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complicated by crustal deformations and faulting of the sediments. The balance equations,
the non-Newtonian rheology of the sediments, and the depth-porosity compaction laws
describe here a model of basin evolution. We propose numerical schemes for the basin
boundary movement and for the fault tracking. In addition, a time splitting algorithm is
employed to reduce the original model into some simpler mathematical problems. The
Fractures and faults n.umerical stability and the othe.r f.eatures of th? developef:l methodology are shown using
Non-Newtonian fluids simple test cases and some realistic configurations of sedimentary basins.

Compaction of granular systems © 2011 Elsevier Inc. All rights reserved.
Finite element method

Level set method
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1. Introduction

The numerical simulation of the geological evolution of a sedimentary basin represents a challenging aspect of applied
numerical mathematics, especially when a full three-dimensional (3D) model is employed. In order to deal with such a com-
plex problem, in this work we set up a numerical framework aimed to reproduce the 3D dynamics of realistic stratified sed-
imentary basins. This work is the natural follow up of [1], where the main features of a mathematical model for simulating
the evolution of salt sedimentary basins have been discussed and an efficient implementation has been proposed. In partic-
ular, in [1] the authors present a technique to describe accurately the interfaces between layers (usually referred to as hori-
zons), based on a level set approach. On the other hand, in the present work we extend the methodology devised in [1] taking
into account the non-Newtonian rheology of the sediments, the depth-porosity compaction laws, the basin boundary move-
ment, and the handling of faults.

As regards the modeling counterpart, we consider well-known geological models coming from the literature, and collect
them in a wider framework that simplifies their numerical treatment. The sediments are modeled through a classical
stratified creeping flow problem, a widely diffused approach for such a problem (see, for instance, [1-5]) especially for its
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flexibility. Indeed, it can be easily enriched with models representing the non-Newtonian rheology of the sediments, the
faults, the compaction and the movement of the basement and of the free surface. Let us review all these aspects one by one.

A complete and exhaustive theoretical analysis of the sediments rheology is still missing. Experiments have shown dif-
ferent behaviors of the sediments, such as the elastic, elasto-plastic, visco-plastic and visco-elastic ones (see [6,7]). Semi-
empirical relations are usually adopted, since the theory can explain only a few mechanisms (an example is the pressure
solution, see [8]). Even though in some work (such as [9]) all the rheological aspects are taken into account, the typical ap-
proach is to consider the fluid behavior, and to add the plastic effects through a pseudo-plastic relation, in a power law form
[7,8,10]. This is the approach we adopt in our work, since it has proven to be a good trade-off between accuracy and com-
putational complexity.

Let us now consider the porosity and compaction modeling. In various works the compaction is modeled in a simplified
way, for example, as a vertical reduction of the volume occupied by the sediments [11], or even neglected (see [2,5,9]). In
[12] a new splitting algorithm is introduced: the divergence of the solid flow field is computed according to an experimental
compaction curve. Then, under the hypothesis of vertical compaction, the problem is reduced to a linear stationary hyper-
bolic equation. Here, we do not make any assumption about the direction of the compaction, but we address ourselves di-
rectly to the modeling of the compaction function, i.e., the function that measures the rate of decrease of the solid volume
and we solve a Stokes problem with a non-null divergence. We stress that, if the fluid part is not simulated, it is mandatory to
consider some empirically derived compaction curves.

Fault modeling is seldom included in geological basin simulations and, until now, it has been considered only in a few
works (see [4,9,12,13]). Fault location and time of appearance in the geological history are hardly predictable from the
mechanical point of view, but fortunately seismic and well data are able to provide sufficiently accurate information. Hence,
we assume to know the location and the time of appearance of the faults and we concentrate on the modeling of their effects.
A possible way to model faults in a fluid framework is to reduce the fluid viscosity in the damaged area. For an active fault,
the viscosity in a thin region around its sliding plane is reduced by several orders of magnitude (see [13]). This approach has
two potential drawbacks: the identification of the elements in the grid where the viscosity has to be reduced and the grid
local refinement necessary to make the element size match the fault thickness (which is of the order of tens of meters, while
a typical mesh element is about hundreds of meters in a basin scale simulation). To face these problems we have imple-
mented an innovative implicit tracking algorithm based on a level set function and a local recursive bisection algorithm.
For a review of the mesh refinement techniques in three-dimensions see [14-18].

Let us now consider another important aspect, namely, the movement of the lateral basin boundary. The basement, the
free surface, and the lateral contour are subject to displacements due to deformations of the Earth’s crust. This effect is of
upmost importance in basin evolution as it is one of the driving forces for fault formation and movement. Not all the numer-
ical schemes developed till now allow the extension or contraction of the basement, for example in [2] the basin is a fixed
box. This geometrical constraint is not acceptable for many applications and several works, such as [9,12,13], have a more
general geometrical treatment. All of them use a Lagrangian approach combined with frequent remeshing, as it handles the
movement of the boundary naturally. However, the application of classical Lagrangian methods to a real three-dimensional
case is computationally very expensive. Some new types of Lagrangian methods, such as the Particle Finite Element Methods
(PFEM), have been introduced in mechanical engineering [19] and applied to computational geology [20,21]. In these latter
works, the Particle-In-Cell (PIC) technique is used. All these Lagrangian methods require a frequent mesh regeneration, that
makes the cost of the algorithm critically dependent on the efficiency of the grid generator. To overcome this problem we
have chosen an Arbitrary Lagrangian Eulerian method (ALE), similar to the one described in [22]. The reason is that, since
the deformation of the basin boundary is usually small compared with that of the internal layers, we can decouple the
two problems and use a Lagrangian scheme to reconstruct only the boundary movement and an implicit tracking algorithm
for the internal layers (see [23]). The displacement of the grid is only prescribed on the boundary, while a suitable movement
law is considered for the internal nodes, for example to minimize the mesh distortion. The ALE method has found several
applications, see for instance [24-30]. The definition of the numerical algorithm for the computation of the internal grid
movement is the most critical part: indeed we want at the same time to adapt the grid size, where necessary, and to preserve
its overall quality. To achieve these goals, we choose the so called r-adaptivity (see [31]) combined with the ALE scheme. This
technique is cheaper than the h-adaptivity, although less effective. Anyway, as the computational cost is an important issue
for our purposes, the r-adaptivity is a reasonable choice. We exploit then the information given by a residual-type error esti-
mator to construct an error-dependent metric, which drives the ALE scheme in adapting the grid size, according to the min-
imization of the estimated upper error bound.

Three descriptions of the internal grid movement have been introduced so far. The first two require the solution of a
Laplace-type problem and the solution of a net of connected springs respectively, while the third one models the grid as
a continuum elastic body. The first approach is used in [31-33]. Its merits are the low computational cost and the compat-
ibility with a metric-type adaptivity. On the other hand, it could fail if high curvatures are present on the domain boundary;
in particular, non convex regions could induce mesh tangles, that’s why sometimes this method is combined with a smooth-
ing technique (see [34]). The second method, often used in aeroelastic analysis, is the spring method (see [35,36]). The mesh
is considered as a net of nodes linked by springs, whose topology varies among the methods. One of its most appreciated
qualities is the robustness, as the mesh tanglement is (in the most advanced variants) always prevented. However, it is very
expensive and several simplified versions have been developed, in which, for example, the nodes are moved one by one. This
latter approach is very effective in aeroelastic simulations, where the boundary movement is usually concentrated in a small
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region at the center of the computational domain (which could represent an airfoil, an aircraft, etc.), but it is less effective in
geological simulations where the boundary movement is more distributed. The last method is based on an elastic model (see
[37]). It is more robust than the Laplace-type approach, although more expensive from the computational point of view.
Therefore, we choose to implement a linearized version, as a compromise between robustness and computational efficiency.
In particular we derive the elastic equation from an optimization problem, so that the r-metric adaptivity can be directly
embedded in the model.

This paper is organized as follows: in Section 2 we briefly review the physical model, we discuss its relations with the
literature, and we introduce a mathematical formulation well suited for numerical discretization. In Section 3, using a time
splitting technique, we decouple the physical model into some smaller mathematical problems, and we provide for each one
a dedicated numerical treatment; in particular, for two of them, namely the basin boundary movement and the fault tracking
we propose some original ad hoc schemes that are detailed in Sections 4 and 5. Finally, in Section 6, we show the numerical
results obtained from the simulation of nearly realistic cases.

2. Physical and mathematical models
2.1. Geometrical model

Let us introduce the geometric model of a sedimentary basin (Fig. 1). The domain Q c R? is divided into n disjoint sub-
domains Q; (without overlaps), which represent different sedimentary layers characterized by different physical properties.
The external boundary I" of the domain € is divided into three parts: the basement I'g, where we apply a Dirichlet condition
for the velocity field, the top of the basin I's, with a free surface condition, and the lateral contour I';, where we impose a
Dirichlet condition on the horizontal plane and a slip condition in the vertical direction. Moreover, we suppose I'; vertical for
simplicity. To complete our overview let us introduce some nomenclature: X = (x1,X2,x3) € Q1is a point in the spatial domain
of coordinates x;, withi=1, 2, 3, (X1,X,,X3) are the unit vectors of the coordinate system, fi is the domain outward normal and
t € (0,T] is the time coordinate. For a generic vector ii, we denote its components with (uy,u,,us).

2.2. Mass balance equation

The mass conservation of the solid part of a basin can be expressed as (see [38]):

D= @)pi) (1= p)pii) =0, i=1...ny 1)

where p; is the density of the ith layer, ¢ is the porosity, i is the sediment advection speed and
;»i()?): 1, leE.f.),‘,
0, otherwise,

is the characteristic function of the ith subdomain. We can assume that p; is constant, withi=1, ..., n,. Dividing (1) by p; and
summing up with respect to the number or layers we obtain

ns 9 s N
> (& (- ¢)A,-)> + ;(V (1= ¢)ath)) =0,

/

I's I'o

Fig. 1. Simplified sketch of the external shape of the domain Q. The external boundary I is divided into three parts: the basement I';, the free surface I's,
and the lateral contour I';.
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that, since 3°*,4; = 1 almost everywhere in €, can be simplified as

7] - ~

S (1=9)+ V(1= g)i) =0. )
Finally, subtracting (2) from (1) divided by p; we get

0k = =, .

a_l}+u'V/Li:07 l:17~"7n57 (3)

which represents an advection equation for the subdomains that can be tackled by multi-component level set methods, as
detailed in [23,39].

Remark 1. The level set type Eq. (3) has been derived with the only assumption of the incompressibility of the solid matrix.
Another way to derive the transport equation for the subdomains is to introduce a divergence-free hypothesis (see, for
instance, [40]). However this approach prevents a consistent treatment of the compaction since the sediment volume
reduction is not compatible with the divergence-free hypothesis.

2.3. Momentum balance equation and rheological models

The balance of momentum for a creeping fluid is stated by:
V-6 (u, i) — VP + pg =0,

where G is the stress tensor, P is the pressure, g is the gravitational acceleration vector. The density p is given by

p=dp+(1-9) (Z zfp?>, (4)
i=1

where p? is the reference density of the i-layer and pris the water density (in general the basin is nearly saturated by water).
The expression of the stress tensor ¢ depends on the choice of the rheological model. In this work, we consider a couple of
pseudoplastic laws largely diffused in the literature [8,13]:

()

wopr=2/2 power-law,
a W1 4 &) Carreau law.

In these relations, (; is the apparent viscosity of each layer, £ is the reference unstressed viscosity, 7 is the squared Frobe-
nius norm of the symmetric gradient Vii + (Vii)", ris a positive coefficient, also known as the power-law coefficient, and ¢ is
a material dependent parameter. For r =2 the power-law model reduces to the Newtonian behaviour. For y = 0 it implies
ui= 0, a non-acceptable condition from the numerical point of view. This issue can be addressed by imposing a lower bound
(see for instance [40]) or by using the Carreau law (see [13]), which can be considered a regularized form of the power-law.
Both these approaches lead to the same expression for the stress tensor

G = W(Vii+ (Vi)"),
where the viscosity u is defined as
ns
w= it ®
i1
In other words, this means that we assign a different viscosity to each layer through a level set approach.

Remark 2. In general the viscosity of the solid depends on the pressure and on the inverse of the temperature through an
exponential relation (see, for instance, [8,13]). Anyway, in this paper we neglect the thermal effects on the dynamic of the
basins, that will be addressed in future works. Nevertheless, the inclusion of a thermal dependent rheology for the sediments
is straightforward and can be easily plugged into the model.

2.4. Modeling the compaction

We now detail the compaction model we have implemented for our simulations. We model the porosity decrease in the
deep layers imposing a non-solenoidal velocity of the sediments, in other terms V - ii = ®, where & is the compaction func-
tion. To find a relation for @ we denote by S(x;,x;) the relative height of the free surface, that is the distance along the X3
direction of the free surface from the x;—x, plane. Hence, we can define the depth { as { =x3 — S (see Fig. 2).

The objective is to model @ using only a ¢-depth relation. Let us consider, in particular, the so-called Athy compaction
law for the porosity ¢

¢ = exp(B() (Z zi«b?) : (7)
i=1
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Fig. 2. An outline of the sedimentary basin with a reference frame having axes (X;, X, X3). The surface position is denoted with S(x;,x;), the depth with ¢.

where ¢? is the reference porosity of the ith layer and B is an empirical constant. We wish to determine & through (7). From
[12] and (7) we get
v 1 Dy 1 D¢DC_B ¢ (ng DS)j

Y=1-¢Dt  1-¢DIDt "1-4¢

Dt Dt

where D/Dt = /0t + ii - V is the material derivative. Since Dxs/Dt = u3 and VS is usually small (however this contribution
could be included, if necessary), the above equation can be approximated as

S ¢ S

\Y u_Bl_¢ Us )"
From this relation we find that the compaction is the sum of two contributions: the first one, B(¢/(1 — ¢))us, refers to the
relative position of the layers and the latter, —B¢/(1 — ¢)9S/dt, is related to the burial of the entire basin. In particular 9S/ot
is known as the sedimentation speed and is provided, for example, by the geologists on the basis of some conjectures on the
history of the basin.

This methodology is cheaper than the fully coupled fluid-structural one described in [41], and retains a consistent ap-

proach. In other works, such as [2,40], the sediments are compacted and de-compacted keeping a null divergence velocity
field, which is not fully consistent.

2.5. Modeling the faults

From the geological point of view, faults modeling is of key importance. Faults are described using geological restoration,
which is an inversion technique that allows to recover the timing and the characteristics of faults creation and evolution,
starting from present day geological models and using only a kinematical approach. By the geological restoration we get the
basin evolution over the time, represented as a set of geological snapshots of different ages. These snapshots provide the
constraints of the dynamical modeling, which is the subject of the present work. In addition, the direct simulation of the
dynamic of the model provides a validation tool for the geological restoration. For the time being the fulfilment of all phys-
ical constraints on the fault evolution (e.g. maximum dip allowed for a fault) are not included in the theoretical formulation,
assuming that the fault description given by the geologists is correct and that local anomalies of fault behaviour during dy-
namic evolution may be acceptable while looking to the global basin evolution. In addition, we can verify whether the time
of appearance of a fault triggers a basin evolution that is compatible with the present day configuration.

Faults are usually modeled as highly plasticized regions [9] or even as cracks [42]. As outlined in [11], the fluid model can
describe accurately the stress field and the evolution of salt diapirism, though it can not describe faults formation. In other
words, faults must be added separately in the model. A possible coherent way to include faults within a fluid framework is to
decrease drastically the viscosity in a thin region of the domain, which represents, from the physical point of view, the fault-
damaged region. Through this approach Eq. (6) becomes

=y i:ii,ui:
i1

where < 1 in the faulted region Q" and equals the unity outside. The fault time of appearance and initial position are im-
posed a priori, for example from local structural analyses or restoration results. From this configuration, the fault is moved
accordingly to the following relation:

o

§+U-V¢:O,

which imposes a null net sediment flux across it. This technique has been already used in [12,13] providing good results.
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2.6. The model

We can now summarize the complete model in the advective ALE form, including all the features described so far

V. a(u,i) — VP + pg =0 in Q% [0,T]

V-ii = &) in Q x [0,T],

% 4 (fi—1y) - Vi=0 in @ x (0, T],

Wy (i — ) - Vi =0 in Qx (0, TJ,

G = pu(i, , &) (Vi + (Vii)") in Q x (0,T], 8)
di=di, Y=y in @ x {0},

=1 on [,

(G-P)-n=0 on Ik,

Uy =1y, Uy =1y, ((5'7P7)-f1)-5<3:0 on I,

where @ is a boundary velocity field, i, is the grid velocity linked to the ALE treatment of the boundary movement, and % and
W are a suitable set of initial conditions. From the modeling point of view, problem (8) is a collection of models already pres-
ent in the literature. However, the assembling of the different models, together with the numerical techniques described in
the forthcoming sections, is original and provides a large number of information in a coherent manner.

3. Numerical techniques
3.1. Time splitting algorithm

In this section we introduce the temporal discretization of the model. First of all we split the time interval [0, T] into sub-
intervals whose endpoints are t°=0, t!, ..., t", t™, ..., T, where ™' = t" + At" and At" is the nth time step. Then, for the gen-
eric variable a(t, X), we indicate for simplicity a"(X) = a(t", X). We evolve the solution according to the following scheme:

Algorithm 1. At the generic time step, n, we know the following variables of the problem:
{-‘nlpnl nl«nl//pnl n1¢n—1} withn>1

Then we use the following numerical scheme to solve problem (8):

1. from 2! and relation (7) compute ¢";
2. from 7}, ¢" and relation (4) compute p";
3. from A}, Y", ti"! and relations (5) and (6) compute p*;
4. solve a linearized Stokes problem for #i" and P™:
V- (u (Vi 4+ (Vii)")) — VP" 4 p"g = 0,
Vit = o(¢"),
Note: at the first step (n = 0) #i"! is not available. Therefore, only in this case, a non linear Stokes problem is solved using a
fixed point iterative technique

va (M(ﬂ(o,m))(ﬁﬁ(umﬂ (@ ©Om+1) )) _ypomn) PO
@ L jom+l) — p.
where m is the iteration apex and > has been set equal to 0;
5. a time step At" is computed. This requires three steps: firstly, from the velocity ", a maximum At} is estimated such
that the movement of the boundary elements does not exceed a certain threshold. Secondly a maximum At}, is estimated

such that the movement of the internal sediment layers is less than a prescribed length. Finally, the time step of the
n-iteration is computed as

At" = min (At} , Ath); 9)

6. from At" solving a mesh adapting elastic equation (see Section 4) the grid velocity i is evaluated;
7. compute AM*! and Y™ by solving the following evolution equations in (t*,t™]:

/11‘#1 o o X
{()ét + U —u ")-Vﬂ’-”l:O fori=1,...,n

+1 — —
8./?;1 + (Lln un) vlpnﬂ _
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8. with the grid velocity iij and At" the grid is moved to a new configuration.

At the end of the time step, we get the update variable vector of the problem:
{an Pz, 2yt 7

Algorithm 1 decouples problem (8) into smaller standard mathematical problems, which can be addressed more easily
one by one. In particular:

e steps 1, 2, and 3 involve algebraic equations. From the numerical viewpoint, they require at most some interpolations
between the different discrete counterparts of ¢, p, i, 4;, and ii;

e step 4 involves the solution of a linearized Stokes problem, which is accomplished by an explicit time scheme. This for-
mulation reduces the computational burden with respect to a nonlinear Stokes problem (see for instance [10]). In this
work, we solve the Stokes problem using piecewise linear finite elements (FE), implementing the mini-element enrich-
ment to satisfy the inf-sup condition (see for details [43,44]). The resulting linear problem can be tackled with iterative
Krylov-type techniques [45-47];

e step 6 involves the solution of an artificial elasticity problem to compute the grid velocity i, according to a prescribed
displacement of the lateral boundaries. The extension of the basin and the r-type adaption are two of the most innovative
parts of this work and are addressed in detail in Section 4;

o finally, step 7 involves the solution of ns + 1 transport equations, which are addressed by the conservative coupled Level
Set-Volume Tracking (LS-VT) method developed in [23]. In addition, we adopt an element-based variant for fault tracking,
for which a new set-reconstruction algorithm has been derived (see Section 5.1).

3.2. Spatial discretization

The geometric approximation of the domain  is described by three different computational grids. Most of the discrete
variables are defined on the coarsest grid, to minimize the computational burden. A second finer grid is introduced to define
the velocity field in order to satisfy the inf-sup condition. Finally, the tracking-related variables iy and /; are defined on a
third grid, the finest, to minimize numerical diffusion. For the sake of clarity, in the following we refer to a generic grid
T, containing n. elements e, (with r=1,...,n.) and n, nodes %, (with k=1,...,n,), where the subscript A stands for the max-
imum diameter of the grid elements. For more details on the spatial discretization, see [1].

4. Adaptive grid movement

In this section we introduce an original ad hoc numerical technique to deal with the movement of the lateral boundaries
of the domain Q. In particular, this methodology refers to the modeling of the so called extensional tectonics, which basically
deals with simulations where the lateral boundaries of the basin are subjected to extensional or compressional movements.
To this purpose, Section 4.1 describes an ALE formulation, where the displacement of the lateral walls is computed by impos-
ing a normal velocity field at the boundaries. This approach is successively completed in Section 4.2 by introducing the so
called r-adaptivity technique (see [31]) for the computation of the grid movement. This strategy, which can be easily com-
bined with the ALE formulation, is able to adapt the grid size relying upon an estimate on the solution error, and to preserve
the overall quality.

4.1. Grid movement equations

To move the mesh according to a displacement of the lateral boundary, we define an artificial elasticity problem and use a
solution-dependent metric. This can be considered as a numerical tool designed to preserve and adapt the quality of the
mesh. Its purpose is to compute an optimized new mesh after the deformation, and has no influence on the physical behavior
of the sediments or on the physical movement of the basin.

Let Q" be the domain at time " and let Y € Q" be the position vector in the current reference system. We want to build a
smooth displacement field §" : Q" — Q™' such that

Sn = iin AL on I'p,
Si=uj,At", Sy =uf,At" on Ty, (10)
St fi = (il - i) At" on Is.

To implement our mesh movement-adaption scheme, we adopt the ideas developed in [48,49]. We seek a best fit solution in
HY(Q), where H! is the classical Sobolev space of the squared-integrable functions with an integrable weak derivative (see
[50]), to the alignment and to the equal distribution condition
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_ _ 2/3
( X)T-M.(*X)J(l ) det(M)) ,

where M is a positive definite second order tensor which will be linked to the adaption process and X is the position with
respect to the initial configuration Y at t = 0. In addition, we impose the constraint that the volume |Q| does not change, i.e.,

det(M) = ||, (11)
IRl

where the left-hand side represents the volume of the domain after the movement of the mesh. A best fit solution of the
alignment condition is given by the minimization of

min LV -M- (VR) - T}, (12)
XeH! (@)

where |C|3 = Jon C- D-C,D is a tensor with components Dk = E18i6n + 2K 40, and &y, E;, K; are respectively the
Kronecker delta, and the fictitious shear and bulk elastic moduli. According to [31,37] we choose E;|, = K|, = 1/|e¢|. The
optimality conditions of (12) can be transformed into a non linear partial differential equation, but, since the displacement
between two time steps is kept small, we can consider a linearized form of the resulting PDE. Moreover, to simplify its der-
ivation, we neglect, for now, the boundary conditions as they will be introduced later on.

The linearized form of (12) with respect to the coordinate system Y" is

o1 =y = = =

min = 6”~D-6“+/ 0p: €', (13)
SneH' (@) 2 Jon ol

where 6% is the pre-stress at time t". At n=0 we have 6} = 0, and shortly we will define how to update it. Then

&= % (VXM R 1), (14)

is the strain tensor. Plugging
Xt =y" 48"
into (14) we get

el (V)" M- (VS +% (Vs -M" M- (VS") +% (M -T).

—
en en en
© G N

By differentiating Eq. (13) with respect to the displacement we obtain

/m(v:vl +®2)5-(23+E’1’+E’;)+/

o

O (W1 +Wy) =0 VoeH(Q),
where
W =3 (Vo) M M- (V7).

w,

1 ((ﬁ”)T M (VD) + (VD) Mn- (ﬁn)),

and 7 € H'(Q) is a test function. Considering only the linear parts, we get

\7v15-2';+/ (

For simplicity, we set fg =00+ D- €l. Integrating by parts, we obtain the following balance equation for the displacements:

Qll
ol

2+D-&): (W +W,) =0 VieH Q)

v [El(ﬁﬂ - MM + 1<L<(€§”)T M+ M- (@ﬁ“)) F 20 (VS 1) - M| =0,

which is complemented by the following set of boundary conditions (see Fig. 1):

St — iin At on I,
St—un At", ST—um,At", (Zh-fi)-% =0 on I,
Sn.fi= (@ A)AL", (Zn-fi)-f=0 on Is.

This is a linear elastic-type equation with a pre-stress term that arises from the previous deformation of the grid. We seek a
solution using the finite element method, therefore now we introduce the discrete weak formulation, i.e., we seek
St € V4 NH} such that:
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> — — — 1
aae(Sa", Da) = Faie(Da) V0a € Vi NH, (15)

where H}. is the set of the functions 7 belonging to H' that satisfy the Dirichlet boundary conditions (10) and
Vi = {Pa € C°(Q): Pal,, € P', r=1,...,n.}. Moreover St € V; is the discrete counterpart of 5" and

{ AnE(Sa™, Do) = [on [EL(%" - MM+ 1<L((6§")T M+ M- (ﬁ")) $ 30V ﬁ"] VD,
Faie(Da) = — [ 20 - M.

If K;, E; > 0, problem (15) is coercive. Moreover if fg,ﬁ”,](L,EL € L*(Q), then the bilinear form aaig(-,-) and the linear func-
tional Faig(-) are bounded and problem (15) has a unique solution (see [43,44,51]).
The pre-stress term is updated as follows

ot = (VST T (VS
Once the displacement field is computed, the grid speed is calculated as i , = §2/At”.

4.2. Metric definition

A good metric definition is expected to preserve the mesh quality and, at the same time, relocate the nodes to get a more
accurate solution. Our goal is to construct the metric tensor M" relying upon a residual error estimate " = A%(R")? + A(J")*+
(D")* where

fi;; is the outward normal of the jth face of the rth element, | - |2 is the L? norm, and L? is the space of the squared Lebesgue-
integrable functions, see [44].

We choose an isotropic metric M" = Iyj". By doing so, the problem reduces to finding a suitable field #". Then, we define an
auxiliary variable " = (#")*/* that represents the local volumetric deformation induced by the metric M". We define " as the
solution of the following minimization problem

L an\2 0 a2
/;1:'}1&% i(ﬁr _ﬂr) +j(ﬁr _ﬁr> ’ (16)
where § is an appropriate weight factor (that will be defined later) and
S /K
pr=KrRr, pr=Y_t (17)

gn ’
v
R" being the ratio between the volume of the element ¢ at time t° and at time ¢"~'. Then

- I e (18)
| /e

ZE]RHGEH| S [2

As we will see shortly, the solution of (16) represents a compromise between the aim to distribute the error uniformly along
the cells and the necessity to maintain the overall mesh quality, by means of the weight 4.

The term (8} — Bﬁ)z /2 in problem (16) triggers the equidistribution of the error. Indeed our aim is to obtain that the con-
tribution to the error of each element in the grid at time t" is the same, that is

|eG<n+1

2
(5? |;Gn}> :(E?IB?)Z:Kg r:17"'vn§7
¥

where we have supposed that, for small grid deformations, the ratio |£;|/|e¢"~| is almost independent of the grid geometry.
On the contrary the term (8" — p")?/2 in problem (16) ensures that the grid does not experience an excessive deforma-

tion, and in particular, we would like to impose that the elements deform with the same volume variation, i.e.,
g =KR' r=1,....nS.

e
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The solution of (16) is

_ B+ By

b="15 (19)
We can show that (19) satisfies (11), in fact

/ \/det(Mn) Zﬁr|ec”
Then using (17) and (18) we get:

eGn
/ \/ det(Mn) (51<"Z7a"|e6"}+\/1<"2| ) =102+ 1) = Q.
QH

As regards the weight §, we choose

4 > max ma"iLIﬁ [g""“O., (20)

U- ﬁmax mm -L

are the maximum values of /}’r’, B and B are the minimum values of B;‘, B and U, £ are the upper and

where ﬁmaw ﬁmax min’ ﬁmm
lower bounds we want to impose on f,. Finally we have:

Proposition 1. If i/ > ., £ < "

min’

then (19) and (20) imply £ < B! < U.

Proof. f" is an increasing function of " and p", as

o1 g o

apr 1+07 7 apr 1+96
Therefore from (19) it follows that g < (ﬁmax + 5[1”,}1“)/( + 4). Since (20) implies (/fmax + 6[3”max> (14 9) < U, we get the first
part of the bound. With similar arguments the other bound holds. O

5. Handling of faults

In this section we address the problem of faults tracking. The nature of the fluid approach imposes to track the position of
a very thin layer representing the fault damaged volume. Many numerical approaches can be employed, such as the Lagrang-
ian [52] or the Eulerian [53] ones, but a complete review of all the tracking algorithms is beyond the scope of this work.
Moreover, all these techniques are designed to compute the evolution of surfaces, while here we are interested in reconstruc-
tion of volumes. Hence, these approaches would have implied to compute the distance between the fault surface and all the
mesh elements at each time step to identify the fault volume, a strategy that, from the computational viewpoint, could be
very expensive.

In order to devise an efficient approach, instead, we have developed a novel scheme which is able to track the damaged
volume directly. In particular, our approach is specifically designed to track volumes with a very high aspect ratio, which is
the case of the damaged fault volumes, and in addition, it retains the volume-conservation properties of the finite volume
methods.

5.1. A finite volume scheme

Let us introduce the fault function 27 such that
»>1/2 inQ,
7<1/2 inQ\ Q.
In addition, we define the viscosity abatement function , already introduced in (6), as
y= A in @,
1 inQ\Q,

where 0 < A < 1 is the viscosity abatement factor. The evolution of the fault function is determined by the following trans-
port equation in an ALE form:

ar

W+(u—ﬁg,A)-ﬁif =0. (21)
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The discrete counterpart of 7 (t, ) is A% (t,-) € Wo, where Wy = {¢, € [*(Q) : @ale, € P°, r=1,...,n.}, and is piecewise con-
stant on the elements. Its degrees of freedom at time t" are denoted with 27", We solve (21) with an element-based version
of the implicit tracking method developed in [23]. If it is necessary, the tracking is performed on a finer grid and then inter-
polated back onto the original one.

It is worth noting that the LS-VT coupled scheme is positive, i.e., 0 < /5 (t,-) < 1 for all t > 0. The next step is to develop a
proper set reconstruction technique, since the definition of the level set function here is different from the standard distance
function (see [53,54]).

5.2. Set reconstruction (continuous part)

The set reconstruction problem can be posed as follows: given /% and " = H(if —1/2), where H is the Heaviside function
1 ifx>0
H(x) = ’
) { 0 ifx<O,

find a new fault region function that is less diffused. In this section we construct a method in the continuous framework to
find a function 6 such that H(#) = Q”, given /7 and Q”. This is a tautology in the continuous framework, however, in the
discrete one H(0) can be used as the reconstruction of the fault function.

Let us now introduce the method in its continuous form. We define a coefficient «(t) as

a(0) = [ (76~ 1/DHE )~ 1/2). (22)
Q
The fault region can be found as H(0), where 0 satisfies
J= min § [o(0-i7)’,
0eL?(Q) ©
0=, (23)
0> 0.

We will see in a while that H(0) = H(" — 1/2).
Proposition 2. The solution of problem (23) is

0= (7 —1/2HUF —1/2).

Proof. See Appendix A. O

In our particular situation we choose 1~ = y,+, where - is the characteristic function of the domain Q. In this case we
have o = 1/2|Q%| = 1/2 [, »”. This choice has profound consequences on the discretized method, that we are going to intro-
duce shortly, since, in the discrete setting, 1/2 [, " can be estimated much better than (22). For instance, in the case
V -ii = 0, a(t) is constant, and any conservative numerical scheme for (21) will conserve J» 27 and, as a consequence, o(t).
Our tracking method is conservative (see [23]).

5.3. Set reconstruction (discrete part)

We approximate now 0 with ©®, € W, a piecewise constant function defined on the elements of the sub-grid. The discrete
counterpart of problem (23) has the form

.1 L2 1
ﬁﬁiéwrm)+d£m—@—AMm—ANG—m) (24)

where y e R, M : Q — Rand NV : Q — R are the three Lagrange multipliers that force respectively the first and the second
constraint in (23), and @4 < 1/2. The latter condition is not present in the continuous form, but comes from Proposition 2,
that imposes 0 < 1/2. Finally o is estimated as o = 1/2 [, 2.

The equivalent optimality conditions for (24) are:

@r:;uf+(Mr_Nr_71)7

e g
(5 1+ s - ).
r= r=

n

where M;, N;, ®, € W,. This system is solved using the Uzawa method (see [55,56]). At the end of the iterative cycle, the
function /% is reconstructed by setting 15 = H(@,). A one-dimensional (1D) example of the reconstruction algorithm is pro-
vided in Appendix B.
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6. Numerical results

We present now some numerical examples to demonstrate the capabilities of our mathematical modeling set up through
some realistic simulations. For the time being we only want to make sure that the numerical techniques we have chosen
work properly, as a complete physical validation test is beyond the scope of this work. However a physical discussion of
the numerical results is included.

6.1. Diapir growth

In the first example we perform a comparison between the results coming from our numerical simulations of the Ray-
leigh-Taylor instability (associated with diapirism) and published data. We consider a non-dimensional cube domain di-
vided into three layers, as shown in Fig. 3(a). The discretized geometry have roughly 12,000 nodes and 60,000 elements,
for a total amount of 228,000 DOF. For each layer we consider different geometrical and physical configurations, as outlined
in Table 1. In particular, we vary the viscosity of the middle layer in cases 1 and 2 and its thickness in cases 3 and 4. The
physical characteristics of the middle and the upper layers are left unchanged. Although they could be treated as a single
layer, we prefer to keep them separate to highlight our code robustness when dealing with highly deformed multiple layers.
As regards the boundary conditions, we apply a vertical free slip condition on the vertical walls and an homogeneous Dirich-
let condition on the top and on the bottom of the cube. The results are shown in Fig. 4 which can be directly compared with
Figure 8 of [40]: they show a good agreement between the two sets of results. In addition, in Fig. 3(b) we have an outline of
the layer geometries of case 1, in an advanced stage: this proves that our implicit tracking algorithm is able to treat highly
deformed geometries associated with mature diapirs. Finally, to give an idea of the computational efficiency, we remark that
all these test cases require a few hours on an Intel Core2 Duo laptop computer (processor T9300, 2.5 GHz).

6.2. Fault evolution

In this section we consider the 3D kinematic evolution of a faulted basin through two different examples, to highlight the
accuracy and the robustness of the methodology described in Section 5.

6.2.1. Fault accuracy
First of all we validate our approach comparing our results with those published in [13]. Since a two-dimensional case is
treated there, we choose a proper initial geometrical configuration that limits the effects of the third dimension. In addition,

(a) (b)

Fig. 3. Rayleigh-Taylor instability simulation. (a) Initial condition. (b) Final configuration: the interfaces between the three layers are depicted.

Table 1
Geometrical and physical configurations for the four test cases. All the values are given in non-dimensional units.
Case Lower layer Middle layer Upper layer
Density Viscosity Thickness Density Viscosity Thickness Density Viscosity Thickness
1 1 100.0 0.300 1.003 1 0.50 1.003 1 0.2
2 1 0.01 0.300 1.003 1 0.50 1.003 1 0.2
3 1 1.00 0.100 1.003 1 0.70 1.003 1 0.2
4 1 1.00 0.005 1.003 1 0.75 1.003 1 0.2
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Fig. 4. Two snapshots of the diapir evolution for the four cases of Table 1. As highlighted in [40], the level set technique for the tracking of the sediments
induces a slight noise in the representation of the sediment boundaries. This can be processed with some a posteriori regularization algorithms and, in
general, does not affect the accuracy of the solution.

the fault is placed in the center cross section, where the distance from the boundary is maximum. The basin has three layers as
in the diapir growth test case: the center layer has a rock-like behavior, while the other two have a salt behavior. In Fig. 5 only a
portion of the basin is depicted, corresponding to the two upper layers. The results we obtain in Fig. 5(a) and (b) are very sim-
ilar to those of the extensional case presented in Fig. 3 of [13]. In addition, in Fig. 5(c) and (d) a compressional case is presented.

6.2.2. Fault robustness

To highlight the robustness of our methodology in handling faults and large mesh distortions we impose a strong (and
unrealistic) lateral displacement to the boundaries of the domain, by applying a lateral velocity field, through a Dirichlet
boundary condition. In addition, to maximize the distortion effects, we set u? = 10?% Pa's for all the layers; in other words
we consider a consolidated rock behavior, which is quite an unrealistic assumption, since usually the shallower sediments
are weaker and less compacted. We also set the sediments density to 3000 kg/m> and a Newtonian rheological law. In Fig. 6
we can observe the sediments evolution. In particular Fig. 6(b) proves that even in presence of large distortions the meth-
odology devised in Section 5 is robust. Moreover, from the computational viewpoint, only a couple of remeshings steps are
required; they are made automatically when the estimated mesh quality goes beyond a prescribed threshold.

6.3. Realistic basin

The last example we present is a nearly realistic three-layered sedimentary basin with two faults and a salt layer. In
presence of salt layers, the above mentioned geological restoration approach is not able (for the time being) to support the

(a) (b) (c) (d)

Fig. 5. 2D view of the extensional (a) and (b) and compressional (c) and (d) examples; only the top-central portion of the basins is shown. The blue color
represents the salt layer while the red one represents the rock layer. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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(a) 0.000 Myr (b) 0.160 Myr

Fig. 6. The evolution of a three-layered faulted basin (vertical cut section at x = 6204 km).

geological interpreter in the modeling of the salt evolution. This issue makes the present case extremely interesting, as it
represents a good example to show how the methodology devised here can be used to help the interpreter in understand-
ing the salt behaviour. This process provides a more realistic description of the basin salt tectonics, improving the overall
petroleum system modeling. Even if the goal of numerical modeling in detail a real 3D basin is not yet achieved, it is
worthwhile to test our approach on a nearly realistic case. This would yield more insight about the directions to follow
in order to pursue the final goal of a realistic geological dynamic modeling. This example is also important in order to
prove the efficiency and the ability of our code to handle more realistic and topologically complicated geological
configurations, than just synthetic ones. Here we put together all the ingredients presented in this work, in particular
the tracking of the faults and of the subdomain horizons when they are strongly deformed by rapidly rising salt diapirs.
Computations have been run on an AMD Opteron 8212 Dual-Core 2 GHz processor; among the several simulation runs, the
one we present here has about 52 K nodes corresponding to about 1 million of degrees of freedom requiring approxi-
mately 6.2 Gb of RAM memory. The basin extension is 17.0 x 24.2 x 7.3 km? and it is subject to an extensional and down-
ward movement; we consider compaction, sedimentation, and we adopt a Carreau rheology model. In Fig. 7 we have
outlined the evolution of the sedimentary basin from 55.8 to 5.3 Myr ago, corresponding to three sedimentation events
occurred in the geological ages previously introduced. The five snapshots illustrated in Fig. 7 correspond to the five steps
resulting from geological restoration interpretation. In absence of a comparison between the modeled numerical dynamic
forward evolution and the kinematical inverse restoration, and due to the mentioned limitations of the geological
restoration, the results of the dynamical forward modeling must be validated by the geological interpreter according to
a suitable geological conceptual model (based on know-how, analogues, etc.), driving in this sense the understanding
of the salt behaviour.

At the very beginning of the simulation (t = 56 Myr ago, Fig. 7(a)) the model includes three layers labeled as Salt (in yel-
low?), Oligocene (in red), and Eocene (in blue). From this configuration, the simulation advances in time till 24 Myr ago. Then
we post-process the resulting configuration, and through the help of a dedicated model editing tool, we add the Early-
Miocene layer (in green, see Fig. 7(b)). From this new configuration we restart the simulation advancing till t=15.9 Myr
ago, when a new layer, the Mid-Miocene one (in orange), has been added (see Fig. 7(c)). With the same approach, we sub-
sequently add the Late-Miocene layer (t = 11.3 Myr ago, cyan in Fig. 7(d)) and the Pliocene layer (t = 5.1 Myr ago, magenta in
Fig. 7(e)). The layers properties are described in Table 2.

Remark 3. In our approach, the sedimentation process is discrete. In particular, the layers are added as blocks. This is a
simplified technique, and represents an approximation of the real sedimentation process, where the sediments are deposited
more continuously on the surface. Anyway, the ALE approach can easily handle a continuous sedimentary process for the
new layers, whose inclusion in the model will be considered in future works.

A particular care must be paid to the choice of a suitable time stepping restriction. The condition (9) imposes controlled
movements to the free surface and to the sediment horizons; in particular, it constrains the maximum oscillations between
layers. Moreover, a limit on the maximum time step increment is imposed by the user, according, by now, to the geological
scenario. In this simulation a 0.1 Myr maximum time step has been chosen, however, since the dynamic of the basin is rel-
atively fast, this choice has proven to be less restrictive, and the actual simulation timestep has been set by (9).

2 For interpretation of color in Fig. 7, the reader is referred to the web version of this article.
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(c) (d)

(e)

Fig. 7. The evolution of a two-faulted sedimentary basin. (a) 56 Myr ago, 3 layers. (b) 24 Myr ago, 4 layers. (c) 15.9 Myr ago, 5 layers. (d) 11.3 Myr ago, 6
layers. (e) 5.1 Myr ago, 7 layers.

Table 2

Physical characteristics of the layers of the realistic sedimentary basin, with two faults and a salt layer.
Sediment p° [10% kg/m?] 1° [10%°Pa 5] ¢°
Salt 2.15 2 0.05
Oligocene 2.65 205 0.68
Eocene 2.65 210 0.51
Early-Miocene 2.60 205 0.73
Mid-Miocene 2.55 195 0.74
Late-Miocene 2.55 200 0.82
Pliocene 2.50 195 0.83

In Fig. 8 we illustrate a couple of two-dimensional sections of the basin that outline the diapir growth and the overburden
deformation. The growth is very slow from 55.8 to 16.15 Myr ago. Then the evolution becomes very rapid and in about ten -
Myr the diapirs reach a mature stage.

Almost all the heavier overburden layers are pierced: this outlines the robustness of our approach with respect to topo-
logical changes. The growth at 5.3 Myr ago slowed down since most of the upper layers are under-compacted and are lighter
that the salt itself this effect flatten upper part of the diapirs. Their shape is compatible with the shapes shown in literature
(see [57]).
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56.0 Myr ago, @ = 3.36 km 56.0 Myr ago, * = 13.44 km

24.0 Myr ago, * = 3.36 km 24.0 Myr ago, x = 13.44 km

11.3 Myr ago, z = 3.36 km 11,3 Myr ago, « = 13.44 km

5.1 Myr ago, z = 3.36 km 5.1 Myr ago, z = 13.44 km

Fig. 8. A 2D view of two different cutting sections of the sedimentary basin.

7. Conclusions

In this work we have introduced an efficient numerical framework for simulating sedimentary basins evolution, endowed
with the modeling of some relevant physical features: compaction, movement of the domain boundaries, faults, and non-
Newtonian rheologies. The code has been tested specifically on each features through realistic numerical simulations, to
demonstrate its capability to correctly reproduce the physical behaviour. This is coupled with a reliable mathematical sup-
port for grid handling and boundary movement. The ALE scheme has proved to be robust and efficient, and only a few
remeshings are needed during long-run simulations.

Even if the approach is not yet applicable to real studies, it is however, in our opinion, more appropriate than other ap-
proaches present in the literature that are based on the application of already existing general purpose numerical libraries. In
the latter case all the effort is put in modifying the geological model characteristics so to fulfil the numerical constraints of
the library in use. Instead, in our case we are gradually increasing the capabilities of the proposed numerical approach so to
fully respect the geological characteristics and behaviour of the basin model. Although no real study have been performed
yet, some test cases regarding relatively small partitions of realistic basins suggest that our technique is promising. Certainly
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the computational burden when dealing with a real basin is very high, however our scheme has demonstrated an excellent
robustness even with very complex geometries. At the same time we are gaining more insight, from the issues that arise in
this step by step approach, about the direction to follow for our future developments. Further improvements are foreseen as
regards our time-splitting approach, whose architecture allows the substitution of a sub-block quite easily. In particular, the
Stokes solver can be improved by a more physical comprehensive approach, including for example the thermal effects on the
evolution of the dynamics, and elasticity and plasticity. In particular, these last aspects would allow to predict the formation
of faults, that is an essential aspect in many practical cases.

Finally, another important issue is the physical validation of our code. The confidence in the simulations is highly depen-
dent on the precision of the implemented models and on the accuracy of the numerical techniques by which they are solved.
A more involving test phase should be carried out at all levels to figure out whether the computed evolution of the basin is
coherent with well, seismic and experimental data collected on the ground.

Acknowledgments

This research has been founded by Eni S.p.A.; the advise and collaboration of Dr. Giovanni Scrofani from Eni GEBA Depart-
ment is kindly acknowledged.

Appendix A. Solution of the fault problem

The solution of problem (23) is
0=0"—1/2HGT -1/2). (A1)

Proof. We show that every perturbation of the solution (A.1) yields an increase of the functional J. Let us consider a small
perturbation of the solution that satisfies the constraints 6 = 0 4 ¢, where ¢ is a parameter that tends to zero, 0 is a
perturbation function that satisfies the constraints in (23). Therefore

s [0 TXee / é+/ 0=0 (A2)
T\ - ifXeQ” Joro Jaor '
Let us evaluate the functional J in 0 + &0:

PO U e 00— 7 2y (0o | BB F) 4 Y 2
j(9+.se)_2/9(9 ) +a/99(9 )+ 0(e) ](9)+&/gf(9(9 A)H/!We(e )+ 0(e).
From (A.1) we get
1

J0 -+ €0) = J(0) - 52 ;f i—e /s;/gf 0i7 +0(e2),

that, combined with the last equation of (A.2), leads to

J(0 +¢6) =J(6) + E/Q/Q; 9(% - Af> +0(&?).

The first order variation is positive as 2* < 1/2 and 0 > 0 outside Q”, therefore 0 is a minimum for J. O
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Fig. B.9. The reinitialization algorithm applied once (dashed line) and twice (solid line) to a highly diffused step function.
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Appendix B. The reconstruction algorithm applied to a simple case

Here we report a numerical result regarding a simple 1D case. We consider the function /(x) = x that can represent a
highly diffused step function. As we are interested in the advection of characteristic functions, we have to deal with its recon-
struction. Usually the sharp profile of a step function is diffused by the finite volume scheme and gets much smoother.
Clearly, in this case, our minimization problem (23) has an analytical solution that is:

)(X)i{o for x € [0,0.5],
1 forxe (0.5,1].

In Fig. B.9 a comparison between the original function before and after the reinitialization is shown. The algorithm pro-
vides a good reconstruction and a conservative behavior as the mass is conserved up to the 1%.
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