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Abstract

Current approaches to model checking distributed sys- @
tems reduce the problem to that of model checking cen-

tralized systemsglobal states involving all nodes and
communication links are systematically explored. The

fr nt chan in the n rk element of the gl |
equent changes in the network element of the globa o :>

states lead however to a rapid state explosion and make

it impossible to model check any non-trivial distributed //Shared Networ

system. We explore in this paper an alternativéocal _ o ] o
approach where the network is ignored, a priori: only theFigure 1: State transition in model checking distributed
local nodes’ states are explored and in a separate magyStéms. In (a) the classic global approach, the model
ner. The set of valid system states is a subset of all comchecker creates the entire state space of the global states,
binations of the node local states and checking validitjVhereas in (b) our proposed local approach, the net-
of such a combination is only performed a posteriori work element is eliminated from the stored states and the
in case of a possible bug. This approach drastically remodel checker keeps track of only node local states.
duces the number of transitions executed by the model
checker. It takes for example the clasgiabal approach .
several minutes to explore the interleaving of message ngth tOf the seguer:ce ofdelnaﬁledk_eveg_tst _(l:)orgsljdered.
in the celebrated Paxos distributed protocol even Considt- urreng afg’ r(;z(;\)c Zels 1o7m0 de ¢ tehC 'ng bIIS fl tu ?h tsysf
ering only three nodes and a single proposal. Ooal ems [9, RN ].re uce the problem fo that 0
approach explores the entire system state in a few se(p-mdel checking a centralized sy_st_em (Figure 1). The sets
onds. Our local approach does clearly not eliminate theexplored arglobal states comprising thiecal states of

state exponential explosion problem. Yet, it postponeéthe n?dtes mvolvcﬁd mttr:le ?lstrt)uttetd S.ySt?m’ "?H’Slw
its manifestations till some deeper levels. This is al- emstate, as well as theetworkstate involving the ex-

ready good enough for online testing tools that restart thghange of messgges. .
model checker periodically from the current live state of _ 1h€ €xponential state space explosion problem man-
a running system. We show for instance how this ap_|fests itself very quickly in thigglobal approach, which

proach enables us to find two bugs in variants of Paxos.Makes the model checking of distributed systems practi-
cally ineffective. This is because the global state changes

following any small change into a node local state or
1 Introduction the network state. Consider for instance the celebrated

Paxos protocol [12], in the simple setting with three
At each step of model checking a centralized system, (inodes where exactly one proposes at the start, i.e., no
one of the traversed states is selected, (ii) an enablegontention: it takes the global model checking approach
event is executed on that state, and (i) the resultingl514 s (running on a 3.00 GHz Intel(R) Pentium(R) 4
state is added to the list of traversed states. The usefzPU with 1 MB of L2 cache) to explore the interleaving
specified invariants are checked against the traversedf messages.
states after each step and the set of these states growsThe starting point of this paper is a couple of simple,
exponentially with thedepthof the exploration, i.e., the complementary observations: (1) in the global model




checking approach, the invariants are checked on eacixample state space.
traversed global state, although these invariants are typi In global model checking approach, visiting the sys-
cally specified only on the system states, i.e., the invaritem states is part of the exploration process: the new
ants do not involve the network states [10, 20, 21, 17]; global states (which involve the system states) are ex-
(2) for checking invariants that are defined on systenplored by running enabled events on the previously vis-
variables, visiting the system part is a priori sufficient. ited global states. Therefore, skipping a system state
Focusing on these states only, and ignoring the netmakes the exploration incomplete. In contrast, our lo-
work states, significantly reduces the exploration spaceal approach separates the exploration of transitions from
in comparison to the classic approach where each syghe creation of system states. This makes it possible to
tem state is typically repeated in multiple global statesignore all system states on which the user-specified in-
that differ only in the network part. variants can inherently not be violated: for instance, the
We present in this paperlacal model checking ap- Paxos invariant stipulates that no two decisions should
proach, which essentially consists in keeping track of thebe different and all undecided states can systematically
traversed local nodes’ states separately by ignoring thée eliminated.
network, a priori. Combined, these states are sufficienSummary of Contributions.
for invariant checking. The approach is most effective on
protocols that involve frequent changes into the network,
i.e., the nodes have lots of parallel network activities. Fo
the Paxos example state space with one proposal, our ap-
proach explores the entire system state in a few seconds.
We show that our approach isompletan the sense that
any violation of a system state invariant that could be de-
tected by the global approach could be detected by our
local approach. Two important remarks are however in
order.
First, the combination of node states does not induce
system states that are afthlid: the fact that we ignore
the network element, a priori, means that some combi-
nations of node states might not occur in a real run. In
other words, although complete, checking invariants on
the retrieved system states ismisoundsince it could re-
port a violation on an invalid system state. We address
this problem by, a posteriori, verifying every preliminary
violation report to make sure the sequence of events lead-
ing to the corresponding system state could also happen
in areal run. Aninvariant violation is then reported to the
user only if passes this test. If the number of preliminary
violations is low enough, which turns out to be the case
in our experiments with Paxos, the performance penalty
of verifying them becomes negligible. The rest of the paper is organized as follows2 il-
Second, although our local approach is several orderistrates our approach through a simple example. The
of magnitude faster than the classic model checking apbackground is recalled i§3. § 4 presents our approach.
proach, the state explosion problem is not eliminatedAfter presenting the evaluation resultsis, we contrast
(The cost of invalid states created by our approach, allocal model checking approach with related work;if
though low at the start, will anyway eventually domi- and conclude the paper §n7. We prove the correctness
nate in the general case.) Yet, we believe this can, t®f our soundness verification procedure in the appendix.
a large extent, be addressed loynline model checking
tpols where the model _che(_:ker is run for just a sh(_)rt Pe2  Local Model Checking: A Primer
riod (a few seconds): in this case, our approach is effi-
cient enough to search till depths of280 for the Paxos  Here we use a simple example to highlight the difference
i — , , between global model checking and our local approach.
n testing, invariants are used to express the high-leapenties o ayample we consider here does not attempt to illus-
of the system. Including the in-flight messages in invasaatthough . .
possible in theory, makes defining the invariants too caraéd in  trate the performance improvements obtained by our ap-
practice. proach but aims at explaining the main idea. The exam-

e We introduce a new, local approach to model check-
ing distributed systems. Instead of keeping track
of global states, we eliminate the network element
from the model checking states and keep only track
of node local states. Our approach optimistically
eliminates the overhead of ensuring soundness of
every visited state and instead verifies soundness
only on the states that violate the invariants.

e Our approach decouples exploration algorithm from
system state space creation. This feature opens the
door for optimizations that skip some system states
without, however, hurting the completeness of ex-
ploration. We benefit from this aspect in our exper-
iments by skipping the system states that could not
violate the Paxos invariant.

e Having the exploration, system state creation, and

soundness verification decoupled, the model check-

ing process can be embarrassingly parallelized to
benefit from the ever increasing number of cores.

We present an efficient implementation of our ap-

proach and we show how this approach tracks bugs

in two variants of Paxos, known to be one of the
most complex distributed algorithms.
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changes into the shared network element. The middle

@odzod e Oon2ed e 000208 e column shows the set of states of Node 0 to 4. The first
{24;/ \Qf%) {Oﬂl/ \5%4} <2ﬁ3i/ \foﬂﬂ event is the local event of Node 0 that generates the mes-
203 sl (24} s ©Oo1) st 253 sl sage. The generated message is then added to the shared
o= o network element. At each step, an event is selected and

=3 {Z*N ,ﬂ o =3 is executed on all states of the destination node. The re-

0 s sultant states are added to the list of visited node states if

they have not been visited before. The last column shows
Figure 3: The global state space of the example tree ithe new system states created after each step.
Figure 2 as explored by a global model checking ap-
proach. The network element of the global state is rep-
resented by the set of in-flight messages. Each arrow Figure 4 illustrates our local approach on the same ex-
depicts a transition in the model checker from one globaRmple system. Here, the network element, i.e., the non-
state to another. The label besides each arrow indicategssential part for invariant checking, is separated from
the event that triggers the transition. Although the globalthe model checking state. Instead, we keep a shared net-

states inside the rectangles are duplicates, they are n#tork component that receives the generated messages by
joined into one state, for simplicity of presentation. all the transitions in the model checking. Observe that

the messages added to the network are not removed by
the executed transitions. This is necessary for the com-
ple system is a simple distributed tree structure, depicte@leteness of the search, because each message must be
in Figure 2. Node 0 initiates a message for Node 4 andeceived by all the states of the destination node, includ-
changes its state ®ent . Each node, upon receiving a ing the node states that will be explored later.
message, forwards it to its children. Node 4 changes its The last column of the figure depicts the new system
state tor ecei ved upon receiving the message. states created after each step. The system states are cre-
At each step of global model checking, the modelated temporarily for the sake of being checked against
checker transitions from a global state to another by runthe user-specified invariants. Observe that, in total, only
ning an enabled event, such as handling a message. THesystem states are created in contrast with the 12 global
global state contains the network state besides the systestates of Figure 3. Moreover, the last system state, i.e.,
state, i.e., the local state of all the nodes. The globat stat’----r” is invalid since Node 4 could not receive the mes-
space of the example system is depicted in Figure 3. Theage before it is sent by Node 0. After an invariant is
initial state of each node is denoted "-". The system stateviolated on a system state, we rus@undnesserifica-
is shown by concatenating the five states of Nodes 0 to 4ion phase to ensure the validity of the system state.
The state of Node 0 and 4 is changed to "s” and "r” after
the sending and receiving of the message, respectively.
Each change into the network element causes creation & Preliminaries
a new global state. As one can observe, the number of
system states covered by this global state space is mudle present here a simple model of a distributed system
less than its size. and a basic model checking algorithm based on depth-



basic notions:

N — node identifiers

S — node states

M — message contents

N x M — (destination process, message)-pair

C = 2NxM _ get of messages with destination

A — internal node actions (timers, application calls)

global state: (L, 1) € G, G =2N*5 x 2NxM
system state (local nodes’ stated) C N x S
(function fromN to 5)
in-flight messages (network)l C N x M

behavior functions for each node:

message handler Hy; C (S x M) x (S x C)
internal action handlerH 4 C (S x A) x (S x C)

transition function for distributed system :

node message handler execution
((s1,m), (s2,¢)) € Hyy

before: (Lo W {(n,s1)}, IoW{(n,m)})~
after: (Lo W {(n,s2)}, 1o We)

internal node action (timer, application calls)
((Slaa)ﬂ (8270)) € HA
before: (Lo W {(n,s1)}, 1)~
after:  (LoW{(n,s2)}, T Wc)

Figure 5: A simple distributed system model

first search. The model is later alteredifhto explain lo-

Node behavior. Each node in the system runs the
same state-machine implementation. The state machine
has two kinds of handlers: (i) a message handler exe-
cutes in response to a network message; (i) an inter-
nal handler executes in response to a node-local event
such as a timer and an application call. We represent
message handlers by a set of tuplég. The condition
((s1,m), (s2,¢)) € Hp means that, if a node is in state
s1 and it receives a message then it transitions into
states,; and sends the setof messages. Each element
(n',m’) € cis amessage with target destination nade
and contentn’. ((s1,a),(s2,¢)) € Hy4 represents the
handling of an internal node actione A. An internal
node action handler is analogous to a message handler,
but it does not consume a network message.

System behavior. The behavior of the system specifies
one step of a transition from owggobal state( L, ) to an-
other global stat€éZ’, I’). We denote this transition by
(L,I)~(L',I") and describe it in Figure 5 in terms of
handlersH ; andH 4. 2 The handler that sends the mes-
sage, inserts the message directly into the network state
1, whereas the handler receiving the message simply re-
moves it fromI. To keep the model simple, we assume
that transport errors are particular messages, generated
and processed by message handlers.

Observations. The following observations can be de-
rived from the definitions ofi,; and H 4 in Figure 5:

(i) Except the node in which the event is executed, the
state of other nodes, i.e.y, is untouched. This implies
that to execute an event on nodewe require only the
state of nodes; (ii) To executeH ,; with messagen on
noden, the only required part from the network state is

cal model checking algorithm. We then explain the shortyple (n,m): the rest of the network state, i.dyg, is
run in online model checking, where the model checkeryntouched. These observations indicate that the entire

can benefit from our local model checking approach.

3.1 System Model

global state of the system is not required to execute a
handler in the model checker.

3.2 Global Model Checking

Figure 5 describes a simple model of a distributed sys-

tem, taken from [20].

Global model checking is based on a standard search al-
orithm such as bounded depth-first search (B-DFS) for

System state. The global stateof the entire distributed gonthm < : o ) o
%ckmg invariant violations in the transition system-<ap

system encompasses (1) the system state, i.e., local staéé . .
o¥al| nodes, ar?d ?) in(-fl)ight ngtwork messages. We aS_ured by relation» of Figure 5. The search starts from a

sume a finite set of node identifielé (e.g., correspond- given global state, which, in the standard approach, is the

. initial state of the system. By executing enabled handlers
ing to IP addresses). Each nodec N has a local state
9 ) & (Hj; and H 4) on the traversed global states, the search

L" € §. A node state encompasses node-local inforl;systematically explores reachable global states at larger
mation, such as explicit state variables of the distribute ;
P nd larger depths and checks whether the states satisfy

node implementation, the status of timers, and the stat 9 . -
that determines application calls. A network state corre-t N gl;j/enl nvarl ant_ Cond't'((;r.]' h hat all Vi
sponds to the set of in-flight messagés\We represent ISc:_un ness:[ B'DFIS ISI soun |n.t € ser;se t aftt:;\] vio-
each in-flight message by a p&iv, M) whereN is the ation repc;]r S coud aﬁo oc_cunrc Iln arealrun Oh € Sys-
destination node of the message drds the remaining tem. In other words, there is rfalse positiven the re-
message content (including sender node information anBorted bugs. Moreover, all traversed states are valid and

message body).

2w in the handler definition means disjoint union.
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a b Figure 7: In our local approach, the handler execution

works only on node states and produces new node states.
Figure 6: The covered state space in model checking by ocal and system states are denoted "LS” and "SS”,
(a) a model checker started from the initial global staterespectively. The messages are not removed from the
and (b) an online model checker that restarts periodicallshared network component after execution. The sound-
from the current live system state. The curved line repmess verification checks the validity of a system state,
resents the states explored by the running system. only after an invariant violation is reported.

could also be created in a real run. The sufficient part
for soundness, however, is only the reported violations

to the developer. We will show later that our local model keeps track of node states separately: /sét contains
checking is also sound, even though some system state ihe traversed states of node This is enough to

created a priori might be invalid. _ recreate theystem statespon which the invariants are
Completeness.An exploration algorithm is complete if, .hocked. After a preliminary violation report on a sys-

given enough time and space, it can explore all systemgy, siate, the validity of the system state is checked by
states. In other words, completeness is satisfied if therg ¢4 ,ndness verification module. If the system state is

is nofalse negativen bug reporting. Although B-DFS  ¢,hirmed to be valid, the error is then (and only then)
is complete, due to an inherently limited time budget, INyeported to the developer.

practice it can explore only a small fraction of the state

space of complex algorithms. Instead of keeping a separate network state for each

global state, we keep one single network statethat
3.3 Online Model Checking contains all generated messages during the model check-

) ing (Figure 7). The execution of handlers must change to
Due to the state space explosion problem, a modelqy \yith the shared network stafe (Figure 8). In the

checker of a distributed system cannot explore deepeﬁeW handlersfl, and /', the network state of the in-

than certain steps in a limited time budget. For exam-, + 415ha| state is replaced with the new shared network

ple, even in the very small state space experiment of Fig'state,ﬁ. Furthermore, the received message,m),
ure 10, where only one node proposes once, the mod% not removed fromi* ’

L after the execution of handler
checker cannot explore more than 15 events within &, |, other words, the content df* is always in-
M- )

minute. An online model checker is, on the other hand’creasing. It is not hard to see that the altered handlers

restarted periodically from the live state of a running SYS-preserve the completeness of the search: for each Transi-

tem. As a consequence, the model checker has a chanﬁgn (L, I,)~(Lq, I,) in Hyy, there exist a correspond-

to explore more relevant states at deeper levels, insteqqg Transition(L,, I )~(L,, 1) in H’,. We discuss
of getting stuck in the exponential explosion problem at P r g M

soundness later in this section and we prove it in the ap-
some very shallow depths. pendix.
Figure 6 illustrates the use of a model checker in par-
allel with a running system. As one can see, an online
model checker does not require solving the exponentia{h
explosion problem completely; it is rather sufficient to
explore till a depth that is useful for testing purposes.

Recall from§ 3 that, to execute a handler on node
e only required state is the state of nodd.e., LS™.
Therefore, the stored node states are enough to execute
the handlers and we do not need to recreate the system
state for that. To execute network handlers, however, we
4 Local Model Checking require also message, m) from the network (we do not
need the whole network state.). As shown in Figure 7, the
The architecture of our local model checking approach ishandler execution module receives input only from node
depicted in Figure 7. In this approach, the model checkestates and the shared network module.



1 proc findBugs(liveState, invariant)

node message handler execution LS = emptySet()7+ = emptySet():

((s1,m), (52,¢)) € Hy, 2 foreachn € N
before: (Lo W {(n,s1)}, IT W {(n,m)})~ 4« LS™=LS"U {liveStaté'},
after:  (LoW{(n,s2)}, 1T W {(n,m)}Wc) s while (! StopCriterion)
6
7
8
9

if (3((s,e),(s',c)) € Hy; where LST € LS™, (n,e) € I ||
I((s,e), (s',c)) € Hy where LSY € LS™)
addNextStatey(, s, s’, e, ¢, LS);
checkSysteminvariani( s, liveState,L.S, invariant);

internal node action (timer, application calls)
((s1,a), (s2,¢)) € H)
before: (Lo W {(n,s1)}, IT)~ N
after: (Lo W {(n,s2)}, 1" we) uproc addNextState(, s, s', e, ¢, LS)
» It=I1tug
LS"=LS"uUs;
LS7, .predecessors.adde);

Figure 8: The altered handlers in local model checkingﬁ
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1s proc checkSysteminvariani( s’, liveState,L.S, invariant)

4.1 Algonthm 17 foreach ss : system state

. . . N whereVny,. ss"k € LS™
Figure 9 presents our algorithm. Varialdlé' in Figure 9 12 if (! invarigﬁt(jj) )
refers to the set of all visited node states, i#,s), where 5 if (isStateSound(liveStates) )
n is the node index and is the node state. Procedure: reportBugés); // a bug found

f i ndBugs takes the live state of the system as input, t& . )
initialize Variable LS at Lines 3-4. As in global model % Pro¢ isStateSound(liveState, state) .
. . . 24 //obtain all sequences following predecessor pointers
checking , the search terminates upon exceeding SOMefyreach 1, : list of event sequencashere
bounds, such as running time or search depth (Line 5),,  r" ¢ (staté.predecessorsy/ * is closure operator
Handler execution. At each step of the model check<=r if (isSequenceValid(liveStaté) )
ing, an enabled handler, either network or local, is ex&- return true;
cuted. For network handlers, the algorithm at each stép retumn false;
checks all network messages in Variable. To obtain s1 proc isSequenceValid(liveState)
the enabled network events, for each messagenode ., state = liveState:
n inIt, aII_the currently visited sta_tes of nodeare con- » while (3n, nextStatavhere state” Lirt0 nextState)
sidered (Line 6). The corresponding network handler Js  giate = nextState:
then executed (Line 8) and ProcedaddNext St ate s 1".popFirst();
is called on the resultant statg, and the set of new net-zs return h ==,
work messages, Note that the messages that are added
to network/* in this round of the loop (i.e.¢ in Fig- Figure 9: Local model checker algorithm.
ure 8) will be considered on the node states in the next
round.

As in the global model checking approach, the nodestates, they must be temporarily created for the sake
local events, such as timers and application calls, are desf invariant checking, which is performed by Procedure
fined based on the node local states. In other words, theheckSyst em nvari ant . The procedure is called
value of node staté.S? determines which of the local after each change tbS. Each system statss is created
events are enabled. To obtain the enabled local eventby combining the node states of different noded.if\.
we look at all visited node states and retrieve their local(\We will explain in§ 4.2 an optimization that prevents
events (Line 7). revisiting system states.)

In ProcedureaddNext St at e, the set of new net- The only purpose of system state creation is to verify
work messages is added to the shared netwdrk, the user-specified invariamt. on them. Therefore, we
(Line 12). If the state of node has changed, it is added can design invariant-specific system state creation to by-
to setLS (Line 13). Variablepredecessors keeps track  pass the system states that could not possibly violate the
of all the last immediate node states as well as the exenvariant. In other words, ifn’ = in andin’(ss) is
cuted events on them that led to the current node statfalse, verifyingin(ss) is not necessary. In order for this
(Line 14). We need more than one pointer in Vari- to be usefulin’ should be cheaply verifiable. One way
ablepredecessors, since the same node state might beto achieve that is to decompos¢ into some locally ver-
reached by executing different sequences of events. ifiable properties. For example, the Paxos invariant spec-
Creating system states. The invariants are defined ifies that no two nodes should choose different values. In
on system states. Since we do not store the systersystem state creation, therefore, we can ignore the node



states in which no value is chosen yet. If the invariant is4.2  Implementation Details
defined on node states separately, the invariant-specific
system state creation can also bypass the system stateg@cal model checking can be used for testing programs
in which none of node states have violated the invariantin all languages, including C++. Basically, any of exist-
For example, in RandTree distributed tree structure, onéd stateful global model checking tools could be instru-
invariant specifies that in all node states the children andnented to run our proposed algorithm. Our prototype
siblings must be disjoint sets. implementation of the local model checking approach,
denoted LMC, uses MaceMC [10], a model checker
pfor distributed system implementations in the Mace lan-
guage [9]. Mace programs are basically structured C++
implementations, in which the boundary of handlers and
the protocol messages need to be specified. This helps
ant is violated. Variableyredecessors in each node Mace automatically generate the code for serialization

states’ contains all the last immediate node states thaf"d deserialization of the protocol state, and simplifies
led to s'. Following these pointers, we obtain the set "€ definition of events in the model checker.
of event sequences that could leadsto If a system  We use CrystalBall [20, 19] for online running of the
state is valid, then there exists at least one valid commodel checker, in parallel with a live distributed system.
bination of its node states’ event sequentésnes 25- The model checker is then periodically restarted from the
26 loop on all these combinations and invoke Procedurd@ken snapshot. Itis worth noting that LMC improves the
i sSequenceVal i d on each. The number of paths Performance of model checking anyway, independent of
could exponentially increase with sequence size, whict-rystalBall. For testing of complex programs, however,
is the major cost in soundness verification. we use the online model checking approach to restart the
Proceduré sSequenceVal i d receives: event se- model checker before exponential explosion manifests.
quences i, i € N) corresponding to: nodes in the We changed MaceMC to work oily on one global ob-
system. The procedure then looks for a valid total orded€Ct Of the network simulator, i.e/". To change the
for execution of the events, in which an event is executed'€tWork handler implementations fraffy, to 1} (Fig-
only after it is enabled. For example, to execute a netH'€ 8), we changed the network simulator notto remove a
work handler that receives messagerom nodes, the ~ Message afterits delivery. MaceMC automatically gener-
message must first be generated by an eventAieach ~ at€s specific functions for (de)serializing a module state
step, the procedure verifies whether any of the events off! the service. We added specific functions to save and
top of theh stacks are enabled (Line 33). The first en-"€Store the whple service stack. This is required for
abled event is greedily selected for execution based offtulti-layer services such as 1Paxos [18] (one of the pro-
the definition of handlers in Figure 5 (the events are ex{0C0IS we check), which uses Paxos as its lower layer
ecuted similar to a real run of the distributed system.)module. To efficiently check for duplicate states, we use
The loop continues until there are no enabled events off'€ hashes of the serialized states. For each nodee
top theh’ stacks. Afterward, the fact that is empty hashes of the traversed states are keptsiatastructure.
(Line 36) indicates that the set of sequenced events in The serialized state itself is stored imlaque structure

was possible to run and hence its corresponding systef Penefit from its efficiency in random access.
state is valid. Each message keeps track of the number of node

states on which it has been executed. Therefore, in each
round, each message is checked only on the newly added
pendix A provides formal arguments for the above State_tsjgiees\,/ebriltJLthr:F:r)]I;sghoi\; e;:jréiglﬁ]ts;ithe: 'plrgfjtsggscs)gth;o?ri-
ment. Intuitively, since an event in not popped out from ’ ) : i

Y Popp ers. These hash values will be checked against the hash

h unless it is a valid, enabled event, the feasibility of ex- | f th bled s, lat h i# th
ecuting all events implies that the system state is valid. yalues of the enabled events, later when we verify the

actually does not matter which enabled event is selecteaou"]dn_ess of the system state. ] o
quences will be eventually enforced by receiving only3enerally driven by an application sending requests to

the messages that are already generated. the service. In Paxos for example, an application send-
ing propose requests to the service is the test driver of

. o the model checker. The more complex the test driver, the
Each event sequence must deterministically lead to the safe |5y the generated state space is. A careful design of the
state. If the event handler implementation is dependenbareson-

deterministic values, those values must be recorded asfitaet event, €St d'jiver could greatly impac_:t the efficiency Of_ model
to be replayed deterministically on a re-execution of thenev checking. In our Paxos experiments, the test driver pro-

Soundness verification. Since taking all combina-
tions of node states could result into some invalid syste
states, the preliminary violation of an invariant could be
unsound. Proceduries St at eSound, therefore, veri-
fies validity of the system state upon which an invari-

Procedurei sSequenceVal i d returns true if and
only if the corresponding input system state is valid. Ap-




poses values for a particular index. The index is selectedhodel checking approach transitions from one global
from recent chosen proposals, where not all the nodestate to another). If no event from the sequences is en-
have learned the proposal yet. Otherwise, a new index iabled in the simulator, it indicates that sequence of events
used for the proposal. is not valid. Although using the simulator simplifies the
System states.To avoid revisiting system states, check- implementation, initializing the simulator at each run of
ing invariants on system states is performed only aftethe soundness verification is expensive since it involves
visiting a new node state, which implies the possibility loading the test driver.
for creating new system states. For each new node state For efficient implementation of soundness verification
(n,s), the system states are created by iterating over th&odule, we take advantage of the following observation.
states of all the nodes except nad@nd loading them. The role of the simulator in executing evenbon noden
This is because the combinations of the previously visdis to (i) updates the state of nodg(ii) remove the mes-
ited states of node. and the node states of the other sagem from the network ife is a network event for de-
nodes have already been verified in previous rounds. It i§very of messagen, and (i) add the set of messages,
worth noting that this optimization could make the model resulting from the execution ef to the network.
checking incomplete because the handler execution that The consumed message by a network eventis specified
has not produced a new node state could still change thiy its corresponding hash in the node event sequence,
pointers inpredecessors, which means the possibility of which was given as a part of the input to the procedure.
a valid event sequence for a previously rejected systenthe set of the generated messages by an event execution
state. To address this issue we could cache the systea@an also be remembered by keeping the hashes of the
states in which an invariant is violated and reverify themgenerated messagesyiredecessor. In this manner, the
after the changes intbS that affect them. input to ProceduresSequenceVal i d is the set of se-
Beside the general approach for system state creatiofiuenced events as well as the set of generated messages

we also implemented an invariant-specific variation, deby each event. The execution of evenin Procedure
noted LMC-OPT, optimized for the Paxos main invari- | SSequenceVal i d can then be simplified as follows:
ant. In this variation, we map the node states to the values :
that are chosen in them. Because most of the node statesl' A_Iocal eventf, is always enabled. A _network event_

e is enabled if the hash of the required message is

have not chosen any value, lots of them will not be in- found in the set of generated message hashss,

cluded in this mapping. When creating system states, we 2. If evente is enabled, then pop it out from the se-
thus select only the node states that at least two of them )
quence. If event is a network event, remove the

are _mapped to_dlﬁ‘erent values. This optimization helps hash of the corresponding message fromset
avoid the creation of lots of redundant system states and : .

consequently omits their corresponding invariant check- 3. After popping out event, add its generated mes-
. P sage hashes to sett.

ing and soundness verification steps.
Soundness verification. Procedure sSt at eSound The above implementation simplifies Procedure
uses pointers in Variablgredecessor to find event se- | sSt at eSound to some integer comparison opera-
quences that could lead to the input node states. For thgons and therefore makes checking the validity of a set
sake of simplicity in implementation, we ignore thelf-  of sequenced events very efficient.

referencesn following the pointers irpredecessor. Al- Local assertions. LMC checks for the system invari-
though in theory this could make the exploration incom-ants defined on the system state. The source code could
plete, in practice the search in the limited time budget isstill be instrumented by some local assertions by which
incomplete anyway and benefiting from the simplicity is, the developers have benefited in earlier stages of testing.
hence, preferable. Moreover, after the soundness verififhe violation of the local assert statements in the pro-
cation on a system state is finished, some more pointersess of local model checking could imply that either (i)
could be added intpredecessor by the process of lo- the node state is invalid, perhaps because of delivering an
cal model checking. Therefore, a complete explorationunexpected message, or (ii) there is a bug in the system
should invoke soundness verification after each changander test. Checking the latter case necessitates (i) cre-
into apredecessor. However, an efficient implementa- ating all the system states by combining the node state
tion of that would be complex since it should check only with all states from other nodes, and (ii) checking the va-
for the newly added pointers. For the sake of simplic-lidity of those states by invoking soundness verification.
ity in implementation, we invoke soundness verification This approach is very expensive since it involves lots of
only after a new node state is visited. invocation of soundness verification.

Procedurei sSequenceVal i d. The validity of a set In general we could ignore violation of a local assert
of sequenced events could in general be checked by exince a protocol bug will eventually manifest itself by vi-
ecuting them in a simulator (the same way the globalolating a system invariant. Alternatively, we can discard



the node state on which the assertion is violated assurd.3  Scope of Applicability
ing that the assert violation implies the invalidity of the

node state. In the applications we tested, the assert state-

ments were mostly used to exclude the receipt of unex;
pected messages, i.e., the case that could be caused
conservative message delivery policy of LMC, which de-
livers the message to all the node states of the destinatio
We, therefore, benefited from the local assert violation
by discarding the corresponding node states.

n contrast with global model checking that validity of
¥ch traversed state is ensured, local model checking op-
timistically allows visiting invalid states and verifieseth
Ualidity of a state only after it violates an invariant. If
Ive have a few preliminary violations, the optimistic ap-
proach of local model checking performs better since it

Local events. The presented algorithm 14 is com- does not pay for ensuring validity of every single visited

plete in the sense that, given enough time and space state. Otherwise, the cost of soundness verification dom-
explores all possible states. In practice, however, wdnates. For example, in online model checking, if a run
have a short time budget to check the reachable statéd the model checker is revealing a bug in the protocol,
from a given current state. Therefore, the developerdl IS likely to see lots of violation reports caused by both
might be interested to favor some events to be explored@lid and invalid event sequences. Perhaps, one solution
first in the search. Hence, in each round we put a boungould be running both local and global model checker in
on the number of local events that each node can exeQarallel and use the result of the one that finishes sooner.
cute; after finishing the round, the bounds are increased

and the model checking is started from scratch. This ap- hBykgllmlnatlnglthe lnetwdor:< er:emkgnt fro(rjn the T\Odel
proach is in spirit similar to B-DFS search, where the €hecking state, ocal model checking reduces the ex-
search depth is increased at each step. plored state space since each system state is repeated in

multiple global states that are different only in the net-

Duplicate messagesIn general, a node could infinitely Work part. The larger the network state space is, the more
issue duplicates of the same message. For example, fpace and time is saved by eliminating it. Local model
the verified Paxos implementations, the same Chosefhecking is, therefore, most effective for the protocols
message will be sent over and over to the proposer thdhat are chatty, i.e., exchange lots of messages to service
insists for an already chosen value. To favor the mair@ request. Otherwise, if the nodes rarely communicate,
protoc0| messages in the limited time of search, we ha\/éhe change into the network is rare and therefore there is
put a limit on the number of duplicate messages senfiot much to be saved by local model checking.

from a source to a destination node. This limit is set

to zero for the results reported in this paper. Note that N contrast with global model checking, local model
the duplicate messages can be postponed to be procesggtecking considers interleaving of parallel network

later, after processing some main protocol messages. €vents only when they turn out to be dependent. LMC,
therefore, avoids lots of unnecessary event interleaving.

As we explained, to ensure completeness, the med-or example, upon receipt of the Accept message, the
sages are never erased from the network objétt, nodes in Paxos broadcast some Learn messages in par-
However, if node state~% s’ wherem is a network allel, which enables LMC to perform much better than
event, execution ofn. on s’ is redundant since: is al-  global model checking. The more parallel network ac-
ready executed in the sequence. To avoid redundant exivities in the system, the more effective LMC is. For ex-
ecutions, we keep the history of the messages that haample, we could not expect much from LMC in a chain
been executed to obtain the state: a network event is corsystem in which each node simply forwards the input
sidered on a state only if it is not in the history of the message to the next.
state. After executing messageon node state that re-
sults into node state, we apply the two following rules The current implementation of LMC assumes a best-
to maintain the history: (i}’.history = s.history, (ii) effort, lossy network, i.e., IP. The protocols that use UDP
§'.history.addLast(m). Thus, message: will never  can, therefore, be directly model checked with LMC. Al-
be executed on node stateas well as its descendants. though, TCP could be considered as part of the protocol
Maintaining history gets complicated if statealready  stack, in practice this is not efficient, and TCP is usu-
exists since we need to maintain separate histories foally simulated in the model checker. To do so, LMC im-
different sequences that lead 40 We have simplified plementation should be also augmented to benefit from
the implementation by applying rule (i) only if the state the fact that reordered messages in a connection will
does not exist. Since the run of LMC in the limited time eventually be rejected by TCP and could, hence, be ig-
budget is not complete anyway, we decided to favor simnored, saving some unnecessary handler executions in
plicity over completeness here. the model checker.



5 Evaluation 10000

1000 |

We evaluate in this section the performance of our local = 100 |
model checking approach compared to a classic global § w0l ]
one. We also illustrate the ability of our tool, LMC, in £ aea?E
finding bugs in Paxos and its variant, 1Paxos. £ ! EE.EE .

We use Paxos as a complex distributed testbed toeval- %/ ‘ggﬁgx***ww 1
uate the performance of the proposed local model check- & 001 ¢ QRQEQ
ing approach. In usual implementations of Paxos, each 0.001 f=== Mo o ]
node implements three roles: proposer, acceptor, and 0.0001 \ \ LMC-OPT, -3¢
learner. Multiple proposers can concurrently propose 0 5 1°Demh o205

values for the same index. The Paxos invariant (also
known as the Paxos safety property) stipulates that N@q ,re 10: The elapsed time in model checking Paxos
two nodes WI||. (_:hoo.se d|ﬁeren§ values for the same in-ynere only one out of three nodes proposes a value.
dex. A proposition (i.e., proposing a value for an index)
starts by broadcasting Prepare messages to the accep-
tors. The acceptors respond by a PrepareResponse megiid sequences of evenfsThe elapsed time is depicted
sage. After receiving it from a majority of acceptors, thein a logarithmic scale to illustrate exponential state spac
proposer broadcasts an Accept message to the acceptoggplosion problem. In B-DFS, the exponential explosion
The value in the Accept message is the value returnedtarts from the very early steps, which makes the explo-
by the PrepareResponse message with the highest preation take 1514 s. The growth in LMC-OPT is much
posal number, which reflects the accepted values fronfess steep, which allows it to finish the model checking
previous proposals, if there is any. Each acceptor theim just 189 ms {8,000 times faster than B-DFS).
broadcasts a Learn message to the learners. A value is The growth in LMC-GEN, although still much more
chosen by the learners after receiving the Learn messaggentle than B-DFS, is steeper than LMC-OPT. The ex-
from a majority of acceptors. ploration finishes in 5.16 s which is sti#t300 times

For benchmarking purposes, we use a state space @dister than B-DFS. The extra delay is due to the cre-
Paxos running between three nodes, in which one nodation of the system states out of the explored node states,
proposes a value once and the others react to this pravhich in LMC-OPT is optimized to be performed only
posal by communicating using Paxos messages. Thafter a different value is chosen. Figure 11 depicts the
long chain of messages following each proposal coulchumber of explored states. The number of created system
be received in a variety of orders, which all must be con-states in LMC-GEN, although much less than B-DFS, is
sidered by a model checker. For each experiment, we renuch more than the total number of node states, denoted
port on evaluation of 3 algorithms: (i) B-DFS (explained LMC-local in the figure. LMC-OPT, on the other hand,
in § 3), (i) LMC-GEN, which is the non-optimized, drops the number of created system states to zero since
general version of our local model checker (LMC), andthere is no bug in the Paxos implementation to lead to
(iii) LMC-OPT, which is a version of our local model any preliminary violations. (LMC-OPT creates a system
checker optimized for the Paxos main invariant accord-state only if it is likely to invalidate the invariants.)
ing to § 4.2. The experiments are run on a 3.00 GHz The total number of performed transitions in B-DFS
Intel(R) Pentium(R) 4 CPU with 1 MB of L2 cache. is 157,332. LMC drops this to 1,186, which is132
times less. This is because a LMC transition from state
s to states’ in noden, is redundantly executed several
5.1 LMC Speedup times in global model checking approach (once for each

Here we evaluate the speedup in model checking thaglobal state that encompasseand its network event is

we can get by our tool, LMC. Figure 10 presents the€nabled).

results for the example state space, in which only one ThiS state space of Paxos is very useful in online
node proposes a value. This state space is relativel{’del checking, where we expect the model checker to

small and yet effective in finding bugs when it is ex- Seek for a bug in the time budget of Iegs_ than a minute.
plored through an online model checker. The depth of80th LMC-OPT and LMC-GEN can finish this state
the state space is 22 events (three initialization, one prosPace in this duration and LMC-OPT can continue for
pose local event, three Prepare messages, three Prep§}ore complicated state spaces where there is some time
eResponse messages, three Accept messages, and ngft (@s we explained if 4.2, the model checker, in favor

Learn messages)- LMC e_xplores also Ionger Sequences 4The invalid sequences will be eventually rejected by soesdn
of events (up to 25) since it could also explore some in-verification phase if they violate some invariants.
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Figure 12: The consumed memory. The numbers for all

Figure 11: The number of explored states. The numbegonfigurations of LMC are close together and are, hence,
of system states explored by LMC-OPT is zero and is,overlapped in the figure.

hence, not plotted in the figure.

5.3 LMC Memory Requirements

of time, starts with small state spaces by gradua}lly 'r."Figure 11 depicts the very fact that the number of node
creasing the number of allowed local events.). This is in

contrast to B-DFS that will not go further than depth 12 states explored by LMC is much less than the total num-
within a minute ber of system or global states. Because LMC keeps track

only of node states, and the system states are created
only temporarily, LMC is expected to require very low
memory footprint. Figure 12 verifies this expectation by
5.2 LMC Scalability Limits depicting the memory footprints of different algorithms.
LMC-local denotes the run of LMC-OPT in which the
We showed that LMC manages to finish a valuable stat€reation of system states is disabled. The difference be-
space in less than a few seconds. This is already goo#iveen LMC-local and LMC-OPT (resp. LMC-GEN) in-
enough for practical applications such as online modeficates the memory overhead of system state creation
checking that restarts the model checker every few sec@s Well as soundness verification. Although there is a
onds. From the theoretical point of view at least, it is marginal overhead for system states, the memory eventu-
interesting to find the scalability limits of LMC, i.e., the ally returns to the system by reusing the deleted objects.
point where the postponed exponential explosion probThe consumed additional memory by all algorithms is
lem eventually manifests and makes LMC ineffective forless than 1 MB which can totally fit into the L2 cache.
the rest of the exploration. To this aim, we choose a muctiowever, the exponential trend in memory consumption
bigger state space, where two separate nodes propo$é B-DFS, promises the ineffectiveness of B-DFS for
two values. The depth of the state space is 41 eventsleeper searches. LMC in contrast uses the memory very
which is two times the events in one error-free proposal€fficiently (~200 KB in total) and this amount grows lin-
(LMC explores also longer sequences of events, up to 682arly by increase in search depth.
since it could also explore invalid sequences of events.)

Due to exponential explosion problem, neither B-DFS5 4 | MC Overheads
nor LMC could finish the state space, even after hours
of running. Within this duration, B-DFS explores till 20 Here we break down the overheads that limit the scala-
steps (out of maximum depth of 41) and LMC searchedility of LMC. LMC has two major overheads: (1) cre-
till 39 steps (out of maximum depth 68). The major con- ation of system states out of traversed node states, and (2)
tributor to the slowdown of LMC is the expensive task verifying soundness of the preliminary violations. The
of soundness verification. The number of different eventprecise load of each overhead depends on the particular
sequences that must be considered for checking validitgystem under test. Figure 13 illustrates the overheads
of a system state exponentially increases with the searcbf LMC-OPT in the buggy implementation of Paxos,
depth. In the above example that the search depth dbr which the corresponding bug is reported §rb.5.
LMC is 39, each invocation of soundness verification in-In LMC-system-state the soundness verification phase
duces~10 s into the algorithm. Invocations of sound- is disabled and in LMC-explore the creation of system
ness verification are much less in the smaller state spacsates is eliminated.
in which only one node proposes a value. The difference between LMC-system-state and LMC-
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work takes the live system state of a running Paxos appli-
cation and use that to initialize the next run of LMC. The
application encompasses three nodes, each node pro-
poses its Id for a new index and then sleeps for a random
time between 0 and 60 s. The nodes communicate using
UDP and 30% of non-loopback messages are randomly
dropped to allow rare states to be also created.

The bug was detected after 1150 seconds. The run of

Elapsed time in second

LMC-OPT-syStom state —s— LMC that detected the bug was initialized with the fol-

LMC-explore —+—

lowing live state: for indext;, node N; has proposed
valuev;, nodesN; and N, have accepted this proposal,
but due to message losses oMy has learned it. Start-
Figure 13: The overheads of LMC in model checking g from this system state, LMC detected in 11 s a vi-
Paxos in which a bug is injected. olation of the Paxos invariant in the following scenario:
N, proposes a new valug but its Prepare messages is
not received byV;. N, responds by a PrepareResponse
explore captures the overhead of creating the systermessage containing valug, because this value was ac-
states and checking the invariant on them. The overheagepted byN, in the previous round. HowevéyYs, since
is zero until 21 steps since the unnecessary system statbad not accepted any value for index responds back
are bypassed by the optimization in LMC-OPT. After- by the same value proposed B, v». Receipt of Pre-
wards, the overhead increases with the depth search, bpareResponse d¥s triggers the bug, and/, broadcasts
cause as the exploration moves forward, more node staté$) Accept message fep instead ofv;. Eventually this
are explored and hence more combinations of them mudeads to choosing value in N3, which is different from
be considered for system state creation. The differencéhe value chosen b, i.e., v;.
between LMC-OPT and LMC-system-state reveals the
overhead of soundness verification. (LMC-OPT did not .
go further than 28 steps, the level at which the injectec15'6 Testing 1Paxos
bug is rediscovered.) This overhead is the major contribip this section, we report on running our prototype to
utor to the exponential increase in model checking timefind bugs on a variant of Paxos, denoted 1Paxos [18]:
The reason is that not all combinations of node states argjs is an efficient variation of Multi-Paxos [2] that uses
valid, and the more node states are traversed, the moignly one acceptor. Upon failure, the active acceptor is
invalid system states will be checked. On the other handreplaced with a backup acceptor by the global leader.
since the injected bug is close to manifest in this run oftherefore, it is necessary that the acceptor and leader
the model checker, the number of invalid combinationsygles to be assigned to two separate nodes. To uniquely
of node states that violate the invariant increases. LMCidentify the global leader and the active acceptor, 1Paxos
OPT triggers the soundness verification for 773 timesyses a separate consensus protocol referred to as PaxosU-
and each call takes 45 ms in average. Overall, 427,73djjity [18]. The global leader and the active acceptor are
different event sequences were checked by the soundnegfentified by the last LeaderChange and AcceptorChange

0.0001

5 10 15 20 25 30 35
Depth

verification module. entries in the PaxosuUtility, respectively. In this experi-
ment, we have implemented PaxosUtility using Paxos it-
5.5 Testing Paxos self. 1Paxos is more complex than Paxos for it comprises

more logic. Here we use the same setup that was used for
In this section, we report on our experiments in inject-testing Paxos, with the difference that the application in-
ing a bug into a Paxos implementation and then runningstead of proposing a value triggers the fault detector with
our prototype to verify its ability to detect the bug. The the probability of 0.1 to stress the fault tolerance mecha-
bug we injected was reported in a previous implementanisms of 1Paxos. In 225 s, the tool found one new bug in
tion of Paxos [13]: once the leader receives the PrepartPaxos that we report in the following.
eResponse message from a majority of nodes, it creates The bug was created because of the wrong usage of the
the Accept request by using the submitted value from'++” operator; if the operator is used after the operand,
the last PrepareResponse message instead of the Prepidue returned value is the original value and not the in-
eResponse message with highest round number. The irreased one. The developer had made this mistake in the
stalled invariant is the original Paxos invariant: no two initialization function, where the leader is set to the first
nodes can choose different values. node of the members and the acceptor is set to the sec-

Every one minute, the online model checking frame-ond. The used command was
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acceptor = *(menbers. begi n() ++); of these histories after a preliminary invariant violation
report.
which makes the acceptor be the same node as the leadere also make use of the Cartesian product of indepen-
The bug is of course fixed by putting the "++" operator gently explored node states to obtain the system states.

before the operand, i.e., Cartesian abstraction is essential here in our approach in
B ) _ order to create the system states and check (system-wide)
acceptor = x(++menbers. begin()); invariants against them. In contrast, previous works ben-

efited from the Cartesian abstraction by not creating sys-
tem states; skipping the system states is possible since
the invariants in multi-threaded programs are just thread-
local assert statements and could be verified on a local
state of a thread without having the rest of the system
state.®> Our local model checking approach employs the
Cartesian abstraction in a different way: namely, to ex-
plore the system state space without exploring the global
state space.

In [8], Cartesian Abstraction is used on top of boolean
. I abstraction of threads to find race conditions in multi-
Starting from the above system state, LMC hIghl'ghtsthreaded programs. After boolean abstraction, each

Et;e folrllc_)v:]ln%l?cenano thit.vut)rl]attlas t(;]e Paxos mva“alm:thread is represented by a long boolean expression over
1, which Stil assumes 1t Is the leader, proposes va ueglobal and local variables including an artificially added
vy for indexk; to the acceptor. Sincd, considers itself

to be the leader, according to the protocol, it does not revariable for line number. A race condition s also rep-
’ resented by a boolean expression over the line numbers
fer to PaxosUtility to get the acceptor Id. Therefohg, y b

ses its current value, which is sethd, i.e., its own Id in which the threads read and write the global variables.
u IS current vaiue, which 1S Setiq, 1.€., 1S OWn 1d, = pa e conditions are detected by taking conjunction of the
due to the initialization bug described abové. accepts

th | and dsal td thread boolean expressions with race conditions. There-
€ proposaand sends a Learn messagétdJpon re- fore, there is no need for system state creation. This ap-
ceiving the loopback messag®; assumes value; as

. A X ) proach cannot be applied on general system invariants
chosen for indexs;. This violates t_he Paxos '”""?‘“a”t that would express a relation between local variables of
since other nodes have chosen a different valuegie.,

multiple threads. The approach applies a heuristic on the
detected races to eliminate some of the false positives.
6 Related Work One could indeed generalize the Cartesian abstract in-
terpretation presented in [14] to distributed systems, by
Cartesian abstraction. This is an abstraction-based USing the network as the global object. However, the net-
verification technique where an overapproximated vari-Work would still be part of the model checking states,
ant of the program is model checked, instead of the Origi_concatenated to the local states. In our approac_h, we ex-
nal one [1]. Due to overapproximation, the reported bugsclude the network element from the model checking state
are not sound, which makes the technique mainly usefu®nd use only a shared network element.
for correctness proving, benefiting from the Comp|ete_Monotonic abstraction. Monotonic abstraction [16]
ness of the search. Malkis et al. [14] achieved thread©f the network has been used in verification of security
modular model checking [5, 15] using a Cartesian abProtocols since it accounts for the maximal knowledge
stract interpretation of multi-threaded programs. Eactearned by attacker. Dolev-Yao's model [4] is one such
thread state consists of the thread local variables plus th&0del, in which the attacker remembers all messages
global variables. For each thread, the model checker sefbat have been intercepted or overheard. The shared net-
arately explores possible valuations of the thread locayvork object in our local model checking approach is es-
variables as well as the global variables. The approximasentially an application of a monotonic abstraction since
tion comes from the fact that the valuations of the globalthe delivered messages are not removed from the net-
variables by a thread are also used by other threads, ig¥ork. The shared monotonic network is key to ensuring
noring the causal order for obtaining them. Again, thethe€ completeness of the search by applying the generated
unsoundness, stemmed from the approximation, makg®essages also on future generated node states.
the technique inappropriate for testing purposes. In conOnline model checking.  CrystalBall [20, 19] is a
trast, our reported bugs are sound and this is ensured 5There is an ongoing research to convert a system-wide aiaio

by keeping track of th_e events e_x_ecuted for obta_inin_g & set of thread-local assert statements, which has showh rgsalts
node state and checking the validity of the combinationon small multi-threaded programs [3].

During the live run, nodeV; attempts to be the leader
by inserting a LeaderChange entry into the PaxosuUtility.
At this moment, it obtains from the PaxosUtility the cor-
rect value of the active acceptor, whichNs. After N3
becomes leader, it proposes valyefor index k;, which
is accepted by the acceptor, i.8/;. N, then broadcasts
a Learn message, which is received /By as well as it-
self. Atthis pointthe live system state, in which all nodes
exceptN; have chosen valug; for the indexk;, is taken
to be used by LMC.
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framework that implements the online model checkinglocal states and visiting a local state once in a combi-
scheme. To be effective in practice, the online modelnation with any other local states is enough. In contrast,
checker must be fast enough to explore till a reasonableve test the system against system-wide invariants such as
depth in the period between two restarts (typically a fewPaxos main invariant, which could be held in one combi-
seconds). CrystalBall uses a heuristic, nantébnse- nation of node local states and violated in another.
guence Predictionwhich prunes the local events of an

already visited node state. As a heuristic, Consequenc .

Prediction is incomplete and could, hence, miss somi Concluding Remarks

bugs due to false negatives. In contrast, our local model

checking approach offers a complete search accompaVe introduce a novellocal approach to model check-
nied with proofs. Furthermore, complex distributed sys-!ng distributed systems. Essentially, the underlying idea
tems such as Paxos, often generate lots of network mels to remove the |_1etwork state from the glo_bz_al state
sages on which Consequence Prediction does not hay¥hen model checking, and focus on the remaining sys-

any effect. For instance, in the used Paxos state spacéesm state, which is the usual required part for invariant

throughout this paper, we consider only the interleav-CheCki”g' The system state is itself built temporarily out

ing of the resulting network messages after some pr09f node states, and these are maintained separately. Al-

posals. Therefore, Consequence Prediction, which dodf©ugh complete, the approach is not sound in the sense

not prune the network messages, would not offer any im—:]hat sgme syst((jam s(;a;es could b? |nva||fd,h|.e., could not
provement over B-DFS. ave been produced by an actual run of the system. We

Stateful vs stateless searchTo avoid loops created by chegk thg soqndngss_ of the system state, a posteriori,
X . L nly if an invariant is violated.

exploring duplicate states, it is necessary to keep track of Bv removing the network from the alobal states. our

the states visited by a model checker. Obtaining a hash BC;;'/ model caeckin aporoach creatges much Ies’s Svs-

the system state requires touching the whole state onc% g app y

which can be nontrivial for large states. (Although state- ém states than in the global approach. In addition,

less approaches [7] avoid this cost by not keeping track o?.nd in contrast with the latter approach, in which vis-

traversed states, visiting duplicate states can make theﬁ?i%r:herjges;esmloségreas Isr(?;cknzzrzr;;{)e zrtt:; tehxe l?) ):gl?o-n
very inefficient.) Thanks to Mace [9], a language upon P ' PP P P

which we implemented our tool, the relevant state of th of transitions from the actual creation of system states.
' eThis makes it possible to exploit the specificities of the

protocol is specified by the developer and it is, her]CeUser—s ecified invariants and a priori eliminate all system
straightforward for MaceMC [10] to obtain its hash. P . . aap . y
states on which these invariants cannot be violated.

Partial order reduction.  Since stateless approaches Clearly, the state exponential explosion problem is

are not able to avaid loops, .Spec'f'c t_echnlques are et eliminated in our approach, and it indeed eventually
quired to tackle the exponential explosion problem. Par-

! . ) manifests, especially because of invalid system states.
tial Order Reduction (POR) techniques [6] prune theYet the problem is postponed and this makes our local

i?ézszzfcin?ér;;\%cu(r):‘eg\t/esr?tssterq'htg a\é?;gr;c;r:;uo approach an adequate match for online model checking
y g ' P hat restarts the model checker periodically. Using on-

Br-cljjvzsb (l:;e?elrrrl]g:trinbeggrmzrckhsrzi nglng(xgcgflxe'g_line model checking augmented with our local approach,
pect theyim provementgwould be ma?r iﬁal becaus,e of freyve found a previously reported bug in a traditional Paxos
P provs 9 o implementation, as well as a new bug in a recent variant
guent changes into the global state; transmitting any mes-

sage would change the network state and consequentPf Paxos. Both bugs have been identified by focusing on

. . simple, arguably common case, namely the case with
the global state. Moreover, lots of redundancies av0|de§l pie, arg y €0 I Y .
ho contention for which distributed protocols are typi-

by POR-based t(_echr_nques are already avoided by dUp“c':aIIy optimized and hence error-prone.
cate state detection in B-DFS. To the best of our knowl- .
For future works, one can think of methods to auto-
edge, no study has compared the performance of stateful _ .. : .
: . L matically prune the system states according to a given
searches with POR-based techniques in distributed sys- =~ - )
invariant. In addition, the low memory consumption of
tems. . . .
h lication of a POR-based teCh_our approach brings potentials for techniques that trade
_Furthermore, any applicatio memory for CPU, gaining more speedup.
nigue to model checking distributed systems would be
incomplete since it would not account for system-wide
invariants. For a set of local states, POR explores onh8  Acknowledgments
one valid combination of them among all possible valid
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TO; that is notincluded in total ordgrO;. Observe that
e"»™ could not be a local event since it would then have
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Let s(e) be the event that has generated the mes-
sage handled by network eventLetn(e) be the node
of evente. We usesm to denotes(e}™). We have

sm ¢ TO'*™ otherwisesm would have made’; "
enabled inl’O;. Therefore we have;ﬁ(sm) — sm, and

n(sm) nm

consequently . — ¢y™. This leads us to the fol-
lowing equation: '

VN, (0 <m < k). Ing, (0 <m’ <k).
e?m N e?vn’e?vn 74 e?m

This is obviously a contradiction since it implies a first
element while at the same time demands a smaller ele-
ment than that.

16



