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Abstract—Although efficient processing of probabilistic
databases is a well-established field, a wide range of applications
are still unable to benefit from these techniques due to the lack
of means for creating probabilistic databases. In fact, it is a
challenging problem to associate concrete probability values with
given time-series data for forming a probabilistic database, since
the probability distributions used for deriving such probability
values vary over time.

In this paper, we propose a novel approach to create tuple-level
probabilistic databases from (imprecise) time-series data. To the
best of our knowledge, this is the first work that introduces
a generic solution for creating probabilistic databases from
arbitrary time series, which can work in online as well as offline
fashion. Our approach consists of two key components. First,
the dynamic density metrics that infer time-dependent probability
distributions for time series, based on various mathematical
models. Our main metric, called the GARCH metric, can robustly
capture such evolving probability distributions regardless of the
presence of erroneous values in a given time series. Second,
the Ω–View builder that creates probabilistic databases from
the probability distributions inferred by the dynamic density
metrics. For efficient processing, we introduce the σ–cache that
reuses the information derived from probability values generated
at previous times. Extensive experiments over real datasets
demonstrate the effectiveness of our approach.

I. INTRODUCTION

One of the most effective ways to deal with imprecise and

uncertain data is to employ probabilistic approaches. In recent

years there have been a plethora of methods for managing and

querying uncertain data [1]–[7]. These methods are typically

based on the assumption that probabilistic data used for pro-

cessing queries is available; however, this is not always true.

Creating probabilistic data is a challenging and still unresolved

problem. Prior work on this problem has only limited scope

for domain-specific applications, such as handling duplicated

tuples [8], [9] and deriving structured data from unstructured

data [10]. Evidently, a wide range of applications still lack the

benefits of existing query processing techniques that require

probabilistic data. Time-series data is one important example

where probabilistic data processing is currently not widely

applicable due to the lack of probability values. Although,

the benefits are evident given that time series, in particular

generated from sensors (environmental sensors, RFID, GPS,

etc.), are often imprecise and uncertain in nature.

The work presented here was supported by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322.

Before diving into the details of our approach let us con-

sider a motivating example (see Fig. 1). Alice is tracked by

indoor-positioning sensors and her locations are recorded in

a database table called raw_values in the form of a three-

tuple 〈time, x, y〉. These raw values are generally imprecise

and uncertain due to several noise factors involved in position

measurement, such as low-cost sensors, discharged batteries,

and network failures. On the other hand, consider a proba-

bilistic query where an application is interested in knowing,

given a particular time, the probability that Alice could be

found in each of the four rooms. For answering this query we

need the table prob_view (see Fig. 1). This table gives us

the probability of finding Alice in a particular room at a given

time. To derive the prob_view table from the raw_values

table, however, the system faces a fundamental problem—how

to meaningfully associate a probability distribution p(R) with

each raw value tuple 〈time, x, y〉, where R is the random

variable associated with Alice’s position.

Once the system associates a probability distribution p(R)
with each tuple, it can be used to derive probabilistic views,

which forms a probabilistic database used for evaluating

various types of probabilistic queries [1], [3]. Thus, this

example clearly illustrates the importance of having a means

for creating probabilistic databases. Nevertheless, there is

a lack of effective tools that are capable of creating such

probabilistic databases. In an effort to rectify this situation, we

focus on the problem of creating a probabilistic database from

given (imprecise) time series, thereupon, facilitating direct
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Fig. 1: An example of creating a tuple-level probabilistic

database from time-dependent probability distributions.



processing of a variety of probabilistic queries.

Unfortunately, creating probabilistic databases from impre-

cise time-series data poses several important challenges. In

the following paragraphs we elaborate these challenges and

discuss the solutions that this paper proposes.

Inferring Evolving Probability Distributions.

One of the most important challenges in creating a proba-

bilistic database from time series is to deal with evolving

probability distributions, since time series often exhibit highly

irregular dependencies on time [6], [11]. For example, tem-

perature changes dramatically around sunrise and sunset, but

changes only slightly during the night. This implies that the

probability distributions that are used as the basis for deriving

probabilistic databases also change over time, and thus must

be computed dynamically.

In order to capture the evolving probability distributions of

time series we introduce various dynamic density metrics, each

of them dynamically infers time-dependent probability distri-

butions from a given time series. The distributions derived by

these dynamic density metrics are then used for creating prob-

abilistic databases. After carefully analyzing several dynamical

models for representing the dynamic density metrics (details

are provided in Section III and Section VII), we identify

and adopt a novel class of dynamical models from the time-

series literature, which is known as the GARCH (Generalized

AutoRegressive Conditional Heteroskedasticity) model [12].

We show that the GARCH model can play an important role

in efficiently and accurately creating probabilistic databases,

by effectively inferring dynamic probability distributions.

An important challenge in identifying appropriate dynamic

density metrics is to find a measure that precisely assess

the quality of the probability distributions produced by these

metrics. This assessment is important since it quantifies the

quality of probabilistic databases derived using these proba-

bility distributions. A straightforward method is to compare

the ground truth (i.e., true probability distributions) with the

inference obtained from our dynamic density metrics, thus

producing a tangible measure of quality. This is, however,

infeasible since we can neither observe the ground truth nor

establish it unequivocally by any other means. To circumvent

this crucial limitation, we propose an indirect method for

measuring quality, termed density distance, which is based

on a solid mathematical framework. The density distance is a

generic measure of quality, which is independent of the models

used for producing probabilistic databases.

Unfortunately, the GARCH model works inappropriately

on time series that contain erroneous values, i.e., significant

outliers, which are often produced by sensors. This is because

the GARCH model is generally used over precise, certain, and

clean data (e.g., stock market data). In contrast, the time series

that this study considers are typically imprecise and erroneous.

Thus, we propose an improved version of the GARCH model,

termed C-GARCH, that performs appropriately in the presence

of such erroneous values.

Efficiently Creating Probabilistic Databases.

Given probability distributions inferred by a dynamic density

metric, the next step of our solution is to generate views that

contain probability values (e.g., prob_view in Fig. 1). We

introduce the Ω-View builder that efficiently creates probabilis-

tic views by processing a probability value generation query.

The output of this query can be directly consumed by a wide

variety of existing probabilistic queries, thus enabling higher

level probabilistic reasoning.

Since the probabilistic value generation query accepts arbi-

trary time intervals (past or current) as inputs, this could incur

heavy computational overhead on the system when the time in-

terval spans over a large number of raw values. To address this,

we present an effective caching mechanism called σ-cache.

The σ–cache caches and reuses probability values computed at

previous times for current time processing. We experimentally

demonstrate that the σ–cache boosts the efficiency of query

processing by an order of magnitude. Additionally, we provide

theoretical guarantees that are used for setting the cache

parameters. These guarantees enable the choice of the cache

parameters under user-defined constraints of storage space and

error tolerance. Moreover, such guarantees make the σ–cache

an attractive solution for large-scale data processing.

Contributions.

To the best of our knowledge, this is the first work that offers a

generic end-to-end solution for creating probabilistic databases

from arbitrary imprecise time-series data. Specifically, we first

introduce various dynamic density metrics for associating tu-

ples of raw values with probability distributions. Since sensors

often deliver error prone data values we propose effective

enhancements which make the dynamic density metrics robust

against unclean data. We then suggest approaches which allow

applications to efficiently create probabilistic databases by

using a SQL-like syntax.

To summarize, this paper makes the following contributions:

• We adopt a novel class of models for proposing various

dynamic density metrics. We then enhance these metrics

by improving their resilience against erroneous inputs.
• We introduce density distance that quantifies the effec-

tiveness of the dynamic density metrics. This serves as

an important measure for indicating the quality of proba-

bilistic databases derived using a dynamic density metric.
• We present a generic framework comprising of a mal-

leable query provisioning layer (i.e., Ω–View builder)

which allows us to create probabilistic databases with

minimal effort.
• We propose space- and time-efficient caching mecha-

nisms (i.e., σ–cache) which produce manyfold improve-

ment in performance. Furthermore, we prove useful guar-

antees for effectively setting the cache parameters.
• We extensively evaluate our methods by performing ex-

periments on two real datasets.

We begin by giving details of our framework for generating

probabilistic databases in Section II. Section III introduces the

naive dynamic density metrics while in Section IV we propose



the GARCH metric. An enhancement of the GARCH met-

ric, C-GARCH, is discussed in Section V. In Section VI,

we suggest effective methods for generating probabilistic

databases, this is followed by a discussion on σ–cache. Lastly,

Section VII presents comprehensive experimental evaluations

followed by the review of related studies in Section VIII.

II. FOUNDATION

This section describes our framework, defines queries this

study considers, and proposes a measure for quantifying the

effectiveness of the dynamic density metrics. Table I offers

the notations used in this paper.

A. Framework Overview

Fig. 2 illustrates our framework for creating probabilistic

databases, consisting of two key components that are dynamic

density metrics and the Ω–View builder. A dynamic density

metric is a system of measure that dynamically infers time-

dependent probability distributions of imprecise raw values.

It takes as input a sliding window that contains recent pre-

vious values in the time series. In the following sections, we

introduce various dynamic density metrics.
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Fig. 2: Architecture of the framework.

Let S = 〈r1, r2, · · · , rt〉 be a time series, represented by

a sequence of timestamped values, where ri ∈ S indicates a

(imprecise) raw value at time i. Let SH
t−1 = 〈rt−H , rt−H+1,

· · · , rt−1〉 be a (sliding) window that is a subsequence of

S, where its ending value is at the previous time of t. The

dynamic density metrics correspond to the following query:

Definition 1: Inference of dynamic probability distri-

bution. Given a (sliding) window SH
t−1, the inference of a

probability distribution at time t estimates a probability density

function pt(Rt), where Rt is a random variable associated

with rt.

The system stores the inferred probability density functions

pt(Rt) associated with the corresponding raw values. Next,

our Ω–View builder uses these inferred probability density

functions to create a probabilistic database, as shown in the

prob_view table of Fig. 2.

Suppose that the data values of a probabilistic database

are decomposed into a set of ranges Ω = {ω1, ω2, · · · , ωn},

where ωi = [ωl
i, ω

u
i ] is bounded by a lower bound ωl

i and an

upper bound ωu
i . Then, the Ω–View builder corresponds to the

following query in order to compute probability values for the

given ranges:

Definition 2: Probability value generation query. Given

a probability density function pt(Rt) and a set of ranges Ω =
{ω1, ω2, · · · , ωn} for the probability values in a probabilistic

database, a probability value generation query returns a set of

probabilities Λt = {ρω1
, ρω2

, · · · , ρωn
} at time t, where ρωi

is the probability of occurrence of ωi ∈ Ω and is equal to
∫ ωu

i

ωl

i

pt(Rt)dRt.

Recall the example shown in Fig. 1. Let us assume

that ω1 corresponds to the event of Alice being present in

Room 1. At time t = 1, Alice is likely to be in Room 1 (i.e.,

ω1 occurs) with probability ρω1
= 0.5.

Note that the creation of probabilistic databases can be

performed in either online or offline fashion. In the online

mode, the dynamic density metrics infer pt(Rt) as soon as a

new value rt is streamed to the system. In the offline mode,

users may give SQL-like queries to the system (examples are

provided in Section VI).

Symbol Description

S A time series.

SH

t−1 Sliding window having H values [t−H, t− 1].
rt Raw (imprecise) value at time t.
Rt Random variable associated with rt.

r̂t, E(Rt) Expected true value at time t.
pt(Rt) Probability density function of Rt at time t.
Pt(Rt) Cumulative probability distribution function of Rt

at time t.
ρω Probability of occurrence of event ω.

E(X) Expected value of random variable X .

N (µ, σ2) Normal (Gaussian) probability density function

with mean µ and variance σ2.
Ω A set of ranges for creating probability values

in a probabilistic database.
dxe A smallest integer value that is not smaller than x.

TABLE I: Summary of notations.

B. Evaluation of Dynamic Density Metrics

Quantifying the quality of a dynamic density metric is

crucial, since it reflects the quality of a probabilistic database

created. Here, we introduce an effective measure, termed

density distance, that quantifies the quality of a probability

density inferred by a dynamic density metric.

Let pt(Rt) be an inferred probability density at time t. A

straightforward manner in which we can evaluate the quality

of this inference is to compare pt(Rt) with its corresponding

true density p̂t(Rt). p̂t(Rt), however, cannot be given nor

observed, rendering this straightforward evaluation infeasible.

To overcome this, we propose to use an indirect method for

evaluating the quality of a dynamic density metric known as

the probability integral transform [13]. A probability integral

transform of a random variable X , with probability density

function f(X), transforms X to a uniformly distributed ran-

dom variable Y by evaluating Y =
∫ x

−∞
f(X = u)du where

x ∈ X . Thus, the probability integral transform of ri with

respect to pi(Ri) becomes, zi =
∫ ri

−∞
pi(Ri = u)du.

Let p1(R1), . . . , pt(Rt) be a sequence of probability dis-

tributions inferred using a dynamic density metric. Also, let

z1, . . . , zt be the probability integral transforms of raw values



r1, . . . , rt with respect to p1(R1), . . . , pt(Rt). Then, z1, . . . , zt

are uniformly distributed between (0, 1) if and only if the

inferred probability density pi(Ri) is equal to the true density

p̂i(Ri) for i = 1, 2, . . . , t [13].

To find out whether z1, . . . , zt follow a uniform distribution

we estimate the cumulative distribution function of z1, . . . , zt

using a histogram approximation method. Let us denote this

cumulative distribution function as QZ(z). We define the

quality measure of a dynamic density metric as the Euclidean

distance between QZ(z) and the ideal uniform cumulative dis-

tribution function between (0, 1) denoted as UZ(z). Formally,

the quality measure is defined as:

d{UZ(z), QZ(z)} =

√

√

√

√

1
∑

x=0

(UZ(x) − QZ(x))2. (1)

We refer to d{UZ(z), QZ(z)} as density distance. The density

distance quantifies the difference between the observed dis-

tribution of z1, . . . , zt and their expected distribution. Thus,

it gives a measure of quality for the inferred densities

p1(R1), . . . , pt(Rt). The density distance will be used in

Section VII to compare the effectiveness of each dynamic

density metrics this paper introduces.

III. NAIVE DYNAMIC DENSITY METRICS

This section presents two relatively simple dynamic density

metrics that capture evolving probability densities in time

series.

Uniform Thresholding Metric.

Cheng et al. [1], [14] have proposed a generic query evaluation

framework over imprecise data. The key idea in these studies

is to model a raw value as a user-provided uncertainty range

in which the corresponding unobservable true value resides.

Queries are then evaluated over such uncertainty ranges,

instead of the raw values.

Our uniform thresholding metric extends this idea for esti-

mating probability distributions by inferring a true value. We

define such a true value as:

Definition 3: Expected true value. Given a probability

density function pt(Rt), the expected true value r̂t is the

expected value of Rt, denoted as E(Rt).
Next, the uniform thresholding metric takes a user-defined

threshold value u to bound uniform distributions, centered on

the inferred true value. Fig. 3(a) illustrates an example of

this process where a user-defined threshold value u is used
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for specifying the uncertainty ranges. The difference between

a true value r̂t and its corresponding raw value rt is then

assumed to be not greater than u.

To infer expected true values, we adopt the AutoRegressive

Moving Average (ARMA) model [12] that is commonly used

for predicting expected values in time series [15]. Specifically,

given a time series S = 〈r1, r2, · · · , rt〉 and a sliding window

SH
t−1, the ARMA model models ri = r̂i + ai, where t−H ≤

i ≤ t − 1 and ai obeys a zero mean normal distribution with

variance σ2
a. Now, given an ARMA(p,q) model, we infer the

expected true value r̂t as:

r̂t = φ0 +

p
∑

j=1

φjrt−j +

q
∑

j=1

θjat−j , (2)

where (p, q) are non-negative integers denoting the model

order, φ1, . . . , φp are autoregressive coefficients, θ1, . . . , θq

are moving average coefficients, φo is a constant, and t >
max(p, q). More details regarding the estimation and choice of

the model parameters (p, q) are described in Chapter 3 in [12].

Variable Thresholding Metric.

We propose another dynamic density metric, termed variable

thresholding metric, that differs in two ways from the uniform

thresholding metric. First, the variable thresholding metric

works on Gaussian distributions, while the uniform threshold-

ing metric is applicable only to uniform distributions. Second,

unlike the uniform thresholding metric, the variable thresh-

olding metric does not require the user-defined threshold for

specifying uncertainty ranges. Instead, it computes a sample

variance s2
t for a window SH

t−1, so that s2
t is used to model a

Gaussian distribution.

Given SH
t−1, the variable thresholding metric infers a normal

distribution at time t as:

pt(Rt = rt) =
1

√

2πs2
t

e−(rt−r̂t)
2/2s2

t , (3)

where r̂t is an expected true value inferred by the

ARMA model.

Fig. 3(b) demonstrates an example of estimating normal

distributions based on the variable thresholding metric. First,

the ARMA model infers the expected true values r̂t that are

used as the mean values for the normal distributions. It then

computes the variances that are used to derive the standard

deviations st.

IV. GARCH METRIC

As stated in the previous section, it is common to capture

the uncertainty of an imprecise time series with a fixed-

size uncertainty range as shown in Fig. 3(a) [1], [14]. This

approach, however, may not be effective in practice, since in

a wide variety of real-world settings, the size of the uncertainty

range typically varies over time. For example, Fig. 4 shows

two time series obtained from a real sensor network deploy-

ment monitoring ambient temperature and relative humidity.

The regions marked as Region A in Fig. 4(a) and Fig. 4(b)

exhibit higher volatility1 than those marked as Region B. This

1We use variance and volatility interchangeably.



(a) (b)

Fig. 4: Regions of changing volatility in (a) ambient temper-

ature and (b) relative humidity.

observation strongly suggests that the underlying model should

support time-varying variance and mean value when it infers

a probability density function. We experimentally verify this

claim in Section VII-D.

Motivated by this, we introduce a new dynamic density met-

ric, the GARCH metric. The GARCH metric models pt(Rt) as

a Gaussian probability density function N (r̂t, σ̂
2
t ). This metric

assumes that the underlying time series exhibits not only time-

varying average behavior (r̂t) but also time-varying variance

(σ̂2
t ). For inferring σ̂2

t we propose using the GARCH model.

And, for inferring r̂t we can either use the ARMA model from

Section III or Kalman Filters.

A. The GARCH Model

The GARCH (Generalized AutoRegressive Conditional

Heteroskedasticity) model [12] efficiently captures time-

varying volatility in a time series. Specifically, given a win-

dow SH
t−1, the ARMA model models ri = r̂i + ai where

t − H ≤ i ≤ t − 1.

We then define the conditional variance σ2
i as:

σ2
i = E((ri − r̂i)

2|Fi−1), σ2
i = E(a2

i |Fi−1), (4)

where E(a2
i |Fi−1) is the variance of ai given all the informa-

tion Fi−1 available until time i− 1. The GARCH(m,s) model

models volatility in (4) as a linear function of a2
i as:

ai = σiεi, σ2
i = α0 +

m
∑

j=1

αja
2
i−j +

s
∑

j=1

βjσ
2
i−j , (5)

where εi is a sequence of independent and identically dis-

tributed (i.i.d) random variables, (m, s) are parameters de-

scribing the model order, α0 > 0, αj ≥ 0, βj ≥ 0,
∑max(m,s)

j=1 (αj + βj) < 1, and i takes values between

t − H + max(m, s) and t − 1.

The underlying idea of the GARCH(m,s) model is to reflect

the fact that large shocks (ai) tend to be followed by other

large shocks. Unlike the s2
t in the variable thresholding metric,

σ2
i is a variance that is estimated after subtracting the local

trend r̂i. In many practical applications the GARCH model

is typically used as the GARCH(1,1) model, since for a

higher order GARCH model specifying the model order is a

difficult task [12]. Thus, we restrict ourselves to these model

order settings. More details regarding the estimation of model

parameters and the choice for the sliding window size H are

described in [12].

For inferring time-varying volatility, we use the

GARCH(m,s) model and ai as follows:

σ̂2
t = α0 +

m
∑

j=1

αja
2
t−j +

s
∑

j=1

βjσ
2
t−j . (6)

Recall that we use the ARMA model for inferring the value

of r̂t given SH
t−1. We also consider the Kalman Filter [12] for

inferring r̂t. We show the difference in performance between

the Kalman Filter and the ARMA model in Section VII-A.

Basically, the Kalman Filter models r̂t using the following

two equations,

state equation: r̂i = c1 · r̂i−1 + ei−1 ei ∼ N (0, σ2
e), (7)

observation equation: ri = c2 · r̂i + ηi ηi ∼ N (0, σ2
η), (8)

where r̂1 is given a priori and c1 and c2 are constants. Since

the GARCH model in (5) takes errors ai as input, they are

computed as ai = ri− r̂i and are used by the GARCH model.

Considering both approaches for inferring r̂t (ARMA model

and Kalman Filter) we propose two dynamic density metrics,

namely, ARMA-GARCH and Kalman-GARCH. Both of them

use the GARCH model for inferring σ̂t. But for inferring r̂t

they use ARMA model and Kalman Filter respectively.

Algorithm 1 Inferring r̂t and σ̂2
t using ARMA-GARCH.

Input: ARMA model parameters (p, q), sliding window SH

t−1, and
scaling factor κ.

Output: Inferred r̂t, inferred volatility σ̂2
t , and κ-scaled bounds

ub, lb.
1: Estimate an ARMA(p, q) model on SH

t−1 and obtain ai where
t−H + max(p, q) ≤ i ≤ t− 1

2: Estimate a GARCH(1, 1) model using ai’s
3: Infer r̂t using ARMA(p, q) and σ̂2

t using GARCH(1, 1)
4: ub ← r̂t + κσ̂t and lb ← r̂t − κσ̂t

5: return r̂t, σ̂2
t , ub, and lb

Algorithm 1 gives a concise description of the ARMA-

GARCH metric. This algorithm uses the ARMA model for

inferring r̂t and the GARCH model for inferring σ̂2
t (Step

3). The algorithm for Kalman-GARCH metric is the same as

Algorithm 1, except that it uses the Kalman filter in Step 3 for

inferring r̂t instead of using the ARMA model. Here, κ ≥ 0 is

a scaling factor that decides the upper bound ub and the lower

bound lb. For example, when κ = 3, the probability that rt

lies between ub and lb is very high (approximately 0.9973).

The time complexities of the estimation step for the

ARMA model and the GARCH model (Step 1 and 2) are

O(H · max(p, q)) and O(H · max(m, s)) respectively [16].

Nevertheless, as the model order parameters are small as

compared to H these estimation steps become significantly

efficient.

V. ENHANCED GARCH METRIC

In practice, time series often contain values that are erro-

neous in nature. For example, sensor networks, like weather

monitoring stations, frequently produce erroneous values due

to various reasons; such as loss of communication, sensor

failures, etc. Unfortunately, the GARCH model is incapable



of functioning appropriately when input streams contain such

erroneous values. This is because the GARCH model has

been generally used over precise, certain, and clean data

(e.g., stock market data). To tackle this problem, we propose

an enhancement of the GARCH metric, which renders the

GARCH metric robust against erroneous time-series inputs.

Before proceeding further, we note the difference between

erroneous values and imprecise values. Imprecise values have

an inherent element of uncertainty but still follow a particular

trend, while erroneous values are significant outliers which

exhibit large unnatural deviations from the trend.

To give an idea of the change in behavior exhibited by the

GARCH model we run the ARMA-GARCH algorithm on all

sliding windows SH
t−1 of a time series S = 〈r1, r2, . . . , rtm

〉
where H + 1 ≤ t ≤ tm and κ = 3. The result of executing

this algorithm is shown in Fig. 5(a) along with the upper and

lower bounds. Notice that at time 127, when the first erroneous

value occurs in the training window, the GARCH model infers

an extremely high volatility for the following time steps.

This mainly happens since the GARCH equation (5) contains

square terms, which significantly amplifies the effect of the

presence of erroneous values. To avoid this we introduce

novel heuristics which can be applied to input data in an

online fashion and thus obtain a correct volatility estimate even

in the presence of erroneous values. We term our approach

C-GARCH (an acronym for Clean-GARCH).

A. C-GARCH Model

Let S = 〈r1, r2, . . . , rtm
〉 be a time series containing

some erroneous values. We then start executing the ARMA-

GARCH procedure (see Algorithm 1) at time t > H . For

this we set κ = 3, thus making the probability of finding rt

outside the interval defined by ub and lb low. When we find

that rt resides outside ub and lb, we mark it as erroneous

value and replace it with the corresponding inferred value

r̂t. Simultaneously, we also keep the track of the number

of consecutive values we have marked as erroneous values

most recently. If this number exceeds a predefined constant

ocmax
then we assume that the observed raw values are

exhibiting a changing trend. For example, during sunrise the

ambient temperature exhibits a rapid change of trend. This

idea inherently assumes that the probability of finding ocmax

consecutive erroneous values is low. And, if we find ocmax

consecutive erroneous values we should re-adjust the model

to the new trend.

Although it rarely happens in practice that there are many

consecutive erroneous values may be present in raw data. To

rule out the possibility of using these values for inference,

we introduce a novel heuristic that is applied to the values

in the window [rt−ocmax
, . . . , rt] before they are used for the

inference. This step ensures that we have not included any

erroneous values present in the raw data into our system. Thus

we avoid the problems that occur by using a simple ARMA-

GARCH metric.
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Fig. 5: (a) Behavior of the GARCH model when window

SH
t−1 contains erroneous values. (b) Result of using the C-

GARCH model.

B. Successive Variance Reduction Filter

The heuristic that we use for filtering out significant anoma-

lies is shown in Algorithm 2. This algorithm takes values V =
[v1, v2, . . . , vK ] containing erroneous values and a threshold-

ing parameter SVmax as input. It first measures dispersion of

V by computing its sample variance denoted as SV (V) (Step

3). Then we delete a point, say vk, and compute the sample

variance of all the other points [v1, . . . , vk−1, vk+1, . . . , vK ]
denoted as SV (V\vk) (Step 9). We perform this procedure

for all points and then finally find a value vk̄ such that this

value, if deleted, gives us the maximum variance reduction.

We delete this point and reconstruct a new value at k̄ using

interpolation. We stop this procedure when the total sample

variance becomes less than the variance threshold SVmax.

In Steps 8 and 9, we use the intermediate values v̂′K and

v̂K to compute SV (V\vK), thus reducing the computational

complexity of the algorithm to quadratic.

Drop vk2

v k

k
k1 k2

SV ([v1,..,vK ]) > SVmax

v k

k
k1 k2

Iteration 1 Iteration 2

Drop vk1

SV ([v1,..,vK ]) < SVmax 

Interpolate vk1 Interpolate vk2

Fig. 6: Showing sample run of the Successive Variance Re-

duction Filter (Algorithm 2).

A graphical example of our approach is shown in Fig. 6.

From this figure we can see that values at k1 and k2 are

erroneous. In the first iteration our algorithm deletes value

vk1
and reconstructs it. Next, we delete vk2

and obtain a new

value using interpolation. At this point we stop since SV (V)
becomes less than SVmax. Moreover, it is very important to

know a fair value for SVmax, since if a higher value is chosen

we might include some erroneous values and if a lower value

is chosen we might delete some non-erroneous values. Also,

the value of SVmax depends on the underlying parameter

monitored. For example, ambient temperature in Fig. 4 shows

rapid changes in trend as compared to relative humidity. Thus,

using a sample of size T of clean data, we compute SVmax



as the maximum sample variance (dispersion) we observe in

all sliding windows of size ocmax
. This gives a fair estimate

of the threshold between trend changes and erroneous values.

Fig. 5(b) shows the result of using C-GARCH model on

the same data as shown in Fig. 5(a) with ocmax
= 7.

We can observe that at t = 93 a trend change starts to

occur and is smoothly corrected by the C-GARCH model at

t = 101. Most importantly, the successive variance reduction

filter effectively handles the erroneous values occurring at

times t = 127 and t = 132. Thus the C-GARCH model

performs as expected and overcomes the shortcomings of

the plain ARMA-GARCH metric. In Section VII we will

demonstrate the efficacy of the C-GARCH model on real data

obtained from sensor networks.

Algorithm 2 The Successive Variance Reduction Filter.

Input: A time series V containing erroneous values and variance
threshold SVmax.

Output: Cleaned values V .
1: while true do
2: v̂′

K ←
P

K

k=1
v2

k and v̂K ← 1

K

P

K

k=1
vk

3: SV (V) ← 1

K−1
v̂′

K −
K

K−1
(v̂K)2

4: if SV (V) > SVmax then
5: break

6: cV ar ← −∞, k̄ ← 0, and k ← 1
7: repeat
8: v̂′

K−1 ← v̂′

K − v2
k and v̂K−1 ← v̂K −

vk

K

9: SV (V\vk)← 1

K−2
v̂K−1 −

K−1

K−2
(v̂K−1)

2

10: if SV (V\vk) < cV ar then
11: cV ar ← SV (V\vk)
12: k̄ ← k
13: k ← k + 1
14: until k ≤ K
15: Mark vk̄ as erroneous and delete
16: if k̄ 6= 1 and k̄ 6= K then
17: Use vk̄−1 and vk̄+1 to interpolate the value of vk̄

18: else
19: Extrapolate vk̄

Guidelines for Parameter Setting: The C-GARCH model

requires three parameters κ, SVmax, and ocmax
. In most cases

we assign κ = 3. As seen before, SVmax is learned from a

sample of clean data. On the contrary, setting ocmax
requires

domain knowledge about sensors used for data gathering. If

there are unreliable sensors which frequently emit erroneous

values then setting a higher value for ocmax
is advisable and

vice versa. Our experiments suggest that the C-GARCH model

performs satisfactorily when the value for ocmax
is set to twice

the length of the longest sequence of erroneous values. In

practice, ocmax
is generally small, making the execution of

Algorithm 2 efficient.

VI. PROBABILISTIC VIEW GENERATION

Recall Definition 2 that defines the query for generat-

ing probability values for a tuple-independent probabilistic

database (view). To precisely specify the user-defined range Ω
in the definition, we define Ω = {r̂t + λ∆|λ = −n

2 , . . . , n
2 },

where ∆ is a positive real number and n is an even integer.

We refer to ∆ and n as view parameters. These parameters

describe n ranges of size ∆ around the expected true value

r̂t. In the online mode of our system, the query is evaluated

at each time when a new value is streamed to the system. In

the offline mode, all necessary parameters can be specified

by users using a SQL-like syntax. For example, the syntax in

Fig. 7 creates the probabilistic view in Fig. 2.

CREATE VIEW prob_view AS DENSITY r

OVER t OMEGA delta=2, n=2

FROM raw_values WHERE t >= 1 AND t <= 3

Fig. 7: Example of the probabilistic view generation query.

In the example shown in Fig. 7, AS DENSITY r OVER

t illustrates the time-varying density for time series r. The

OMEGA clause specifies the ranges of the data values of the

probabilistic view, and the WHERE clause defines a time inter-

val. Notice that the query given in Definition 2 is evaluated at

each time t to obtain Λt. Specifically, at each t and for each

λ = {−n
2 , . . . , (n

2 − 1)} we compute the following integral:

ρλ =

∫ r̂t+(λ+1)∆

r̂t+λ∆

pt(Rt)dRt,

= Pt(Rt = r̂t + (λ + 1)∆) − Pt(Rt = r̂t + λ∆), (9)

where Pt(Rt) is the cumulative distribution function of rt.

In short, (9) involves computing Pt(Rt) for each value of

λ = {−n
2 , . . . , n

2 }. Unfortunately, this computation may incur

high cost when the time interval specified by the query spans

over many days comprising of a large number of raw values.

Moreover, this processing becomes significantly challenging

when the query requests for a view with finer granularity

(low ∆) and large range n, since such values for the view

parameters considerably increase the computational cost.

To address this problem, we propose an approach that

caches and reuses the computations of Pt(Rt), which were

already performed at earlier times. The intuition behind this

approach is to observe that probability distributions for a

time series do not generally exhibit dramatic changes in short

terms. For example, temperature values often exhibit only

slight changes within short time intervals. In addition, similar

probability distributions may be found periodically (e.g., early

morning hours every day). Thus, the query processing can take

advantage of the results from previous computation. In the rest

of this section, we introduce an effective caching mechanism,

termed σ–cache, that substantially boosts the performance of

query evaluation by caching the values of Pt(Rt).

A. σ–cache

As introduced before, let Pt(Rt) be a Gaussian cumulative

distribution function of rt at time t. If required for clarity,

we denote it as Pt(Rt; Θ̂t) where Θ̂t = (r̂t, σ̂
2
t ). Observe

that the shape of Pt(Rt; Θ̂t) is completely determined by σ̂2
t ,

since r̂t only specifies the location of the curve traced by

Pt(Rt; Θ̂t). This observation leads to an important property:

suppose we move from time t to t′, then the values of Pt(Rt =
r̂t + λ∆; Θ̂t), Pt′(Rt′ = r̂t′ + λ∆; Θ̂t′), and consequently ρλ

are the same if σ̂t is equal to σ̂t′ . We illustrate this property

graphically in Fig. 8. Moreover, since the shapes of Pt(Rt; Θ̂t)



and Pt′(Rt′ ; Θ̂t′) solely depend on σ̂t and σ̂t′ respectively, we

can assume in the rest of the analysis that the mean values of

Pt(Rt) and Pt′(Rt′) are zero. This could be done using a

simple mean shift operation on Pt(Rt) and Pt′(Rt′).
Our aim is to approximate Pt′(Rt′) with Pt(Rt). This is

possible only if we know how the distance (similarity) between

Pt(Rt; Θ̂t) and Pt′(Rt′ ; Θ̂t′) behaves as a function of σ̂t and

σ̂t′ . If we know this relation then we can, with a certain error,

approximate Pt′(Rt′ ; Θ̂t′) with Pt(Rt; Θ̂t) simply by looking

up σ̂t and σ̂t′ . Thus, if we have already computed Pt(Rt; Θ̂t)
at time t then we can reuse it at time t′ to approximate

Pt′(Rt′ ; Θ̂t′).
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''' tttt
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ρλ remains
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b'a' ba
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ΔΔ

ˆ

ˆ

ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ
ˆ

Fig. 8: An example illustrating that ρλ remains unchanged

under mean shift operations when two Gaussian distributions

have equal variance.

B. Constraint-Aware Caching

In practice, systems that use the σ–cache could have

constraints of limited storage size or of error tolerance. To

reflect this, we guarantee certain user-defined constraints.

Specifically, we focus on the following:

• Distance constraint guarantees that the maximum approx-

imation error is upper bounded by the distance constraint

when the cache is used.
• Memory constraint guarantees that the cache does not

use more memory than that specified by the memory

constraint.

Before proceeding further, we first characterize the distance

between two probability distributions using a measure known

as the Hellinger distance [17]. It is a distance measure similar

to the popular Kullback-Leibler divergence. However, unlike

the Kullback-Leibler divergence, the Hellinger distance takes

values between zero and one which makes its choice simple

and intuitive. Formally, the square of Hellinger distance H
between Pt(Rt) and Pt′(Rt′) is given as:

H2[Pt(Rt), Pt′(Rt′)] = 1 −

√

2σ̂tσ̂t′

σ̂2
t + σ̂2

t′
. (10)

The Hellinger distance assigns minimum value of zero when

Pt′(Rt′) and Pt(Rt) are the same and vice versa.

Guaranteeing Distance Constraint.

We use the Hellinger distance to prove the following theorem

that allows us to approximate Pt′(Rt′) with Pt(Rt).
Theorem 1: Given Pt′(Rt′), Pt(Rt), and a user-defined dis-

tance constraint H′, we can approximate Pt′(Rt′) with Pt(Rt),

such that H[Pt(Rt), Pt′(Rt′)] ≤ H′, where σ̂t′ = ds · σ̂t

and σ̂t′ > σ̂t. The parameter ds can be chosen as any value

satisfying,

ds ≤
2 +

√

4 − 4
(

1 −H′2
)4

2
(

1 −H′2
)2 . (11)

Proof: Substituting σ̂t′ = ds · σ̂t in (10) we obtain,

(1 −H′2)
√

1 + d2
s −

√

2 · ds = 0.

Solving for ds we obtain,

ds ≤
2 +

√

4 − 4
(

1 −H′2
)4

2
(

1 −H′2
)2 .

Since ds is monotonically increasing in H′, choosing a value

of ds as given by the above inequality guarantees the distance

constraint H′.

The above theorem states that if we have a user-defined

distance constraint H′ then we can approximate Pt′(Rt′) by

Pt(Rt) only if σ̂t′ > σ̂t and ds is chosen using (11). Moreover,

since ds is defined as the ratio between σ̂t′ and σ̂t we call it

the ratio threshold.
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Fig. 9: Structure of the σ–cache.

Now, we describe how Theorem 1 allows us to efficiently

store and reuse values of Pt(Rt) while query processing.

First, we compute the maximum and minimum values amongst

all σ̂t matching the WHERE clause of the probabilistic view

generation query (see Fig. 7). Let us denote these extremes

as max(σ̂t) and min(σ̂t). We then define the maximum ratio

threshold Ds as,

Ds =
max(σ̂t)

min(σ̂t)
. (12)

Given the user-defined distance constraint H′ we use (11) to

obtain a suitable value for ds. Then we compute a Q, such

that,

max(σ̂t) = dQs · min(σ̂t). (13)

Let dxe denote the smallest integer value that is not smaller

than x. Then, dQe gives us the maximum number of distri-

butions that we should cache such that the distance constraint

is satisfied. We populate the cache by pre-computing values

for dQe distributions having standard deviations dq
s ·min(σ̂t),

where q = 1, 2, . . . , dQe. As shown in Fig. 9, these values are

computed at points specified by the view parameters ∆ and n.

We store each of these pre-computed distributions in a

sorted container like a B-tree along with key dq
s · min(σ̂t).

When we need to compute Pt′(Rt′ ; Θ̂t′), we first look up

the container to find keys dq
s · min(σ̂t) and dq+1

s · min(σ̂t),



such that σ̂t′ lies between them. We then use the values

associated with key dq
s ·min(σ̂t) for approximating Pt′(Rt′).

By following this procedure we always guarantee that the

distance constraint is satisfied due to Theorem 1.

Guaranteeing Memory Constraint.

Let us assume that we have a user-defined memory constraint

M. We then consider an integer Q′ which indicates the

maximum number of distributions that can be stored in the

memory size M. Here we prove an important theorem that

enables the guarantee for memory constraint.

Theorem 2: Given the values of Q′, max(σ̂t), and

min(σ̂t), the memory constraint M is satisfied if and only

if the value of the ratio threshold ds is chosen as,

ds ≥ D
1

Q′

s . (14)

Proof: From (13) we obtain,

loge(max(σ̂t)) = Q′ · loge(ds) + loge(min(σ̂t)),

ds = max(σ̂t)
1

Q′ · min(σ̂t)
− 1

Q′ .

From the above equation we can see that ds is monotonically

decreasing in Q′. Since Ds = max(σ̂t)
min(σ̂t)

, we obtain,

ds ≥ D
1

Q′

s .

Choosing a value for ds as given in the above equation guaran-

tees that at most Q′ distributions are stored, thus guaranteeing

the memory constraint M.

The above theorem states that given user-defined memory

constraint Q′ we set ds according to (14) so as not to store

more than Q′ distributions. Also, given a distance constraint

H′ the rate at which the memory requirement grows is

O(log(Ds)). Thus the cache size does not depend on the

number of tuples that match the WHERE clause of the query

in Fig. 7. Instead, it only grows logarithmically with the ratio

between max(σ̂t) and min(σ̂t). Observe that the number of

distributions stored by the σ–cache is independent from the

view parameters ∆ and n. This is a desirable property since

it implies that, queries with finer granularity are answered by

storing the same number of distributions.

There is an interesting trade-off between the distance con-

straint and the memory constraint (see (11) and (14)). When

the distance constraint increases, the amount of memory

required by the σ–cache decreases in order to guarantee the

distance constraint and vice versa. Thus, as expected, there

exists a give-and-take relationship between available memory

size and prescribed error tolerance.

In the following section, we will demonstrate significant

improvement with respect to query processing by using the

σ–cache.

VII. EXPERIMENTAL EVALUATION

The main goals of our experimental study are fourfold. First,

we show that the performance of the proposed dynamic density

metrics, namely, ARMA-GARCH and Kalman-GARCH are

efficient and accurate over real-world data. Second, we com-

pare the performance of the ARMA-GARCH metric with that

of the C-GARCH enhancement, in order to show that C-

GARCH is efficient as well as accurate in handling erroneous

values in time series. We then demonstrate that the use of the

σ–cache significantly increases query processing performance.

Lastly, we perform experiments validating that real world

datasets exhibit regimes of changing volatility.

In our experiments, we use two real datasets, details of these

datasets are as follows:

Campus Dataset: This dataset comprises of ambient temper-

ature values recorded over twenty five days. It consists of

approximately eighteen thousand samples. These values are

obtained from a real sensor network deployment on the EPFL

university campus in Lausanne, Switzerland. We refer to this

dataset as campus-data.

Moving Object Dataset: This dataset consists of GPS logs

recorded from on-board navigation systems in 192 cars in

Copenhagen, Denmark. Each log entry consists of time and

x-y coordinate values. In our evaluation we use only x-

coordinate values. This dataset contains approximately ten

thousand samples recorded over five and half hours. We refer

to this dataset as car-data.

Table II provides a summary of important properties of

both datasets. We have implemented all our methods using

MATLAB Ver. 7.9 and Java Ver. 6.0. We use a Intel Dual Core

2 GHz machine having 3GB of main memory for performing

the experiments.

campus-data car-data

Monitored parameter Temperature GPS Position
Number of data values 18031 10473

Sensor accuracy ± 0.3 deg. C ± 10 meters
Sampling interval 2 minutes 1-2 seconds

TABLE II: Summary of datasets.

A. Comparison of Dynamic Density Metrics

We compare our main proposals (ARMA-GARCH and

Kalman-GARCH) with uniform thresholding (UT) and vari-

able thresholding (VT). These evaluations are performed on

both datasets. As described in Section II, we used the density

distance for comparing the quality of distributions obtained

using the dynamic density metrics.

Fig. 10 shows a comparison of density distance for the

various dynamic density metrics for both datasets along

with increasing window size (H). Clearly, both the ARMA-

GARCH metric and the Kalman-GARCH metric outperform

the naive density metrics. Specifically, those advanced dy-

namic density metrics outperform the naive density metrics by

giving upto 20 times and 12.3 times lower density distances

for campus-data and car-data respectively.

Among the advanced dynamic density metrics, the ARMA-

GARCH metric performs better than all the other metrics.

For car-data we can observe that the Kalman-GARCH metric

gives low accuracy as the window size increases. This behavior

is expected since when larger window sizes are used for the

Kalman Filter, there is a greater chance of error in inferring

r̂t. In our observation, the use of smaller window sizes (e.g.,
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Fig. 10: Comparing quality of the dynamic density metrics.

H = 10) for the Kalman-GARCH metric performs twice

better, compared to the ARMA-GARCH metric.

Next, we compare the efficiency of the dynamic density

metrics. Fig. 11 shows the average times required to perform

one iteration of density inference. Because of the large perfor-

mance gain of the ARMA-GARCH metric, the execution times

are shown on logarithmic scale. The ARMA-GARCH metric

achieves a factor of 5.1 to 18.6 speedup over the Kalman-

GARCH metric. This is due to slow convergence of the

iterative EM (Expectation-Maximization) algorithm used for

estimating parameters of the Kalman Filter. Thus, unlike the

ARMA model, computing parameters for the Kalman Filter

takes longer for large window sizes. The naive dynamic

density metrics are much more efficient than the Kalman-

GARCH metric. But they are only marginally better than the

ARMA-GARCH metric. Overall the ARMA-GARCH metric

shows excellent characteristics in terms of both efficiency

and accuracy.

In the next set of experiments, we discuss the effect of

model order of an ARMA(p,0) model on density distance.

Fig. 12 shows the density distance obtained by using several

metrics when the model order p increases. Observe that for

the ARMA-GARCH metric the density distance increases with

model order. This justifies our choice of a low model order

for the ARMA-GARCH metric.

B. Impact of C-GARCH

In the following, we demonstrate the improved performance

of the C-GARCH model by comparing it with the plain

ARMA-GARCH metric using campus-data (we omit the re-
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Note the logarithmic scale on the y-axis.
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sults from car-data because they are similar). We start by

inserting erroneous values synthetically, since for comparing

accuracy we should know beforehand the number of erroneous

values present in the data. The insertion procedure inserts

a pre-specified number of very high (or very low) values

uniformly at random in the data.

For evaluating the C-GARCH approach we first compute

SVmax using a given set of clean values and then execute

the C-GARCH model while setting ocmax
= 8. Fig. 13(a)

compares the percentage of total erroneous values detected

for C-GARCH and ARMA-GARCH. Admittedly, the C-

GARCH approach is more than twice effective in detecting

and cleaning erroneous values. Additionally, from Fig. 13(b) it

can be observed that the C-GARCH approach does not require

excessive computational cost as compared to ARMA-GARCH.

The reason is that the ARMA model estimation takes more
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Fig. 13: Comparing C-GARCH and GARCH. (a) Percentage

of erroneous values successfully detected and (b) average time

for processing a single value.

time if there are erroneous values in the window SH
t−1. This

additional time offsets the time spent by the C-GARCH model

in cleaning erroneous values before they are given to the

ARMA-GARCH metric.

C. Impact of using σ–cache

Next, we show the impact of using the σ–cache while

creating a probabilistic database. Particularly, we are interested

in knowing the increase in efficiency obtained from using a

σ–cache. Moreover, we are also interested in verifying the rate

at which the size of the σ–cache grows as the maximum ratio

threshold Ds increases. Here, we expect the cache size to grow

logarithmically in Ds.



We use campus-data for demonstrating the space and time

efficiency of the σ–cache. We choose ∆ = 0.05, n = 300,

Hellinger distance H = 0.01, and compute ds using (11).

Fig. 14(a) shows the improvement in efficiency obtained for

the probabilistic view generation query with increasing number

of tuples. Here, the naive approach signifies that the σ–cache

is not used for storing and reusing previous computation. In
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Fig. 14: (a) Impact of using the σ–cache on efficiency. (b)

Scaling behavior of the σ–cache. Note the exponential scale

on the x-axis.

Fig. 14 all values are computed by taking an ensemble average

over ten independent executions. Clearly, using the σ–cache

exhibits manyfold improvements in efficiency. For example,

when there are 18K raw value tuples we observe a factor of 9.6

speedup over the naive approach. Fig. 14(b) shows the memory

consumed by the σ–cache as Ds is increased. As expected, the

cache size grows only logarithmically as the maximum ratio

threshold Ds increases. This proves that the σ-cache is a space-

and time-efficient method for seamlessly caching and reusing

computation.

D. Verifying Time-varying Volatility

Before we infer time-varying volatility using the ARMA-

GARCH metric or the Kalman-GARCH metric it is important

to verify whether a given time series exhibits changes in

volatility over time. For testing this we use a null hypothesis

test proposed in [12]. The null hypothesis tests whether the er-

rors obtained from using a ARMA model (a2
i ) are independent

and identically distributed (i.i.d). This is equivalent to testing

whether ξ1 = · · · = ξm = 0 in the linear regression,

a2
i = ξ0 + ξ1a

2
i−1 + · · · + ξma2

i−m + ei, (15)

where i ∈ {m + 1, . . . ,H}, ei denotes the error term, m ≥ 1,

and H is the window size. If we reject the null hypothesis

(i.e., ξj 6= 0) then we can say that the errors are not i.i.d, thus

establishing that the given time series exhibits time-varying

volatility. First, we start by computing the sample variance of

a2
i and ei denoted as γ0 and γ1 respectively. Then,

Φ(m) =
(γ0 − γ1)/m

γ1/(K − 2m − 1)
, (16)

is asymptotically distributed as a chi-square distribution χ2
m

with m degrees of freedom. Thus we reject the null hypothesis

if Φ(m) > χ2
m(α), where χ2

m(α) is in the upper 100(1−α)th

percentile of χ2
m or the p-value of Φ(m) < α [12]. In our

experiments we choose α = 0.05.

To show that our datasets exhibit regimes of changing

volatility we compute the value of Φ(m) where m =
{1, 2, . . . , 8} on 1800 windows containing 180 samples each

(i.e., H = 180) for campus-data and car-data. Then we reject

the null hypothesis if the average value of Φ(m) over all

windows is greater than χ2
m(α).
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Fig. 15: Verifying time-varying volatility.

Fig. 15 shows the results from this evaluation. Clearly, we

can reject the null hypothesis for both datasets because for all

values of m, χ2
m(α) is much lower than Φ(m). This means

that a2
i are not i.i.d and thus we can find regimes of changing

volatility. Interestingly, for car-data (see Fig. 15(b)) we can

see that χ2
m(α) and Φ(m) are close to each other. Thus the

car-data contains less time-varying volatility as compared to

the campus-data.

The above results support the claim that real datasets show

change of volatility with time, thus justifying the use of the

GARCH model.

VIII. RELATED WORK

In order to effectively deal with uncertain data, a vast body

of research on probabilistic databases has been conducted in

the literature, including concepts and foundations [18]–[20],

query processing [3], [4], [21], [22], and indexing schemes [5],

[23], [24]. All these studies, however, share the common

condition that probability values associated with data must be

given a priori. As a result, a large variety of applications are

still incapable of receiving benefits from such well-established

tools for processing probabilistic databases, due to the lack of

methods for establishing the required probability values.

Some previous work highlights the fact that creating proba-

bilistic databases is a non-trivial problem. They then propose

effective solutions for the problem; however, the studies have

only limited scope for domain-specific applications, such as

handling duplicated data records [8], [9] and building struc-

tured data from unstructured data [10].

More recently, the concept of probabilistic databases has

been extended into stream data processing, so-called proba-

bilistic streams [6], [7], [24]. Ré et al. [7] propose a framework

for query processing over probabilistic (Markovian) streams.

Later, an access method for such Markovian streams is intro-

duced in [24] for efficient query processing. Cormode and



Garofalakis [6] also propose efficient algorithms based on

hash-based sketch synopsis structure for processing aggregate

queries over probabilistic streams. While all these studies

assume probabilistic streams are given beforehand, Tran et

al. [11] introduce a complete solution to create probabilistic

streams. Unfortunately, this proposal is focused on RFID

data, whereas our solution accepts arbitrary time-series data

including such RFID data.

Processing probabilistic queries is another related area to

our work. Cheng et al. [1] introduce several important types

of probabilistic queries, as well as a generic query evaluation

framework over inherently imprecise data. Although they

assume that an uncertainty bound for data can be easily given

by users, the assumption may not hold in many real-world

applications. Deshpande and Madden [25] introduce the ab-

straction of model-based views that are database views created

from the underlying data by applying numerical models. These

views are then used for query processing instead of using

the actual data. This idea is then extended by Kanagal and

Deshpande [26], in which various particle filters are used

for generating model-based views. This proposal requires a

sufficient number of generated particles to obtain reliable

probabilistic inferences, however, this substantially decreases

the efficiency of the system.

Some prior research focuses on system perspectives as-

sociated with uncertain data. Wang et al. [27] introduce

BayesStore which stores joint probability distribution func-

tions encoded in a Bayesian network. Jampani et al. [28]

propose a novel concept, by which the system does not store

probabilities but parameters for generating the probabilities.

Our work inherits this idea. Antova et al. [29] introduce

the abstractions of world-sets and world-tables for capturing

attribute-level uncertainty and possible world semantics of a

probabilistic database. Cheng et al. [30] propose U-DBMS

for managing uncertain data where the probability density

function for the uncertain attributes is pre-specified.

IX. CONCLUSIONS

Due to the lack of methods for generating probabilistic

databases, a large variety of applications that are built on

(imprecise) time series are still incapable of having bene-

fits from well-established tools for processing probabilistic

databases. To address this, we proposed a novel and generic

solution for creating probabilistic databases from imprecise

time-series data. Our proposal includes two novel compo-

nents: the dynamic density metrics that effectively infer time-

dependent probability distributions for time series and the

Ω–View builder that uses the inferred distributions for cre-

ating probabilistic databases. We also introduced the σ–cache

that enables efficient creation of probabilistic databases while

obeying user-defined constraints. Comprehensive experiments

highlight the effectiveness of our approach.
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