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Hydrocephalus is a cerebral disease where brain ventricles enlarge and compress the brain parenchyma towards the skull
leading to symptoms like dementia, walking disorder and incontinence. The origin of normal pressure hydrocephalus is
still obscure. In order to study this disease, a finite element model is built using the geometries of the ventricles and the
skull measured by magnetic resonance imaging. The brain parenchyma is modelled as a porous medium fully saturated with
cerebrospinal fluid (CSF) using Biot’s theory of consolidation (1941). Owing to the existence of bundles of axons, the brain
parenchyma shows locally anisotropic behaviour. Indeed, permeability is higher along the fibre tracts in the white matter
region. In contrast, grey matter is isotropic. Diffusion tensor imaging is used to establish the local CSF content and the fibre
tracts direction together with the associated local frame where the permeability coefficients are given by dedicated formulas.
The present study shows that both inhomogeneous CSF content and anisotropy in permeability have a great influence on the
CSF flow pattern through the parenchyma under an imposed pressure gradient between the ventricles and the subarachnoid
spaces.

Keywords: biomechanics; hydrocephalus; brain parenchyma; permeability; anisotropy; finite element modelling

1. Introduction

Hydrocephalus is a cerebral disease wherein the brain
ventricles dilate and compress the parenchyma. In non-
communicating or obstructive hydrocephalus, there is a
blockage of the cerebrospinal fluid (CSF) circulation inside
the ventricular system, usually in the aqueduct of Sylvius. In
communicating hydrocephalus, the obstruction to the CSF
flow occurs not only inside the ventricular system (Hakim
1971; Peña 2002) but also in the arachnoid granulations
where CSF is absorbed by the venous system. In these two
forms of hydrocephalus, a raised intracranial pressure (ICP)
is observed together with a low-pressure gradient. Normal
pressure hydrocephalus (NPH) is a chronic form of hydro-
cephalus where the ventricles enlarge although the CSF
pressure remains close to normal (∼10 mmHg) within the
ventricular system and the brain (Hakim and Adams 1965;
Levine 2008). Although the presence of a pressure gradi-
ent across the cerebral mantle is expected in obstructive
hydrocephalus, such a gradient has been reported to be
small (∼1 mmHg or lower) (Levine 2008). This gradient
would be even smaller in communicating hydrocephalus
and particularly in NPH, which renders the mechanism
of ventricular dilatation in the latter condition notoriously
mysterious. Figure 1 shows the ventricle dilation on an axial
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section in a NPH patient showing clinical signs of urinary
incontinence and dementia compared to the normal brain
captured by computed tomography (CT). The volume of
the ventricles is almost double.

In the present study, we focus on NPH as its mecha-
nisms are yet unclear compared to the obstructive and com-
municating cases which are caused by CSF flow obstruc-
tions. The pathological manifestations of NPH are gradual
memory loss (dementia), balance disorder (ataxia), urinary
incontinence and general slowing of activity (Hakim and
Adams 1965). The first ‘mechanical’ explanation of NPH
was given by Hakim and Adams (1965), who asserted that
a given pressure exerts a greater force in a large ventricu-
lar system than in a smaller one. In his recent explanation
of the NPH mechanisms, Levine (2008) pointed out that a
CSF pressure mini-gradient exists within the cerebral man-
tle in order to balance the CSF absorption by the blood
vessels. He introduced a new index called degree of pres-
sure transmission. With a high degree of transmission or
higher incompressibility of brain parenchyma, acute hy-
drocephalus with high ICP is likely to occur, while higher
compressibility of the brain parenchyma will result in NPH.

In the present study, a model of the brain is built
in a finite element (FE) program. Magnetic Resonance
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188 K. Shahim et al.

Figure 1. Computed tomography (CT) scans (axial sections) of normal (a) and dilated (b) ventricles in NPH (Momjian and Bichsel
2008).

Imaging (MRI) and Diffusion Tensor Imaging (DTI) data
are used to determine the computation domain and the
CSF content together with the permeability. MRI is used
to determine the geometry of the brain parenchyma be-
tween the skull and the ventricles. With the use of dif-
ferent software (MatlabTM(http://www.Matlab.com) and
MRIcroTM(http://www.MRIcro.com)) it is possible to build
3D geometries of the brain parenchyma from MRI im-
ages provided a good contrast between the ventricles
and the subarachnoid spaces (SAS) is obtained. For the
sake of simplicity and short computation times, one ax-
ial section of the brain is considered in the present
study.

DTI is a non-invasive technique that measures water
diffusion rates and thus gives an indication of the underly-
ing tissue microstructure. Basser et al. (1994) proposed to
represent the water diffusion in all the directions of space
as a tensor in each voxel. The underlying assumption of
diffusion-based tractography is that the water diffusion co-
efficient is different, higher in the present case, along the

axis of the axon bundles rather than perpendicular to it.
This aspect is used to construct the 3D pattern of the axon
tracts using the so-called tractography technique (Melhem
et al. 2002).

The brain parenchyma represents per se a heteroge-
neous medium and the presence of bundles of axons, i.e.
fibre tracts, in the white matter gives birth to anisotropy
not only in permeability but also in the elastic properties
(Larrat et al. 2007). Both properties exhibit the so-called
transverse isotropic (TI) behaviour as, for instance, in bone
or muscle. In white matter, the elasticity and permeabil-
ity properties are different along the fibre tracts direction
than perpendicular to them as illustrated in Figure 2(a).
The local frame (1, 2, 3) is aligned with the direction of
neuron fibres whereas (x, y, z) is the reference frame. The
plane perpendicular to the fibre tracts, plane (1 and 2), is
assumed to exhibit isotropic elasticity and permeability, as
represented schematically in Figure 2. The difficulty resides
in the determination of the permeability coefficients in each
direction.

(b)(a)
Low CSF permeability

High CSF 
permeability1

3

2

x

z

y

(x, y, z) reference frame

(1,2,3) local frame 

Figure 2. Schematic representation of the fibre tracts in white matter and the associated non-isotropic properties (Larrat et al. 2007).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
h
a
h
i
m
,
 
K
a
m
a
l
]
 
A
t
:
 
0
6
:
5
0
 
7
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



Applied Bionics and Biomechanics 189

There have been many attempts to model the brain ana-
lytically and numerically using the FE technique. Different
kinds of constitutive equations have been considered (Peña
et al. 1999; Tenti et al. 1999; Peña 2002; Sivaloganathan
et al. 2005b; Wirth 2005; Dutta-Roy et al. 2008). The
model by Wirth (2005) incorporates strain dependence
of the brain’s permeability in three different geometries.
In her work, the skull and ventricles have been simpli-
fied to spherical and cylindrical geometries. Peña et al.
(1999, 2002) enlightened the CSF accumulation around
the ventricular horns with the help of an FE model un-
der an applied pressure gradient. By introducing large
deformation (LD) theory and a hyperelastic constitutive
model in a 3D model of the brain, Dutta-Roy et al. (2008)
tested different mechanical approaches such as compress-
ible solid parts, single phase or biphasic models to un-
derstand NPH, but the brain parenchyma was modelled
as isotropic. With the help of a 2D isotropic model, Peña
et al. (1999) and Momjian and Bichsel (2006) showed that
the greatest stress concentrations and the largest deforma-
tions occur at the anterolateral angle of the frontal horn.

From the mechanical point of view, elastic and poro-
elastic (Biot’s theory of consolidation (1941)) have been
used assuming isotropic and homogenous elasticity and
permeability tensors (Nagashima et al. 1987; Kaczmarek
et al. 1997; Smillie et al. 2005; Momjian and Bichsel 2006).
Some non-linearity has later been introduced through
either a dilation-dependent Young’s modulus (Dutta-Roy
et al. 2008; Momjian and Bichsel 2008) or a dilation-
dependent permeability (Kaczmarek et al. 1997; Sivalo-
ganathan et al. 2005a) of the brain parenchyma. So far, the
brain parenchyma has always been considered as a porous
medium with isotropic and homogenous permeability. To
our knowledge, the influence of the non-uniform CSF con-
tent and anisotropy in permeability has never been studied.
The present work combines the results of two non-invasive
imaging techniques, MRI and DTI, together with an FE
model, the goal being to evaluate the importance of the
non-uniform CSF content and non-isotropic permeability
in the case of NPH. To do so, the response of the cerebral
mantle to an imposed CSF pressure gradient of 5 mmHg is
studied.

The DTI data are presented first, together with the link
with permeability. Then the FE model using those data is
presented together with the constitutive equations and the
applied boundary conditions. Two different numerical cases
are also defined in this section. Results and discussion are
then presented and compared in the last section.

2. Experimental data

2.1. Diffusion tensor imaging (DTI)

An SE-EPI (Echo planar) sequence (field of view, 200 mm;
echo time, 65 ms; b-factor, 1000 s/mm2; six non-collinear

directions; 27 contiguous, 5-mm slices) was used. The 128
matrix is the standard matrix for the SE-EPI sequence and
offers a good signal to noise ratio (SNR). The acquisition
was repeated twice to improve the SNR. The total time for
DTI acquisition was about 3 min. Geometric distortions as
a result of eddy currents were first corrected. Diffusion was
measured in terms of the apparent-diffusion coefficient and
estimated for each voxel with non-linear regression (Basser
and Pierpaoli 1998). For each estimate, the three orthogo-
nal eigenvectors and their related positive eigenvalues were
calculated. The principal direction of diffusion is given by
the eigenvector that corresponds to the largest eigenvalue.

As diffusion is considered to be anisotropic, it is no
longer characterised by a single scalar coefficient, but re-
quires a 3 × 3 positive symmetric matrix, D, i.e. six scalars.
When this tensor is expressed in the fibre tracts direction
local frame (1, 2, 3), it becomes diagonal with three eigen-
values (D1, D2, D3). The mean diffusivity (MD) (m2/s)
and the fractional anisotropy in diffusion (FAD) are defined
respectively as follows (Bihan et al. 1993):

MD = D̄ = D1 + D2 + D3

3
, (1)

FAD =
√

3

2

√
(D1 − D̄)2 + (D2 − D̄)2 + (D3 − D̄)2

D2
1 + D2

2 + D2
3

∈

[0, 1]. (2)

Figure 3 shows these two quantities over the axial slice
of the DTI data set of a human brain measured at Hôpitaux
Universitaires de Genève (HUG) and used for the present
study. MD allows distinguishing between cerebrospinal
fluid content, where MD is high, and brain tissue, where
MD is low. On the other hand, high fractional anisotropy
(FAD) indicates the presence of white matter, because the di-
rectionality of the axon bundles allows for a faster diffusion
along the neurons than across them (cf. Figure 2). Higher
FAD values indicate increased anisotropic diffusion, as can
be seen inside the corpus callosum where FAD is close to 1.0
(Melhem et al. 2002). Surrounding the ventricles, corpus
callosum and corona radiata present the highest values of
FAD. On the other hand, FAD is close to zero in gray matter.

To distinguish between white and gray matters inside
the parenchyma, a threshold based on the level of anisotropy
is used similarly to Green et al. (2008). Voxels having FAD

value above 0.25 are considered as white matter, whereas
voxels with FAD value below 0.25 are considered as gray
matter. This value of 0.25 comes from the uncertainties
associated with the DTI measurements.

2.2. CSF content

As mean diffusivity highlights the CSF content, a fit is
done to relate these two variables. The range of MD is from
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190 K. Shahim et al.

Figure 3. (a) Mean diffusivity (MD) (10−3 mm2/s), and (b) fractional anisotropy in diffusion (FAD).

0 to 1.667 × 10−3 mm2/s, while the CSF content varies
from 0 to 100%. In addition, the average CSF content in
the brain parenchyma is taken as 18% and is assigned to
the mean value of MD, 0.806 × 10−3 mm2/s, over the slice.
The polynomial fit presented in Figure 4 is used to link f0

(in percentage) with MD expressed in units of 10−3 mm2/s:

f0 = 9.633(MD)3 + 19.94(MD)2. (3)

2.3. Diffusion and permeability

The link between diffusion and permeability in the brain is
not well established. Similar to what Gupta et al. (2009) did
for the permeability of SAS, we use the Westhuizen and Du
Plessis (1994) formulas for the parallel and perpendicular
permeability coefficients in the brain parenchyma:

kpara = f 2(π + 2.157(1 − f ))

48 (1 − f )2
d2

w, [m2], (4)

kperp = πf (1 − √
1 − f )2

24 (1 − f )3/2
d2

w, [m2], (5)

where f and dw are the CSF content and diameter of axon
fibre tracts, respectively. White matter permeability is as-
sumed to be TI and the direction of highest permeability is
similar to the direction of highest diffusion. For gray matter,
the isotropic Kozeny–Carman permeability (Carman 1937)
is used:

kgray = f 3

180 (1 − f )2
d2

g , [m2], (6)

where dg represents the distance between gray cell bod-
ies. In white matter the fibre tract diameter falls within
the range of 1 to 10 µm (Aboitiz et al. 1992; Yaniv et al.
2008). The average 5 µm is used in Equations (4–5). For
gray matter, the related dimension accounts for the pas-
sage size between gray cells and is also of the order of 5
µm. The three permeability coefficients kpara, kperp and kgray

are plotted in Figure 5 as a function of the CSF content
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Figure 4. CSF content (%) versus mean diffusivity (MD).
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Figure 5. Permeability coefficients for gray and white matters versus CSF content (%).

using a log scale as they vary over orders of magnitude.
All coefficients tend to be infinite when CSF content tends
to 100% and to 0 when CSF content tends to 0. In addi-
tion, kpara is always larger than kperp, which is larger than
kgray. The degree of anisotropy is very large for low CSF
content (2 to 30%) and decreases when CSF content in-
creases. The average CSF content inside the parenchyma
is reported in the literature as 18%. This yields kpara =
10−13 m2 and kgray = 10−15 m2. Basser used permeabil-
ity values of 7.5 10−15 m2 for white matter and 5.0 10−15

m2 for gray matter (Basser 1992; Kaczmarek et al. 1997;
Linninger et al. 2009) and Kaczmarek considered 1.6 10−14

m2 and 1.6 10−16 m2, respectively, with a ratio of 100 be-
tween them (Basser 1992; Kaczmarek et al. 1997; Linninger
et al. 2009). Linninger assumed an isotropic permeability
of 1.0 10−14 m2 in the parenchyma (Basser 1992; Kacz-
marek et al. 1997; Linninger et al. 2009). As a conclusion,
the permeability coefficients given by Equations (4) to (6)
correlate well with the values found in the literature.

Using the permeability coefficients defined in Equations
(4) to (6) and the relationship between MD and CSF content
(Equation (3)), a simple but realistic link is established
between the DTI data and both the CSF content and the
permeability coefficients.

3. Finite element modelling

3.1. Computational domain

To build the FE mesh, MRI (field strength of 1.5 Tesla)
data consisting of 128 × 128 × 70 voxels are used. The
size of each voxel is 1.88 × 1.88 × 2 mm3. The axial

slice of the geometry of the brain is extracted (ComsolTM

(http://www.Comsol.com)). In this slice, the two ventricles
are visible and separated by a thin wall. The thickness of the
slice is the same as that of the voxels, i.e. 2 mm. Figure 6
shows the computation domain and the associated mesh.
The mesh is made out of 63,104 prism elements with 64,398
nodes. The size of each mesh element is lower than the voxel
size. Linear interpolation is used to have smooth variation
of data over the domain. The mesh is refined in the region
close to the ventricles.

The MRI and DTI acquisitions were done on a whole
3D brain of a given subject in the Geneva hospital. For
the first study, a 3D slice was extracted as it helps us to
distinguish the differences while avoiding the complexity
of geometry. In addition, the slice was chosen in a way to
include the regions of interest (Corona radiata and Corpus
callosum).

3.2. Constitutive equations

Brain parenchyma is modelled as a porous medium fully
saturated with CSF. The evolution of NPH is very slow and
takes months or years. Therefore, steady state situation is
assumed. Mechanical equilibrium in the two-phase medium
requires that

div(σ t ) = �0, (7)

where σ t is the total stress tensor. It is defined by the Terza-
ghi’s principle that relates the stress over the solid phase
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192 K. Shahim et al.

Figure 6. The 3D slice model with its boundaries.

σ and the CSF pressure p (Biot 1941; Wirth 2005) by

σ t = σ + pId , (8)

where Id is the identity tensor. The principle of effective
stress, when applied to Hooke’s law, yields (Biot 1941;
Wirth 2005)

σ t = Cε + pId , (9)

where C is the fourth order stiffness tensor that is defined
by the Young’s modulus, E, and Poisson’s ratio, v, when
it is assumed to be isotropic. ε is the Green–Lagrange’s
deformation tensor defined as

ε = 1

2

(∇�u + ∇�uT + ∇�u × ∇�uT
)
, (10)

where �u is the displacement vector of the solid constituent.
When assuming small deformation (SD), the third quadratic
term of Equation (10) is ignored. CSF flow inside the
medium is modelled with the help of the Darcy’s law (Biot
1941):

�V = − k

µ
( �∇p), (11)

where �V is the average CSF velocity (m/s), k the permeabil-
ity tensor (m2) and µ is the viscosity of CSF equal to that
of water, i.e. 0.001 Pa.s. Taking the divergence of Equation
(11) yields

−∇ · (k �∇p) = div (µ �V ) = 0, (12)

as it is assumed that there is no CSF sink or source in-
side the parenchyma. Finally, by putting Equation (8) into
Equation (7) and using Equation (12), one gets two coupled
differential equations that are solved numerically. The first
one is for the mechanical equilibrium:

div(σ ) + �∇p = �0. (13)

The second equation is for the CSF mass conservation:

∇ · (k �∇p) = 0. (14)

Note that the permeability tensor k remains inside the
divergence as it is highly space-dependent. The unknowns
of the problem are ux , uy and uz, the three components
of displacement of the solid constituent, and p being the
pressure of extracellular CSF, thus giving four degrees of
freedom per node.

3.3. Initial and boundary conditions

Initial conditions are taken as zero for displacements and
stresses at all mesh points:

�u(t = 0) = �0 and σ (t = 0) = 0. (15)

Initial CSF pressure is zero (i.e. p(t = 0) = 0) and the
extracellular CSF content is either 18% or non-uniform
and defined by Equation (3). The calculation consists in
finding the solution where the pressure within the ventricles
is increased to 5 mmHg (i.e. 666.61 Pa) whereas it is kept
to zero on the outer boundary. In other words, a pressure
gradient of 5 mmHg is applied between the ventricles and
the SAS. The ventricles are assumed to be fully permeable
and can deform freely. Thus,

p = 5 mmHg and σ �n = −p�n on ∂in, (16)

where �n represents the normal vector on the ventricles’
surface. Brain surface is assumed to be mechanically fixed:

�u = �0 and p = 0 on ∂out. (17)

The top and bottom surfaces of the slice are assumed
to be impermeable and fixed for displacement along the
z-direction, which leads to a quasi 2D situation throughout

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
h
a
h
i
m
,
 
K
a
m
a
l
]
 
A
t
:
 
0
6
:
5
0
 
7
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



Applied Bionics and Biomechanics 193

the slice (see Figure 6):

uz = 0 and
∂p

∂ �n = 0 with �n = ±�ez on ∂ext. (18)

4. Description of two simulation cases

Two simulation cases are defined to study the influence of
the non-uniform CSF content and anisotropy of the perme-
ability on the CSF flow created by the imposed pressure
gradient of 5 mmHg (666.61 Pa). The elastic properties
of the brain are assumed to be isotropic and homogenous.
A drained Poisson’s ratio of v = 0.3 is assumed for both
cases based on the data used by other authors (Peña 2002;
Momjian and Bichsel 2006). This Poisson’s ratio accounts
for some compressibility of the brain parenchyma. The
shear modulus is chosen as an average value of 3.0 kPa
(Green et al. 2008). All boundary conditions are the same
for both cases that are detailed hereafter.

4.1. First case: homogeneous and isotropic

In this case and similarly to most of the previous FE mod-
els of NPH, the permeability tensor reduces to one scalar
coefficient k taken as the average of the permeability coef-
ficients over the slice in gray and white matters, i.e. 0.48 ×
10−14 m2 (cf. Equations (4–6)). In addition, initial CSF
content is constant and uniform f0 = 18%.

4.2. Second case: anisotropic and
inhomogeneous in permeability

In this case, the inhomogeneity of the CSF content and
anisotropy of the permeability tensor are introduced. The
initial CSF content is space-dependent and defined by Equa-
tion (3). The permeability tensor is defined by the perme-
ability coefficients given in Equations (4–6) in the local
coordinate systems (1, 2, 3) determined by DTI:

kgray =

⎡
⎢⎣

kgray 0 0

0 kgray 0

0 0 kgray

⎤
⎥⎦ , (19)

kwhite =

⎡
⎢⎣

kperp 0 0

0 kperp 0

0 0 kpara

⎤
⎥⎦ , (20)

as depicted in Figure 2, where direction (3) is the direction
of highest diffusion.

4.3. Solving strategy

The two coupled differential equations are solved by the FE
method. Direct solvers are more accurate but high memory

consuming. The generalised minimal residual method
(GMRES) iterative solver (Youcef and Martin 1986) present
in Comsol is used with a geometric multigrid precondi-
tioner. Quadratic interpolation functions are used for both
displacement and pressure in each element. SD and LD the-
ories are also tested. The time for the calculation of case 2
is about half a day on a double CPU personal computer with
2 GB of RAM. Several simulation runs are carried out on
different mesh densities to ensure that the solution remains
independent of the mesh grid.

5. Results and discussion

To ease the comparison between the two cases, the same
scale is used. Figure 7 shows the ventricle dilation, the
CSF pressure and streamlines under the imposed pressure
difference of 5 mmHg for both cases using SD. The ven-
tricles dilate and compress the brain parenchyma towards
the skull. Black lines represent the original ventricle shapes.
The pressure field and CSF streamlines are distorted in case
2 compared to case 1, which exhibits the classic Laplacian
solution of Equation (14) and has been retrieved in most
studies of NPH. The pressure gradient close to the brain
surface is lower in case 2 owing to the larger CSF content
and the associated permeability coefficients. In the corpus
callosum (cf. Figure 3), the direction of the highest diffu-
sion is in plane and therefore CSF flow along that direction
is facilitated as kpara, which is the highest permeability co-
efficient. On the other hand, the direction of the highest
diffusion is perpendicular to the plane in the corona radi-
ata. Thus the CSF flow is impeded owing to the lower value
of kperp.

The general pattern of displacements in both cases is
very similar. This is not surprising, as the mean values of
the permeability and the elasticity coefficients over the slice
are the same. However, differences appear when plotting
the displacement magnitude versus the arc-length, i.e. the
distance from a base point on top of the ventricle horn
counterclockwise, as shown in Figure 8 for the left ventricle.
The increase in ventricle dilation from case 1 to case 2 is
visible only in the region close to the corona radiata, i.e. for
segment AB, owing to the intricate relationship between the
CSF content and the permeability coefficients. The increase
is about 6% using SD, while it increases up to 15% for LD.
Using LD theory together with non-uniform CSF content
and anisotropic permeability, the displacement is increased
by 53% compared to case 1 with SD. Ventricle dilation is
the highest in case 2 with LD. Between the two ventricles,
the left ventricle with a smaller initial volume dilates more.
This correlates with the ‘mechanical’ explanation of NPH
given by Hakim and Adams in 1965.

Figure 9(a) presents the initial fluid content calculated
with Equation (3) and used in case 2 as an initial condition.
Figures 9(b) and (c) show the final CSF distribution for
cases 1 and 2, respectively. A specific colour-bar is used to
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Figure 7. Ventricle dilation, pressure distribution (Pa) and CSF streamlines in cases 1 and 2 showing the large influence of non-uniform
CSF content and anisotropic permeability.

include the values of CSF content from 0 to 100%. This
way there is no cut-off and the limit between the blue and
yellow colours corresponds to the average CSF content of
18%. Near the ventricle horns, the CSF content increases
significantly for both cases (red region in Figures 9(b) and
(c)). This concentration of CSF near the ventricle horns is
generally accepted as the reason for periventricular lucency

(PVL) (Peña et al. 1999). On both sides of the ventricles
the CSF content decreases, especially in case 2 (dark blue
region in Figure 9(c)). This decrease may reduce the ex-
tracellular spaces in these regions, distort the blood vessels
and lead to a collapse of the capillaries. This mechanism has
been observed experimentally in hydrocephalic brains (Del
Bigio 1993). In the remaining part of the brain parenchyma,

Figure 8. Displacement magnitude (mm) in cases 1 and 2 including small deformation (SD) and large deformation (LD) analysis versus
the arc-length (mm) of the left ventricle.
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Figure 9. (a) Initial CSF content in case 2, (b) final CSF content in case 1 and (c) case 2.

the amount of CSF remains close to its initial value. How-
ever, it is important to note that the boundary conditions
apply on the pressure itself (Dirichlet conditions, Equa-
tions (16) and (17)) and not on the CSF flux through the
ventricle and brain surfaces that are assumed to be fully
permeable. That is why the average CSF content increases
for both cases under the ‘mechanical’ compression of the
cerebral mantle.

Figure 10 shows the distribution of the CSF velocity for
both cases using SD. A large influence of the CSF content
and anisotropy in permeability is again observed in case 2.
In case 1, the velocity is relatively uniform with minimum
between the ventricles and maximum of 10 µm/s around
the ventricle horns. This high velocity corresponds to the
high CSF flow (or discharge) and is due to a geometrical
effect on the Laplace’s solution �p = 0. Case 2 yields a
highly non-uniform velocity distribution with a large range
of values going from almost zero between the two ventri-
cles to 1000 µm/s in the CSF pathways that appear between
the two hemispheres and close to the SAS. These pathways
develop owing to the high local CSF content (cf. Equa-
tion (3)) and its influence on the permeability coefficients
(cf. Equations (4) to (6)). This non-uniform pattern has been

measured in NPH patients by Tullberg et al. (2001) using
MRI (cf. Figure 10). With the help of the CINE-MRI tech-
nique, Linninger et al. (2009) reported such a non-uniform
velocity distribution with a maximum value of around 2000
µm/s in a hydrocephalic brain.

Figure 11 shows the σ xx stress component of the solid
stress tensor for both cases. The patterns look very similar
owing to the fact that the elastic properties are identical.
In both cases, the ventricle horns and the region between
the two ventricles undergo tensile stresses along x, while
the remaining part of the cerebral mantle is in compression.
Part of the region corresponding to the corona radiata (cf.
Figure (3)) with fibre directions perpendicular to the plane
undergoes some tensile stresses. This tension can cause the
fibre tracts to be detached from each other. This detach-
ing mechanism has been described experimentally (Weller
et al. 1971) and should be evidenced with the present model
by introducing anisotropy in the elastic properties.

In the present study, a pressure gradient of 5 mmHg is
imposed between the ventricles and the SAS as previously
done by Peña et al. (1999) and Momjian and Bichsel (2006,
2008). The existence of such a pressure gradient has never
been demonstrated in the case of NPH. However, Levine

Figure 10. Fluid velocity distribution (µm/s) in cases 1 (left) and 2 (middle) with a realistic MRI scan of a NPH patient (right) (Tullberg
et al. 2001)).
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Figure 11. σ xx (kPa) plot in cases 1 and 2 (SD).

(2008) recently raised the necessity of the existence of a
mini-gradient lower than 1 mmHg in the parenchyma. Ac-
cording to him, an increased transmantle pressure is needed
to balance CSF production and CSF absorption. Neverthe-
less, the influence of anisotropy and inhomogeneity in per-
meability and LD effect should remain important in such a
situation.

Due to the incompressible nature of the brain tissue, the
undrained Poisson’s ratio is very close to 0.5. In the present
study, a drained Poisson’s ratio of 0.3 is used to consider the
CSF discharge from parenchyma as both ventricle and brain
membranes are assumed to be permeable. In reality, the CSF
flow through these two membranes should be modelled by a
Cauchy condition traducing some possible seepage. In that
case, the CSF flow through the membrane is proportional to
the difference in pressure on both sides. This aspect is not
taken into account in the present model as data are currently
missing.

6. Conclusion

The present study demonstrates the importance of both the
inhomogeneity of the CSF content and the anisotropy of
permeability in the ventricle dilation and in the CSF flow
field. LD theory yields a larger increase in dilation and thus
should be considered when the applied CSF pressure gra-
dient is large. The CSF velocity field becomes much more
inhomogeneous, as observed experimentally. With space-
dependent CSF content and TI permeability, the proposed
model becomes much more realistic. In a similar approach,
TI elasticity tensor will be introduced in the future as well.
Indeed, recent data based on magnetic resonance elastogra-
phy (MRE) have shown that the white matter is stiffer along
the fibre tracts than perpendicular to them.

In order to better understand the development of NPH
the model still needs to be further improved, notably by
using real 3D geometry. The brain and ventricle surfaces
can be permeable to some extent. The existence of blood

vessels plays an important role in the CSF circulation in-
side the parenchyma. The blood vessels and the arachnoids
granulations behave as a sink absorbing CSF, whereas the
choroid plexus produces CSF and behaves as a source.
These effects of blood vessels and CSF production by the
choroid plexus will be considered in the near future.
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