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Most of the number of sources estimation techniques use the well-known signal-subspace
approach in which the number of dominant sources is deduced regarding the multiplicity of
the lowest eigenvalues of the correlation matrix. In the at-worst determined case (number of
microphones just equals the maximal number of possible radiating sources) such methods
are inoperative because the noise subspace could be inexistant. However, a well chosen sensor
array geometry permits to achieve source detection using eigenvalues above conditions to some
a priori knowledge on the sources. This paper explores some relation between geometry and
eigenvalues in order to achieve optimal sources detection and separation. This study yields
analytical formulations of both optimisation problem by working on the simple case of two
uncorrelated harmonic sources. Theoretical and experimental measurements are presented and
discussed.

1. Introduction

The satisfactory of most of the sound sources separation, tracking or localisation algorithms is
related to the knowledge of the number of sources to characterize. That’s why a large area in signal
processing research concerns the number of source estimation. Most of such algorithms includes Sup-
port Vector Machine [1], Information Theoretic Criteria [2, 3, 4], Minimum Eigenvalue Varied Rate
Criteria [5], Beam Eigenvalue Approaches [6] to list only a few. The main general idea is to study the
rank of the covariance matrix of the observations in the light of its eigenvalues which can theoreti-
cally be separated in two groups : the eigenvalues which belong to the signal subspace (as many as
the number of sources) and the eigenvalues which belong to the noise subspace (all equal and related
to the noise power). This is the well known subspace approach theory described in [7]. However, one
common necessary condition to all above-mentioned methods is that the number of sensors had to be
larger than the number of sources in the sense that a comparison had to be made between signal sub-
space and noise subspace. In this paper, we are interested in using the properties of subspace approach
theory in order to optimize the microphone array geometry in the at-worst determined case, i.e. when
the number of microphones at-worst equals the maximal number of sources. In such a case, the noise
subspace may not be available so a comparison-based method is not judicious. As eigenvalues of the
correlation matrix are closely related to microphone locations, our motivation is to find analytical
formulations for optimize them in order to achieve easier detection/separation methods with a low
number of sensors.
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After a general description of the SVD-based method in Section 2, the optimization problem is descri-
bed in Section 3. Found analytical formulations are checked by experiments and applied to different
contexts in Section 4. A final discussion is given in Section 5.

2. The subspace approach for estimate the number of sources

Consider an array of M omnidirectional sensors mi with same impulse responses at locations
xmi ∈ R2, i ∈ [1, 2, ...,M ] and let Nmax be the number of maximal mutually independent and isotro-
pic sources which can radiate across the array. Each source is characterized by its location xsj ∈ R2,
its wavelength λj and its amplitude βj , j ∈ [1,...,Nmax]. Assume that xsj and λj are known for all j
and the amplitude βj variates according to an unknown and different law for each source. Thus, the
number N of radiating sources taken at a given instant is unknown and N can fluctuate between 0 and
Nmax.

A simplistic but often sufficient model of sensor array signal processing consider the observa-
tions X ∈ CM×1 as linear combinations of complex sources signal S ∈ CN×1 attenuated and delayed
in time through a complex mixing matrix A ∈ CM×N summed with an independent and identically
distributed zero mean gaussian noise W ∈ CM×1 :

X = AS + W (1)

According to the signal-subspace theory, X can be seen as a vector in M dimensional space
where each line xi is a linear combination of source signals sj through the complex coefficients aij of
A [7]. Hence, in presence of N sources located so as to avoid the type I ambiguity (i.e. spatial ambi-
guity, e.g. two sources symmetrically located with respect to the axe of a line array of microphone),
the rank of the correlation matrix R is equal to N where R is defined as :

R = E
{

XXH
}

(2)

and (.)H is the transpose hermitian operator. Consequently, estimating the number of sources is equi-
valent to estimate the rank of R. By definition, this is achieved by studying the eigenstructure of R.
Using the definition of the mathematical expectation the expression (2) may be expanded as below :

R = AψAH + σ2IN×N (3)

where ψ is the signal correlation matrix and σ2IN×N is the noise correlation matrix. The M eigenva-
lues Λi of R respect the following relations [8, 9] :

Λi = µi + σ2 ∀i ∈ [1, 2, . . . , N ] and µi ∈ R+

Λi = σ2 ∀i ∈ [N + 1, . . . ,M ]
(4)

Hence, ifM >N , the eigenvectors Vi associated to the eigenvalues Λi can be separated in two groups :

ES = [V1, V2, . . . , VN ] the signal subspace associated to the N biggest eigenvalues.
EN = [VN+1, VN+2, . . . , VM ] the noise subspace associated to the M −N smallest eigenvalues.

The rank of R is so deduced regarding the multiplicity of its smallest eigenvalues as illustrated
on Fig. 1.

If the theory seems very attractive because of its simplicity, in practice, the smallest eigenvalues
are never equal with probability one because of the finite size of the observations [2] and it frequently
happens that the signal and noise related eigenvalues are difficultly distinguishable. That’s why se-
veral methods have been proposed for help to decision. The most popular include the Information
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FIGURE 1. A theoretical set of eigenvalues of R in presence of N sources and M>N microphones, the
M −N smallest eigenvalue are equal

Theoretic Criteria : the idea is to test a family of P hypothesis, where the hypothesis p traduces the
equality between the M − p smallest eigenvalues, and see which hypothesis best fits the data (i.e.
which hypothesis has the maximum likelihood). As maximum likelihood estimators are generally
biased, penalty functions are introduced to make correction. Most well-known of them are the AIC
(Akaike Information Criterion) [10], MDL (Maximum Description Length) [4], EDC (Efficient De-
tection Criterion) [3], MDL-BSS [11] and so on. But all above-mentioned methods are inoperative
in the at-worst determined case because of possible inexistant noise subspaces. That’s why the pre-
sented strategy consists in optimizing the sensor array geometry as so to predict the behavior of the
eigenvalues in function of the number of radiating sources N and, for a given N , optimize the sensor
array geometry to separate them.

3. Proposed method of optimization for the case M = Nmax = 2

From Eq. (1), all the information about i) sensors locations in relation to ii) the sources locations
and iii) the sources wavelength is comprised in A. For the sake of simplicity, let’s consider the case
where M = Nmax = 2. In such a situation, the mixing matrix A has the following form :

A =

(
γ11e

−j2πa γ12e
−j2πb

γ21e
−j2πc γ22e

−j2πd

)
(5)

where

a =
‖xm1−xs1‖2

λ1
, b =

‖xm1−xs2‖2
λ2

, c =
‖xm2−xs1‖2

λ1
, d =

‖xm2−xs2‖2
λ2

(6)

and γij = βj/(4π ‖xmi − xsj‖22). In the compact and far-field sensor array context, distance
between each sensor is low in comparison with distances between microphones and sources, hence the
above model can be simplified by letting γij = αj where αj is one positive constant which represents
the initial intensity level of the source j. Under assumption of mutually uncorrelated sources and i.i.d
noise, rank{R} = rank{E

{
AAH

}
}. The idea is so to act on the microphone array geometry in order

to achieve desired eigenvalues of AAH depending on the application : source number estimation or
source separation. Let Λ be such an eigenvalue, then Λ obeys to P (Λ) = 0 with :

P (Λ) = det
(
AAH − ΛIM×M

)
= Λ2 − 2(α2

1 + α2
2)Λ + 4α2

1α
2
2sin

2(π(a− b+ c− d)) (7)
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Which gives two solutions :

Λ1 =
2(α2

1 + α2
2) +
√

∆

2
,Λ2 =

2(α2
1 + α2

2)−
√

∆

2
(8)

Where ∆ equals :

∆ = 4(α2
1 + α2

2)2 − 16α2
1α

2
2sin

2(π(a− b+ c− d)) (9)

By working on Λ1 and Λ2, some different relations between the optimal position xm2 and other
parameters in A can be found according to the application context : source separation or number of
source estimation. This is discussed in the following.

3.1 Source separation context

For a source separation application, the array geometry has to set the observations as inde-
pendent (in a second order sense) as possible and so to set the associated eigenvectors as orthogonals
as possible. Mathematically speaking, knowing xm1, xs1, xs2 λ1 and λ2, this amounts in find the
optimal xm2 permitting to have a geometrical multiplicity of AAH equal to Nmax, that is to say :

find xm2 such that dim[Ker(AAH − λI)] = Nmax (10)

As AAH is an hermitian matrix, algebraic and geometric multiplicity are similar. Thus, a suffi-
cient condition to verify (10) is to equalize both of its eigenvalues. From (8) and (9), it comes :

Λ1 = Λ2 ⇔ ∆ = 0 (11)

i.e. :

a− b+ c− d = ± 1

π
Arcsin

(
α2

1 + α2
2

2α1α2

)
(12)

Because of parameters a, b, c and d are real, initial intensities α1 and α2 of the sources had to
respect the following contraint to give a physical solution :∣∣∣∣α2

1 + α2
2

2α1α2

∣∣∣∣ ≤ 1 (13)

Without loss of generality, let set α2 = kα1 where k ∈ R+, it comes :

1 + k2 ≤ 2k (14)

Hence, only k = 1 gives a physical solution, letting to think that the optimal xm2 can be found
only where both sources have the same initial radiating intensity. In other cases, only suboptimal
separation can be achieved with two microphones and more evolutive methods had to be deployed. If
k = 1, Eq. (12) yields the final equality constraint h that xm2 had to verify with respect to xm1, xs1 and
xs2 :

h(xm2) =
1

λ1

(‖xs1 − xm2‖2 − ‖xs1 − xm1‖2) +
1

λ2

(‖xs2 − xm1‖2 − ‖xs2 − xm2‖2)±
1

2
= 0 (15)
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3.2 Detection context

In the context of source number estimation where Nmax = 2, the goal is to discriminate three
cases, case a) : both sources radiate, case b) : one source radiates, and case c) : no sources radiate.
Because of the ignorance of the initial intensity of sources, the eigenvalues are difficultly predictable,
but their ratio r = Λ2/Λ1 is much more easier to predict. Supposing that xm2 respects the source sepa-
ration constraint (15), r equals one in the case a) because of the independence of the two recordings
for this geometry. But by definition of an i.i.d noise W, r also equals one into the case c). So if xm2

respects Eq. (15), case a) and c) can’t be dissociated. That’s why an other optimal xm2 (this time in
the sense of the number of source estimation context) has to be found.
Suppose to be in the case a), the conditions to respect are r 6= 1 in order to avoid ambiguity with case
c) and r 6= 0 in order to avoid ambiguity with the case b). After calculations, we found :

choose xm2 such that a− b+ c− d 6=
{
±1

2
if α1 = α2

Z otherwise (16)

For example, in the specific case where k = 1 and we want r = 0.5, it comes :

h(xm2) =
1

λ1

(‖xs1 − xm2‖2 − ‖xs1 − xm1‖2)+
1

λ2

(‖xs2 − xm1‖2 − ‖xs2 − xm2‖2)±
1

π
Arccos

(
1

3

)
= 0

(17)

3.3 Optimization procedure

From Eq. (15) and (17), the optimal position of xm2 can be found using a standard optimization
method formulated as :

min
xm2∈R2

f(xm2)

subject to h(xm2) = 0 (18)
(19)

Where the function to minimize here is the distance between the first microphone according to
assumptions made at the beginning of the section :

f(xm2) = ‖xm2 − xm1‖2 (20)

A standard method for solve such a non linear convex optimization problem is the Local Se-
quential Quadratic Programming method (Local-SQP). For a complete description of Local-SQP, see
for example [12] page 465. As an example of results, Fig. 2 illustrates a simulation where xs1 = [0, 0]T

m, f1 = 600 Hz, xs2 = [0.6, 0.3]T m, f2 = 500 Hz and xm1 = [0,−1]T m. Both sources radiated with
the same intensity level (k = 1). For the source separation context, the found optimal position xm2

equals [0.62,−1.03]T m and for the number of source estimation context, the found optimal xm2

equals [0.48,−1.08]T m.

4. Experimental measurements (anechoı̈cal conditions)

Let’s consider two sound sources s1 and s2, each radiates an harmonic sound of respective
frequency f1 = 2000 Hz and f2 = 3000 Hz with the same intensity level (k = 1). Positions of sources
and first microphone are : xs1 = [0, 0]T m, xs2 = [0.5, 0]T m and xm1 = [0,−4]T m. The ordinate of
microphone m2 is set equal to -4 m and different abscissas are tested :
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FIGURE 2. Optimum solution for location of microphone m2 in the a) source separation context and b) source
detection context for the same situation.

Position Number 1 2 3 4 5 6 7 8 9
Abscissa of m2 [m] 0.125 0.245 0.36 0.48 0.59 0.725 0.845 0.96 1.075

Position Number 10 11 12 13 14 15 16 17
Abscissa of m2 [m] 1.2 1.32 1.445 1.565 1.68 1.8 1.925 2.045

For each location of m2, the ratio r defined in Section 3.2 is computed. It can be seen on Fig.
3 that theoretical and experimental values of r match well for small distances between m1 and m2

(until 1.6 m).

FIGURE 3. Theoretical and experimental ratio r = Λ2/Λ1 according to the abscissa of the second microphone.

In such a situation, it clearly appears that the maximal independence between both recordings
is obtained for the fifth position of m2. It can be said this position is the optimal one for a source
separation context towards all tested positions (or positioning constraints). According to the statistical
signal processing theory, an efficient 1 estimator of S is Ŝ =

(
HTH

)−1 HTX [13]. The computation
of such an estimator is done for two positions : the fifth (optimal : , i.e m2 = [0.59,−4]T ) and the
sixth (i.e m2 = [0.725,−4]T ). Both results are represented on Fig. 4. As expected the estimation of
the original sources is conclusive when xm2 is the optimal position and much less when xm2 is a few
centimeters side the optimal. This proving the influence of the microphone array geometry in the final
performance of a source separation application.

1. an estimator is said efficient if it is unbiased and if it attains the Cramer-Rao Lower Bound
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FIGURE 4. Comparison between original signals and source separation results from raw recorded signals
for the optimal position of m2 and another one (13.6 cm side). The source separation is well performed for the
theoretically found optimal solution in comparison with another position.

In the same manner, the smallest microphone array which give r equal to 0.5 is obtained for xm2

comprised between the second and third position. For the abscissa of m2 equal to 0.31 m, a recording
has been done where s1 and s2 radiate randomly (Fig. 5-a). The three different cases : no signal, one
signal and two signals, are clearly distinguishable and conform to the theory as illustrated on Fig.
5-b. Using the fifth position would have not permitted to differentiate no signal case from two signals
case. This confirms that an optimal microphone array in the source separation context is not necessary
optimal for a detection context and vice-versa.

FIGURE 5. (a) waveform of received signal on one microphone, (b) r = Λ2/Λ1 in
time, as expected 0 value is obtained when 1 source is radiating, 0.5 when 2 sources are radiating and 1 in case
of noise. Theoretical expected value for the ratio in the 1 and 2 source case are represented by dash lines.

5. Conclusion

Based on the eigenvalues of the spatial correlation matrix of the observations, some relations to
find the optimal sensor array geometry in the sense of sources separation and sources detection have
been exposed. The theoretical development and the experimental examples have been proposed for
the case of two harmonic and uncorrelated sources. In particular, it was demonstrated and confirmed
by measurements that the best sensor array geometry could be found by solving a simple optimization
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problem, but the result of this optimization is not the same for both applications. Forthcoming works
will consist in extending this work for larger bandwidth and much more sound sources.
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