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Abstract— Single trial recognition of slow cortical potentials
(SCPs) from full-band EEG (FbEEG) faces different challenges
to classical EEG such as noisy, high magnitude (~ +100 V)
infra slow oscillations (ISO) with f < 0.1 Hz and high frequency
spatial noise from a variety of artifacts. We analyze offline
the anticipation related SCPs recorded from 11 subjects over
two days in a variation of the Contingent Negative Variation
(CNYV) paradigm with Go and No-go conditions in an assistive
technology framework. The results suggest that widely used
spatial filters such as Common Average Referencing (CAR)
and Laplacian are sub-optimal for the single trial analysis of
SCPs. We show that a spatial smoothing filter (SSF), which
in combination with CAR enhances the spatially distributed
SCP while attenuating high frequency spatial noise. We report,
first, that a narrow band filter in the range [0.1 1] Hz captures
anticipation related SCP better and effectively reduces ISOs.
Second, the SSF in combination with CAR outperforms CAR-
alone and Laplacian spatial filters. Third, we compare linear
and quadratic classifiers calculated using optimally filtered Cz
electrode potentials and report that the best methods resulted in
single trial classification accuracies of 83 +4%, where classifiers
were trained on day 1 and tested using data from day 2, to
ensure generalization capabilities across days (1-7 days).

I. INTRODUCTION

Slow cortical potentials (SCPs) are positive or negative
deflections observed in electroenchephalogram (EEG) and
magnetoencephalogram (MEG) lasting from about a third
of a second to several seconds with magnitudes up to
50 uV [1]. Self-regulation of SCPs has been suggested to
be useful not only for brain-computer interaction (BCI) for
severely paralyzed patients [1], but also for treating attention
deficit hyperactivity disorder and monitoring various psychi-
atric conditions such as schizophrenia and depression [2].
However, since the demonstration of SCP as a control signal
for BCI devices [1], there have not been numerous repli-
cations compared to other control signals such as sensory-
motor rhythms (SMR), P300 potentials and steady-state
visual evoked potentials (SSVEP) [3]. This is probably due
to the fact that the use of SCP-based BCI faces different
challenges compared to classical BCIs, such as: 1) the
requirement of a reliable full-band EEG (FbEEG) hardware
(direct current coupled) [4], 2) tedious training sessions
ranging from several months to a few years [1], 3) the
elusive nature of cognitive phenomena underlying the SCPs
and 4) the fact that SCPs are spatially distributed oscillations
covering large scalp areas and are vulnerable to a variety of
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artifacts (e.g, Infra Slow Oscillations (ISOs), changes of skin-
conductance, Electrooculogram, tongue/head/facial muscle
movement, etc. [4]). It is necessary to overcome all these
challenges to build a reliable SCP based BCI.

In previous work, we presented fast and reliable techniques
for offline single trial classification [5] and reported the
possibility of recognizing anticipation related SCP in an
online experimental set-up [6]. Those studies were based on
a small pool of subjects trained and tested using the record-
ings on the same day. Also, the protocols were designed
using flashes similar to the standard the contingent negative
variation (CNV) protocol and were less application oriented.

In this paper we present our latest attempts to address
the above challenges and report offline results on single
trial recognition of anticipation related SCPs recorded from
11 healthy subjects on two different days. We recorded the
FbEEG using a variation of CNV Go and No-go paradigm
in a realistic assistive technology based framework for a
web-browsing application [5], [7], [8]. More specifically, we
first spectrally localize the anticipation related potentials and
then, compare state-of-the art techniques for spatial filtering
(e.g. Laplacian and common average reference, CAR) with
a spatial smoothing filter (SSF) by comparing separability
of feature distributions. Finally, for the best spatial and
spectral filter combination, we report a comparison of the
classification performances of linear and quadratic classifiers
calculated using Cz electrode potentials, where the anticipa-
tion related SCP is more prominent. To ensure generalization
capabilities over days, the classifiers were trained using
recordings of day 1 and tested on recordings of day 2.

In the following Sec. II, we present the experimental set-up
and FbEEG acquisition, spatio-spectral filtering techniques
and classification methods. In Sec. III, we present the results
of spectral localization, followed by comparison of spatial
filters using a separability index and single trial classification
results obtained using linear and quadratic classifiers. Finally,
in Sec. IV, we discuss the current results and suggest some
future directions.

II. METHODS
A. Experimental set-up

The protocol for recording anticipation related SCP was
designed in the framework of an assistive software for web
browsing by icon selection with an auto-scanning mode as
shown in Fig. 1 (the scanning of icons is similar to that
of [8]). The protocol is a variant of the CNV paradigm with
Go and No-go conditions [5], [7], in which one or more
contingent warning stimuli predicts an imperative stimuli.
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Fig. 1. Timeline of events in the anticipation based web-browsing protocol.
A cue presented 2 s prior to the beginning of each scan predicted the target
icon. In each scan, the icons were highlighted with 2s interval sequentially
resulting in a trial. In this figure, the YouTube icon is the target icon. The Go
trial corresponded to the time window from the highlight of the Gmail icon
at O's until highlight of the YouTube at 2s. All icons were visible throughout
the experiment.

Firstly, a cue presented 2s prior to the beginning of each
scan revealed the target icon. In each scan, the icons were
highlighted sequentially every 2s. Each window of highlight
corresponds to a trial. Each scan contained one Go trial and
up to 3 No-go trials. The subjects were informed to press a
button quickly on the highlight of target icon by anticipating
from the moment of the highlight of the pre-target icon with
their preferred hand. The time window from the pre-target
icon highlight to the target icon highlight resulted in a Go
trial. If the succeeding icon was not a target icon, the subjects
were instructed to do nothing (No-go trial). The feedback
of reaction time (RT) and a corresponding web-page of the
target icon were presented to the subjects if the RT met a
criteria RT < £100 ms after a target icon highlighted. If the
criteria was not met, the scan finished approximately 1 s after
the feedback of RT only. To minimize artifacts, the subjects
were instructed to fixate their eyes on a cross presented in
the center of the computer screen and to avoid any other
movements such as facial muscle, tongue and head.

B. EEG acquisition and ERP analysis

We recorded FbEEG of 11 healthy human subjects (aged
26.4 £ 2.4 years, 1 female, all right handed) with an average
of 123 + 28 Go trials and 264 4+ 68 No-go trials per
subject per day over two different days (with a gap of 1-
7 days). FbEEG was acquired with 64 electrodes according
to the international 10-20 standard at 2 KHz sampling rate,
using the Biosemi EEG hardware (with full-DC and 400 Hz
lowpass cut-off). The data was decimated to 64Hz for the
offline analysis.

We extracted trials with [0 2.5] s windows synchronized to
the highlighting of icons and labeled accordingly (c.f. Fig. 1).
For further analysis, we discarded all the trials that had
the magnitude of any electrode above 100V that were
suspected to be artifacts. The data was baseline corrected
using the sample at 0s. Using grand averages, we report the
presence of the well known CNV potential: an increasing
negativity at central electrodes (mainly Cz) for the Go
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Fig. 2. Grand average of potentials computed at different electrode sites
for Go and No-go trials using the recordings of subject 3 ( with spectral
filtering of [0.1 1] Hz and referenced to CAR). Similar plots were found
for the remaining subjects.

condition [5], [6], [7] and an almost flat or slightly positive
response for the No-go condition (c.f. Fig. 2).

C. Spectral and spatial filtering

The Go and No-go grand-averages are clearly separated
but the single trials suffer very high variability due to noisy
high amplitude ISOs and high-frequency spatial noise (i.e.
adjacent electrodes contain a very different SCP trends). To
address this variability we study both spectral and spatial
filtering using the discriminability of Go and No-go trials. To
achieve a better SNR we explore various narrow band filters
(using zero phase FIR filters with order N=10x sampling
frequency for ensuring sharp transition; designed using £irl,
applied using fi1tfilt routines of Matlab, Mathworks Inc.
USA.) with passband of [0 5]Hz, [0.01 5]Hz, [0.01 1],
[0.05 1] Hz, [0.1 1] Hz, [0.5 1] Hz, [0.5 2] Hz, [0.5 2] Hz and
[0.5 3] Hz.

We compare spatial filters such as CAR, Laplacian filter
and spatial smoothing filter as well as no spatial filtering for
each spectral band (c.f. Sec. IIT). Given a recording at the i*"
electrode, e;(t), the Laplacian filtered data was computed as
elarlace() = ei(t)—Zf +e€;(t). Where K is the number of
neighboring electrodes (=4) electrodes chosen in ‘plus (+)’
configuration as described in [9]. We test a spatial filter
called Spatial Smoothing Filter (SSF), which corresponds to
the spatial convolution of EEG data with a Gaussian kernel.
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The e (t) = ZJK w;je;(t), where w;; = e:vp(f;;é) and
d;; is the Euclidean distance between electrodes 7 and j in
3D coordinate system. The key difference from the Laplacian
filter is that, the Laplacian filter removes a fraction of activity
of adjacent electrodes whereas the SSF enhances the shared
activity. In the current paper, for the analysis of SSF we
chose electrodes in the same configuration as the Laplacian
filter to allow a fair comparison (we set o = 0.15 resulting
in same magnitude of weights than Laplacian for the first
neighbors, but with opposite sign). Such Gaussian kernel
based smoothing filters are widely used in the analysis of
functional magnetic resonance imaging (fMRI) data [10]. But
to the best of our knowledge, these filters were not explored
in the analysis of SCP in FbEEG.
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Fig. 3. The separability index f compared for various spatial and spectral
filters for all subjects. For the best spectral filter [0.1 1]H z, the CAR+SSF
outperfrom CAR alone (Wilcoxon, p=0.01).

D. Feature selection and classification

In the current report, we restrict our studies to features
computed from Cz electrode, under which the anticipation
related SCPs are more prominent [5], [6], [7].

For each trial, the Cz potentials at 8 equally spaced time
points (i.e, at 0.25s, 0.5s, ... 2.0s) are chosen as a feature
vector, * = [ec(Ty) ec(Ts) ... ec.(T3)] € R® where, Ty
represents the k" time point. We assume that these fea-
tures for each class follow unimodal Gaussian distributions.
These feature vectors are used to compute a separability
index as well to train and to test the Linear Discriminant
Analysis (LDA) classifiers and Quadratic Discriminant Clas-
sifiers (QDA). To compute the separability index, the feature
vectors are first projected into a canonical space y € R
by using y = WZx for better separation (the projection
matrix W, maximizes the between-class variance whilst
simultaneously minimizing the within-class variance [11]).
Using the pr(gjfctelgog(gaga, the separability index is defined
as f = MW, where p and o are mean and
standard deviation computed from the canonical space for
both Go and No-go trials. The LDA classifier is calculated
by computing a threshold in the canonical space (described
above) based on sample balance to separate the classes
(0 = pConNoge 4 NogonGe where yu are means in canonical
space an 7 are the proportion of Go and No-go trials). The
projection matrix and threshold are calculated using data
from day 1.

For a QDA classifier, the feature vector x, the posterior
probabilities p(Cao|z) and p(Cnogolx), are computed using
Bayes’ formula. As opposed to LDA, QDA does not assume
a pooled covariance matrix and hence forms a quadratic
decision boundary [11]. For obtaining the likelihood for z,
the mean vectors and covariance matrices for each class are
computed from the training data. The prior probabilities are
set either to be uniform or to the proportion o Go and No-go
samples of training data.

III. RESULTS

Firstly, we compare various spectral and spatial filters
as described in Sec. II-C using the separability index (c.f.
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Fig. 4. Single trial classification accuracies for LDA and QDA classifiers
for 11 subjects. Blue bars represent LDA classifiers, green bar refers to QDA
classifiers with uniform prior (QDA-U) and red bars with prior proportional
to the number of samples per class (QDA-P). The performances of LDA,
QDA-U and QDA-P are significantly different (Wilcoxon, p = 0.05).

Sec. II-D) computed using recordings of day 1. From Fig.
3, it can be seen that the Go and No-go conditions are
maximally discriminant in the frequency range [0.1 1] Hz for
most of the spatial filter types. No statistical differences ob-
served for the filters with passband [0.1 1] Hz and [0.1 2] Hz.
However, further spectral deviation results in a decreasing
trend in the separability index. Meaning, the inclusion of
wider spectral range is likely to result in increased noise and
therefore not favorable for robust classification. The require-
ment of a high pass at 0.1 Hz is likely due to the ISOs which
lie below that frequency contribute more to the noise than the
task specific features in the current experiment. Furthermore,
in the current experiment the anticipation related potentials
are observed as an increasing negativity within the window
of 2 s with an approximate linear trend. The spectral content
of such a feature is likely to be less than 1 Hz.

Secondly, we compare various spatial filters (CAR, Lapla-
cian, CAR+SSF and no spatial filtering) for the best spectral
filter, [0.1 1]Hz, that provided best feature separation (c.f.
Fig. 3). From the figure it can be inferred that referencing
to CAR enhances the SNR as compared to no spatial
filter, which is likely because CAR removes global activity
(external sources such as EOG, EMG, etc.). Interestingly,
the Laplacian filter underperforms in comparison to no
spatial filter. This is likely due to the fact that SCPs are
spatially broadly distributed activities and shared among
several neighboring electrodes, and Laplacian by design
reduces it. On the contrary, in combination with CAR the
SSF takes advantage of this fact and results in the best scores.
In other words, since the SSF is a weighted summation
of neighboring activity, enhances the common component
(signal) and attenuates local variability (noise; assumed zero
mean).

Third, we compare single trial classification accuracies
using LDA and QDA classifiers for the best spatial and
spectral filter combination, i.e. for [0.1 1] Hz spectral filter
and in combination with CAR and SSF (c.f. Fig. 4). In
the case of QDA classifiers, we compare accuracies for
two prior probability settings: uniform (QDA-U) and the
proportion of number of training samples per class (QDA-
P). The classifiers were trained using data recorded on day 1
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Fig. 5. The accuracy in the ROC space for LDA (in blue squares) and
QDA classifiers. Each symbol represents one subject. The green circles refer
to QDA classifiers with uniform prior (QDA-U) whereas the red triangles
refer to QDA with prior proportional to number of samples (QDA-P).

and tested using day 2. As seen in Fig. 4 the mean accuracy
for LDA classifiers across 11 subjects is 73+4% with a min-
imum of 64% (subject 5) and a maximum of 77% (subject
7). The QDA-U results in an average accuracy of 80+£5%
with an improvement of 7% over LDA (Wilcoxon, p =
0.05), a minimum classification of 67% (subject 5) and a
maximum of 88% (subject 10). A further improvement of
3% in classification accuracy (83+4%) is obtained by more
accurate priors of QDA-P (Wilcoxon, p = 0.05). The QDA-
P performed with minimum accuracy of 69.5% (subject 5)
and maximum accuracy of 89% (subject 10). Overall, this
improvement is achieved by reducing the false positive rate
(FPR) which is favorable for the current application (c.f.
Fig. 5).

IV. CONCLUSIONS AND FUTURE WORKS

We presented a BCI framework based on single trial
recognition of SCPs related to anticipatory behavior. We
recorded FbEEG of 11 subjects in two different days using
an assistive technology framework for web-browsing. From
the offline analysis we found that a narrow band spectral
filter with a passband of [0.1 1]Hz in combination with
CAR and SSF results in the best feature separability. For
this combination, we compared classification accuracies of
LDA and QDA classifiers calculated using features computed
from Cz electrode potentials at 8 different time points within
a 2s window. To ensure generalization capability across days,
the classifiers were trained using day 1 and tested using day
2 (with a separation of up to 7 days). Overall, we conclude
that QDA classifier with priors proportional to class samples
in training set performed the best with an average accuracy
of 83+4%.

The necessity of a narrow band spectral filter [0.1 1]Hz
suggests that anticipation related features in SCP lie in the
band below 1 Hz. The high pass cut-off at 0.1 Hz effectively
reduces the unrelated high amplitude ISO oscillations. Fur-
thermore, our analysis revealed that widely used spatial filters
(Laplacian filter and CAR alone) are sub-optimal for the
single trial analysis of SCPs. This is likely to be due to

the fact that the Laplacian filters enhances the focal activity
from local sources (e.g. suitable for the mu-rhythm and low
beta) and reduce broadly spread activity [9], while the SCPs
are widely spatially distributed activities. To account for this
nature of SCP, we proposed to use SSF that reduces high
frequency spatial distribution resulting from EEG/non-EEG
activity (high frequency spatial noise, artifacts). Such spatial
smoothing filters are widely reported in fMRI data analysis
but to the best of our knowledge never in the context of SCPs
recorded using EEG [3], [10].

The results presented in the current work are very encour-
aging for the single trial analysis of SCP in general. However,
the online real-time applicability of the methods presented
here raises new challenges. Particularly, the requirement of
high pass cut-off for the FIR filters for attenuating ISOs
can introduce significant delays. It is worth noting that
the SSF assumes symmetric distribution of SCP around a
given electrode (e.g. Cz) and in reality this assumption is
not fully valid (c.f. Fig. 2). To address the asymmetric
nature of anticipation related SCP distribution, data driven
approaches for spatial filtering similar to common spatial
patterns (CSP) [12] and beamforming techniques will be
investigated in future [13].
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