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Abstract

Background: The chemical master equation (CME) is a system of ordinary differential equations that describes

the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability

density vector of the system at each point in time. Solving the CME numerically is in many cases

computationally expensive or even infeasible as the number of reachable states can be very large or infinite.

We introduce the sliding window method, which computes an approximate solution of the CME by performing a

sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a

“window” into the state space. In subsequent steps, the window follows the direction in which the probability

mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic

approximation of the future behavior of the system by estimating upper and lower bounds on the populations of

the chemical species.

Results: In order to show the effectiveness of our approach, we apply it to several examples previously described

in the literature. The experimental results show that the proposed method speeds up the analysis considerably,

compared to a global analysis, while still providing high accuracy.

Conclusions: The sliding window method is a novel approach to address the performance problems of numerical

algorithms for the solution of the chemical master equation. The method efficiently approximates the probability

aA preliminary version of this paper appeared in proceedings of the International Conference on Computer Aided Verifica-
tion [1].
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distributions at the time points of interest for a variety of chemically reacting systems, including systems for

which no upper bound on the population sizes of the chemical species is known a priori.

1 Background

Experimental studies have reported the presence of stochastic mechanisms in cellular processes [2–10] and

therefore, during the last decade, stochasticity has received much attention in systems biology [11–16]. The

investigation of stochastic properties requires that computational models take into consideration the

inherent randomness of chemical reactions. Stochastic kinetic approaches may give rise to dynamics that

differ significantly from those predicted by deterministic models, because a system might follow very

different scenarios with non-zero likelihoods.

Under the assumption that the system is spatially homogeneous and has fixed volume and temperature, at

a each point in time the state of a network of biochemical reactions is given by the population vector of the

involved chemical species. The temporal evolution of the system can be described by a Markov

process [17], which is usually represented as a system of ordinary differential equations (ODEs), called the

chemical master equation (CME).

The CME can be analyzed by applying numerical solution algorithms or, indirectly, by generating

trajectories of the underlying Markov process, which is the basis of Gillespie’s stochastic simulation

algorithm [18,19]. In the former case, the methods are usually based on a matrix description of the Markov

process and thus primarily limited by the size of the system. A survey and comparisons of the most

established methods for the numerical analysis of discrete-state Markov processes are given by Stewart [20].

These methods compute the probability density vector of the Markov process at a number of time points

up to an a priori specified accuracy. If numerical solution algorithms can be applied, almost always they

require considerably less computation time than stochastic simulation, which only gives estimations of the

measures of interest. This is particularly the case if not only means and variances of the state variables are

estimated with stochastic simulation, but also the probability of certain events. However, for many realistic

Figure 1:
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systems, the number of reachable states is huge or even infinite and, in this case, numerical solution

algorithms may not be applicable. This depends mainly on the number of chemical species. In low

dimensions (say <10) a direct solution of the CME is possible whereas in high dimensions stochastic

simulation is the only choice. In the case of stochastic simulation estimates of the measures of interest can

be derived once the number of trajectories is large enough to achieve the desired statistical accuracy.

However, the main drawback of simulative solution techniques is that a large number of trajectories is

necessary to obtain reliable results. For instance, in order to halve the confidence interval of an estimate,

four times more trajectories have to be generated. Consequently, often stochastic simulation is only feasible

with a very low level of confidence in the accuracy of the results.

In this paper, we mitigate the performance problems of numerical solution algorithms for the CME. Instead

of a global analysis of the state space, we propose the sliding window method, which comprises a sequence

of analyzes local to the significant parts of the state space. In each step of the sequence, we dynamically

choose a time interval and calculate an approximate numerical solution for a manageable subset of the

reachable states. In order to identify those states that are relevant during a certain time period, for each

chemical species, we estimate an upper and lower bound on the population size. This yields the boundaries

of a “window” in which most of the probability mass remains during the time interval of interest. As

illustrated in Fig. 1, the window “slides” through the state space when the system is analyzed in a stepwise

fashion. In each step, the initial conditions are given by a vector of probabilities (whose support is

illustrated in light gray), and a matrix is constructed to describe the part of the Markov process where the

window (illustrated by the dashed rectangular) is currently located. Then the corresponding ODE is solved

using a standard numerical algorithm, and the next vector (illustrated in dark gray) is obtained.

We focus on two specific numerical solution methods, the uniformization method and the Krylov subspace

method. We compare their efficiency when they are used to solve the ODEs that arise during the sliding

window iteration. We also compare the sliding window method to the numerical algorithms applied in a

global fashion, that is, to all reachable states (not only to the states of the window), for systems of

tractable size. We are interested in the probability distribution of the Markov process and not only in

means and variances. These probabilities are difficult to estimate accurately with stochastic simulation.

Therefore, we compare the solution obtained by the sliding window method only to numerical solution

algorithms but not to stochastic simulation.

Recently, finite state projection algorithms (FSP algorithms) for the solution of the CME have been

proposed [21,22]. They differ from our approach in that they are based solely on the structure of the
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underlying graph, whereas the sliding window method is based on the stochastic properties of the Markov

process. The FSP algorithms start with an initial projection, which is expanded in size if necessary. The

direction and the size of the expansion is chosen based on a qualitative analysis of the system in a

breadth-first search manner. It is not clear how far the state space has to be explored in order to capture

most of the probability mass during the next time step. Thus, if the projection size is too small, the

computation has to be repeated with an expanded projection. Moreover, for most models, the location of

the main portion of the probability mass follows a certain direction in the state space, whereas the

expansion is done in all directions. Therefore, unnecessary calculations are carried out, because the

projection contains states that are visited with a small probability. By contrast, in the sliding window

approach, we determine the location and direction of the probability mass for the next computation step

based on the reaction propensities and the length of the time step. The projection that we obtain is

significantly smaller than the projection used in the FSP whereas the accuracy of our approach is similar

to the accuracy of the FSP. In this way we achieve large memory and computational savings, since the time

complexity of our window construction is small compared to the calculation of the probability distribution

of the window. In our simulations we never had to repeat the computation of the probabilities using a

window of larger size.

The Fokker-Planck equation is an approximation of the CME, for which a solution can be obtained

efficiently [23,24]. This approximation, however, does not take into account the discrete nature of the

system, but changes the underlying model by assuming a continuous state space. Other approaches to

approximate the probability distributions defined by the CME are based on sparse grid methods [25],

spectral methods [26], or the separation of time scales [27,28]. The latter approach uses a quasi-steady

state assumption for a subset of chemical species and calculates the solution of an abstract model of the

system. In contrast, we present an algorithm that computes a direct solution of the CME. Our method is

also related to tau-leaping techniques [19,29], because they require estimates of the upper and lower

bounds on the population sizes of the chemical species, just as our method. The time leap must be

sufficiently small such that the changes in the population vector do not significantly affect the dynamics of

the system. Our method differs from the calculation of the leap in predicting the future dynamics for a

dynamically chosen time period. More precisely, we determine the length of the next time step while

approximating the future behavior of the process.

A preliminary version of this paper appears as [1]. Here, we present the sliding window method in more

detail and provide an additional comparison between uniformization and Krylov subspace methods for the
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solution of the window. Moreover, we have improved our implementation of the algorithm and evaluated it

on more examples, such as the bistable toggle switch, which is reported in detail.

The remainder of this paper is organized as follows. Section 1.1 describes the theoretical framework of our

modeling approach. In Section 2.1 we present the sliding window method, and Section 2.2 focuses on

numerical solution approaches for the CME. Experimental results are given in Section 2.3, and finally,

Section 3 concludes the paper.

1.1 Stochastic model

We model a network of biochemical reactions as a Markov process that is derived from the stochastic

chemical reaction kinetics [17,30]. A physical justification of Markovian models for coupled chemical

reactions has been provided by Gillespie [18]. We consider a fixed reaction volume with n different

chemical species that is spatially homogeneous and in thermal equilibrium. A state of the system is given

by a vector x ∈ N
n
0 , where the i-th entry, denoted by xi describes the number of molecules of type i. We

assume that molecules collide randomly and chemical reactions occur at random times. By R1, . . . , Rk, we

denote the different types of chemical reactions and with each type Rm, m ∈ {1, . . . , k}, we associate a

propensity function αm : N
n
0 → R≥0. The propensity function is of the form

αm(x) = cm ·
n

∏

i=1

(

xi

li

)

, (1)

where cm > 0 is a constant and li is the number of molecules of type i that are consumed by a reaction of

type Rm. The propensity αm(x) determines the “speed” of the reaction Rm in x, as explained below. Note

that
∏k

i=1

(

xi

li

)

equals the number of all distinct combinations of reactants. Besides the propensity function,

we associate a change vector v(m) ∈ Z
n with Rm that describes the effect of reaction type Rm. If x is the

current state and αm(x) > 0 then x + v(m) is the state of the system after a reaction of type Rm. Note that

αm(x) > 0 implies that x + v(m) contains no negative entries.

We denote the initial state of the system by y ∈ N
n
0 and define S ⊆ N

n
0 as the set of all states reachable

from y via an arbitrary number of reactions, that is, S is the smallest subset of N
n
0 such that y ∈ S and

x′ ∈ S iff there exists m ∈ {1, . . . , k} and x ∈ S with αm(x) > 0 and x + v(m) = x′. Note that S is

countable but possibly infinite.

Example 1.1 We describe an enzyme-catalyzed substrate conversion by the three reactions

R1 : E + S → ES, R2 : ES → E + S, R3 : ES → E + P. This network involves four chemical species,

namely, enzyme (E), substrate (S), complex (ES), and product (P ) molecules. The change vectors are
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v(1) = (−1,−1, 1, 0), v(2) = (1, 1,−1, 0), and v(3) = (1, 0,−1, 1). For (x1, x2, x3, x4) ∈ N
4
0, the propensity

functions are

α1(x1, x2, x3, x4) = c1 · x1 · x2, α2(x1, x2, x3, x4) = c2 · x3, α3(x1, x2, x3, x4) = c3 · x3.

As above, the set of states reachable from the initial state y = (y1, y2, y3, y4) is finite because of the

conservation laws y1 = x1 + x3 and y2 = x2 + x3 + x4, where we assume that y3 = y4 = 0.

Example 1.2 We consider a gene expression model [13], which involves two chemical species, namely,

mRNA (M) and protein (P). Transcription of a gene into mRNA is modeled by reaction R1 : ∅ → M ,

translation of mRNA into protein by R2 : M → M + P , degradation of mRNA by R3 : M → ∅, and

degradation of proteins by R4 : P → ∅ . A state is a pair (xM , xP ) ∈ N
2
0. If we assume that initially there

are no mRNA molecules and no proteins in the system, i.e., y = (0, 0), then S = N
2
0 and thus infinite. The

propensity functions are

α1(xM , xP ) = c1, α2(xM , xP ) = c2 · xM , α3(xM , xP ) = c3 · xM , α4(xM , xP ) = c4 · xP .

1.2 Chemical master equation

We define a time-homogeneous, regular Markov process [31] (CTMC) (X(t), t ∈ R≥0) with state space

S ⊆ N
n
0 . We assume that the state changes of X are triggered by the chemical reactions. Let y be the

initial state of X, which means that Pr(X(0) = y) = 1. We assume that the probability of a reaction Rm

occurring in the next infinitesimal time interval [t, t + τ), τ > 0 is given by

Pr(X(t + τ) = x + v(m) | X(t) = x) = αm(x) · τ.

For x ∈ S we define the probability that X is in state x at time t by p(t)(x) = Pr
(

X(t) = x | X(0) = y
)

.

The chemical master equation (CME) describes the behavior of X by the differential equation [30]

∂p(t)(x)
∂t =

k
∑

m=1

αm(x−v(m))>0

αm(x − v(m)) · p(t)(x − v(m))

−
k
∑

m=1
αm(x)>0

αm(x) · p(t)(x).

(2)

In the sequel, a matrix description of Eq. (2) is more advantageous. It is obtained by defining the

infinitesimal generator matrix Q = (Q(x, x′))x,x′∈S of the CTMC X by

Q(x, x′) =











αm(x) if x + v(m) = x′,

−∑k
m=1 αm(x) if x = x′,

0 otherwise,
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where we assume a fixed enumeration of the state space. Note that the row sums of the (possibly infinite)

matrix Q are zero and λx = −Q(x, x), the exit rate of state x, is the reciprocal value of the average

residence time in x.

Let T (0) be equal to the identity matrix I, and, for τ > 0, let T (τ) be the transition probability matrix for

step τ with entries T (τ)(x, z) = Pr
(

X(t + τ) = z | X(t) = x
)

. The elements of T (τ) are differentiable and Q

is the derivative of T (τ) at τ = 0. If Q is given and X is known to be regular, T (τ) is uniquely determined

by the Kolmogorov backward and forward equations

∂T (τ)

∂τ
= Q · T (τ),

∂T (τ)

∂τ
= T (τ) · Q. (3)

with the general solution T (τ) = eQτ . Let p
(t) be the row vector with entries p(t)(x) for x ∈ S. Then the

vector form of the CME is

∂p(t)

∂t
= p(t) · Q. (4)

If supx∈S λx < ∞, Eq. (4) has the general solution

p
(t) = p

(0)eQt, (5)

where the matrix exponential is given by eQt =
∑∞

i=0
(Qt)i

i! .

In the sequel, we will exploit the fact that the set {T (τ) | τ ≥ 0} is a transition semi-group and satisfies the

Chapman-Kolmogorov equations [31] T (τ1+τ2) = T (τ1) · T (τ2) for all τ1, τ2 ≥ 0. Let t0, . . . , tr ∈ R≥0 be such

that t0 < · · · < tr. Then,
p

(tr) = p
(t1) ·T (t2−t1) · · · · ·T (tr−tr−1)

. . .
...

= p
(tr−1) ·T (tr−tr−1).

(6)

This means that, for t0 = 0 and tr = t, we obtain p
(t) by the iterative scheme in Eq. (3) for

t1 − t0, t2 − t1, . . . , tr − tr−1.

If the state space if infinite we can only compute approximations of p
(t). But even if Q is finite, several

factors can hamper the efficient solution of the matrix exponential in Eq. (5). First of all, the size of the

matrix Q might be large because it grows exponentially with the number of state variables. However,

usually Q is sparse, as the number of reaction types is small compared to the number of states. But even

when Q is sparse often only an approximate solution can be computed efficiently. Adding up a sufficiently

large number of terms of the infinite sum
∑∞

i=0
(Qt)i

i! is numerically unstable, as Q contains strictly positive

and negative entries, leading to severe round-off errors [32]. Various numerical solution methods exist for
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systems of first-order linear equations of the form of Eq. (4). However, many of them are not useful as they

do not preserve the sparseness of Q. Several surveys and comparisons exist in literature [20,33,34]. Most

popular are methods based on uniformization [35,36], approximations in the Krylov subspace [37], or

numerical integration [38,39]. We will describe the former two methods in more detail in Section 2.2.

2 Results
2.1 Sliding window method

The key idea of the algorithm proposed in this paper is to calculate an approximation p̂
(t) of p

(t) in an

iterative fashion, as described in Eq. (6). More precisely, we compute a sequence of approximations

p̂
(t1), . . . , p̂(tr) such that for a subset Wj of the state space, j ∈ {1, . . . , r}, p̂(tj)(x) ≈ p(tj)(x) for all

x ∈ Wj . The sets W1, . . . ,Wr are called windows, and we assume that Wj contains the states at which

(most of) the probability mass is concentrated during the time interval [tj−1, tj). We discuss the

construction of Wj in Section 2.1.1.

Let Qj be the matrix that refers to Wj , i.e., we define Qj(x, x′) = Q(x, x′) if x, x′ ∈ Wj , and Qj(x, x′) = 0

otherwise. Note that for the simplicity of our presentation we keep a fixed enumeration of S and assume

that each Qj has the same size as Q. However, the implementation of the method considers only the finite

submatrix of Qj that contains entries of states in Wj . For τj = tj − tj−1, we define

p̂
(tj) = p̂

(tj−1)Dj eQjτj , j ∈ {1, 2, . . . , r}, (7)

where p̂
(t0) = (1y)T and Dj is the diagonal matrix whose main diagonal entries are one for x ∈ Wj and

zero otherwise. The row vector (1y)T is one at position y and zero otherwise.

In the j-th step, the matrix eQjτj contains the probabilities to move in τj time units within Wj from one

state to another. As initial probabilities, Eq. (7) uses the approximations p̂(tj−1)(x) for all states x ∈ Wj .

The diagonal matrix ensures that the probability mass located in Wj−1 \ Wj is ignored during the

computation, that is, only elements of the intersection Wj−1 ∩ Wj can have nonzero entries in the vector

p̂
(tj−1)Dj . This is necessary because Qj does not contain the transition rates of states outside of Wj (these

states are absorbing). Intuitively, the vector p̂
(tj) describes the location of the probability mass after

moving within Wj .

Although Qj is not the generator of a CTMC, Eq. (7) has a simple interpretation for all states x ∈ Wj . Let

us fix j for the moment, and let the CTMC X̂ be identical to X, except that all states x′ 6∈ Wj are

absorbing (i.e., once x′ is reached, it cannot be left). Let the initial probability distribution of X̂ be such
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that Pr(X̂(0) = x) = p̂(tj−1)(x) for all x ∈ Wj . Then p̂(tj)(x) = Pr(X̂(tj − tj−1) = x), for all x ∈ Wj . For

all j, the vectors p̂
(tj) are substochastic, and the sum of their entries decreases in each step, i.e,

1 =
∑

x∈S

p̂(t0)(x) ≥
∑

x∈S

p̂(t1)(x) ≥ . . . ≥
∑

x∈S

p̂(tr)(x).

Probability mass is “lost”, because we do not consider the entries p̂(tj−1)(x) for x ∈ Wj−1 \ Wj , as we

multiply with Dj . In addition, we lose the probability to leave Wj within the next τj time units because

eQjτj is a substochastic matrix. If, for all j, during the time interval [tj−1, tj) most of the probability mass

remains within Wj , then the approximation error p(tj)(x) − p̂(tj)(x) is small for all x ∈ S. The probability

mass that is lost after j steps due to the approximation is given by

ηj = 1 −
∑

x∈Wj

p̂(tj)(x). (8)

Thus, if Eq. (7) is solved exactly, the total approximation error of the sliding window method is ηr. Note

that the error in Eq. (8) is the sum of the errors of all components of the vector p(tj).

2.1.1 Window construction

In each step of the iteration the window Wj must be chosen such that the error ηj is kept small. This is

the case if Wj satisfies the following conditions: (a) with a sufficiently high probability X(tj−1) ∈ Wj , (b)

the probability of leaving Wj within the time interval [tj−1, tj) is sufficiently small.

Requirement (a) implies that Wj contains a significant part of the support of p
(tj−1), that is, a subset

Sj ⊂ S such that 1 − ∑

x∈Sj
p(tj−1)(x) is small. In the first step we set S1 = {y}. For j > 1, the window

Wj is constructed after p̂
(tj−1) is calculated. We fix a small δ > 0 and choose Sj = {x | p̂(tj−1)(x) > δ}. If

the support of p̂
(tj−1) is large and distributes almost uniformly, it may be necessary to construct Sj such

that 1 − ∑

x∈Sj
p̂(tj−1)(x) is smaller than some fixed threshold. However, our experimental results show

that using a fixed threshold yields good results, which makes the additional effort of sorting the support of

p̂
(tj−1) unnecessary in practice. Note that requirement (a) implies that Wj and Wj−1 intersect. Thus, in

each step we “slide” the window in the direction that the probability mass is moving.

The sequel of this section focuses on requirement (b), where it is necessary to predict the future behavior of

the process. One possibility to find a set Wj that satisfies the requirements is to carry out stochastic

simulation for tj − tj−1 time units with initial states in Sj . This may be costly if we aim at an accurate

approximation. Most simulation runs correspond to the average behavior of the system. However, there

may be events that are less frequent, but that still have a significant probability. Therefore, we propose an
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idea that relies on a state-continuous deterministic approximation that, given an initial state z ∈ Sj ,

estimates the maximal and minimal values each state variable can take during the next τj = tj − tj−1 time

units. More precisely, for each dimension d ∈ {1, 2, . . . , n}, we calculate values b+
d (z), b−d (z) ∈ Z such that

1 − Pr
(

b−d (z) ≤ Xd(τ) ≤ b+
d (z), tj−1 ≤ τ ≤ tj , 1 ≤ d ≤ n | X(tj−1) = z

)

is small, where Xd(τ) is the d-th component of the random vector X(τ).

The computation of the extreme values b+
d (z), b−d (z) is carried out for several states z, which are chosen

uniformly at random. Our experimental results indicate that the accuracy of our results does not increase

when more than 10 states are considered. Let Aj ⊆ Sj be the set of random states. By computing

b+
d = maxz∈Aj

b+
d (z) and b−d = minz∈Aj

b−d (z), we obtain estimates for the maximal and minimal values of

each state variable during the time interval [tj−1, tj) under the condition that X(tj−1) ∈ Sj . Window Wj is

now constructed as the union of Sj and all states within b−d and b+
d , that is, Wj equals

Sj ∪
{

(x1, . . . , xn)∈S |b−d ≤xd≤ b+
d, 1 ≤d≤n

}

. (9)

For a fixed state z ∈ Aj we exploit the regular structure of the Markov chain for the computation of b+
d (z)

and b−d (z). We start in state z and update the state variables one by one. We assume that for a small time

interval of length ∆ the rate of reaction type Rm remains constant, i.e., is equal to αm(z). Then the

number of Rm-transitions within the next ∆ time units is Poisson distributed with parameter αm(z)∆. We

can approximate this number by the expectation αm(z)∆ of the Poisson distribution. Note that the above

assumption is warranted since in the case of coupled chemical reactions the propensities αm(x) are linear

or at most quadratic in x, if only elementary reactions are considered, i.e. reactions that correspond to a

single mechanistic step and have therefore at most two reactants. In general, reactions may have

intermediate products and/or parallel reaction pathways. They can, however, always be decomposed into

elementary reactions. As we are interested in an upper and lower bound, we additionally consider the

standard deviation
√

αm(z)∆ of the Poisson distribution. We assume that, if the current state is x, within

∆ units of time

• at least κ−
m(x,∆) = max(0, αm(x)∆ −

√

αm(x)∆),

• at most κ+
m(x,∆) = αm(x)∆ +

√

αm(x)∆

transitions of type Rm are taken. Note that if, for instance, αm(z)∆ = 1, then we have a confidence of

91.97 percent that the real number of reactions lies in the interval

[

αm(x)∆ −
√

αm(x)∆, αm(x)∆ +
√

αm(x)∆
]

. (10)
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Let κm ∈ {κ+
m, κ−

m} and l = 0, 1, . . .. The iteration

x(0) = z,

x(l+1) = x(l) +
∑k

m=1 v(m) · κm(x(l),∆)
(11)

yields continuous deterministic worst-case approximations of X(t + ∆),X(t + 2∆), . . . under the condition

that X(t) = z. For functions αm that grow extremely fast in the state variables, the iteration may yield

bad approximations because it is based on the assumption that the propensities are constant during [0,∆).

In the context of biochemical reaction networks, αm is at most quadratic and therefore the approximation

given by Eq. (11) yields adequate results. For a given system, we perform the approximation in Eq. (11)

for all possible combinations {κ+
1 , κ−

1 } × . . . × {κ+
k , κ−

k }. It is possible to skip combinations that treat

preferentially transition types leading to opposite directions in the state space, because they will not give a

worst-case bound. Consider, for instance, Ex. (1.1) with c1 = c2 = c3 = 1, z = (10, 10, 100, 0), and

∆ = 0.01. If we assume that more reactions of type R2 and R3 happen (than on average) and fewer of R1,

we get κ+
2 (z,∆) = κ+

3 (z,∆) = 100 · 0.01 +
√

100 · 0.01 = 2, and

κ−
1 (z,∆) = 10 · 10 · 0.01 −

√
10 · 10 · 0.01 = 0. This means that the number of complex molecules decreases

and x(1) = (14, 12, 96, 2). We can omit combinations that contain both κ+
1 and κ+

2 . As R1 equates R2 and

vice versa, these combinations will not yield good approximations of the extreme values of the state

variables. In general, the dependency graph of the reaction network may be helpful to identify those

combinations that maximize a certain population (see, for example, Fig. 3).

In the sequel, each chosen combination is referred to as a branch because, for fixed z, the corresponding

iterations lead to different successors x(l+1). Note that for a particular branch, for each m ∈ {1, . . . , k} we

fix κm = κ+
m, or κm = κ−

m for all l. The iteration ends after ⌈τj/∆⌉ steps (where the length of the last time

step is the remainder instead of ∆), and the extreme values b+
d (z) and b−d (z) are given by the minimal and

maximal values of the state variables during the iteration. More specifically, b+
d (z) = ⌈maxl x

(l)
d ⌉ and

b−d (z) = ⌊minl x
(l)
d ⌋, where 1 ≤ d ≤ n, x(l) = (x

(l)
1 , . . . , x

(l)
n ), and z = x(0).

The calculation of b+
d (z) and b−d (z) is described in pseudocode in Alg. 1, called ContDetApprox . Note that

the superscript i refers to the current branch and not to the iteration in Eq. (11) which is carried out in

line 19. The number of branches is 2n as maximal and minimal values for each dimension are necessary. In

line 17, we decide, depending on the current branch i, whether κm is set to κ+
m, or κ−

m.

Regarding the choice of the time step ∆, we suggest to to choose ∆ dynamically such that for each m the

interval in Eq. (10) covers at least, say, 80% of the probability mass of the corresponding Poisson

distribution. Clearly, the accuracy of the method increases in the case of larger intervals covering more
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Input: initial state z, length τ of time interval,

old boundaries b+= (b+
1 , . . . , b+

n ), b− = (b−1 , . . . , b−n )

Output: new boundaries b+= (b+
1 , . . . , b+

n ), b− = (b−1 , . . . , b−n )

1 for each branch i ∈ {1, . . . , 2n} do

2 x〈i〉 := z; //z is initial state of all branches

3 end

4 time := 0;

5 ∆ := step size; //choose length of time steps

6 while time < τ do

7 for each branch i ∈ {1, . . . , 2n} do

// compare current state variables with boundaries

8 for d = 1 to n do

9 if x
〈i〉
d > b+

d then

10 b+
d := x

〈i〉
d ; //adjust upper bound

11 end

12 if x
〈i〉
d < b−d then

13 b−d := x
〈i〉
d ; //adjust lower bound

14 end

15 end

16 for m := 1 to k do

//choose more/fewer transitions of type Rm

//depending on branch i

17 κm := choose(αm(x〈i〉) · ∆, i);

18 end

19 x〈i〉 := x〈i〉+
k
∑

m=1
v(m)κm; // update state (cf. Eq. (11))

20 end

21 time := time + ∆;

22 end

ALGORITHM 1: ContDetApprox (z, τ, b+, b−)

Input: initial state y, times t=(t0, . . . , tr), error ǫ > 0,

threshold δ > 0

Output: probability vectors p0, . . . ,pr

1 p0 = (1y)T ; //start with probability one in y

2 for j := 1 to r do

3 τj := tj − tj−1; //length of next time step

//define Sj for construction of Wj

4 Sj := {x | pj−1(x) > δ};
5 numStates := min(10, size(Sj));

//choose numStates random states from Sj

6 Aj := rand(Sj ,numStates);

7 b+ := −∞; b− := +∞; //initial boundaries

8 for each z in Aj do

//run continuous determ. approximation

//on z and update boundaries

9 (b+, b−) := ContDetApprox (z, τj , b
+, b−);

10 end

11 Qj := generator(Sj , b
+, b−); //construct Qj

//construct diagonal matrix for Wj (cf. Eq. (7))

12 Dj := diag(Sj , b
+, b−);

13 pj := Solve(pj−1Dj , Qj , τj , ǫ
τj

tr−t0
); //solve Eq. (7)

14 end

ALGORITHM 2: sWindow(y, t, ǫ, δ)

probability mass. For our experimental results, we chose ∆ such that λx · ∆ = 1 yielded sufficiently

accurate results (see Section 2.3).

2.1.2 Sliding window algorithm

Alg. 2 describes the main procedure, called sWindow , in pseudocode. The for loop in lines 2–14 implements

the approximations of p
(t1), . . . ,p(tr) by successively computing vector pj from pj−1. Input ǫ is a bound

for the total approximation error caused by the solutions of the ODEs in line 13. The array t contains the

time instances t0, . . . , tr. For the experimental results in Section 2.3 we compare two different time

stepping mechanisms that are explained below. The parameter δ is the threshold that is used to remove

those states in the support of pj−1 having a smaller probability than δ. We define Sj as the set of all states

x for which pj−1(x) is greater than δ in line 4. Note that for j = 1 the set S1 contains only the initial state
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y. In line 6, rand(Sj ,numStates) returns a set of numStates random elements from Sj that are used to

construct the vectors b+ and b− in lines 7–10. The rate entries of all states in the window Wj (cf. Eq. (9))

are calculated in line 11, and all remaining entries in Qj are set to zero. A solution method is invoked in

line 13 to calculate pj from pj−1. This can be, for instance, the uniformization method (cf. Section 2.2.1),

an ODE solver or a method based on an approximation in the Krylov subspace (cf. Section 2.2.2). We pass

a time step of length τj and the corresponding fraction ǫ
τj

tr−t0
of the approximation error.

We can calculate the overall loss of probability mass from the output pr by ηr = 1 − ∑

x pr(x). This value

includes both approximation errors of the algorithm: (1) the probability of leaving window Wj during the

time interval [tj−1, tj) and (2) the probability
∑

x6∈Wj
p̂(tj)(x) that is lost due to the sliding of the window,

obtained by the multiplication with Dj (cf. Eq. (7)).

Note that it is always possible to repeat a computation step in order to increase the obtained accuracy.

More precisely, we can determine a larger window by increasing the confidence of the interval in Eq. (10),

i.e. by choosing the time step ∆ such that for each m the maximal/minimal number of transitions of type

Rm lies in the interval with a certain confidence (e.g. with a confidence of 80%). For our experimental

results, however, we did not repeat any computation step since we always obtained sufficiently accurate

results (see Section 2.3).

2.1.3 Time intervals

For the experimental results in Section 2.3 we compare two different time stepping mechanisms for Alg. 2.

We either choose equidistant time steps τj = τ , for all j, or we determine τj during the construction of the

window Wj . The latter method yields faster running times. Depending on the dynamics of the system,

long time steps may cause three problems: (1) the window is large and the size of the matrix Qj may

exceed the working memory capacity, (2) the dynamics of the system may differ considerably during a long

time step and Qj has bad mathematical properties, (3) the window may contain states that are only

significant during a much shorter time interval. If, on the other hand, the time steps are too small then

many iterations of the main loop have to be carried out until the algorithm terminates. The windows

overlap nearly completely, and even though each step may require little time, the whole procedure can be

computationally expensive. One possibility is to fix the size of the windows and choose the time steps

accordingly. But this does not necessarily result in short running times of the algorithm either. The reason

is that the time complexity of the solution methods does not depend only on the size of the matrix

representing the window but also on its mathematical properties (cf. Section 2.2).
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The problems mentioned above can be circumvented by calculating τ1, . . . , τr during the construction of

the window Wj as follows. We compute the number of the states that are significant at time tj−1 and pass

it to ContDetApprox in line 9. We run the while loop in Alg. 1 until (1) the window has at least a certain

size and (2) the number of states in the window exceeds twice the number of the states that are significant

at time tj−1. The first condition ensures that the window exceeds a certain minimum size of, say, 500

states. The second condition ensures that the new window is just big enough to move the probability mass

to a region outside of Sj . More precisely, it ensures that the sets S1, S2, . . . are not overlapping and that

subsequent sets are located next to each other (as illustrated in Fig. 1). Note that this ensures that the

resulting window does not contain many states that are only significant during a much shorter time interval.

On termination of the while-loop, we pass the value of the variable time from ContDetApprox to sWindow

and set τj to the value of time. Obviously, in sWindow we add a variable representing the time elapsed so

far, and the for loop in line 2 is replaced by a while loop that stops when the time elapsed so far exceeds t.

In Section 2.3, we present experimental results of the sliding window method where we choose the time

steps in the way described above.

2.2 Numerical solution methods

In this section, we present the theoretical basis of two numerical solution algorithms, namely the

uniformization method and the Krylov subspace method. We approximate a global solution of the CME

(cf. Eq. (5)), as well as the local solutions that are required in line 13 of Alg. 2 (see also Eq. (7)).

2.2.1 Uniformization

The uniformization method goes back to Jensen [35] and is also referred to as Jensen’s method,

randomization, or discrete-time conversion. In the performance analysis of computer systems, this method

is popular and often preferred over other methods, such as Krylov subspace methods and numerical

integration methods [20,40]. Recently, uniformization has also been used for the solution of the

CME [41–43].

Global uniformization. Let (X(t), t ∈ R≥0) be a CTMC with finite state space S. The basic idea of

uniformization is to define a discrete-time Markov chain (DTMC) and a Poisson process. The DTMC is

stochastically identical to X, meaning that it has the same transient probability distribution if the number

of steps within [0, t) is given, and the Poisson process keeps track of the time as explained below.

Recall that λx is the exit rate of state x ∈ S, and I is the identity matrix. We define a uniformization rate
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λ such that λ ≥ maxx∈S λx and construct P = I + 1
λQ, the transition matrix of the DTMC associated with

X. Note that a diagonal entry in P defines the self-loop probability 1− λx/λ of a state x, which is nonzero

if and only if λ > λx. For k ≥ 1, the stochastic matrix P k contains the k-step transition probabilities and,

if p
(0) is the initial distribution of X, the vector w

(k) = p
(0)P k contains the state probabilities after k steps

in the DTMC. The number of steps within time interval [0, t) has a Poisson distribution with parameter λt,

i.e.,

Pr
(

k steps until time t
)

= e−λt (λt)k

k!
. (12)

Now, the solution of the transient state probabilities in Eq. (5) can be rewritten as [20,33,44]

p
(t) = p

(0)
∞
∑

k=0

e−λt (λt)k

k!
P k =

∞
∑

k=0

e−λt (λt)k

k!
w

(k). (13)

Eq. (13) has nice properties compared to Eq. (5). There are no negative summands involved, as P is a

stochastic matrix and λ > 0. Moreover, w
(k) can be computed inductively by

w
(0) = p

(0), w
(j) = w

(j−1)P, j ∈ {1, 2, . . .}. (14)

If P is sparse, w
(k) can be calculated efficiently even if the size of the state space is large. Lower and upper

summation bounds L and U can be obtained such that for each state x the truncation error [45]

p(t)(x) −
U
∑

k=L

e−λt (λt)k

k! w(k)(x) =
∑

0≤k<L,

U<k<∞

e−λt (λt)k

k! w(k)(x) ≤ ∑

0≤k<L,

U<k<∞

e−λt (λt)k

k!

= 1 −
U
∑

k=L

e−λt (λt)k

k! < ǫ

(15)

can be a priori bounded by a predefined error tolerance ǫ > 0. Thus, p
(t) can be approximated with

arbitrary accuracy by

p
(t) ≈

U
∑

k=L

e−λt (λt)k

k!
w

(k) (16)

as long as the required number of summands is not extremely large.

Time complexity and stiffness. As λt grows the Poisson distribution flattens, and the left truncation

point L in Eq. (16) grows linearly in λt, while the number of significant Poisson probability terms is [45]

O(
√

λt). If the vectors w
(L),w(L+1), . . . ,w(U) are computed using U matrix-vector multiplications (cf.

Eq. (14)), then the complexity of the uniformization procedure is O(νλt) where ν is the number of nonzero

elements in P .

All analysis methods (simulation-based or not) encounter serious difficulties if the underlying model is stiff.

In a stiff model the components of the underlying system act on time scales that differ by several orders of
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magnitude and this arises in various application domains, especially in systems biology. For a stiff model,

the uniformization rate λ ≥ maxx∈S λx will correspond to the fastest time scale. By contrast, a significant

change of the slow components can be observed only during a period of time that corresponds to the

slowest time scale. The uniformization method is then extremely time consuming because of a very large

stiffness index [46] t · maxx∈S λx.

In the sequel, we show how uniformization can be applied in a local fashion such that stiffness has a less

negative effect on the performance of the method. In other words, the sliding window technique enables

uniformization to perform well even for stiff systems.

Local uniformization. We now combine uniformization and the sliding window method. Assume that S

may be infinite, and that we iteratively apply uniformization to solve Eq. (7). More specifically, in line 13

of Alg. 2, we invoke the uniformization method to approximate

p̂
(tj) = p̂

(tj−1)Dj eτjQj .

Thus, Pj = I + 1
λj

Qj is a substochastic transition matrix, where λj = maxx∈Wj
λx. By using the same

calculation as in Eq. (16), we obtain a substochastic vector

p̂
(tj) = p̂

(tj−1) · Dj ·
U
∑

k=L

e−λjτj · (λjτj)
k

k! · Pj
k =

U
∑

k=L

e−λjτj · (λjτj)
k

k! · ŵ(k)
j , (17)

where L and U are the truncation points depending on λjτj , and ŵ
(k)
j = p̂

(tj−1)Dj Pj
k. Moreover, as λj

depends only on Wj , the uniformization rate is usually smaller than the global one, supx∈S λx, which

means that fewer terms are required in Eq. (17) than in Eq. (16).

The computational complexity of the whole procedure is O(
∑r

j=1 νjλjτj), and thus, we save computation

time, compared to global uniformization, if
∑r

j=1 νjλjτj ≪ νλt, where λ = supx∈S λx and νj is the number

of nonzero elements in Pj .

2.2.2 Krylov subspace

Krylov subspace methods are widely used for large eigenvalue problems, for solving linear equation

systems, and also for approximating the product of a matrix exponential and a vector [47,48]. We are

interested in the latter approximation and show how it can be used to solve the CME, either in a global

fashion or in combination with the sliding window method. Recently, Krylov subspace methods have been

applied to the CME by Sidje et al. [22].

Global Krylov subspace method. Recall that a global solution of the CME is given by p
(t) = p

(0)eQt.

In the sequel, we describe the approximation of etA
v, where A is an N × N square matrix and v is a
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column vector of length N . We obtain an approximation of p
(t) by choosing A = (Q)T and v = (p(0))T .

Let us first assume that t = 1. The main idea is to generate a basis of the m-th Krylov subspace

Km = Span{v, Av, . . . , Am−1
v},

and to seek an approximate solution for eA
v from this subspace. Let qmin be the nonzero monic

polynomial of lowest degree such that qmin(A)v = 0. We choose m ∈ N such that the degree of qmin is

greater or equal to m. In this case, the vectors v, Av, . . . , Am−1
v are linearly independent, and for every

element x ∈ Km there exists a polynomial q of degree at most m− 1 with x = q(A)v. Note that in practice

we choose m = 30 or m = 20, because the degree of qmin is usually greater than 30. However, if not, the

problem can be solved exactly in the d-th Krylov subspace, where d is the degree of qmin. Working directly

with the basis {v, Av, . . . , Am−1
v} is numerically unstable. Therefore, we construct an orthonormal basis

{v1,v2, . . . ,vm} for Km by applying Arnoldi’s algorithm to v, Av, . . . , Am−1
v. Let Hm be the m × m

upper Hessenberg matrix computed by the Arnoldi algorithm and let hm+1,m be the last normalization

value. By Vm we denote the N × m matrix with column vectors v1,v2, . . . ,vm. Then

(a) AVm = VmHm + hm+1,mvm+1e
T
m,

(b) V T
m AVm = Hm,

(18)

where ek is a column vector of appropriate size whose k-th component is one and all other components are

zero. Intuitively, Eq. (18)(b) states that Hm is the matrix projection of A onto Km w.r.t. the basis defined

by Vm. An approximation of eA
v in Km expressed using Vm is eA

v ≈ Vmy, where y is a vector of size m.

We choose

y = ||v||2 eHme1, (19)

which yields the approximation error [47]

∣

∣

∣

∣eA
v − ||v||2 VmeHme1

∣

∣

∣

∣

2
≤ 2 ||v||2

ρmeρ

m!
, (20)

where ρ = ||A||2 is the spectral norm of A. The approximation in Eq. (19) still involves the computation of

the matrix exponential of Hm, but as Hm is of small dimension and has a particular structure (upper

Hessenberg), this requires a smaller computational effort. For the matrix exponential of small matrices,

methods such as Schur decomposition and Padé approximants may be applied [32].

Assume now that the time instant t is arbitrary, i.e., we want to approximate etA
v for some t > 0. In order

to control the approximation error, we calculate etA
v stepwise by exploiting that e(τ1+τ2)Av = eτ2A · eτ2A

v

for τ1, τ2 ≥ 0. For a step size τ , we approximate eτA
v by ||v||2 VmeτHme1 because the Krylov subspaces
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Figure 2:

associated with A and τA are identical and V T
m (τA)Vm = τHm. It follows from Eq. (20) that we have a

small error bound if ||Aτ ||2 is small.

To summarize, the Krylov subspace method approximates eAt
v by an iteration stepping forward in time

with dynamically chosen step sizes τ1, τ2, . . .. In each iteration step, we compute a vector

ui = ||ui−1||2 V (i)
m eτiH

(i)
m e1,

where initially u0 = v. The matrices V
(i)
m and H

(i)
m result from the i-th execution of Arnoldi’s algorithm for

the construction of an orthonormal basis of the subspace Span{ui−1, Aui−1, . . . , A
m−1

ui−1}. When the

elapsed time equals t, we obtain an approximation of eAt
v.

For the step size of the Krylov subspace method, a popular heuristic is to choose τi+1 depending on an

estimate of the error ǫi of the previous step. Let tol > 0 be an a priori specified tolerance. A common

scheme consists of three steps [37]. (1) Define τi = 0.9( tol
ǫi−1

)1/mτi−1, (2) compute ui and the error

estimation ǫi. (3) If ǫi > 1.2 tol reject ui, replace ǫi−1 with ǫi, and go to step (1). For the experimental

results in Section 2.3, we used the Expokit software [49] where the small exponential, eτHm , is computed

via the irreducible Padé approximation [50].

Local Krylov subspace method. Assume now that we use the Krylov subspace method in line 13 of

Alg. 2, to approximate p̂
(tj−1)Dj eQjτj (cf. Eq. (7)). By letting v = (p̂(tj−1)Dj)

T , A = QT
j , and t = τj we

can apply the same procedure as in the global case. Note that this yields a nested iteration because the

time steps τj are usually much bigger than the time steps of the Krylov subspace method. For the Krylov

subspace method, using the matrix Qj instead of Q offers important advantages. The Arnoldi process is

faster as Qj usually contains fewer nonzero entries than Q. As well, the sliding window method is likely to

provide matrices with a smaller spectral norm ||Qj ||2. This allows for bigger time steps during the Krylov

approximation, as can be seen in our experimental results in Section 2.3.

2.3 Experimental results

We coded Alg. 1 and Alg. 2 in C++ and ran experiments on a 3.16 GHz Intel dual-core Linux PC. We

discuss experimental results that we obtained for the two examples of Section II (cf. Ex. 1.1 and Ex. 1.2),

as well as Goutsias’ model [51] and a bistable toggle switch [52]. Goutsias’ model describes the

transcription regulation of a repressor protein in bacteriophage λ and involves six different species and ten
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reactions. The bistable toggle switch is a prototype of a genetic switch with two competing repressor

proteins and four reactions. All results are listed in Table 1.

As explained in detail below, we also implemented the method proposed by Burrage et al. [22] in order to

compare it to our algorithm in terms of running time and accuracy. Moreover, for finite examples we

compare our method to a global analysis, i.e. where in each step the entire state space is considered. We

do not compare our method to Gillespie simulation or approximation methods based on the Fokker-Planck

equation. The former method provides only estimates of the probability distribution and becomes

infeasible if small probabilities are estimated [53]. The latter type of methods do not take into account the

discreteness of the molecule numbers and are known to provide bad approximations in the case of small

populations as considered here [54].

2.3.1 Parameters

We fixed the input ǫ = 10−8 of Alg. 2 for all experiments. We chose the input δ in a dynamical fashion to

ensure that in the j-th step we do not lose more probability than 10−5 · τj/(tr − t0) by restricting to

significant states, that is, we decrease δ until after line 4 of Alg. 2 the set Sj contains at most 10−5 · τj

tr−t0

less probability than the former set Sj−1. In Table 1, we list the average value that we used for δ.

In the sequel, we give details about the parameters used for the results that we obtained for Ex. 1.1 and

Ex. 1.2. For the remaining two examples, we list the corresponding chemical reactions and the parameters

that we chose for the results in Table 1.

Enzyme example. We tried different parameter sets, referred to as pset a)-c), for Ex. 1.1 (see Table 1).

For parameter combination a) we have c1 = c2 = 1, c3 = 0.1 and start with 1000 enzymes and 100

substrates. In this case the number of reachable states is 5151. For parameter set b) and c) we have

c1 = c2 = c3 = 1 and and start with 100 enzymes and 1000 substrates and 500 enzymes and 500 substrates,

which yields 96051 and 125751 reachable states, respectively. Each time we choose the time horizon

according to the time until most of the probability mass is concentrated in the state in which all substrate

molecules are transformed into products. For the time steps τj in Alg. 2, we apply the condition described

in Section 2.1.3.

We consider four branches for the iteration in Eq. (11) in order to determine upper and lower bounds on

the state variables. (1) To obtain an estimate for the maximal number of complex molecules (and a

minimum for the enzyme population), we enforce more reactions of type R1 than on average (κ1 = κ+
1 ),

and fewer of types R2 and R3 (κ3 = κ−
3 and κ2 = κ−

2 ). (2) By considering fewer reactions of type R1
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parameters results

name of example
time

horizon
δ

sWindow +

uniform.

sWindow +

Krylov

window

construction

error times in sec perc.
average

wind. size

1 Enzyme (pset a) 70 10−8 1.4 × 10−5 6 5 1% 977

2 Enzyme (pset b) 12 10−10 3.3 × 10−5 134 98 14% 4777

3 Enzyme (pset c) 5 10−10 3.5 × 10−7 8 6 37% 5038

4 Gene (pset a) 104 10−10 1.6 × 10−5 103 102 36% 32248

5 Gene (pset b) 104 10−10 1.8 × 10−5 137 123 32% 38282

6 Goutsias’ model 300 10−11 7.6 × 10−5 15943 8412 15% 538815

7 Toggle switch 104 10−15 2.7 × 10−5 31 10 1% 63001

Table 1: Parameters and results of the sliding window method

(κ1 = κ−
1 ), and more of types R2 and R3 (κ3 = κ+

3 and κ2 = κ+
2 ) the complex population becomes minimal

(and the enzyme population maximal). (3) An estimate for the minimal number of type P molecules (and

the maximal number of type S molecules) is obtained by enforcing more reactions of type R2 (κ2 = κ+
2 ),

and fewer of types R1 and R3 (κ1 = κ−
1 and κ3 = κ−

3 ). (4) Finally, more reactions of types R1 and R3

(κ1 = κ+
1 and κ3 = κ+

3 ), and fewer of type R2 (κ2 = κ−
2 ) gives a maximal increase of the number of

product molecules (and minimizes the number of substrate molecules).

For the enzyme example, if the initial conditions are fixed a state is uniquely determined by at least two

entries, say, the population of complex and product molecules. However, a rectangular window shape yields

poor results if the expected number of complex molecules is high. The reason is that in this case the

probability mass is located on a diagonal (cf. Fig 2). If the set of significant states is captured by a

rectangular window it may contain many states that are not significant. This problem can be circumvented

by considering bounds for all state variables during the window construction as well as the conservation

laws. More precisely, the parallelogram in Fig. 2 are constructed by computing for each value x4 ∈ [b−4 , b+
4 ]

of P upper and lower bounds on ES by min{b+
3 , y1 − b−1 , y2 − x4 − b−2 } and max{b−3 , y1 − b+

1 , y2 − x4 − b+
2 },

where y = (y1, y2, 0, 0) is the initial population vector and b+ = (b+
1 , b+

2 , b+
3 , b+

4 ) and b− = (b−1 , b−2 , b−3 , b−4 )

are the upper and lower bounds on the populations of E, S, ES, and P .

Note that the parallelogram in Fig. 2 was induced by the conservation laws of the system. In general,

conservation laws should be taken into account since otherwise the window may be inconsistent with the
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Figure 3: Dependencies between the reactions of Goutsias’ model.

conservation laws, i.e. it may contain states that are not reachable.

Gene expression example. In Table 1 we present results for Ex. 1.2. The difference between parameter

set a) and parameter set b), referred to as pset a) and pset b), is that for a) we start with the empty

system and for b) we start with 100 mRNA molecules and 1000 proteins. For both variants, we choose rate

constants c1 = 0.5, c2 = 0.0058, c3 = 0.0029, c4 = 0.0001. The time steps that we use are determined by

the condition in Section 2.1.3. Note that we cannot solve this example using a global method because the

number of reachable states is infinite. The column error contains the total error ηr (see Eq. (8)) and times

in sec refers to the running time in seconds. In column perc. we list the percentage of the total running

time that was spent for the window construction. The column average wind. size refers to the average

number of states in the window.

For the gene expression example, we use four branches: We maximize the number of mRNA molecules by

choosing κ+
1 and κ−

3 and minimize it with κ−
1 and κ+

3 . Reactions R2 and R4 are irrelevant for this species.

We maximize the protein population by choosing κ+
1 , κ+

2 , κ−
3 , and κ−

4 and minimize it with κ−
1 , κ−

2 , κ+
3 ,

and κ+
4 .

Goutsias’ model. The model, referred to as Goutsias’ model in Table 1, is composed by the following

chemical reactions [51]:

1: RNA → RNA + M 6: DNA.D → DNA + D

2: M → ∅ 7: DNA.D + D → DNA.2D

3: DNA.D → RNA + DNA.D 8: DNA.2D → DNA.D + D

4: RNA → ∅ 9: M + M → D

5: DNA + D → DNA.D 10: D → M + M

We used the same kinetic constants as Goutsias [51] and Sidje et al. [22], as well as the same initial state.

Below, we list the branches for upper bounds on the state variables. Lower bounds are obtained if the

opposite combination is considered, respectively. We refer to Fig. 3 for an illustration of the dependencies

between the reactions that simplifies the choice of the branches. We maximize the RNA population by

choosing the combination κ−
1 , κ−

2 , κ+
3 , κ−

4 , κ+
5 , κ−

6 , κ−
7 , κ+

8 , κ+
9 , κ−

10. We maximize the monomer

population by choosing the combination κ+
1 , κ−

2 , κ+
3 , κ−

4 , κ+
5 , κ−

6 , κ−
7 , κ+

8 , κ−
9 , κ+

10. We maximize the

number of dimer molecules by choosing the combination κ+
1 , κ−

2 , κ+
3 , κ−

4 , κ+
5 , κ−

6 , κ−
7 , κ+

8 , κ+
9 , κ−

10. Note

that although dimers are consumed by reaction 5, choosing κ+
5 maximizes the number of dimers in the
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Figure 4: The probability distribution of monomers (left) and dimers (right) during the time interval [0, 300).

system. This is because reaction 5 is necessary to produce monomers and therefore also dimers.

We never run out of memory with the sliding window method, but the running times can be huge for a

long time horizon. The reason is that the windows are large since the system contains many monomers and

dimers at later time instances. For the results in Table 1 we considered the system till time t = 300,

whereas for Sidje et al. [22], the longest time horizon is t = 100. In Fig. 4 we plot the distribution of the

species M and D.

Bistable toggle switch. The toggle switch involves two chemical species A and B and four reactions. Let

x = (x1, x2) ∈ N
2
0. The reactions are ∅ → A, A → ∅, ∅ → B, B → ∅ and their propensity functions

α1, . . . , α4 are given by α1(x) = c1/(c2 + xβ
2 ), α2(x) = c3 · x1, α3(x) = c4/(c5 + xγ

1), α4(x) = c6 · x2. Note

that in this example the propensity functions are not of the form described in Eq. 1. For our experimental

results, we chose the same parameters as Sjöberg et al. [24], that is, c1 = c4 = 3 · 103, c2 = c5 = 1.1 · 104,

c3 = c6 = 0.001, and β = γ = 2. The initial distribution is a Gaussian distribution N (µ, σ2) with

µ = (133, 133)T and σ = (
√

133,
√

133). We consider the obvious four branches each of which is intended to

minimize/maximize one of the two components. The branch minimizing A for example will have less of the

first reaction and more of the second.

2.3.2 Accuracy

The column labeled by error in Table 1 shows the total error ηr (cf. Eq. (8)) of the sliding window method

plus the uniformization error (which is bounded by ǫ = 10−8). The error using the Krylov subspace method

instead yields the same accuracy because for both, uniformization and the Krylov subspace method, the

error bound is specified a priori. For all examples, the total error does not exceed 1 × 10−4, which means

that not more than 0.01 percent of the probability mass is lost during the whole procedure. It would, of

course, be possible to add an accuracy check in the while loop of Alg. 2, expand the current window if

necessary, and recalculate. But as the method consistently returns a small error, this has been omitted.

We also considered relative errors, that is, (p(tj)(x) − p̂(tj)(x))/p(tj)(x) for states x ∈ Wj with

p(tj)(x) > 10−5. We approximate the value p(tj)(x) by solving Eq. (13) via global uniformization, where we

use truncation error ǫ = 10−8. Since this is only possible if the state space is finite, we compared relative

errors only for the enzyme example. Our calculations show that the relative errors are always smaller than

22



10−4.

In order to support our considerations in Section 2.1.1, we carried out experiments in which we exclusively

chose the average in line 17 of Alg. 1. More precisely, for the construction of the window we do not

consider the deviations in the numbers of reactions but only the average number. In this case, we called

the method ContDetApprox with input 2τ to make sure that on average the probability mass moves to the

center of the window and not too close to the borders. For this configuration, the total error is several

orders of magnitude higher, e.g., for parameter set a) of the enzyme example the total error is 0.0224.

Finally, we test the size of the windows constructed in lines 7–10 of Alg. 2. We change Alg. 2 by decreasing

the size of the window by 5% between lines 10 and 11. In this case, the total error ηr increases. For

instance, ηr = 0.35% for parameter set a) of the enzyme example. These results substantiate that the size

and the position of the sliding window is such that the approximation error is small whereas significantly

smaller windows result in significantly higher approximation errors.

2.3.3 Running time

For the time complexity analysis, we concentrate on three main issues.

• Sliding window method vs. global analysis: We compare the sliding window method with a global

solution in one step, and with another window method, where the size of the window is doubled if

necessary.

• Solution method (uniformization vs. Krylov subspace method): In Alg. 2, we vary the solution

method by exchanging uniformization with the Krylov subspace method.

• Time intervals (equidistant vs. condition from Sec. 2.1.3): We use different methods to determine the

length τj of the next time step in line 3 of Alg. 2.

Sliding window method vs. global analysis. We used the enzyme example to compare the sliding

window solution with a global solution (global uniformization and global Krylov subspace method), since it

has a finite state space. Note that all other examples cannot solved using a global method since their state

space is infinite. We list the time needed for the computation of p
(tr) (cf. Eq. (3)) with the global method

in Table 2. Observe that the total error of the global uniformization method is smaller (compare the

columns labeled by error) since the only error source is the truncation of the infinite sum in Eq. (13). In

the column with heading #states we list the number of states that are reachable. During the global

solution we consider all reachable states at all time whereas in the sliding window method the average
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global solution sWindow

error uniform. Krylov #states error uniform. Krylov
average

wind. size

Enzyme (pset a) 5.0 × 10−9 44.1 min 4.2 min 5151 1.4 × 10−5 6 sec 5 sec 977

Enzyme (pset b) 1.5 × 10−7 6.4 h 2.7 h 96051 3.3 × 10−5 2.2 min 98 sec 4777

Enzyme (pset c) − > 12 h 5.6 h 125751 3.5 × 10−7 8 sec 6 sec 5038

Table 2: Sliding window method vs. global analysis for the finite enzyme example.

number of states considered during a time step is much smaller. This is the main reason why the sliding

window method is much faster. Moreover, in the case of uniformization, the rate for global uniformization

is the maximum of all exit rates, whereas for local uniformization, we take the maximum over all states in

the current window. Note that the global maximum can be huge compared to the local maxima. This

explains the bad performance of the global uniformization method. When the Krylov subspace method is

used for a global solution, the running times of the global solutions are also higher than the times of the

local Krylov subspace method (sliding window method combined with the Krylov subspace method).

Again, the reason is that a smaller number of states is considered during the sliding window iteration.

Moreover, the matrices Qj have numerical properties that facilitate the use of bigger, and thus, fewer time

steps. The total number of iteration steps used to solve Eq. (6) with the Krylov subspace method and the

sliding window method is indeed small when compared to the global Krylov subspace method (on average

around 20 times fewer steps).

We now focus on a comparison between our sliding window method and another local method, called

doubling window method. For the latter, we compute the probability vectors in a similar way as Sidje et

al. [22]. We start with an initial window and apply the Krylov algorithm. We do not iterate over the time

intervals [tj−1, tj) but use the step sizes of the Krylov subspace method (cf. Section 2.2.2). After each time

step, we remove those parts of the window that will not be used for the remaining calculations. We expand

the size of the window if the error exceeds a certain threshold. Since the performance of the method

depends heavily on the initial window and the directions in which a window is expanded, we start initially

with the same window as the sliding window method and expand always in the directions that are most

advantageous for the computation. For this we used information about the direction in which the

probability mass is moving that we obtained from experiments with the sliding window method. The

expansion of a window is realized by doubling the length of all of its edges.
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We applied the doubling window method to the enzyme example and the gene expression. For all

parameter sets that we tried, the sliding window method outperforms the doubling window method w.r.t.

running time (with an average speed-up factor of 5). The total number of iterations of the Krylov subspace

approximation is up to 13 times smaller in the case of the sliding window method compared to the

doubling window method (with an average of 6.5). Note that for arbitrary systems the doubling window

method cannot be applied without additional knowledge about the system, i.e., it is in general not clear, in

which direction the window has to be expanded.

Our results indicate that the sliding window method achieves a significant speed-up compared to global

analysis, but also compared to the doubling window method. Moreover, while global analysis is limited to

finite-state systems and the doubling window methods requires additional knowledge about the system, our

method can be applied to any system where the significant part of the probability mass is located at a

tractable subset of states. If the dimension of the system is high, then the significant part of the

probability mass may be located at intractably many states and in this case the memory requirements of

our algorithm may exceed the available capacity.

Solution method. During the sliding window iteration different solution methods can be applied in line

13 of Alg. 2. We concentrate on the uniformization method and on the Krylov subspace method. The

running times in Table 1 (compare the columns labeled by sWindow + uniformization with the columns

labeled by sWindow + Krylov) show that the Krylov subspace method performs better (average speed-up

factor of around 1.5). The reason is that the Krylov subspace method is more robust to stiffness than

uniformization. For non-stiff systems, uniformization is known to outperform the Krylov subspace

method [20,40]. However, since biochemical network models are typically stiff, the Krylov subspace

method seems to be particularly well suited in this area.

Time intervals. In order to confirm our considerations in Section 2.1.3, we also applied the sliding

window method using equidistant time steps. For all examples, using equidistant time steps results in

longer computation times compared to using the condition that we presented in Section 2.1.3 (with an

average speed-up factor of 3.5). A dynamic choice of the time steps has also the advantage that we can

control the size of the windows and avoid that the memory requirements of the algorithm exceed the

available capacity.

25



3 Conclusions

The sliding window method is a novel approach to address the performance problems of numerical

algorithms for the solution of the chemical master equation. It replaces a global analysis of the system by a

sequence of local analyzes. The method applies to a variety of chemically reacting systems, including

systems for which no upper bound on the population sizes of the chemical species is known a priori. The

proposed method is compatible with all existing numerical algorithms for solving the CME, and also a

combination with other techniques, such as time scale separation [27,28], is possible.

We demonstrated the effectiveness of our method with a number of experiments. The results are promising

as even systems with more than two million states with significant probability can be solved in acceptable

time. Moreover, for examples that are more complex than those presented here, it is often sufficient to

consider only a relatively small part of the state space. The number of molecules in the cell is always finite

and, usually, a biochemical system follows only a small number of different trends. Stated differently, it is

rarely the case that in biochemical systems a large number of different scenarios have significant

likelihoods. Thus, we expect that the sliding window method can be successfully applied to systems with

many chemical species and reactions as long as the significant part of the probability mass is always

located at a tractable subset of states. In addition, further enhancements are possible, such as a splitting of

the windows, which will be particularly useful for multi-stable systems. Moreover, we plan to automate our

algorithm in a way that besides the initial conditions and the set of reactions no further input from the

user is necessary, such as combinations of reactions that maximize/minimize certain populations.
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23. Sjöberg P: Numerical Methods for Stochastic Modeling of Genes and Proteins. Phd thesis, Uppsala
University, Sweden 2007.
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6 Figure legends

Figure 1 - The sliding window method
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The sliding window method. In each iteration step, the window Wi captures the set Si of states in which

the significant part of the probability mass is initially located (light gray), the set Si+1 of states that are

reached after a time step (dark gray), as well as the states that are visited in between.

Figure 2 - Parallelogram shape

Parallelogram shape. For the enzyme reaction example, the set of reachable states is finite and delimited

by the diagonal, which is represented by the line ES = 100 − P if 100 is the initial number of enzyme

molecules. For certain parameter sets, the window has a parallelogram shape which corresponds to the

direction in which the probability mass is moving.
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Figure 3 - Dependency graph

Dependencies between the reactions of Goutsias’ model.

30



Figure 4 - Probabiliy distribution

The probability distribution of monomers (left) and dimers (right) during the time interval [0, 300).
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