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Abstract. Modelling of hot tearing must encompass several aspects: solidification, percolation of 
grains, stress/strain development, liquid feeding. The present contribution reviews recent progress 
made in this domain, both at the macro- and microscopic levels. At the macroscopic level, average 
two-phase approaches based on the coupling of a porous medium model for the solid skeleton and 
liquid feeding (Darcy model) will be presented briefly. Such models provide a clear enhancement of 
the RDG model[1], especially from a rheology point of view. At the microscopic level, a new 
granular approach has been undertaken recently. Considering in a first step the solidification and 
coalescence of equiaxed grains, it has been extended recently to the calculation of feeding using a 
Kirchhoff-Poiseuille (KPL) model. Percolation of grains and localisation of feeding could be 
clearly evidenced in this way.  

Introduction 

Hot tearing together with microporosity have always been recognized as major defects in castings 
of aluminum alloys, the first one being typical of semi-continuous casting whereas the second one 
is dominant in shape castings. As explained in the textbook of Campbell[2], these two defects are 
interconnected, as both result from a lack of feeding and nucleation of a pore/void in the remaining 
liquid. However, if porosity is associated with solidification shrinkage and can occur within the 
grains or at grain boundaries, hot tearing is clearly linked with tensile stresses in the solid and is 
confined to grain boundaries. 

The purpose of this contribution is not to review all the hot tearing models since a review has 
been published by Eskin et al[3] in 2004. It is rather to present recent developments made both at 
the macroscopic and microscopic levels, pointing out the difficulties in connecting these two scales. 
Macroscopic approaches, which are presented in the next section, are based nowadays on two-phase 
approaches[4-6]: they are the natural extension of the so-called RDG criterion[1], but using a more 
rigorous rheological approach for the compressible mushy solid phase. The main advantage of such 
methods is that they can take into account the whole scale of a casting, but their weakness is that 
averages can hardly account for the localization of strains and feeding at grain boundaries. On the 
microscopic scale, coalescence and percolation of grains can be accounted for at the scale of a small 
volume element of the mushy zone (typically a few cubic centimeters) using granular approaches[7-
9]. Although such techniques cannot yet consider a whole solidification process, they provide a 
detailed and interesting view of the phenomena occurring during hot tearing, in particular 
localization of strains and feeding, gradual transition from a continuous liquid film network to a 
fully coherent solid, etc. These methods are briefly presented in the next section. Finally, results 
obtained with both macro- and micro-approaches are presented and discussed before some 
conclusion. 



 
 

 

Macroscopic two-phase semi-coupled approach of hot tearing 

In the RDG criterion[1], a strain rate perpendicular to the thermal gradient was applied to the solid 
phase, regardless whether it corresponds to columnar or equiaxed dendrites (see Fig. 1). The 
component of the strains parallel to the thermal gradient was neglected on the basis that it is not a 
component susceptible of inducing hot tearing. Defining then the average density of the solid-liquid 
mixture as ρ = ρsgs + ρℓgℓ, where gν and ρν are the volume fraction and the density of phase ν 
(ν = s, ℓ), and using Darcy’s equation describing the interdendritic flow in a mushy zone, the 
following expression was derived for unsteady conditions: 

 

Erreur ! =  0     (1) 

β = (ρs/ρℓ - 1) is the solidification shrinkage, ε,
.
s┴1

 and ε,
.
s┴2

 are the two components of the strain 
rate of the solid perpendicular to the thermal gradient (see Fig. 1), K is the permeability of the 
mush, μ is the viscosity and pℓ the local pressure in the interdendritic liquid, and g is the gravity 
vector. Please note that ρs and ρℓ have been assumed constant, while gs is constant in the directions 
perpendicular to the thermal gradient. This expression is fairly general and can be interpreted as 
follows: solidification shrinkage (1st term) and/or deformation of the solid (2nd term) have to be 
compensated by liquid flow (3rd term) if pores or hot tears are to be avoided. In the case a third 
phase (pores or hot tears) is considered, the right hand term of Eq. 1 is simply replaced by - ∂gp/∂t, 
where gp is the fraction of pores (or hot tears). 

 
Under steady directional solidification 
conditions at a velocity vT, the maximum 
pressure drop, Δpmax, across the mushy zone 
and associated with deformation and 
solidification shrinkage is given by: 

Erreur ! (2) 
where Ε is the cumulated strain rate, i.e., 
Erreur !.  

These two integrals can be transformed into 
integrals over temperature, thus introducing a 
“competition” between strain rate and thermal 
gradient, G, for the first contribution, and the 
standard vT/G ratio for the shrinkage term (i.e., 
already derived by Niyama in his porosity 
criterion[10]). 

The RDG criterion simply states that a hot 
tear will form if the local pressure in the liquid, 
i.e., the metallostatic pressure minus the 
pressure drop, falls below a given cavitation 
pressure. It offers two main advantages: (1) 

Fixing Δpmax to a preset value (e.g., 2 -5 kPa), Eq. (2) allows to set up a hot cracking sensitivity of 
an alloy by calculating the corresponding Εmax; (2) Using a simple rheology for the solid phase, e.g., 
Norton law, the actual plastic strains can be computed everywhere in a casting. Although these 
strains will satisfy the incompressibility condition, the two contributions perpendicular to the 
gradient will not and the actual pressure in the liquid can be calculated using Eq. (1). This criterion 
has nevertheless a few limitations: (1) Using only the perpendicular component of the plastic strains 
is not strictly valid, the longitudinal component also inducing some suction (or expulsion) of the 
liquid; (2)  The upper bound of the integrals of Eq. (2) is ill-defined. As gs tends towards unity, the 
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Figure 1: Schematics of hot tearing formation 
and of the two-phase problem considered in 
the RDG approach.[1]. 



 
 

 

permeability goes to zero and the calculation diverges. In practical situations, this bound is set up to 
a value of gs at which the solid is considered as coherent, i.e., the liquid remains only as liquid 
pockets (no continuous liquid films). However, this coherency value is certainly not the same 
within a grain or at a grain boundary (see below the aspects of coalescence[11], Fig. 1); (3) In 
relation to grain boundaries, the method does not consider any localization of the strains and 
feeding. 

In order to overcome the first limitation, M’Hamdi et al[4,5] introduced a more rigorous 
formalism for the deformation of the solid. While the mass conservation equation (1) remains the 
same, these authors coupled this equation with the momentum equation for the solid phase. As the 
solid is in contact with the liquid phase, an effective stress acting on the solid, σs, was introduced. 
Being equal to (σ + pℓI), where σ is the total stress and I is the identity tensor, the equilibrium 
condition becomes: 

div σs + ρg = grad pℓ          (3) 

M’Hamdi et al used a complex rheological behaviour for the mushy solid derived by Ludwig et 
al[12,13], in which the plastic strain rate is a function not only of the equivalent von Mises stress 
but also of the pressure in the solid (compressibility of the mushy solid) and of a cohesion 
parameter. They solved this coupled problem (Eqs (1) and (3)) using a specific Finite Element code 
in which the pressure in the liquid and the displacements (strains) of the solid are the unknowns. 
However, considering that pressure drops across the mushy zone encountered in many casting 
processes are of the order of a few kPa while stresses in the coherent mush are of the order of a few 
MPa, it seems reasonable to neglect the effect of liquid pressure on the solid skeleton mechanical 
behaviour. In this case, grad pℓ can be neglected and the equation of the solid becomes independent 
of the liquid problem. The advantage of such a decoupling, developed by Mathier et al[6], is that 
the mechanical problem (Eq. (3) with pℓ = 0) can be solved independently of the fluid flow problem 
(Eq. (1)). From a thermal field calculation giving the temperature T and gs, the strains are computed 
using the rheology of a porous (instead of mushy) solid as derived by Ludwig et al. This was done 
using the Abaqus® code and appropriate user functions for the rheological law. As the porous solid 
is compressible, the divergence of vs, which is non-zero, can be computed as the trace of the plastic 
strain rate. This contribution is then used as the second term of Eq. (1) for the computation of the 
pressure in the liquid and if needed the fraction of porosity, gp. This was achieved using the 
approach developed by Pequet et al[14] and the software CalcoSOFT®. 

Granular model of hot tearing 

Although an appropriate two-phase approach alleviates the first drawback of the RDG criterion 
mentioned in the previous section, it does not remove the others. In particular, average methods are 
unable to account for the localization of hot tears at grain boundaries. This localization is 
essentially due to the fact that liquid films remain to lower temperature as compared to those 
located in between dendrites of the same grains (Fig. 1). In other words, the formation of a coherent 
solid network by coalescence or bridging of dendrites arms occurs earlier within the grains as 
compared with grain boundaries. Rappaz et al[11] have introduced for that purpose a coalescence 
or bridging undecooling which, for a pure metal, is given by: 

 
Erreur !           (4) 

where γgb is the grain boundary energy, γsℓ is the solid-liquid interfacial energy, Δsf is the 
volumetric entropy of fusion and δ is the thickness of the diffuse interfaces. For an alloy, 
coalescence is reached when a coalescence line (or surface) parallel to the liquidus, but ΔTb below, 
is reached. Within a grain, there is no grain boundary energy and interfaces become attractive as 



 
 

 

soon as they get within interaction distance, i.e., distance δ. At “repulsive” grain boundaries, γgb > 
2γsℓ, bridging is reached at some ΔTb > 0. 

This concept of bridging undercooling has been tested by phase field[11], by molecular 
dynamics[15] and by experiment[16]. This experiment is worth mentioning: two crystals of a 
nickel-base superalloy were laser welded together under well defined conditions with increasing 
misorientations. At small misorientation (typically less than 15 deg.), no hot crack formed along the 
weld centreline, whereas at larger values, a crack was initiated under the same conditions, thus 
showing the influence of the grain boundary energy. The simulations done by molecular dynamics 
or by phase field are interesting but correspond to very small regions near the incoming interfaces, 
typically a few tens of nanometers or micrometers, respectively. In practical situations, hot tears are 
indeed located at grain boundaries, but the configuration of these boundaries associated with 
nucleation and growth of grains is essential.  

For this reason, a simplified approach of coalescence for a large population of equiaxed grains 
was undertaken first by Mathier et al[7] and then by Vernède et al[8,9]. In this granular approach, 
a random set of nucleation centres with random orientations is first generated in a given volume. 
Considering that the grains nucleate at the same time and that the temperature difference across 
each grain is small with respect to the growth undercooling, the grain boundaries correspond to the 
Voronoï tessellation of the nucleation centres (Fig. 2a), i.e., the grain boundary between grains I 
and K is the median line. Assuming globular grains, the smooth solid-liquid interfaces is first 
approximated by linear segment in each triangle linking a nucleation centre (open circle) and two 
vortices of the tessellation (open squares) (Fig. 2b). Solidification is then calculated within each 
triangle using a microsegregation model[7-9]. Therefore, at any time, the remaining width of the 
liquid channel in between two grains is known providing the thermal field is known. When the two 
solid-liquid interfaces get within interaction distances, coalescence is accounted for, using Eq. (4) 
and a Read-Schockley grain boundary energy model. 

 
 

Figure 2: Schematics of the granular model used for the simulation of 
solidification and feeding in a network of equiaxed globular grains: Voronoï 
tessellation (a), microsegregation model (b), feeding KPL model (c). 
 

The next step undertaken is to calculate feeding within the network of liquid films. For that 
purpose, a Poiseuille flow was first assumed within the channels (Fig. 2c)[8,9]. This flow is not 
constant along a given channel as it has to feed solidification shrinkage and the relative movement 
of grains, i.e., the flow has some Losses along each channel. Finally, at each vortex of the Voronoï 
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tessellation, the sum of the (signed) incoming flows must be zero, i.e., Kirchhoff’s law. This KPL 
model is similar to a network of electrical resistances which would not be well insulated from the 
circuit board (losses). Within each channel (resistance), the flow is governed by the following 
equation: 

 
Erreur !          (5) 

where pℓ is the pressure in the liquid film, h is the half thickness of the remaining liquid film, s is 
the coordinate along the film and v* is the speed of the solid-liquid interface. Please note that a 
cubic dependence of the liquid film thickness is found for the pressure drop in the liquid films and 
that this equation is of the same nature as Eq. (1), i.e., a second-order differential equation for the 
pressure field with a sink term given by solidification shrinkage. Provided appropriate boundary 
conditions are set, Eq. (5) can be solved using a Finite Element method with linear functions along 
each liquid channel. When the grains move with respect to each other, this equation can be 
modified in a way similar to Eq. (1), i.e., introducing the normal relative velocities of the nodes, 
(vI⋅nIK + vK⋅nKI), where nIK/nKI are the normals to the interface issued from nodes I/K, respectively. 
The displacement of the nodes can be calculated using a mechanical model which is under 
development. 

Results and discussion 

The result shown in Fig. 3 corresponds to a two-phase macroscopic calculation for the start-up 
phase of an axisymmetric DC cast AA5182 alloy. The diameter of the billet is 247 mm and the 
casting speed was ramped from 90 mm/min to 150 mm/min in 500 s producing 1 m of casting. The 
mechanical properties of the AA5182 alloy are available both in the mushy state[12.13] and for the 
solid alloy at various temperatures[17]. Once the strains and strain rates were calculated with 
Abaqus, the volumetric plastic strain rate contribution, div(vs), was implemented into the porosity 
model of Pequet et al[14], but assuming that no hydrogen was dissolved initially in the melt (i.e., no 
pore formed). Fig. 3a shows the pressure drop calculated after 500 s of casting, but neglecting 
plastic deformation of the solid. In the liquid pool, one can notice a small increase of the pressure 
due to the metallostatic head. The pressure drop in the mushy zone associated with solidification 
shrinkage only is most pronounced at the centre of the billet: this can be expected since the thermal 
gradient is the lowest (large extent of the mushy zone) and the velocity of the isotherms is the 
largest (large liquid suction). Fig. 3b shows the pressure drop increase due to the volumetric plastic 
strains: as the mushy solid is under dilatant conditions near the center of the billet, an additional 
depression of about 4 kPa is calculated. This is a fairly small contribution as compared with the 
27 kPa associated with solidification shrinkage. The cumulated volumetric strain, i.e., the integral 
over the solidification interval of div(vs), is indicated in Fig. 3c: it is only 0.74% while 
solidification shrinkage amounts to 6.5%, thus explaining the relative importance to the pressure 
drop contribution. Finally, Fig. 3d shows the strain rate calculated at t = 500 s. Similar calculations 
have been performed with some initial amount of dissolved hydrogen.[6] In this case, some 
porosity/hot tears is present in the casting, the formation of which relaxing slightly the pressure 
drop. 
 



 
 

 

 

Figure 3: Results at 500s in a DC cast AA5182 alloy showing the effect of 
volumetric strain (a) liquid pressure neglecting the solid deformation 
contribution (b) pressure difference due to deformation only (c) cumulated 
volumetric strain (d) volumetric strain rate at that time. 

 
The granular model has been applied to the directional solidification of an Al-1%Cu alloy 

(Fig. 4). The thermal gradient was 60K/cm and the cooling rate -1 K/s (i.e., velocity of the 
isotherms equal to 170 μm/s). The average grain density was set to 108 m−2, i.e., average grain size 
of 100 µm, and the computation domain which spans across the whole mushy zone contains 14’000 
grains. The central figure in Fig. 4 shows the grains with various grey levels, grains in solid contact 
(clusters) being represented with the same grey level while the liquid films are in black. The small 
figures on the left are magnifications of 4 typical regions of the mushy zone which are discussed 
hereafter. On the right of Fig. 4, the evolution of the volume fraction of solid as calculated in 
horizontal sections of the grain structure is represented together with the imposed temperature 
profile.  

In region (a), typically for 0 < gs < 0.89, most the grains are isolated and surrounded by liquid 
films. For 0.89 < gs < 0.97 (region (b)), clusters of a few grains are formed but the liquid films 
remain continuous and interconnected. In region (c) characterised by 0.97 < gs < 0.99, larger 
clusters are visible, with a few isolated liquid films remaining inside. Finally, in region (d) (0.99 < 
gs < 1), the solid network is continuous and liquid only remains as isolated regions. As can be seen, 
this granular model is able to predict the gradual transition from a continuous intergranular film 
network to a continuous fully coherent solid. It should be emphasised that cluster formation is 
directly induced by the stochastic nature of the nucleation centre locations, a feature that has not 
been considered in past simulation works related to hot tearing, and to a lower extent by 
coalescence. Further analysis of the transition regions is given in [9]. Finally, the results shown here 
have been obtained with a model in which the polygonal grains were slightly rounded at the 
corners. This was done considering the curvature undercooling and a solute balance, the details of 
which will be given elsewhere. This “rounding” procedure does not change the topological 



 
 

 

observations, but slightly decreases the volume fraction of solid at which the topological transitions 
occur. 

 

 
 

Figure 4: Calculated mushy zone for an Al-1wt%Cu alloy cooled down at -1 K/s in a 
gradient of 6000 K/m. Grains in solid contact are shaded with the same grey 
level. 

 
Using the grain structure calculated with the granular model, KPL calculations can be performed 

to evaluate the average feeding and its localisation. In [8,9], it has been shown that the overall 
feeding behaviour predicted with the KPL approach follows the Carman-Kozeny relationship. 
However, at high volume fraction of solid, feeding is highly localised and starts to deviate from this 
law as many liquid channels are no longer connected to the feeding network but contribute to gℓ. 
Figure 5 shows a portion of the mushy zone of an Al-1wt%Cu at 0.98 solid fraction (the 
temperature in this case is assumed uniformed). The liquid flow on the right side of the domain is 
assumed to be zero, while the pressure is imposed to zero on the left side. The horizontal 
boundaries are closed. In this case, fluid flow is only induced by solidification shrinkage: this 
situation thus corresponds to feeding condition deep in the mush. The grey scale in Fig. 5 is an 
indication of the (negative) pressure in the liquid phase. Although the pressure is defined only in the 
liquid phase, the grey scale is also represented in the grains for visibility. White areas correspond to 
liquid channels which are not connected any more to the main liquid pocket on the left and for 
which the pressure is no longer calculated. The width of the liquid channels has been magnified by 
a factor proportional to the local flow, i.e., thick/thin lines correspond to large/small flows.  



 
 

 

 
 

Figure 5: Pressure drop and 
fluid flow induced by 
solidification shrinkage in a 2 
× 2 mm2 mushy zone element. 
In this sample, T = 590 °C and 
gs = 0.984. The width of each 
channel is magnified 
proportionally to the local 
flow, the pressure scale is 
indicated on the right. 
 
 
 
 
 
 

At this high volume fraction of solid, it appears that there is mainly one path of connected liquid 
channels that feed the entire mush. Along this feeding path, the pressure goes from 0 (region 1) to – 
170 kPa (region 7). It is clear that under such large depression, porosity should form in order to 
relax the pressure drop. Besides unfed isolated liquid channels, a few channels still connected to the 
liquid source exhibit very large pressure drops (typically MPa, regions 9 and 10). Such large values 
are on the order of magnitude of the plastic stress of the solid phase at high temperature. When 
displacement and deformation of the solid grains will be implemented in this granular model, such 
occurrence should disappear. 

Conclusion 

Hot tearing is a complex defect that involves many phenomena, in particular thermal and 
solidification aspects, stress-strain in an increasingly coherent solid, feeding in a gradually 
disappearing liquid film network. The RDG criterion provided the first two-phase approach, which 
was then further improved using a more rigorous formalism and the complex rheology of porous 
media. Nevertheless, these approaches are still based on averages and do not consider any 
localization of strains and feeding at grain boundaries. Granular models, while still limited to small 
portions of a solidification process, have certainly the potential to answer some of these questions, 
once mechanical aspects will be fully built in and the model will be extended to 3 dimensions. The 
numerical simplicity of such approaches makes it feasible from a CPU time point of view. 
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