What have fruits to do with technology? The case of Orange, Blackberry and Apple.

Surender Reddy Yerva
EPFL LSIR
Lausanne, Switzerland
surenderreddy.yerva@epfl.ch

Zoltán Miklós
EPFL LSIR
Lausanne, Switzerland
zoltan.miklos@epfl.ch

Karl Aberer
EPFL LSIR
Lausanne, Switzerland
karl.aberer@epfl.ch

ABSTRACT

Twitter is a micro-blogging service on the Web, where people can enter short messages, which then become visible to other users of the service. While the topics of these messages varies, there are a lot of messages where the users express their opinions about companies or products. Since the twitter service is very popular, the messages form a rich source of information for companies. They can learn with the help of data mining and sentiment analysis techniques, how their customers like their products or what is the general perception of the company. There is however a great obstacle for analyzing the data directly: as the company names are often ambiguous, one needs first to identify, which messages are related to the company. In this paper we address this question. We present various techniques to classify tweet messages, whether they are related to a given company or not, for example, whether a message containing the keyword “apple” is about the company Apple Inc.. We present simple techniques, which make use of company profiles, which we created semi-automatically from external Web sources. Our advanced techniques take ambiguity estimations into account and also automatically extend the company profiles from the twitter stream itself. We demonstrate the effectiveness of our methods through an extensive set of experiments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Performance, Design

Keywords
Twitter classification, entity resolution, ambiguity estimation, Web mining, Twitter message stream, entity profiles

1. INTRODUCTION

Twitter\(^1\) is a popular micro-blogging service on the Web, where people can enter short messages (a.k.a. tweets), which then become visible to other users. Twitter is currently one of the most popular sites of the Web: as of February 2010, Twitter users send 50 million messages per day\(^2\). While the subject of these varies, in many cases the messages express opinions about companies or their products. Since the service is very popular, the twitter messages form a rich source of information for companies about how their customers like their products. In the same way companies might learn what is the general perception of the company. There is however a great obstacle for analyzing the data directly: as the company names are often ambiguous, one needs first to identify, which messages are related to the company. This name ambiguity is not accidental, the choice of the company name is part of the branding and marketing strategy. Examples for such company and brand names from the technology industry are Apple Inc., Orange® or BlackBerry®.

In this paper we focus on the problem of classifying twitter messages containing a given keyword, whether or not they are related to a given company. Constructing such a classifier is a challenging task, as tweet messages are very short (maximum 140 characters), thus they contain very little information, and additionally, tweet messages use a specific language, often with incorrect grammar and specific abbreviations, which are hard to interpret by a computer. To overcome this problem, we constructed profiles for each company, which contain more rich information. For each company we collected keywords from different sources (Web, User) automatically and in some cases manually. The company profiles essentially contain these keywords, which are related to the company in some way. With each profile we also maintain a set that contains unrelated keywords. With the help of these profiles we could construct a classifier.

Table 1: Tweets containing the keyword “apple”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>“... installed yesterday update released by apple...”</td>
</tr>
<tr>
<td>T2</td>
<td>“... the apple juice was bitter...”</td>
</tr>
<tr>
<td>T3</td>
<td>“... it was easy when apples and blackberries were only fruits...”</td>
</tr>
<tr>
<td>T4</td>
<td>“... dropped my apple, mind u its not the fruit...”</td>
</tr>
</tbody>
</table>

Table 1 gives some examples of tweets containing the keyword “apple”. Our task is to decide whether these messages are related to the company Apple Inc. or not. This task is not trivial, even for human inspectors. The human decision process relies on some specific keywords, which –together with the background knowledge–

\(^1\)http://twitter.com

\(^2\)http://www.telegraph.co.uk/technology/twitter/7297541/ Twitter-users-send-50-million-tweets-per-day.html

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

WIMS ’11, May 25-27, 2011 Sogndal, Norway
Copyright 2011 ACM 978-1-4503-0148-0/11/05 ...$10.00.
give hints for the decision. In the table, the bold words are examples for such possible hints. In our classification techniques, we try to construct profiles, which contain exactly these keywords. Note that in the sentences T3 and T4 the speaker exploits the multiple possible interpretations of the word “apple”. (If one of them is the company Apple Inc. we try to classify the message as TRUE.) Beyond this standard technique we construct more sophisticated classifiers as well. First we estimate the overall ambiguity of a company name, and include this information in our classification decision. Moreover we do not use static profiles for the companies, rather dynamic ones, which we continually update from the twitter stream. This extension is essential and specific to our classification problem. The keywords appearing in the tweets are repeated with changing frequencies: for example if a company launches a new product, this new product name might appear more frequently in the twitter stream, and such keywords can be temporarily good in-dications that the message is related to the company. We conducted an extensive set of experiments using the WePS-3 dataset 3 and also through direct access to the twitter stream. The experiments show promising performance figures.

The rest of the paper is organized as follows. Section 2 explains the problem more formally. Section 3 presents our basic classification technique, while Section 4 describes our more advanced techniques, where we involve ambiguity estimations and also active profiles. Section 5 explains our experiments. Section 6 summarizes the related work and finally, Section 7 concludes the paper.

2. MODEL AND PROBLEM STATEMENT

2.1 Problem statement

In this section we formulate the problem and our computational framework more formally. The task is concerned to classify a set of Twitter messages \(\Gamma = \{T_1, \ldots, T_n\} \), whether they are related to a given company \(C \). We assume that each message \(T_i \in \Gamma \) contains the company name as a sub-string. We say that the message \(T_i \) is related to the company \(C \), related(\(T_i, C \)), if and only if the Twitter message refers to the company. We also use the term that a tweet belongs to a company, by which we mean the same. It can be that a message refers both to the company and also to some other meaning of the company name (or to some other company with the same name), but whenever the message \(T_i \) refers to company \(C \) we try to classify as TRUE otherwise as FALSE. We assume that some basic further information is available as input, such as the URL of the company \(url(C) \), the language of the Web page.

2.2 Model

2.2.1 Tweet Representation

We represent a tweet as a bag of words (unigrams and bigrams). We do not access the tweet messages directly in our classification algorithm, but apply a preprocessing step first, which removes all the stop-words, emoticons, and twitter specific stop-words (such as, for example, RT.@username). We store a stemmed\(^4\) version of keywords (unigrams and bigrams). Formally we have:

\[
T_i = \{\text{word}_{d_j}\}.
\]

3\(^{http://nlp.uned.es/weps/weps-3}\) In fact, we are not using the training set of WePS-3, just the test set with the available ground truth, for evaluation purpose.

4\(^{We used the Porter stemmer from the python based natural language toolkit, available at http://www.nltk.org}\)

2.2.2 Company Representation

We represent each company entity as a profile, where a profile is a set of weighted keywords.

\[
P_c = \{\text{word}_{d_j} : w_{t_j}\}
\]

with \(w_{t_j} \geq 0 \) for positive evidence keywords (i.e. those words which suggest that the message should be related to the company) and \(w_{t_j} < 0 \) for negative evidence keywords. We can consider the profile as two sets of weighted keywords. The set with positive weights constitute positive evidence keywords and the set with negative weights represent negative evidence keywords.

\[
P_{c, Set^+} = \{\text{word}_{d_j} : w_{t_j} | w_{t_j} \geq 0\}
\]

\[
P_{c, Set^-} = \{\text{word}_{d_j} : w_{t_j} | w_{t_j} < 0\}
\]

The weights \(w_{t_j} \), corresponding to word \(\text{word}_{d_j} \), essentially captures the conditional probability of the event that a message containing the keyword belongs (or does not belong) to the given company \(C \). (For simplicity, we denote these events as \(C \) and \(\overline{C} \)).

\[
P(\text{word}_{d_j} | C) = w_{t_j} \text{ if } w_{t_j} \geq 0,
\]

\[
P(\text{word}_{d_j} | \overline{C}) = |w_{t_j}| \text{ if } w_{t_j} < 0,
\]

2.2.3 Classification Process

For the tweets classification task, we compare the tweet with the entity (i.e. company) profile. We make use of Naive Bayes Classifier [9], [13] for our classification process. We assume the words appearing in a tweet independently contribute towards the evidence of whether the tweet belongs to the company, or not.

For each tweet \(T_i = \{\text{word}_{d_j}\} \) we compute the conditional probabilities \(P(C | T_i) \) and \(P(\overline{C} | T_i) \) for deciding if a tweet belongs to a company \(C \) or not. We make use of Bayes theorem for computing these terms.

\[
P(C | T_i) = \frac{P(C) * P(T_i | C)}{P(T_i)}
\]

\[
= \frac{P(C) * P(\text{word}_{d_1}, \ldots, \text{word}_{d_n} | C)}{P(T_i)}
\]

\[
= K_1 \prod_{j=1}^{n} P(\text{word}_{d_j} | C)
\]

Similarly we have,

\[
P(\overline{C} | T_i) = K_2 \prod_{j=1}^{n} P(\text{word}_{d_j} | \overline{C})
\]

where, \(P(\text{word}_{d_j} | C) \) and \(P(\text{word}_{d_j} | \overline{C}) \) are the weights associated with the words \(\text{word}_{d_j} \) as described in previous section. Depending on whether \(P(C | T_i) \) is greater than \(P(\overline{C} | T_i) \) or not, the Naive Bayes Classifier decides whether the tweet \(T_i \) is related to the given company or not, respectively.

3. BASIC TWITTER CLASSIFICATION

In this section we present a basic classification technique for twitter messages. This technique is an improved version of our classifier [21], which we developed in the context of WePS-3 evaluation challenge. It is referenced with the name LSIR-EPFL in [4]. Our classifier is essentially a Naive Bayes classifier, which relies on constructed company profiles. In the following we give details about how we constructed the profiles from different information sources. We represent a company using basic profile, which is set
of weighted keywords. We assume that for each company we are provided with the company name, an URL representing the company, the category to which the company belongs. For each information source we show how we extract the keywords, and discuss the advantages and disadvantages associated with that source.

Table 2: Apple Inc. Basic Profile

<table>
<thead>
<tr>
<th>Positive Evidence Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>HomePage Source:</td>
</tr>
<tr>
<td>Category Source:</td>
</tr>
<tr>
<td>GoogleSets Source:</td>
</tr>
<tr>
<td>UserFeedback Source (Positive):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative Evidence Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserFeedback Source (Negative):</td>
</tr>
</tbody>
</table>

Homepage Keywords For each company name, we assume that the company homepage URL is available. To extract relevant keywords from the homepage URL, we crawled all the relevant links up to a depth of level d(=2), starting from the given homepage URL. First we extracted all the keywords present on these relevant pages, then we removed all the stop-words, finally we store in the profile the stemmed version of these keywords. From this construction process one would expect that homepage provides us all the important keywords related to the company. However, since the construction is an automated process, it was not always possible to capture good quality representation of the company for various reasons like: the company webpages may use java-scripts, some use flash, some company pages contain irrelevant links, most of the webpages are non-standard home-pages etc. The collected keywords from this source contribute towards positive evidence.

Metadata Keywords HTML standards provides few meta tags\(^5\), which enables a Web page to list set of keywords that one could associate with the Web page. We collect all such meta keywords whenever they are present. If these meta-keywords are present in the HTML code, they have high quality, the meta-keywords are highly relevant for the company. On the negative side, only a fraction of webpages have this information available. The metadata keywords contribute towards positive evidence.

Category Keywords The category, to which the company belongs, is a good source of relevant information of the company entity. The general terms associated with the category would be a rich representation of the entity. For example Apple Inc. belongs to “Computers Software and Hardware” category. One usually fails to find this kind of category related keywords on the homepage URLs. Further, we make use of WordNet \(^3\), a network of words, to find all the terms linked to the category keywords. Thus by using this kind of source helps us associate keywords like: software, install, update, virus, version, hardware, program, bugs etc to a software company entity. This source of keywords contribute towards positive evidence.

GoogleSet/CommonKnowledge Keywords GoogleSet is a good source of obtaining “common knowledge” about the company. We make use of GoogleSets\(^6\) to get words closely related to the company name. This helps us identify companies similar to the company under consideration, we get to know the products, competitor names etc. This kind of information is very useful, especially for twitter streams, as many tweets compare companies and their products with the competitors. We could for example associate Mozilla, Firefox, Internet Explorer, Safari keywords to Opera Browser entity from the keywords inferred from this source.

UserFeedback Positive Keywords The user himself enters the keywords which he feels are relevant to the company. The keywords we get from the user are of high quality, though they would be few in number. In case of companies where sample ground truth is available, we can infer the keywords from the tweets (in the training set) belonging to the company.

UserFeedback Negative Keywords The knowledge of the common entities with which the current company entity could be confused, would be a rich source of information, using which one could classify tweets efficiently. The common knowledge that “apple” keyword related to “Apple Inc” company could be interpreted possibly as the fruit, or the New York city etc. This particular set of keywords helps us to collect all the keywords associated with other entities with similar keyword. An automated way of collecting this information would be very helpful, but it is difficult. For now we make use of few sources as an initial step to collect this information. The user himself provides us with this information. Second, the wiki disambiguation pages\(^7\) contains this information, at least for some entities. Finally this information could be gathered in a dynamic way i.e., using the keywords in all the tweets, that do not belong to the company. In fact, our more sophisticated classifier to be discussed in section 4 exploits this information. The unrelated keywords could also be obtained if we have training set for a particular company with tweets that do not belong to the company entity. Only keywords from this source contribute towards the negative evidence during the classification of tweet.

Table 2 shows the basic profile of “Apple Inc” company entity.

\(^6\) http://labs.google.com/sets

\(^8\) http://www.apple.com
We associated a weight proportional to the quality of the source from which these words are extracted. More generally, if a training set is available one can use more sophisticated techniques. From the training set of the company, for each word, let \(N_r \) be the number of tweets containing this word and belong to the company. Similarly \(N_{nr} \) be the number of tweets in the training set containing this keyword but do not belong to the company. The weight of the keyword can be chosen proportional to \(\frac{N_r}{N_{nr}} \). It is hard to say how many keywords in the profile, where there are no tweets in the training set containing these words. For all such words one can associate a weight proportional to the quality of the source from which these words are extracted, as in our simple case. This default weight for the keywords not present in the training set tweets, is similar to default weights usually used for an improved Naïve Bayes Classifiers [12].

4. IMPROVED TECHNIQUES

4.1 Relatedness-based Classification

Based on the training set of size 50 tweets per company, we estimate the relatedness factor of a company. We define this term as the percentage of tweets that really belong to the company.

\[
\text{relatedness} = \frac{\# \text{ of tweets in Training Set \& Company}}{\# \text{ of tweets in the Training Set}}
\]

Figure 1 shows the estimated relatedness factor of the different companies in the test set. Companies with higher relatedness factor (for example: Sony, Starbucks, MTV etc.), implies majority of the tweets containing the company keyword belong to the company. Similarly for companies with very low relatedness factor (for example: Seat, Orange, Camel etc.), implies the majority of the tweets mentioning the company keyword do not refer to the company. Note that the relatedness factor characterizes a company based on the dataset and it is independent of the entity profiles.

When classifying a tweet, we actually compare the words present in the tweet against the words present in the profile of a company. Since the number of words we have in the profile are often limited and the possible set of words present in tweet is potentially infinite, in many cases, for many tweets, we do not find any overlap with the company profile. In such cases, it would be better to classify such tweets according to the relatedness factor of the company. The knowledge of the relatedness factor helped us improve the accuracy of our classification. This technique particularly improves the performance in the cases, where the constructed company profiles are small or have low quality.

Once we know (i.e. estimate) the relatedness factor of a company, there are two ways of classifying an unseen tweet. The first strategy is, if this factor is greater than 0.5, for all tweets we classify them as belonging to the company. This way of classifying helps us achieve an expected accuracy equal to the relatedness factor. When the relatedness factor of a company is less than 0.5, all the tweets are classified as not belonging to the company. In this case, we achieve an expected accuracy of 1 - \(\text{relatedness} \).

The second way is, for each tweet we classify the tweet belonging to the company with a probability equal to the relatedness factor. In this way of classification, we would have tweets in both the classes: belonging to the company and not belonging to the company. The expected accuracy of this process can be shown to be a little lower than first case, but we gain some knowledge in this probabilistic classification which could be used for classifying future unseen tweets. We explain in more detail how we can infer some useful information using this method in the following section (Section 4.2).

Let us denote by \(N \) the number of tweets to be classified. With \(p = \text{relatedness} \) factor, we have \(p \times N \) tweets belonging to the company and \((1 - p) \times N \) tweets not belonging to the company. When we decide with probability \(p \) that a tweet belongs to the company, we would be right with \(p^2 \times N \) tweets as belonging to the company and \((1 - p)^2 \times N \) tweets as not belonging to the company. So, in total the expected accuracy is given as:

\[
\text{Expected Accuracy} = p^2 + (1 - p)^2,
\]

We assume that the relatedness factor of a given company does not change in time. We can make this assumption as these changes are relatively slow. One can observe dynamic changes of individual word frequencies which we handle using a different technique, that we explain in the next section.

4.2 Active Stream Learning Based Classification

In Section 3 we described how we constructed a basic profile of the company using few reliable sources (such as company homepage, category keywords, Google sets keywords, user feedback etc.) which give us list of keywords which help us decide if a tweet belongs to the company. The basic profile is a good starting point for building an efficient classifier, however there are severe limitations of just using the basic profile, which we need to address in order to design better classifiers. In this section, we identify these limitations and propose novel techniques to overcome them.

The efficiency of the basic profile is limited by number of tweets in the test set that contain at-least few overlapping words from the basic profile. From the analysis of the test set tweets we observe that there is a significant percentage of tweets, which do not have any overlapping words with the corresponding basic profile keywords. The Figure 3 in Experiments section confirms this observation.

Some of the limitations of using only the basic profile include:

- The number of keywords in the basic profile are limited, while the number of words one could find in a twitter stream of the company are potentially infinite.
- The sources from which we gather the basic profile keywords are good for collecting positive evidence keywords but not so good for negative evidence keywords. It is possible, at least through human input and with the help of many Web sources, to associate all possible keywords related to a company. On the other hand it is relatively difficult to get a list of entities with which a company keyword could be confused. There is no single authoritative source on the web which lists all possible interpretations of a company name.
- The basic profile does not consider the characteristics of the words distribution in a tweet stream. The power law shown by word frequencies of tweet words, suggests which words should be present in the company profile so as to make an intelligent decision.
- The relatedness factor of a company is useful information, which is completely ignored by a classifier that solely relies on the basic profiles.
- The limited user feedback is completely ignored by the basic profile. Usually it is difficult to involve humans in classifying the tweets, as there are numerous tweets in amount. Even for some number of tweets for which the user is willing to provide feedback, is not exploited by the basic profile.
Few observations made on the twitter streams, along with identifying relatedness factor of the company helps us in overcoming many limitations of the basic profile based classifier. Here we discuss our observations and how we make use of them in developing more accurate classifier.

For each company we inspected the messages from the twitter stream which contain the given company name as a search keyword. For each company, by inspecting the twitter stream (of about 5000 tweets), we studied the word frequency distributions. In general, we could observe power law of distributions for word frequencies. If we have a knowledge about all or top-k of these words, and if these words contribute as positive or negative evidence, then this should help us in classifying many more tweets from test set more accurately. Indeed, we applied such techniques.

The premise we use for improving over basic profile classifier is, to add more words to the positive and negative evidence profile. While adding these words we have to make sure they are of high quality and if they have more possibility of appearing in the future tweets. Some of the tweets which we are able to identify accurately using the basic profile, provide us more keywords, which can be used to resolve new unseen tweets. For example, assume our basic profile about Apple Inc. company contained only keywords [iPhone, iPod, mac]. Now when inspecting tweets from stream containing the “apple” keyword, we observe that there are many tweets mentioning “iPhone” and “iPad” together. Since we are able to classify all such tweets as belonging to the Apple Inc. company by the virtue of “iPhone” keyword, we can confidently associate “iPad” word also as a useful word which helps us associate future tweets containing only “iPad” keyword as belonging to Apple Inc.

As discussed in Section 3, in our representation the basic profile contains two sets of weighted keywords. The set with positive weights contribute as positive evidence while the negative weights set contribute as negative evidence. The weights of the words signify how confident the word helps in classifying the tweet as belonging to or not belonging to the company.

We proceed as follows (Algorithm 1). We start inspecting the twitter stream using this basic profile. Of the many tweets we inspect some percentage of tweets, which have overlap with the basic profile, can be accurately classified. All words co-occurring with profile keywords in these tweets can be added to the profile. The weights we associate with these newly identified keywords should depend on the words which made them as possible candidates and also on number of times they co-occurred.

Also when inspecting twitter stream, we would come across many tweets which do not have any overlap with the basic profile keywords. For all such tweets, we classify based on the relatedness factor of the company. We end up with two sets of tweets: one set of tweets which we classify as belonging to the company and the other set as not belonging to the company. For both the sets, based on the word frequency distribution, we add all the keywords above certain threshold to the profile. The weight we associate with these words should depend on number of times the word appears and the relatedness factor.

When there is feedback on some of the tweets by the user, this model is able to use the feedback very efficiently. All the tweets on which the user has responded, the active stream learning algorithm can ignore the basic profile-based and relatedness factor-based decisions and give more weight-age to the user responded tweet keywords.

5. EXPERIMENTAL EVALUATION

Experimental setup

We performed our experiments on a 2GB RAM, Genuine Intel(R) T2500 @ 2.00 GHz CPU, Linux Kernel 2.6.24, 32-bit machine. We implemented our methods using matlab, java and python.
Algorithm 1 Active Stream Learning

Input: Basic Profile: \(P_0, Set^+, P_0, Set^- \)
Twitter Stream: \(T = \{ T_1, \ldots, T_n \} \)
\(R \): Relatedness factor of company

Init: Active Tweet Sets: \(TS_a, Set^+ = \{ \}, TS_a, Set^- = \{ \} \)

for all \(T_i \in T \) do
 \(score = \text{SCORE}(T_i, P_0, Set^+) + \text{SCORE}(T_i, P_0, Set^-) \)
 if \(score > 0 \) then
 \(P_a, Set^+ \).add\((T_i, score) \)
 else if \(score < 0 \) then
 \(P_a, Set^- \).add\((T_i, score) \)
 else if \(\text{Math.random}(0, 1) < \text{Relatedness} \) factor then
 \(P_a, Set^+ \).add\((T_i, \text{Relatedness}) \)
 else
 \(P_a, Set^- \).add\((T_i, \text{Relatedness}) \)
 end if
end if
end for

\(\{ P_a, Set^+, P_a, Set^- \} = \text{WordFreqAnalysis}(TS_a, Set^+, TS_a, Set^-) \)
Add Top-K keywords or all words above Threshold from \(P_a, Set^+ \) to \(P_0, Set^+ \)
Add Top-K keywords or all words above Threshold from \(P_a, Set^- \) to \(P_0, Set^- \)
return \(P_0, Set^+, P_0, Set^- \)

Dataset
We used the WePS-3 Dataset available at http://nlp.uned.es/weps/weps-3/data as our test set. This dataset contained about 47 companies, with each company having about 450 tweets. All the tweets corresponding to a company are annotated as belonging to or not belonging to the company. For each company we randomly selected 50 tweets out of about 450 tweets as our training set. We used the training set only for estimating the relatedness factor for each company. For constructing the active profiles, we gathered twitter streams for each company, using the query term shown in Table 4, from http://search.twitter.com. The number of tweets we investigated for active profiles varied from 600 to 9000 tweets.

Metrics
The task is of classifying the tweets into two classes: one class which represents the tweets related to the company (positive class) and second class represents tweets that are not related to the company (negative class). For evaluation of the task, the tweets can be grouped into four categories: true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The true positives are the tweets that belong to positive class and in fact belong to the company and the other tweets which are wrongly put in this class are false positives. Similarly for the negative class we have true negatives which are correctly put into this class and the wrong ones of this class are false negatives.

We use the accuracy metric to study the performance of our different classifiers.

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}
\]

Different Classifiers
Our experiments make use of following different classifiers:

1. Basic Profile-based Classifier (BP1): For each company we formed the basic profile, which included keywords from all the sources: homepage, category, metadata, google sets and user feedback.

2. Basic Profile-based Classifier (BP2): In general we observed that keywords extracted from homepage source are of low quality compared to all other sources. So, we formed a second basic profile whose keywords are from high quality sources like category, metadata, google sets and user feedback.

3. Relatedness factor based Classifier (BPR): Based on the training set we estimated the relatedness factor of each company. Using this factor the classifier classified all the tweets.

4. Active Profile Classifier (BPRA1): We used high quality basic profile (BP2), which considered only high quality sources, for forming the active profile. This classifier based on the active profile classified all the tweets in the test set.

5. Active Profile Classifier (BPRA2): In order to study the impact of the quality of basic profile on the construction of active profile, we used basic profile (BP1) for forming the active profile. This classifier based on the active profile (BPRA2) is used to classify all the tweets in the test set.

6. Active Profile Classifier (BPRA3): We earlier discussed that the quality of the active profile depends on how good the starting basic profile we use for its construction. For the active profile classifier BPRA3 we assume that the initial basic profile is empty, and go about constructing the active profile based only on the relatedness factor decisions.

Please note that the classifiers (BPRA1), (BPRA2) and (BPRA3) internally make use of the estimated relatedness parameter, as it is explained in Algorithm 1.

In the first set of experiments, we study how the different classifiers performed on the test set. The accuracy metric of the different classifiers: BP1, BPR and BPRA1 are shown in the Figure 2. We see that on average the relatedness factor based classifier (BPR) and active profile based classifier (BPRA1) outperform the basic profile-based classifier (BP1). Also the BPRA1 classifier outperformed BPR classifier. On close observation of the Figure 2, we see that for the companies on the far-right that is with high relatedness factor, the profile-based classifiers BP1 and BPRA1 are better than the classifier BPR. The reason is, the basic profile is already good enough to capture all the useful words associated with the company. The active profile does not improve much on the basic profile. Thus they both outperform the classifier (BPR). This is in tune with the argument in Section 4 that it is relatively easy to gather positive evidence keywords compared to the negative evidence keywords.

In the left side of the graph where the relatedness factor of the companies are low, we observe that BPR and BPRA1 clearly outperform BP1. It strongly suggests that the basic profile was not good enough to contain all the negative evidence keywords associated with the company. BPR is outperforming because it is exploiting the relatedness factor estimate. While BPRA1 was able to efficiently identify all the supporting keywords which were not initially available in the basic profile.

The significant performance improvement of active profile-based classifier over the basic profile based classifier can be attributed to the fact that the active profile is able to identify many more keywords just by inspecting the twitter streams. In Figure 3 we show number of words in the profiles that overlap with the top 50 keywords of the test set. It confirms our observation that only small
percentage of tweets in the test set overlap with the keywords in the basic profile. We also see that by use of active profile, there is significant percentage of overlap between the keywords in the test set and the active profile.

The quality of the active profile we construct depends on the quality of the basic profile that is used. In order to study how the different basic profiles affect the active profile based classifiers performance, we constructed many active profiles BPRA1,BPRA2 and BPRA3, each starting with a different quality basic profile. From the description of the different basic profiles, we see that the quality of BP2 classifier is better than BP1 classifier, which further are better than the empty basic profile. The average performance of each of the different classifiers is shown in the Table 3. From the table we observe that BPRA1 is better than BPRA2 which in turn is better than BPRA3 classifier. Thus we observe that as the basic profile quality deteriorates so does the performance of the corresponding active profile.

6. RELATED WORK

The classification of tweets has already been addressed in the literature, in different contexts. Some of the relevant works include [17], [16], [15], [10].

In [17], the authors take up the task of classifying the tweets from twitter into predefined set of generic categories such as News, Events, Opinions, Deals and Private Messages. They propose to use a small set of domain-specific features extracted from the tweets and the user’s profile. The features of each category are learned from the training set.

The authors in [16] have built a news processing system based on Twitter. From the twitter stream they have built a system that identifies the messages corresponding to late breaking news. Some of the issues they deal with are separating the noise from valid tweets, forming tweet clusters of interest, and identifying the relevant locations associated with the tweets. All these tasks are done in an online manner. They also build a naive Bayes classifier for distinguishing relevant news tweets from irrelevant ones. They construct the classifier from a training set (that is different from our case). They represent intermediate clusters as a feature vector, and they associate an incoming tweet with cluster if the distance metric to a cluster is less than a given threshold.

They also build a naive Bayes classifier for distinguishing relevant news tweets from irrelevant ones. They construct the classifier from a training set (that is different from our case). They represent intermediate clusters as a feature vector, and they associate an incoming tweet with cluster if the distance metric to a cluster is less than a given threshold.

In [10] and [15], the authors make use of twitter for the task of sentiment analysis. They build a sentiment classifier, based on a tweet corpus. Their classifier is able to classify tweets as positive, negative, or neutral sentiments. The papers identify relevant features (presence of emoticons, n-grams), and train the classifier on an annotated training set. Their work is complementary to ours: the techniques proposed in our work could serve as an essential prepro-

Table 3: Average Accuracy of Different Classifiers

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Average Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Profile using all sources (BP1)</td>
<td>0.43</td>
</tr>
<tr>
<td>Basic Profile using only high quality sources (BP2)</td>
<td>0.46</td>
</tr>
<tr>
<td>Relatedness factor based classifier (BPR)</td>
<td>0.73</td>
</tr>
<tr>
<td>Active Profile constructed using high quality Basic Profile-BP2 (BPRA1)</td>
<td>0.84</td>
</tr>
<tr>
<td>Active Profile constructed using normal quality Basic Profile-BP1 (BPRA2)</td>
<td>0.79</td>
</tr>
<tr>
<td>Active Profile constructed using the empty Basic Profile (BPRA3)</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Figure 2: Accuracies of different Classifiers

Diagram:

- Relatedness Factor
- Basic Profile Classifier
- Relatedness Factor based Classifier (BPR)
- Active Stream Learning based Classifier (BPRA1)
processing step to these sentiment or opinion analysis, which identifies the relevant tweets for the sentiment analysis.

The paper [18] proposes a technique to retrieve photos of named entities with high precision, high recall and diversity. The innovation used is query expansion, and aggregate rankings of the query results. Query expansion is done by using the meta information available in the entity description. The query expansion technique is very relevant for our work, it could be used for better entity profile creation.

Many works based on entity identification and extraction, for example in [5], [7], [11], [20], usually make use of the rich context around the entity reference for deciding if the reference relates to the entity. However, in the current work, the tweets which contain the entity references usually have very little context, because of the size-restrictions of tweet messages. Our work addresses these issues, namely how to identify an entity in scenarios where there is very little context information.

Bishop [6] discusses various machine learning algorithms for supervised and unsupervised tasks. The task we are addressing in this paper is generic learning, which can be seen as in between supervised and unsupervised learning. Yang et al. [19] discuss generic learning algorithms for solving the problem of verification of unspecified person. The system learns generic distribution of faces, and intra-personal variations from the available training set, in order to infer the distribution of the unknown new subject, which is very related to the current task. We adapt techniques from [6] and [8] for the tweets classification task.

There are many ways to represent entities. In the Okkam [14] project, which aimed to enable the Web of entities by offering an global entity identification service, an entity is internally represented as a set of attribute-value pairs, along with the meta information related to the evolution of entity. In dbpedia[1] and linked data[2] the entities are usually represented using RDF models. These rich models are needed for allowing sophisticated querying and inferences. Since we use the entity representation for our classification algorithms, we resort to representing an entity simply as a bag of weighted keywords instead of the rich representations of entities.

We summarize the different classifiers proposed for the WePS-3 challenge task [4], of classifying tweets based on entity. The ITC-UT system was built according to rules based on Part of Speech tagging and Named Entity extraction. The system –by considering the linguistic aspect of the company mentions– achieves acceptable accuracy. The classifier realized in the SINAI system makes use of Named Entity extraction from the tweet messages. The performance of the classifier varied across various companies. It is difficult to predict for what kind of companies this classifier performs well. From the above two systems it can be seen that Named Entity extraction does bring in some accuracy, but these tools are not designed for short and context-less messages like tweets. KAM-LAR systems build their classifier starting with a bootstrapping step based on the vocabulary of the home page. This system –even though it has low on overall accuracy– had decent F-score for relevant tweets, suggesting that a bootstrapping step can be very useful for company names with high ambiguity.

The basic profile classifier, discussed in Section 3, is based on the LSIR-EPFL classifier [21], which was the winner of WePS-3 evaluation challenge. The LSIR-EPFL classifier essentially makes use of different information sources on the Web to create an entity profile. We used these profiles for classifying the tweets. In the current work we explore a number of techniques to further improve our previous classifier.

7. CONCLUSION AND FUTURE WORK

We studied the question how to classify Twitter messages containing a keyword, whether they are related to a given company, whose name coincides with the keyword. We proposed several techniques. First we presented a simple Naive Bayes classifier,
which relies on automatically or semi-automatically constructed profiles. The company profiles contain two sets of keywords, which indicate whether a tweet containing this keyword is related to the company or not. We then extended this basic technique in two ways. First we developed a method, which takes estimations of the general ambiguity level of the problem into account. Our most advanced technique updates our company profiles actively from the twitter stream. In this way we can handle also the dynamic frequency changes in the use of words in the twitter language. Such changes arise naturally when a company temporarily receives media attention (e.g. if they launch a new product). Our experiments show systematic improvements as we extend our classifier with the described techniques. Though we demonstrated our techniques of entity based classification on twitter messages, these techniques readily apply for other data sources like comments on social networks or blogs.

The main advantage of our technique that it opens the possibility to estimate the accuracy of our classification decision. In our future work we plan to exploit this even more and develop mechanisms, which identify, in which cases, for which companies is the input of the human expert is needed. These are the cases where there is more uncertainty involved in the classification decision. More concretely, we we will develop methods which localizes the cases, where the human input is necessary, that is usually expensive to obtain.

8. ACKNOWLEDGEMENTS

This work is partially supported by the Network of Excellence Project PlanetData (contract no. ICT-257641). We are grateful to the anonymous referees; their comments helped to improve the presentation of the paper.

9. REFERENCES

[21] Surender Reddy Yerva, Zoltán Miklós, and Karl Aberer. It was easy, when apples and blackberries were only fruits. Padua, Italy, 2010. WePS-3, colocated with CLEF.
<table>
<thead>
<tr>
<th>ID</th>
<th>Company Entity</th>
<th>Query Term</th>
<th>Company URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amazon.com</td>
<td>Amazon</td>
<td>http://www.amazon.com</td>
</tr>
<tr>
<td>2</td>
<td>Apache</td>
<td>apache</td>
<td>http://www.apache.org/</td>
</tr>
<tr>
<td>3</td>
<td>Apple</td>
<td>Apple</td>
<td>http://www.apple.com</td>
</tr>
<tr>
<td>4</td>
<td>Blizzard Entertainment</td>
<td>Blizzard</td>
<td>http://www.blizzard.com</td>
</tr>
<tr>
<td>5</td>
<td>camel</td>
<td>camel</td>
<td>http://en.wikipedia.org/wiki/Camel_(cigarette)</td>
</tr>
<tr>
<td>6</td>
<td>Canon inc.</td>
<td>canon</td>
<td>http://www.usa.canon.com/home</td>
</tr>
<tr>
<td>7</td>
<td>Cisco Systems</td>
<td>Cisco</td>
<td>http://www.cisco.com</td>
</tr>
<tr>
<td>8</td>
<td>CVS/pharmacy</td>
<td>CVS</td>
<td>http://www.cvs.com/CSVApp/user/home/home.jsp</td>
</tr>
<tr>
<td>11</td>
<td>Emory University</td>
<td>emory</td>
<td>http://www.emory.edu/</td>
</tr>
<tr>
<td>12</td>
<td>Ford Motor Company</td>
<td>ford</td>
<td>http://www.ford.com</td>
</tr>
<tr>
<td>13</td>
<td>fox channel</td>
<td>fox</td>
<td>http://www.fox.com/</td>
</tr>
<tr>
<td>14</td>
<td>friday’s</td>
<td>friday’s</td>
<td>http://www.tgifridays.com/</td>
</tr>
<tr>
<td>15</td>
<td>Gibson</td>
<td>Gibson</td>
<td>http://www.gibson.com</td>
</tr>
<tr>
<td>16</td>
<td>General Motors</td>
<td>GM</td>
<td>http://www.gm.com/</td>
</tr>
<tr>
<td>17</td>
<td>Jaguar Cars Ltd.</td>
<td>jaguar</td>
<td>http://www.jaguar.com</td>
</tr>
<tr>
<td>18</td>
<td>John F. Kennedy International Airport</td>
<td>jfk</td>
<td>http://www.jfkiat.com/</td>
</tr>
<tr>
<td>20</td>
<td>kiss band</td>
<td>kiss</td>
<td>http://www.kissonline.com/</td>
</tr>
<tr>
<td>21</td>
<td>Lexus</td>
<td>Lexus</td>
<td>http://www.lexus.com</td>
</tr>
<tr>
<td>22</td>
<td>Liverpool FC</td>
<td>Liverpool</td>
<td>http://www.liverpoolfc.tv/</td>
</tr>
<tr>
<td>23</td>
<td>Lloyds Banking Group</td>
<td>Lloyd</td>
<td>http://www.lloydsbankinggroup.com/</td>
</tr>
<tr>
<td>24</td>
<td>macintosh</td>
<td>mac</td>
<td>http://www.apple.com/mac/</td>
</tr>
<tr>
<td>25</td>
<td>McDonald’s</td>
<td>McDonald’s</td>
<td>http://www.mcdonalds.com</td>
</tr>
<tr>
<td>26</td>
<td>McLaren Group</td>
<td>McLaren</td>
<td>http://mclaren.com/home</td>
</tr>
<tr>
<td>29</td>
<td>MTV</td>
<td>MTV</td>
<td>http://www.mtv.com/</td>
</tr>
<tr>
<td>30</td>
<td>Muse band</td>
<td>muse</td>
<td>http://muse.mu/</td>
</tr>
<tr>
<td>31</td>
<td>Oracle</td>
<td>oracle</td>
<td>http://www.oracle.com/index.html</td>
</tr>
<tr>
<td>32</td>
<td>Orange</td>
<td>Orange</td>
<td>http://www.orange.com_en.EN/</td>
</tr>
<tr>
<td>33</td>
<td>Paramount Group</td>
<td>Paramount-Group</td>
<td>http://www.paramount-group.com/</td>
</tr>
<tr>
<td>35</td>
<td>Scorpions</td>
<td>scorpions</td>
<td>http://www.the-scorpions.com/english/</td>
</tr>
<tr>
<td>36</td>
<td>Seat</td>
<td>seat.com</td>
<td>http://www.seat.com</td>
</tr>
<tr>
<td>37</td>
<td>Sharp Corporation</td>
<td>sharp</td>
<td>http://www.sharp.eu</td>
</tr>
<tr>
<td>38</td>
<td>Sonic.net</td>
<td>sonic</td>
<td>http://sonic.net/</td>
</tr>
<tr>
<td>39</td>
<td>Sony</td>
<td>sony</td>
<td>http://www.sony.com/</td>
</tr>
<tr>
<td>40</td>
<td>Stanford Junior University</td>
<td>stanford</td>
<td>http://www.stanford.edu/</td>
</tr>
<tr>
<td>41</td>
<td>Starbucks</td>
<td>Starbucks</td>
<td>http://www.starbucks.com/</td>
</tr>
<tr>
<td>42</td>
<td>Subway</td>
<td>subway</td>
<td>http://www.subway.com</td>
</tr>
<tr>
<td>43</td>
<td>Tesla Motors</td>
<td>tesla</td>
<td>http://www.teslamotors.com/</td>
</tr>
<tr>
<td>44</td>
<td>US_Airways</td>
<td>Usairways</td>
<td>http://www.usairways.com/</td>
</tr>
<tr>
<td>45</td>
<td>Virgin Media</td>
<td>VirginMedia</td>
<td>http://www.virginmedia.com</td>
</tr>
<tr>
<td>46</td>
<td>Yale University</td>
<td>Yale</td>
<td>http://www.yale.edu/</td>
</tr>
</tbody>
</table>