing the periodic state,
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shown on Figure 10.6, the value of J at 4000 seconds is 309, i.e., about 12% higher than the value
of J at 640 seconds. This does not forcibly imply that the result found by the optimization are
non-optimal, but it is an indicator that the function J , seen as a function of the final simulation
time, changes a lot after 640 seconds, and thus chances are high that the positions of the local
minima move when the final time goes up.

On Table 10.9, we show the results if we change the starting position of the feeders. The
differences are not enormous, but they imply that the four possibilities were treated as four
different solutions, and not as four equivalent solutions, which they are.

Finally we compare the solutions found when we optimize the load weight for different final
times. The results are shown on Table 10.10. Here, the weights change more importantly than
for �ub and �uc, the largest difference between the ”optimal” weights is about 11.5%.

We see thus that the the differences are more pronounced for �ua than for the two other
velocity fields. This seems reasonable since the time to reach the periodic state is higher for
�ua than for the other velocity fields. Again we conclude that if we want to ensure meaningful
results, the final time of the simulation has to be larger.

x1[m] x2[m] x3[m] x4[m] J

-0.06 -2.82 5.31 -5.28 276

-5.28 -0.06 -2.82 5.31 281

5.31 -5.28 -0.06 -2.82 281

-2.82 5.31 -5.28 -0.06 279

Table 10.9: The value of the objective function J when changing the starting position of the
feeding, for �ua.

T [s] w1 [kg] w2 [kg] w3 [kg] w4 [kg] J

640 0.78 0.98 0.97 0.74 343

1280 0.84 0.96 0.91 0.76 355

Table 10.10: Comparison of the optimal load weights found for the final times T = 640, 1280 [s],
using velocity field �ua.
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Conclusion

In this second part, we wanted to optimize the feeding of alumina to the bath, in a way that the
alumina concentration field in the bath would be the most uniform possible. To do this, we used
the simulation described in the first part. We formulated mathematical problems with various
parameters whose solutions would fulfil this aim. We also explained the optimization methods
that we used, which are Newton’s method with line search, particle swarm optimization, and
automatic differentiation.
We wanted to optimize the feeding with respect to four parameters: the feeding times, the length
of the feeding period, the load weight of each feeder, and the feeder positions. We noticed that
the optimization of the feeding times was not necessary because the maximum gain was only in
the order of 1%. The optimal result for the length of the feeding period is to take the shortest
period possible. We noticed that the optimization of the load weight of the feeders was rather
easy, because the objective function is smooth and convex. However, optimizing the feeder
positions is a difficult problem since the objective function shows many local minima. At least,
the objective function is smooth when computed using the L2(Ωel)-norm in space. For this last
problem we cannot guarantee that we find the optimum.
The final time for the simulation when optimizing must be chosen sufficiently large. Otherwise,
the result depends on the final time. We also noticed that the result might depend on the precise
formulation of the objective function.
In this work, we did optimizations on only partially validated test cases. If an optimization has
to be done, one has first to validate the velocity field, and then the simulation of the alumina
feeding and dissolution. Then, the optimization parameters can be adapted to this specific case,
and the final time of the simulation has to be taken such that the bath is in a periodic state
after this time. The result of the optimization should be validated in a real world experiment.
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