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An integrated model capable of self-consistent Ion Cyclotron Resonant Heating (ICRH) simulations has
been developed. This model includes both full shaping and pressure effects, warm contributions to the
dielectric tensor, pressure anisotropy and finite orbit width. It evolves the equilibrium, wave field and
full hot particle distribution function until a self-consistent solution is found. This article describes the
workings of the three codes VMEC, LEMan and VENUS and how they are linked for iterated computations
in a code package we have named SCENIC. The package is thoroughly tested and it is demonstrated that
a number of iterations have to be performed in order to find a consistent solution. Since the formulation
of the problem can treat general 3D systems, we show a quasi-axisymmetric stellarator low power test
case, and then concentrate on experimentally relevant Joint European Torus (JET) 2D configurations.

 2010 Elsevier B.V. All rights reserved.

1. Introduction

In present day fusion devices, radio frequency (RF) heating of
minority species comprises a fundamental auxiliary heating sys-
tem. Furthermore, RF heating in the ion cyclotron range of fre-
quencies (ICRH) is considered to be one of the major contributors
to additional heating in ITER. The wave–particle interactions be-
tween the RF field and the plasma ions depend strongly on the
strength of the left-handed component E+ of the electric field. Di-
rect heating of the bulk plasma is inefficient since E+ vanishes
at the fundamental cyclotron resonance of the majority species. In
contrast, minority heating is much more promising: the choice of
the minority (charge and mass) determines the location of the cy-
clotron resonance, which will lie on a different location than the
bulk resonance (assuming that the charge–mass ratio is different
from the bulk species). The left-handed E+ component will not
vanish at the resonant layer of the minority, and therefore the
minority species can be heated efficiently. Coulomb collisions will
then assure the heating of the complete plasma. Another applica-
tion of ICRF is the generation of RF induced current through Ion
Cyclotron Current Drive (ICCD). Here, the total current is changed
locally for the control of MHD instabilities. Moreover, it has re-
cently been shown [1] that parallel velocity asymmetry in the
distribution function, and the radial drift of the fast ions, which
result from toroidally propagating RF waves, can affect MHD sta-
bility. We will describe here a numerical package which is capable
of retaining such effects.
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Previously, other code suites have been developed for the study
of radio frequency heating. For instance, FIDO has been coupled
to LION (giving SELFO) [2], TORIC to SSFPQL [3,4] or ORBIT-RF to
AORSA [5], but none of these codes take into account the possible
change of the equilibrium due to the RF wave–particle interactions.
However, applications of ICRF act on the state of the plasma, be it
through heating or current drive, and change, at least locally, the
equilibrium. This work proposes a 3D self-consistent numerical ap-
proach for studying the effects of minority ICRH on all important
quantities such as the fast ion distribution function, the wave field
and the magnetic equilibrium. The MHD equilibrium represents
one part of the iterated scheme, called SCENIC, and this possibility
of including the equilibrium within the self-consistent computa-
tions of SCENIC represents a complete novelty. Another original
feature of SCENIC is its ability to include three-dimensional ge-
ometries, since all codes of the package work intrinsically in three-
dimensional space. Although all constituents have been success-
fully applied independently to non-axisymmetric plasmas in the
past, and SCENIC has been tested for non-axisymmetry as well, we
will in this work primarily concentrate on 2D JET-like equilibria.
As the toroidal dimension cannot be removed, two-dimensionality
is achieved by forcing all parameters to be constant along the
toroidal direction in the equilibrium. We will focus on axisymmet-
ric plasmas mostly because such cases are more intuitive and the
results of this first application of SCENIC can be verified more eas-
ily. Nevertheless, we also illustrate the functionality of the three
constituent parts of the model (wave, particle and equilibrium) for
a 3D quasi-axisymmetric stellarator. In general, SCENIC has been
designed to focus on capturing exotic fast particle physics, and
most developmental efforts have therefore concentrated on cor-
rectly dealing with highly energetic non-standard particle orbits,

0010-4655/$ – see front matter  2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.12.028



Author's personal copy

M. Jucker et al. / Computer Physics Communications 182 (2011) 912–925 913

Fig. 1. The code package SCENIC and its components: VMEC provides MHD equilib-
rium, LEMan the wave field and wave numbers and VENUS advances the distribu-
tion function with a full-f scheme. At the end of each iteration, VENUS produces
new inputs to VMEC and LEMan for the next iteration.

and their effects on the tail of the distribution function. As a re-
sult, the main restrictions of SCENIC lie in the wave code due to
zeroth order expansion in Larmor radius. We will here consider
helium-3 minority heating in deuterium plasma, in order to avoid
second harmonic resonances in the plasma, which are neglected in
the wave field computations.

This article will first describe the components and workings of
the code package SCENIC in detail (Section 2), including the way
the codes are interfaced. Section 3 shows basic numerical tests
and studies, before illustrating the complete package in Section 4.
Here, we will show the importance of the iteration scheme and
the physics included by applying the code to a JET relevant 2D test
case. The article will be concluded in Section 5.

2. SCENIC

The SCENIC (Self-ConsistENt Ion Cyclotron) package is com-
posed of an anisotropic pressure version of the MHD equilib-
rium solver VMEC [6], the full-wave code LEMan [7,8] and the
Monte Carlo guiding centre single particle code VENUS [9,10].
All of these codes are set up to handle full 3D plasmas, i.e. ca-
pability of dealing with stellarators, magnetic ripple, and others.
Here, however, we will only show applications to axisymmetric
scenarios, since these results are more intuitive and better un-
derstood, and therefore more adapted for a first application of
this newly created code package. Fig. 1 shows a schematic view
of the workings of the package: VMEC computes an equilibrium
based on pressure and current profiles, treating the background
distribution Maxwellian (isotropic) and the hot particle distribution
bi-Maxwellian (anisotropic). The bi-Maxwellian allows for differ-
ent temperatures parallel and perpendicular to the magnetic field
(the only constraints are that VMEC imposes nested magnetic sur-
faces with a single magnetic axis, such that magnetic islands and
stochastic regions cannot be modelled). Using this equilibrium, LE-
Man computes the (3D) wave field given a toroidal mode spectrum,
frequency and geometry of the antenna. The power deposition is
also computed and used later on for the scaling of the electric
field, such that the latter corresponds in amplitude to the desired
deposited power. VENUS reads the equilibrium, wave numbers and
electric field from the two previous codes. It then advances the dis-
tribution function of the minority ion species using Monte Carlo
collision and quasilinear diffusion operators. At the end of each
iteration, the resulting distribution function is integrated (exactly
within a guiding centre framework) and the moments needed by
VMEC and LEMan are produced for the next iteration. Fig. 2 shows
an artist’s view of SCENIC, including the magnetic equilibrium, RF
wave field and power deposition, all acting on the particle orbits,
thus deforming the distribution function of the minority species.

Fig. 2. Artist’s view of the SCENIC package. The poloidal cuts on the left and the
right show the magnetic field strength (representing the equilibrium) from VMEC
together with the 2D power deposition from VENUS, and the wave field from LEMan
(shown is "(E+), right) respectively. In three dimensions, a test particle orbit and
the power deposition from LEMan are shown.

2.1. Equilibrium: VMEC

The MHD equilibrium code VMEC [11] has been extended to
include the effects of an anisotropic distribution function for a
minority ion species in a thermal Maxwellian plasma. Although
simple equivalent Maxwellians are known to have deficiencies in
modelling high energy tails [12], it has been shown that a specific
form of a bi-Maxwellian can be used as a good analytical approxi-
mation of the hot (minority) particle distribution function [13,14].
Such a distribution can be written as

Fh(s, E,µ) =N (s)
(

m
2π T⊥(s)

)3/2

× exp
[
− µBc

T⊥(s)
− |E −µBc|

T‖(s)

]
, (1)

where m is the mass of the particle, E = mv2/2 the particle en-
ergy, µ = mv2⊥/2B the magnetic moment, T⊥,‖ the perpendicu-
lar/parallel temperature and s a flux label based on the toroidal
flux. More exactly, s denotes the radial position corresponding to
a guiding centre average over the orbit of a particle with given
E and µ. Bc denotes the resonant layer where the RF heating is
applied. The density factor N (s) is related to the physical den-
sity nh through nh(s, θ) =N (s)

√
T‖(s)/T⊥(s)C(s, θ), with nh(s, θ)

the hot particle density and C(s, θ) a geometric factor described
later. It is convenient to use N (s) rather than the physical density
nh(s, θ), due to the fact that the first can be prescribed as a ra-
dial profile while the latter is a function of poloidal angle θ in 2D
geometries, and of the field strength B in three-dimensional plas-
mas. We will use the 2D notation with θ throughout this article
for a more intuitive understanding. The required input radial pro-
files are the background and hot particle pressures, anisotropy and
either the safety factor or total toroidal current enclosed within
each flux surface. Note that we will call “background” the thermal
ions and electrons, which are Maxwellian with static profiles dur-
ing any simulation. Since VENUS computes the RF induced current,
the latter is added to the ohmic current and used as input. Also,
the rigid wall Fourier amplitudes are imposed for the shaping of
the plasma. This extension of VMEC has been described in detail
in Ref. [6] and we point the interested reader to that reference for
further information.

2.2. RF wave field: LEMan

The dielectric tensor in LEMan is of zeroth order in Larmor ra-
dius. We are therefore limited to fundamental minority scenarios
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with SCENIC, since then the ion–ion hybrid resonance does not ap-
pear, and no mode conversion takes place. In a non-axisymmetric
plasma, LEMan is run with a given wave spectrum of different
toroidal and poloidal modes, since in that case the toroidal modes
are not decoupled. The wave field is excited by a prescribed an-
tenna, which can be delimited in radial, poloidal and toroidal di-
rections. For axisymmetric cases, the toroidal modes decouple and
it is simpler to run LEMan separately for each toroidal mode num-
ber excited by the antenna (which is then localised in the radial
and poloidal directions only). Here, only one toroidal mode per
run is considered, but a full spectrum of poloidal modes is still
included. Following Refs. [15,16], we have derived the dielectric
tensor for the fast particles modelled by the distribution function
(1) to zeroth order in both εe = ρ/L and εp = ρ/λ⊥ , where ρ is
the Larmor radius, L a characteristic equilibrium length scale and
λ⊥ a characteristic wave length of the perturbing electromagnetic
field in the direction perpendicular to the equilibrium magnetic
field. The expressions are different for B � Bc and B < Bc and read

• For B � Bc :

Enn = 1− 1
2ω

√
T‖/T⊥
C+

∑

k

(
Z̃‖1 + Z̃‖−1

)
, (2aa)

Enb =− i
2ω

√
T‖/T⊥
C+

∑

k

(
Z̃‖1 − Z̃‖−1

)
=−Ebn, (2ab)

E‖‖ = 1+ 2
(k‖v‖T )2

√
T‖/T⊥
C+

∑

k

(
ω̃2

p −ω Z̃‖0
)
, (2ac)

• For B < Bc :

Enn = E B�Bc
nn − 1

2ω
C+ − C−
C+C−

∑

k

(
Z̃⊥1 + Z̃⊥−1

)
, (2ba)

Enb = E B�Bc
nb − i

2ω
C+ − C−
C+C−

∑

k

(
Z̃⊥1 − Z̃⊥−1

)
=−Ebn, (2bb)

E‖‖ = E B�Bc
‖‖ − C+ + C−

C+C−

∑

k

(√
Bc − B

Bc
ω̃2

p −ω Z̃⊥0

)
. (2bc)

Here, v2‖T = 2T‖/m is the fast particle thermal parallel velocity
and

C± = Bc

B
± T⊥

T‖

(
1− Bc

B

)
, (3a)

Z Sh(z) = z√
π

∞∫

−∞

1
z− x

e−x2 dx, Im z > 0, (3b)

Z̃‖l =
ω̃2

p

ω− lΩc
Z Sh

(
ω− lΩc

k‖v‖T

)
, (3c)

Z̃⊥l =
√

Bc − B
Bc

ω̃2
p

ω− lΩc
Z Sh

(√
Bc

Bc − B
ω− lΩc

k‖v‖T

)
, (3d)

and ω̃2
p = q2kNk/ε0mk the plasma frequency of species k. The sub-

scripts n,b and ‖ denote the normal, bi-normal and parallel com-
ponents relative to the magnetic field. It is worth highlighting a
few observations: First of all, one can see that we exactly recover
the zeroth order results obtained in Refs. [15] and [16] in the
limit where T⊥/T‖ → 1 and Bc → 0 (i.e. Fh → FM ). However, the
additional parameter Bc in the distribution function has the ef-
fect that, even if we consider the isotropic case T⊥ = T‖ , some of
the additional terms for the region B < Bc do not vanish and in-
troduce poloidally dependent corrections to the dielectric tensor.

The parameter Bc then assures the presence of a localised cy-
clotron power deposition and the existence of a preferred pitch
angle where the turning points of trapped particle orbits lie in
the resonant region [13]. Finally, the plasma frequency in expres-
sions (3) does not depend explicitly on the physical density nh , but
rather the density factor N (s) defined in the distribution function
(1), which can be considerably higher than the physical density if
T⊥/T‖ * 1.

2.3. Particle-in-cell: VENUS

2.3.1. Equations of motion
The equations of motion are based on a Hamiltonian formula-

tion of the guiding centre orbits of charged particles in an elec-
tromagnetic field. They have been derived in the frame of Hamil-
tonian formalism in Refs. [10] and [17]. The equations of mo-
tion include a parallel perturbation in the vector potential while
still retaining the canonical structure of the variables. Perpendic-
ular fluctuations of the vector potential are under development
and VENUS will be able to include them in the near future. We
note here the complete equations of motion in the Boozer vari-
ables (s, θ,ϕ) and the parallel gyroradius ρ‖ =mv‖/(eσ B), where
σ = 1/µ0− (p‖ − p⊥)/B2 is related to the mirror stability criterion
and must always be positive. The equations of motion read

ṡ = +µ0 I(s)
D

[
∂Φ

∂θ

∣∣∣∣
s,ϕ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂θ

− eσ 2B2

γm0
ρ‖

∂Υ

∂θ

∣∣∣∣
s,ϕ,t

]

+ µ0 J (s)
D

[
∂Φ

∂ϕ

∣∣∣∣
s,θ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂ϕ

− eσ 2B2

γm0
ρ‖

∂Υ

∂ϕ

∣∣∣∣
s,θ,t

]
, (4a)

θ̇ =−µ0 I(s)
D

[
∂Φ

∂s

∣∣∣∣
θ,ϕ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂s

+ eσ B2

γm0
ρ2
‖
∂σ

∂s

∣∣∣∣
B

]

+ eσ 2B2

γm0D
ρ‖

[
ψ ′(s) + (ρ‖ + Υ )µ0 I ′(s) + µ0 I(s)

∂Υ

∂s

∣∣∣∣
θ,ϕ,t

]

+ eσ 2B2

γm0D
ρ‖(ρ‖ + Υ )

∂(σ Bs)

∂ϕ

− σ Bs

D

[
∂χ

∂ϕ
+ 1

γ

(
µ

e
+ eB

m0
στρ2

‖

)
∂B
∂ϕ
− eσ 2B2

γm0
ρ‖

∂Υ

∂ϕ

]
,

(4b)

ϕ̇ =−µ0 J (s)
D

[
∂Φ

∂s

∣∣∣∣
θ,ϕ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂s

+ eσ B2

γm0
ρ2
‖
∂σ

∂s

∣∣∣∣
B

]

+ eσ 2B2

γm0D
ρ‖

[
χ ′(s) + (ρ‖ + Υ )µ0 J ′(s) + µ0 J (s)

∂Υ

∂s

∣∣∣∣
θ,ϕ,t

]

− eσ 2B2

γm0D
ρ‖(ρ‖ + Υ )

∂(σ Bs)

∂θ

+ σ Bs

D

[
∂Φ

∂θ
+ 1

γ

(
µ

e
+ eB

m0
στρ2

‖

)
∂B
∂θ
− eσ 2B2

γm0
ρ‖

∂Υ

∂θ

]
,

(4c)
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ρ̇‖ =−∂Υ

∂t

∣∣∣∣
s,θ,ϕ

− 1
D

[
ψ ′(s) + (ρ‖ + Υ )µ0 I ′(s) + µ0 I(s)

∂Υ

∂s

∣∣∣∣
θ,ϕ,t

]

×
[

∂Φ

∂θ

∣∣∣∣
s,ϕ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂θ

]

− 1
D

[
χ ′(s) + (ρ‖ + Υ )µ0 J ′(s) + µ0 J (s)

∂Υ

∂s

∣∣∣∣
θ,ϕ,t

]

×
[

∂Φ

∂ϕ

∣∣∣∣
s,θ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂ϕ

]

+ µ0

D

[
I(s)

∂Υ

∂θ

∣∣∣∣
s,ϕ,t

+ J (s)
∂Υ

∂ϕ

∣∣∣∣
s,θ,t

]

×
[

∂Φ

∂s

∣∣∣∣
θ,ϕ,t

+ 1
γ

(
µ

e
+ στ

eB
m0

ρ2
‖

)
∂B
∂s

+ eσ B2

γm0
ρ‖

∂σ

∂s

∣∣∣∣
B

]

− 1
D

[
(ρ‖ + Υ )

∂(σ Bs)

∂ϕ
+ σ Bs

∂Υ

∂ϕ

]

×
[

∂Φ

∂θ
+ 1

γ

(
µ

e
+ eB

m0
σρ2

‖

)
∂B
∂θ

]

+ 1
D

[
(ρ‖ + Υ )

∂(σ Bs)

∂θ
+ σ Bs

∂Υ

∂θ

]

×
[

∂Φ

∂ϕ
+ 1

γ

(
µ

e
+ eB

m0
σρ2

‖

)
∂B
∂ϕ

]
, (4d)

with

D = ψ ′(s) J(s)−χ ′(s)I(s)

+ (ρ‖ + Υ )

[
J (s)I ′(s)− I(s) J ′(s) + I(s)

∂(σ Bs)

∂θ

+ J (s)
∂(σ Bs)

∂ϕ

]
. (5)

The relativistic correction can be written
γ =

√
1+ 2µB/(m0c2) + (mv‖)2/(m2

0c
2), Υ is the parallel vector

potential perturbation, and τ = 1 + (µ0/B)∂p⊥/∂B|s the mir-
ror stability parameter as introduced in Ref. [17]. ψ and χ are
the poloidal and toroidal magnetic fluxes, I and J the poloidal
and toroidal current fluxes. The terms containing σ Bs assure the
canonical properties, and are neglected in the standard formula-
tion. The relativistic corrections are only important for the evolu-
tion of highly energetic electrons in magnetic confinement fusion
plasmas. It is set to unity throughout this article. For more details,
see Ref. [10].

2.3.2. Interaction operators
To advance the evolution of the distribution function, interac-

tions with the background ions and electrons as well as the RF
wave field have to be implemented. All interactions are described
using Monte Carlo methods. Interactions with the background ions
and electrons are modeled through Coulomb collision operators, in
both pitch angle and energy. They are applied at every time step.
The action of the wave field on the distribution function is in-
cluded using kicks in velocity space (i.e. pitch angle and energy)
every time a particle crosses the Doppler-shifted resonant layer
[18].

Coulomb collisions. The defining parameters for Coulomb Monte
Carlo operators are the slowing down τs and the deflection times
τd , describing characteristic time scales for energy and pitch angle

collisions respectively. They are derived e.g. by Stix [19] and can
be written [20]

τ p
s =

v2th,p v

(1 +m/mp)A
p
DΨ (x)

, (6a)

τ p
d = v3

Ap
D [Φ(x)−Ψ (x)]

, (6b)

where we have defined Ap
D = npq2q2p lnΛ/2πε2

0m
2, x = v/vth,p ,

Φ(x) = erf(x)≡ 2/
√

π
∫ x
0 e−y2 dy, Ψ (x) = (Φ(x)− xΦ ′(x))/2x2 and

lnΛ is the Coulomb logarithm. Super- or subscript p stands for the
background species. With these time scales we can construct the
Monte Carlo Coulomb collision operators in energy and pitch angle.
They are written in terms of collision frequencies νd,s = ∑

p ν p
d,s =

∑
p 1/τ

p
d,s , and applied at every time step using [21]

λn+1 = λn(1− νdτ ) +R
√(

1− λ2
n
)
νdτ , (7a)

En+1 = En − (2νsτ )

[
En −

(
3
2

+ En
νs

dνs

dE

)
T p

]

+ 2R
√
T p Enνsτ . (7b)

We write λ ≡ v‖/v for the pitch angle, τ for the numerical time
step, T p for the background (thermal) temperature and n labels
the time steps. R are random numbers with zero mean value and
unitary variance.

ICRH operators. To model the effect of an RF field on the particles’
motion, Monte Carlo operators acting in velocity space are imple-
mented. Following Kaufman’s derivation [22], one can construct
the Monte Carlo operator providing random kicks to the perpen-
dicular velocity [23,18]

4v⊥ = 〈4v2⊥〉
4v⊥

+R
√
2
〈
4v2⊥

〉
, (8a)

with
√〈

4v2⊥
〉
= τ

q
m

∣∣E+ Jn−1 + E− Jn+1
∣∣, (8b)

where Jn denotes the Bessel function and takes as an argument
k⊥v⊥/Ω . Ω is the local cyclotron frequency and, as before, R is
a random number with zero mean value and unitary variance. The
average 〈·〉 is over the random phase of the RF field with respect
to the particle gyro motion. Introducing the phase ν(t) ≡

∫ t
(ω −

k‖v‖ − nΩ)dt′ , the interaction time τ corresponds to the phase
integral [24,25]

τ =
t∫
dt′ eiν . (9)

We can expand the phase around the resonance (when ν̇ = ω −
k‖v‖ − nΩ = 0) and write

τ ≈
∞∫

−∞
dt exp i

(
ν + 1

2
ν̈t2 + 1

6
...
νt3

)∣∣∣∣
ν̇=0

, (10)

where a dotted variable is a derivative with respect to time. In
most cases, the expansion to the second order is sufficient, yielding

τ1 =
√
2π/|ν̈|. (11)

However, when ν̈ → 0, one has to retain the third order term in
(10), and one obtains [24]

τ2 = 2π(2/
...
ν)1/3 Ai

(
−ν̈2/

(
22/3

...
ν4/3)), (12)
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where Ai is the Airy function. τ1 is used as default interaction
time, but τ2 has to be used when ν̈ → 0, in which case τ1 →∞.
More precisely, one can show that (τ2/τ1)2 = 1 if

...
ν2 = 69.65ν̈3, so

that we use τ2 if
...
ν2 > 69.65ν̈3. Additionally, for the kicks in paral-

lel velocity, one invokes the conservation of total energy dE = h̄ω
and toroidal momentum dPϕ = h̄nϕ , giving dPϕ = nϕ/ωdE [18].
We can locally express this through the Kennel–Engelmann con-
straint [26]

v2⊥ +
(
v‖ −

ω

k‖

)2

= const. (13)

Together with the condition that at the resonance (at which this
operator is only applied), v‖ = (ω − nΩ)/k‖ , we can write the
Monte Carlo operator for the parallel velocity

4v‖ = k‖
nΩ

v⊥4v⊥. (14)

Including the change in parallel velocity 4v‖ is important when
crossing the Doppler-shifted resonance, since it corresponds not
only to a change in particle energy but also in the toroidal angu-
lar momentum Pϕ , thus including the RF induced particle pinch.
Indeed, the shift of the radial banana orbit displacement is propor-
tional to the change in parallel velocity through [27]

4r ≈ m
qBθ

4vϕ ≈
m
qBθ

4v‖ (15)

as described e.g. in Refs. [28] and [29]. Eqs. (8) and (14) are the
operators implemented in VENUS. They are applied every time a
particle crosses the Doppler shifted resonance ω = k‖v‖ + nΩ . As
stated earlier, only fundamental ICRH (n = 1) is modeled here be-
cause LEMan is restricted to zeroth order terms in Larmor radius,
and thus higher harmonic resonances cannot be dealt with.

2.3.3. Wave numbers
In the kicks in velocity space, operators (8) and (14), a parallel

and a perpendicular wave number appears. For one given wave
field, one value for k‖ and k⊥ as a function of real space has to be
passed from LEMan to VENUS. In LEMan, many modes are excited
even for one given toroidal mode, and it is not evident to define
one global wave vector to be used in the Monte Carlo operators in
VENUS. Often, the simple k‖ = nϕ/R approximation together with
the local dispersion relation for the fast wave are used. Here, we
propose a different approach, using the total scalar potential Φ
computed in LEMan. The details of the computation are given in
Appendix A, and we state here only the final form of the parallel
and perpendicular wave numbers.

|k‖| =
∣∣∣∣

1
ΦB
√

g

(
ψ ′

∂Φ

∂θ
+ χ ′

∂Φ

∂ϕ

)∣∣∣∣, (16)

|k⊥|2 =
∣∣∣∣g

ss
(

1
Φ

∂Φ

∂s

)∣∣∣∣
2

+
∣∣∣∣
1
gss

[
1

Φσ B
√

g

(
µ0 J

∂Φ

∂ϕ
+ µ0 I

∂Φ

∂θ

)]∣∣∣∣
2

. (17)

√
g is the Jacobian, gss the first metric element, the prime de-

note the derivative with respect to the radial variable s, and all
other notations are as introduced earlier. It is important to note
that Eqs. (16) and (17) are the values passed to VENUS for the
Monte Carlo operators, and are not used in the wave computations
in LEMan. Also, the operators (8) and (14) have been derived for
the wave–particle interaction with one given wave, and for the no-
tion of one single wave vector to make sense, we must assume
that no strong reflection of the injected wave is occurring.

Fig. 3. Speedup of the VENUS code from 256 to 4096 processors (strong scaling).
The straight line shows perfect scaling.

2.3.4. Scaling
Advancing the distribution function is the most time consum-

ing part of SCENIC. Indeed, a two-dimensional equilibrium takes a
few seconds on one single processor for VMEC. In an axisymmetric
geometry and for one toroidal mode number, LEMan needs sev-
eral minutes using two quadcore compute nodes to add the wave
field information for one toroidal mode number in the axisym-
metric case. The code uses the Burn At Both Ends (BABE) scheme
on two compute nodes (using MPI) and is additionally OMP par-
allelised and can thus run even faster on machines having more
cores per node. In contrast, VENUS requires of the order of tens
of thousands of CPU hours for a converged solution (multiple iter-
ations included), depending of course on the number of particles
needed. In a typical run described in Section 4, four million mark-
ers were used, and a total converged simulation took about 30000
CPU hours. It is therefore important that VENUS scales well on
high performance computers up to thousands of processors. The
markers within VENUS do not interact with each other and thus
the code is trivially parallelised (using MPI) by simply distribut-
ing the total number of markers among the processors. However,
the simulation can of course not be done completely without com-
munication among the processors, and the scaling is therefore not
perfect. In the beginning, the equilibrium and wave field have to
be read by all the processors. During the simulation, diagnostics
are run at constant time intervals. These diagnostics involve com-
munication among the processors, slowing down the simulation
by a few percent for the benefit of diagnostics information. At the
end of every VENUS simulation, the self-consistency modules (de-
scribed in the next section) need the information of all the markers
for integrating the distribution function and re-creating new inputs
for VMEC and LEMan. Here, all information needed is given to the
master processor and treated by the latter only. Again, the parts
not parallelised use a few minutes of wall clock time compared
with the tens of hours of the bulk of the simulation. Fig. 3 shows
the speedup of parallelisation over thousands of processors and
proves very satisfactory strong scaling.

2.4. Self-consistency modules

The evolution of the distribution function is simulated in
VENUS. For the iteration between equilibrium, wave field and dis-
tribution function to be possible, outputs have to be generated
from VENUS serving as inputs for a new iteration (red arrows
in Fig. 1). One also has to be careful when taking the output
of VENUS, since Monte Carlo simulations can be noisy. With the
fast particle distribution in phase space provided by VENUS, the
distribution function and its moments, such as density nh(s, θ),
perpendicular and parallel pressure ph⊥(s, θ), ph‖(s, θ) and trapped
and passing current jt(s, θ), jp(s, θ), are known at the end of every
iteration. These quantities will be used to compute the new inputs
for the next iteration. In this way, the potentially noisy Monte
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Carlo distribution function is not directly used for the iterations,
but rather the integrated moments. For the iterated scheme, only
radial profiles are needed, and we can apply additional smooth-
ing algorithms on the obtained profiles before using them as new
inputs. The background electron and ion profiles (density and tem-
perature) are considered static, i.e. constant during the simulation.
Only the simulated minority is dynamically changing. But out of
this minority population, especially for low to moderate heat-
ing power scenarios, only a certain portion is effectively heated
to higher energies, depending on background profiles, heating lo-
cation, type of minority, etc. It is then interesting to divide the
minority population into a thermal and a hot species, and com-
pute the moments of the distribution function for each of these
two separately. Then, the thermal minority species can be treated
as second thermal species in the dielectric tensor, and the ther-
mal minority pressure added to the background pressure in the
equilibrium. With this, only the energetic minority population is
treated to be hot and bi-Maxwellian. We note that depending on
the injected RF power, an important part of the minority species
will become energetic, and thus a δf scheme would not be appro-
priate anymore, since the condition δf0 f would not be satisfied.
This is why we chose a full-f description in VENUS. In order to
make the division into hot and thermal species automatic in the
statistics section of VENUS, one needs a criterion of when a par-
ticular particle is to be considered hot or thermal. The knowledge
of the background profiles is of help, since the thermal part of
the minority population is expected to have a similar temperature
as the background. This suggests a criterion based on the back-
ground temperature profile. In VENUS, a fairly simple procedure is
implemented, which takes as limiting energy Ec for any particle a
multiple of the electron temperature at the radial position of the
particle:

Ec(s) = xTe(s)

if Ep < Ec(s)⇒ thermal

else⇒ hot, (18)

with Ep the particle’s energy and x a coefficient which will be
explored in Section 3.4 and Figs. 8 and 9. This test is applied to
every particle and the computed moments are then nhth , n

h , phth ,
ph⊥ and ph‖ , where the subscript th denotes quantities which con-
tain only contributions from minority particles with a lower energy
than Ec(s). Quantities without that subscript are computed with
the particles having an energy Ep > Ec only. Note that the induced
currents, trapped jt and passing jp , have to be taken from the
complete distribution, since the total toroidal current has to be
passed to VMEC.

As described in Section 2.1 and Ref. [6], the inputs to the equi-
librium code VMEC are the background and hot particle pressures
and the total toroidal current. With our splitting mechanism, the
background pressure will also contain the pressure due to the ther-
mal part of the minority population, phth . Furthermore, the RF in-
duced current (ICCD) can directly be added to the ohmic current
for the equilibrium computations.

LEMan assesses the constant background density and tempera-
ture profiles once at the beginning of the simulation. In addition
it reads at every iteration the density and temperature profiles of
the thermal minority (coming directly from the thermal part of
the distribution function in VENUS) and for the hot bi-Maxwellian
population the anisotropy T⊥(s)/T‖(s), the density-like amplitude
factor N (s) introduced in Section 2.1 and the profile of the hot
parallel temperature T‖(s). All of these quantities depend directly
or indirectly on the magnetic field strength and the moments of
the hot particle distribution function. It is important to specify that
these moments are integrated directly at the end of every VENUS

Fig. 4. Scan using different number of particles in VENUS. The density factor N (s)
has been recreated directly after initial loading and compared to the input value
N0(s). The scan is performed from 105 to 8 × 106 particles with a grid size of
72× 55.

run. There are no approximations on the form of the distribution
function itself. Only when computing the required radial profiles
of derived quantities (such as T⊥/T‖ , N , and T‖) are we using
relations coming from the bi-Maxwellian model. The relevant rela-
tions are given in Appendix B, and further details can be found in
Ref. [6].

3. Code validation

After the description of the different elements of SCENIC, we
turn our attention to some elementary testing. The Coulomb op-
erators are standard and widely used, and we will simply show
that they do indeed cause the distribution function to relax to an
isotropic Maxwellian of the same temperature as the background.
The RF Monte Carlo operators will be checked in two ways. They
have to reproduce the power deposition pattern computed by LE-
Man, provided that the power is sufficiently low such that the
heating does not have any effect on the dielectric tensor. Sec-
ondly, the RF induced particle pinch [28,29] has to be observed
in the simulations. Finally, we will check the splitting mechanism
described in Section 2.4. In the subsequent plots, we will not use
the radial Boozer coordinate s as a radial variable, but the more in-
tuitive normalised radius r/a. Here, a is the minor radius, and the
coordinates are approximatively linked through s∼ (r/a)2.

3.1. Number of particles

The number of particles required in VENUS depends to a large
extent on the chosen simulation. Depending on the heating sce-
nario, pressure and density profiles (and thus also T⊥/T‖ and all
other derived quantities) can show strongly localised maxima in
both radial and poloidal direction. It is thus helpful to have a rather
high number of grid points, up to 96× 75 (radial × poloidal). Ad-
ditionally, when iterating between the codes, smooth profiles are
needed at every iteration. This asks for a high number of particles.
However, when studying a low power scenario, or a case where
broad maxima can be expected in the profiles, fewer grid points
can be used, decreasing the required number of particles. Fig. 4
shows a scan over the number of particles using a 72 × 55 grid.
For this check, we loaded the particles and directly created the
VENUS outputs, without advancing the orbits in time. The result-
ing outputs should be equal to the inputs. Fig. 4 then gives the
relative difference between input and output of the density factor
N (s) as an example, and we do not consider the values of the ra-
dial variable s > 0.6 for more clarity. The relative error diminishes
for higher particle number, but the curves of four and eight mil-
lion particles are rather close to each other and not much different
from two million, suggesting a certain saturation. The Coulomb
collision tests in Fig. 5 have been performed with one million par-
ticles on a 36 × 55 grid, whereas the results shown in Section 4
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(a)

(b)

Fig. 5. Coulomb collisions have the effect that any minority distribution function
will become isotropic and have the same temperature as the background species.
Anisotropy denotes the factor T⊥/T‖ . The simulations were conducted using one
million particles on a 36× 55 grid. (a) The Coulomb collision operators cool down
an initially ten times warmer distribution to the background temperature. The black
horizontal line denotes T = Tth . (b) The pitch angle operator leads to an isotropic
distribution. The figure shows radial profiles for 0, 0.5, 1, 1.5, 3 and 4.5 deflection
times. The black line indicates unity.

have been produced following four million particles on 72 × 55
grid.

3.2. Coulomb Monte Carlo operators

The Monte Carlo operators for the Coulomb collisions on the
background ions and electrons are described in Eq. (7) and act
on the pitch angle and energy. We can easily test those two op-
erators considering a given background Maxwellian of constant
density and temperature. For the slowing down, the collision op-
erators have to cool down any initially hotter minority distribution
to a Maxwellian of equal temperature within a few slowing down
times. Fig. 5(a) shows such a test, where the minority species was
initially ten times hotter than the background ions and electrons
and converges to the same temperature within about four slowing
down times.

The pitch angle scattering operator must produce the result that
any initially anisotropic distribution ends up being isotropic. We
can check this with an initial perpendicular temperature which
is ten times higher than the parallel temperature, T⊥ = 10T‖ ,
T‖ = Tth , and let the system evolve with the pitch angle scatter-
ing enabled. In Fig. 5(b) one can easily verify that the anisotropy
does indeed tend to unity within a few deflection times. Note that
the anisotropy is equalised first at the boundary, which is due to
trapped particle losses on edge. Also, the deflection time depends
strongly on the particle’s energy, being shorter for lower energy.
We used the deflection time τd corresponding to the initial energy
distribution and ran the simulation for 4.5τd .

3.3. RF Monte Carlo operators

The main goal of the quasilinear RF operators (8) and (14) is
to ensure correct power deposition. As one of its outputs, LEMan

(a)

(b)

Fig. 6. The RF quasilinear operators reproduce accurately the power deposition of
the RF wave. Here, the particles in VENUS were thermal with small orbit width, and
also very low power was applied. With this, the exact same distribution is contained
in LEMan and VENUS, such that a direct comparison was possible. (a) Normalised
radial absorption profiles. The absolute values of the deposited power in LEMan
and VENUS differs, since LEMan computes the power corresponding to an antenna
current of 1 A, whereas VENUS rescales the electric fields to obtain the wanted
absorbed power for a given simulation. (b) 2D absorption. The maxima are located
to the right and the left of the resonant layer due to a non-zero Doppler shift for
a warm distribution on one hand, and, more importantly, a minimum along the
resonant layer of the left handed polarized electric field E+ .

produces the power deposition as a radial profile (power density)
and in two dimensions across a poloidal cross section. However,
this power deposition is not used in VENUS, since the RF opera-
tors only need the wave field and the wave vectors as input from
LEMan. We can therefore use the power deposition in LEMan and
in VENUS as independent data and use it as a powerful check for
the Monte Carlo operators. Fig. 6 shows the very satisfactory com-
parison between LEMan and VENUS using the normalised radial
absorption profiles and the 2D absorption in the R Z -plane. For
this comparison, we followed thermal minority ions, and applied
only very little power, such that the distribution in VENUS was the
same as in LEMan, and therefore conditions in LEMan and VENUS
where as similar as possible.

Fig. 7 shows the evolution of the orbit of an initially passing
particle which is being trapped and moving towards the resonance
due to wave–particle interactions. Such a resonating particle is
subject to the RF induced pinch, as described in Refs. [28] and [29]
and Eq. (15). It arises due to a change in toroidal angular momen-
tum Pϕ = mRv‖Bϕ/B + Zeψ when interacting with the RF field.
In VENUS, this effect is taken into account through the Kennel-
Engelmann relation Eq. (13).

3.4. Checking the splitting mechanism

In Section 2.4 we described how the test particle distribu-
tion in VENUS can be mapped onto a sum of a Maxwellian
and a bi-Maxwellian distribution describing the thermal and fast
ions respectively. In particular, a critical energy is defined, below
which particles are considered Maxwellian (thermal), and above
which they are considered bi-Maxwellian and hot, as described
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Fig. 7. Evidence of the RF induced particle pinch. An initially passing particle (blue,
dashed) becomes trapped (black, dashed) and the turning points move towards the
resonance (red, solid), yielding a potato-like orbit. The vertical black line represents
the resonant layer. The orbit averaged radial position (s in the model distribution
function (1)) has moved towards the magnetic axis. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

(a)

(b)

Fig. 8. Changing the critical energy for splitting the distribution function. Condi-
tions (18) are used for the splitting and in the legends the value of the coefficient
x = Ec/Te indicated. (a) Energy distribution f (E)

√
E integrated over space and pitch

angle. Thermal distribution in solid and tail in dotted lines. (b) The resulting ther-
mal temperature profiles.

in Eq. (18). Fig. 8 shows a scan of the coefficient x in Eq. (18),
i.e. different multiples of the electron temperature as critical ener-
gies. We chose to plot the energy distribution in terms of f (E)

√
E ,

corresponding to the number of particles at a given energy (i.e.
integrated over real space and pitch angle). The energy is repre-
sented in a logarithmic scale, such that the thermal part and the
tail are visible as two distinct local maxima. The black curve shows
the initial (thermal) distribution and profile (same temperature as
background and isotropic).

In Fig. 8(a), one can see that a critical energy of two or three
times the electron temperature is too small. Too large a fraction

Fig. 9. VENUS output of the tail (dotted lines) compared to resulting analytical bi-
Maxwellian. Clearly the factor of ten (green, triangles) is closer than the factor of
five (brown, circles). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

of the thermal minority component (solid line) is assigned to the
hot part, which is peaked far away from the tail (which is around
100 keV in that case). In that plot, a factor of five is the best choice
for representing the thermal minority part. This is confirmed by
the second plot, Fig. 8(b), where the temperature profile for the
factor of five is closest to the electron temperature (black). How-
ever, the main goal of this splitting is to be able to represent the
tail as accurately as possible with the bi-Maxwellian model. As
one can see from Fig. 8(a), the tail is peaked inside the initial
thermal curve when using a factor of five, and representing the
tail (outside the black curve) will be difficult with this splitting.
This is what is shown in Fig. 9: The line representing the case of
Ec = 5Te (brown, circles) incorporates a significant number of ther-
mal particles (dotted line), and the analytical modeling for VMEC
and LEMan (continuous lines) is further away from the form of the
VENUS tail than the case Ec = 10Te (green, triangles). It becomes
clear that choosing the value of Ec is a trade-off between keeping
the thermal part at the same temperature as the background and
trying to get the analytical model to agree as much as possible in
the tail. It is important to remember here that the particle distri-
bution in VENUS is not modified with the splitting and is re-loaded
at every iteration the way it was at the end of the previous itera-
tion (i.e. non-bi-Maxwellian). Consequently, the exact choice of the
critical energy is not as crucial as it seems, since the real minority
distribution in VENUS is not directly affected. It is only the model
distribution function applied to VMEC and LEMan which is directly
influenced by the exact choice of Ec . Another note to make is that
these checks were done for low power. For higher power, the tail
will be more clearly separated from the bulk, and the choice for
the critical energy is much more obvious.

3.5. 3D calculations

In this article, we focus primarily on (2D) tokamak equilibria
due to the higher relevance to experiment. Nevertheless, in this
section we show results obtained for a three-dimensional plasma
to explicitly show the 3D capability of SCENIC. The geometry is de-
fined by a 2-field period quasi-axisymmetric stellarator with zero
toroidal current, based on a configuration discussed in Ref. [6],
and scaled to a size similar to a typical JET equilibrium. The ma-
jor radius is R0 = 2.91 m, the magnetic field on axis B0 = 2.57 T,
and the volume averaged beta is 0.5%. We consider a 1% helium-
3 minority in a deuterium plasma, and the wave frequency of
f = 28 MHz, yielding Bc = 2.8 T. This configuration is convenient
because although it is fully three-dimensional, the magnetic field
strength spectrum in Boozer coordinates is dominated by its ax-
isymmetric components, such that the power deposition for ICRH
can still be expected to lie along a well defined line of resonance
at each given toroidal angle. We choose a low power scenario of
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(a)

(b)

(c)

Fig. 10. 3D equilibrium, power deposition in the wave code LEMan and the Monte Carlo operators in VENUS for a quasi-axisymmetric configuration, shown at different
toroidal angles. The figures demonstrate the 3D capability of SCENIC and its components. (a) Magnetic field strength from VMEC for a quasi-axisymmetric 2-field period
stellarator. (b) Power deposition in LEMan. (c) Power deposition in the VENUS Monte Carlo operators.

3 kW, allowing for a direct comparison of the power deposition
in the wave and the particle codes without the additional effect
of Doppler broadening of the resonant layer. Fig. 10(a) shows the
magnetic field strength and Figs. 10(b) and 10(c) the power de-
position in both LEMan and the VENUS Monte Carlo operators at
different toroidal angles. Figs. 10(b) and 10(c) provide an excel-
lent demonstration of the functionality of SCENIC in 3D systems.
In particular, as also seen in the 2D case of Fig. 6, the Monte Carlo
operators deposit power to the single particles in correspondence
with the power deposited by the RF electromagnetic wave, even
over the toroidal angle. For such configurations, the power depo-
sition is located along a given resonant layer. However, due to the
important change of plasma shape along the toroidal direction, the
orientation of power deposition reveals strong dependence on the
toroidal angle. We conclude that SCENIC is indeed capable of sim-
ulating three-dimensional configurations.

4. Iterated simulations

After detailed description and individual checking, we will now
show that the SCENIC package is capable of iterating between
the codes and finding converged solutions. We will for this sec-
tion turn to a JET-like equilibrium described in Appendix C with
3 MW of coupled ion cyclotron resonant heating. We use as a
test case a 1% helium-3 minority in a deuterium plasma, heated
on the high field side of the magnetic axis. With such a scenario,
the fundamental He3 is the only resonance in the plasma. In order
to check if the iterative method achieves convergence and to de-
termine when the simulation can be stopped, a criterion easy to
implement and observe has to be identified. Preferably it would be
a global quantity, which does not depend on any position in phase
space but which shows when a steady-state has been achieved.
A steady-state is reached when the deposited power by the RF field
is balanced by the power loss of the minority species to the back-

Fig. 11. Convergence of the iterated package SCENIC. Comparison of simulations
without iterating (one iteration) and several iterations shows that even if they both
reach equilibrium, the final results are different.

ground species. When that happens, the total energy content of the
minority species will remain constant. Therefore, a relevant quan-
tity to observe is the total energy content of the minority species,
or, equivalently, the mean energy

〈E〉= 1
N

∫

V

1
2
mv2 f dV , (19)

where V is the total phase space volume, dV = d3xd3v , and
N =

∫
V f dV . Fig. 11 shows an example of the evolution of the

mean energy as a function of time for a 3 MW simulation. Crosses
denote starting of a new iteration and the time is normalised to
the electron slowing-down time. In all cases, the system reaches
a steady-state after a few (electron) slowing-down times. How-
ever, Fig. 11 shows clearly that iterations are indeed necessary,
since the final results differ. The difference is obvious in Fig. 11,
and it is also visible in the integrated moments of the distribution
function. Confirming the difference in energy content of the minor-
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(a)

(b)

Fig. 12. Comparisons of the energy distribution f (E)
√

E . The tail of the iterated
simulations is peaked just above 100 keV, whereas the tail in the simple simulation
with one iteration has its maximum well below this mark. (a) 1 iteration. (b) 2–
16 iterations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

ity species, Fig. 12 gives the difference in the energy distribution
f (E)

√
E , i.e. the number of particles at a given energy. For the

chosen scenario, two iterations are enough, since convergence is
attained against simulations with more and shorter iterations. One
requires more iterations for higher power simulations. The splitting
parameter is x = 10 in both plots, and clearly the simulation with
two and more iterations shows a high energy tail (red, squares)
peaked at higher energy than the simple simulation with just one
iteration. The difference in power deposition can be seen in Fig. 13.
Whereas the deposition is rather narrow along the resonant layer
for one iteration (Fig. 13(a)), it becomes quite wide at the end
of the converged simulations using several iterations (Fig. 13(b)).
Here, the difference between one iteration and several iterations
may be attributed to the Doppler broadening of the resonance at
higher energies and a change in electric field polarisation during
the iterated simulations. Also, the radial deposited power density
in Fig. 13(c) reflects the difference in local maxima of Fig. 13, and
this plot will give an explanation for the difference in hot particle
density, Fig. 14(b).

Fig. 14 illustrates the differences occurring in the profiles of
pressure and density. For the cases using multiple iterations, the
pressure is generally higher than for the case with one iteration,
confirming the higher energy content proportional to the sur-
face under the curves of Fig. 12. The one iteration density plot
clearly shows local maxima, separated by a regular distance. It
is important to remember that for these plots, only the resonant
particles with energies higher than Ec are considered. A direct
relation between the hot particle density (Fig. 14(b)) and the ra-
dial power deposition (Fig. 13(c)) must be expected, since particles
are heated where the power is absorbed. The important heating
around r/a = 0.25 in the beginning of the simulation (during the
complete simulation for one iteration) creates a main hot par-
ticle density peak. The changed density then changes (together
with the action of enhanced anisotropy) the power deposition after
the initial iteration, enhancing single pass absorption, resulting in
the shown differences between one and multiple iterations. These
plots thus demonstrate that an iterated scheme is necessary for

(a)

(b)

(c)

Fig. 13. Power deposition in VENUS. The power deposition becomes broader, and
the single maxima along the resonance of (a) are less isolated in (b). The sharp
boarder in (b) is due to the limited diagnostics grid size. (a) One iteration. (b) Last
of 16 iterations. (c) Radial (poloidally averaged) deposited power density. Note that
the grid points for the two curves are not at the same positions.

finding consistent solutions when performing ion cyclotron heat-
ing simulations.

When taking a closer look at the results presented, the rele-
vance of the SCENIC modeling approach becomes apparent. We
concentrate now on the converged multiple iteration results. At
the end of the final iteration, we can take the zeroth, first and
second moments of the distribution function in VENUS, yielding
the density, current and pressure. Integrating over all variables
except radius, one-dimensional profiles such as the already dis-
cussed pressure and density of Fig. 14 can be produced for physical
studies. Fig. 15 shows the pressure and current profiles. The pres-
sure shows an important difference between perpendicular (solid
line) and parallel (dashed) pressure. This is intrinsically due to the
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(a)

(b)

Fig. 14. Comparing integrated moments of the distribution function for pressure and
density between one (red) and 2–16 (blue) iterations. Higher pressure is consistent
with higher energy content in Fig. 11. The difference in density profiles (only the
hot particle density is plotted) is directly linked to the difference in power deposi-
tion in Fig. 13. (a) Pressure, perpendicular (line) and parallel (dashed). (b) Particle
density. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

(a)

(b)

Fig. 15. Radial profiles of the hot particle pressure and current density. The differ-
ence between parallel and perpendicular pressure demonstrates the importance of
including pressure anisotropy in the equilibrium and the dielectric tensor. SCENIC
includes the RF induced current in the diagnostics of VENUS and the computation
of the new equilibrium. (a) Hot minority pressure. p⊥ solid, p‖ dashed. (b) Ion Cy-
clotron Current Drive (ICCD). Passing particles solid, trapped dashed.

mechanism of ICRH, since the heating is applied using the reso-
nance with the perpendicular motion of the particle. Hence, the
perpendicular pressure is much higher than the parallel pressure,
and automatically the anisotropy T⊥/T‖ is far from unity. In con-
trast to other models, our simulations are capable of including this
anisotropy in all parts of the package and are therefore particu-

larly well suited for ICRH simulations. Furthermore, it treats the
RF induced current (Ion Cyclotron Current Drive (ICCD), Fig. 15(b))
self-consistently because it computes the various contributions to
the current, including the RF induced particle pinch and finite orbit
width effects, and then includes it in the equilibrium calculation.
In the here shown low power scenario, a significant hot parti-
cle pressure anisotropy has developed (as shown in Fig. 15(a)),
but the change to global measures of the equilibrium, like e.g.
Shafranov shift or safety factor where small due to the low power
employment. The goal of this first applications was not to push the
simulations to their limits, but rather to prove the feasibility of this
ambitious package, and high power as well as 3D geometry stud-
ies are left for future work. We conclude consequently that SCENIC
represents an important improvement with respect to comparable
code packages, showing good scaling on high performance comput-
ers and successful convergence of the iteration scheme. Iterations
are important for obtaining meaningful results, as well as taking
into account quantities such as pressure anisotropy and RF induced
currents.

5. Summary and conclusions

We have described the development and first applications of
the new numerical code package SCENIC, designed for Ion Cy-
clotron Resonant Heating (ICRH). The code package is composed of
a bi-Maxwellian anisotropic pressure version of the MHD equilib-
rium code VMEC, the full wave code LEMan and the particle-in-cell
code VENUS. It is more general in many ways than any of the ex-
isting codes, in that it is capable of dealing with three-dimensional
geometry including full shaping, pressure effects and pressure
anisotropy. Using a separation of species into thermal background
ions and electrons, thermal and hot minority ion species, differ-
ent models are implemented for the equilibrium and dielectric
tensor. Whereas a warm Maxwellian (isotropic) is applied to the
background and the thermal minority species, the hot minority
pressure in the equilibrium and the hot minority dielectric tensor
of the wave code are treated anisotropic bi-Maxwellian. The evo-
lution of the minority species’ distribution function is computed
in VENUS using Monte Carlo operators in pitch angle and energy
space for both Coulomb collisions with the background and wave–
particle interactions. Here, no approximation is made concerning
the distribution function within the guiding centre model. The in-
tegrated moments from the distribution function can then be fed
into the equilibrium and wave calculations, closing the loop and
thus allowing for the search of a self-consistent solution. We have
shown the consistency of the different modules and results using
extensive tests of the code package. These tests included a JET-like
equilibrium as well as a quasi-axisymmetric 2-field period stel-
larator [6], demonstrating the ability to treat both 2D and fully
3D geometries. Moreover, the scaling of the code on thousands of
processors has been determined. Applying SCENIC to experimen-
tally relevant JET-like configurations [1], we could establish the
robustness of the iterative method and show that to compute a
consistent solution, several iterations are essential. Finally, model-
ing pressure anisotropy and RF induced currents in SCENIC could
be confirmed as an important feature for ICRH calculations.
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Appendix A. Wave number computation

A.1. Basis vectors

es =∇s, (A.1)

eθ =∇θ, (A.2)

eϕ =∇ϕ, (A.3)

es =√g(∇θ ×∇ϕ), (A.4)

eθ =√g(∇ϕ ×∇s), (A.5)

eϕ =√g(∇s×∇θ), (A.6)

with
√

g = 1
∇s · (∇θ ×∇ϕ)

.

Magnetic field components in Boozer coordinates

Bs = 0, (A.7)

Bθ = ψ ′/
√

g, (A.8)

Bϕ = χ ′/
√

g, (A.9)

Bs = Bs, (A.10)

Bθ = µ0 J/σ , (A.11)

Bϕ =−µ0 I/σ , (A.12)

with I the poloidal current flux, J the toroidal current flux, ψ
the poloidal and χ the toroidal flux functions. Prime denotes the
derivative with respect to s. We will always compute the wave
numbers using the scalar potential.

A.2. Alternative basis

For the computation of the wave vectors, let us define new ba-
sis vectors as

es =∇s, (A.13)

eb = (b×∇s), (A.14)

e‖ = b≡ B
B

, (A.15)

es =
√
J

(
eb × e‖

)
, (A.16)

eb =
√
J

(
e‖ × es

)
, (A.17)

e‖ =
√
J

(
es × eb

)
. (A.18)

The Jacobian is

√
J = 1

∇s · (b×∇s× b)

= 1
∇s · ((b · b)∇s− (b ·∇s)b)

= 1
∇s ·∇s

, (A.19)

which is as expected since es ⊥ eb ⊥ e‖ and es · es 4= 1. Now,

es =
√
J

(
eb × e‖

)

=
√
J

(
(b×∇s)× b

)
=
√
J∇s =

√
J es,

eb =
√
J

(
e‖ × es

)
=
√
J (b×∇s) =

√
J eb,

e‖ =
√
J

(
es × eb

)

=
√
J

(
∇s× (b×∇s)

)
=
√
J (∇s ·∇s︸ ︷︷ ︸

1/
√
J

)b− (∇s · b︸ ︷︷ ︸
0

)∇s = e‖.

A.3. Perpendicular wave number k⊥

By definition of the coordinates,

k2⊥ = ksks + kbk
b,

with

ks = 1
Φ

es ·∇Φ

= 1
Φ
∇s ·∇Φ = 1

Φ

(
∂Φ

∂s
∇s + ∂Φ

∂b
∇b + ∂Φ

∂ ‖ ∇ ‖
)

= 1
Φ

(∇s ·∇s)
∂Φ

∂s
= 1

Φ
√
J

∂Φ

∂s
,

ks = 1
Φ

es ·∇Φ = 1
Φ

√
J es ·∇Φ

=
√
J ks = 1

Φ

∂Φ

∂s

⇒ ksks = 1√
J

(
1
Φ

∂Φ

∂s

)2

, (A.20)

kb = 1
Φ

eb ·∇Φ = 1
Φ

(b×∇s) ·∇Φ

= 1
ΦB

[(
µ0 J
σ
∇θ − µ0 I

σ
∇ϕ

)
×∇s

]
·∇Φ

= 1
Φσ B

[
µ0 J (∇θ ×∇s)−µ0 I(∇ϕ ×∇s)

]

×
[

∂Φ

∂s
∇s + ∂Φ

∂θ
∇θ + ∂Φ

∂ϕ
∇ϕ

]

= 1
Φσ B

(
µ0 J (∇θ ×∇s) ·∇ϕ︸ ︷︷ ︸

−1/
√

g

∂Φ

∂ϕ

−µ0 I (∇ϕ ×∇s) ·∇θ︸ ︷︷ ︸
1/
√

g

∂Φ

∂θ

)
,

kb =
√
J kb =−

√
J

Φσ B
√

g

(
µ0 J

∂Φ

∂ϕ
+ µ0 I

∂Φ

∂θ

)

⇒ kbk
b =

√
J

[
1

Φσ B
√

g

(
µ0 J

∂Φ

∂ϕ
+ µ0 I

∂Φ

∂θ

)]2

. (A.21)

Explicitly, using
√
J = 1/gss ,

k2⊥ = gss
(

1
Φ

∂Φ

∂s

)2

+ 1
gss

[
1

Φσ B
√

g

(
µ0 J

∂Φ

∂ϕ
+ µ0 I

∂Φ

∂θ

)]2

. (A.22)

A.4. Parallel wave number k‖

Since e‖ = e‖ , there is no difference between the co- and con-
travariant components:

k‖ = 1
Φ

e‖ ·∇Φ

= 1
Φ

b ·∇Φ = 1
ΦB

[
ψ ′(∇ϕ ×∇s) + χ ′(∇s×∇θ)

]
·∇Φ

= 1
ΦB

[
ψ ′(∇ϕ ×∇s) + χ ′(∇s×∇θ)

]

·
[

∂Φ

∂s
∇s + ∂Φ

∂θ
∇θ + ∂Φ

∂ϕ
∇ϕ

]
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= 1
ΦB

[
ψ ′ (∇ϕ ×∇s) ·∇θ︸ ︷︷ ︸

1/
√

g

∂Φ

∂θ
+ χ ′ (∇s×∇θ) ·∇ϕ︸ ︷︷ ︸

1/
√

g

∂Φ

∂ϕ

]
.

(A.23)

That is (k‖ = k‖),

k‖ = 1
ΦB
√

g

(
ψ ′

∂Φ

∂θ
+ χ ′

∂Φ

∂ϕ

)
. (A.24)

Appendix B. Relations for creating new inputs after each
iteration

The changing inputs needed by the equilibrium code VMEC are
T⊥/T‖(s), ph(s), and the toroidal current J (s). For LEMan we need
to reconstruct the density amplitude factor N (s) and parallel tem-
perature T‖(s) profiles. The toroidal current is directly added to the
ohmic current, and no further relations are needed.

For finding the anisotropy, we invert the following relation:

ph⊥(s, θ)

ph‖(s, θ)
= M(s, A, θ), (B.1a)

where we wrote A = T⊥/T‖ for simplicity and

M(s, A, θ) =






A[ B
Bc

+ p⊥
p‖ (1− B

Bc
)],

B > Bc,

A B
Bc

[1+A(1−B/Bc)]2−5[A(1−B/Bc)]3/2+[A(1−B/Bc)]7/2
{1−A2(1−B/Bc)2}{1+A(1−B/Bc)−2[A(1−B/Bc)]5/2} ,

B < Bc .

(B.1b)

ph⊥(s, θ) and ph‖(s, θ) are known from the distribution function
and B(s, θ) and Bc are known from the equilibrium. For the re-
gions where B > Bc , the anisotropy A can directly be computed,
whereas a root finding algorithm has to be applied in the case
B < Bc . In VENUS a simple secant method is implemented to that
end. The hot parallel pressure amplitude ph(s) is defined through
ph‖(s, θ) = pth(s)ph(s)H(s, θ), where ph‖(s, θ) is coming from the
hot distribution function, pth(s) is the background pressure and
H(s, θ) is defined as

H(s, B) =






B/Bc
1−T⊥/T‖(1−B/Bc)

,

B > Bc,

B
Bc

1+T⊥/T‖(1−B/Bc)−2[T⊥/T‖(1−B/Bc)]5/2
1−[T⊥/T‖(1−B/Bc)]2 ,

B < Bc.

(B.2)

We can then write

ph(s) =
ph‖(s, θ)

pth(s)H(s, θ)
. (B.3)

For the density-like amplitude factor N (s), recall that N (s) is re-
lated to the real density by

nh(s, θ) =N (s)

√
T‖
T⊥
C(s, θ), (B.4)

with

C(s, B) =






B/Bc
1−T⊥/T‖(1−B/Bc)

,

B > Bc,

B
Bc

1+T⊥/T‖(1−B/Bc)−2[T⊥/T‖(1−B/Bc)]3/2
1−[T⊥/T‖(1−B/Bc)]2 ,

B < Bc .

(B.5)

Once the anisotropy is found, N can be determined using

N (s) =
√

A(s)
nh(s, θ)

C(s, θ)
. (B.6)

The hot parallel temperature T‖(s) is finally found with ph‖(s, θ) =
N (s)T h

‖ (s)H(s, θ), and thus

T h
‖ (s) =

ph‖(s, θ)

N (s)H(s, θ)
. (B.7)

Eqs. (B.1), (B.3), (B.6) and (B.7) are implemented in VENUS for find-
ing new inputs to VMEC and LEMan at the end of each iteration.

Appendix C. Equilibrium for Section 4

1% helium-3 in deuterium background (see Fig. 16). Major ra-
dius on axis R0 = 2.99 m, maximum minor radius a = 1.17 m,

(a) (b)

(c) (d)

Fig. 16. Background profiles. The He3 minority initially has the same temperature and density profiles, the latter scaled by a factor of 1%. The heating is applied at r/a = 0.25.
(a) Background density. (b) Background temperature. (c) Ohmic toroidal current. (d) Safety factor.
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elongation κa = 1.4, triangularity δa = 0.4, B0 = 2.94 T. The tem-
perature on axis is T e

0 = T i
0 = 3.5 keV and the density ni0 = 0.98ne0,

ne0 = 3.38×10+19 m−3. The resonant layer is chosen at r/a = 0.25.
This gives for the wave field Bc = 3.18 T, yielding f R F = 32.4 MHz.

References

[1] J.P. Graves, et al., Nucl. Fusion 50 (2010) 052002.
[2] T. Hellsten, J. Carlsson, L.-G. Eriksson, J. Hedin, A. Jaun, Plasma Phys. Control.

Fusion 40 (1998) 1085.
[3] M. Brambilla, R. Bilbato, Nucl. Fusion 46 (2006) S387.
[4] M. Brambilla, R. Bilbato, Nucl. Fusion 49 (2009) 085004.
[5] M. Choi, et al., Phys. Plasmas 17 (2010) 056102.
[6] W.A. Cooper, et al., Nucl. Fusion 46 (2006) 683.
[7] P. Popovich, W.A. Cooper, L. Villard, Comp. Phys. Comm. 175 (2006) 250.
[8] N. Mellet, W.A. Cooper, P. Popovich, L. Villard, S. Brunner, Convolution and it-

erative methods applied to low-frequency waves in 3D warm configurations,
Comp. Phys. Comm. 182 (3) (2011) 570–589.

[9] O. Fischer, W.A. Cooper, M.Y. Isaev, L. Villard, Nucl. Fusion 42 (2002) 817.
[10] G.A. Cooper, M. Jucker, W.A. Cooper, J.P. Graves, M.Y. Isaev, Phys. Plasmas 14

(2007) 102506.

[11] S.P. Hirshman, O. Betancourt, J. Comp. Phys. 96 (1991) 99.
[12] R.J. Dumont, C.K. Phillips, D.N. Smithe, Phys. Plasmas 12 (2005) 042508.
[13] R.O. Dendy, R.J. Hastie, K.G. McClements, T.J. Martin, Phys. Plasmas 2 (1995)

1623.
[14] N. Mellet, et al., Comp. Phys. Comm. 182 (2011) 570.
[15] S. Brunner, J. Vaclavik, Phys. Fluids B 5 (1993) 1695.
[16] T. Martin, J. Vaclavik, Helvetica Physica Acta 60 (1987) 471.
[17] W.A. Cooper, J.P. Graves, M. Jucker, M.Y. Isaev, Phys. Plasmas 13 (2006) 092501.
[18] L.-G. Eriksson, M. Schneider, Phys. Plasmas 12 (2005) 072524.
[19] T.H. Stix, Nucl. Fusion 15 (1975) 737.
[20] J. Wesson, Tokamaks, 3rd edition, Oxford University Press, Great Clarendon

Street, Oxford OX2 6DP, 2004.
[21] A.H. Boozer, G. Kuo-Petravic, Phys. Fluids 24 (1981) 851.
[22] A.N. Kaufman, Phys. Fluids 15 (1972) 1063.
[23] S. Murakami, et al., Nucl. Fusion 46 (2006) S425.
[24] T. Johnson, T. Hellsten, L.-G. Eriksson, Nucl. Fusion 46 (2006) S433.
[25] T. Hellsten, K. Holmström, T. Johnson, T. Bergkvist, M. Laxåbäck, Nucl. Fusion 46

(2006) S442.
[26] C.F. Kennel, F. Engelmann, Phys. Fluids 9 (1966) 2377.
[27] T.H. Stix, Waves in Plasmas, American Institute of Physics, New York, 1992.
[28] L. Chen, J. Vaclavik, G.W. Hammett, Nucl. Fusion 28 (1988) 389.
[29] L.-G. Eriksson, et al., Phys. Rev. Lett. 81 (1998) 1231.


