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Process integration: Optimize the energy efficiency
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2nd European Conference on Polygeneration - 30th March-1st April, 2011 - Tarragona, Spain

In the following example, we are discussing the integration of a trigeneration energy con-
version system in a brewing process.

2 Process integration and trigeneration

The first step of the methodology is the definition of the energy requirement. In an industrial
process, the energy requirement is defined by the set of streams to be heated up and cooled down.
The definition of the requirement is obtained from a process model in which the process units
are calculated in order to define the hot and cold streams enthalpy-temperature profiles. The
details of the analysis are presented in [13], the focuss being here to comment on the integration
of the trigeneration system. This analysis results in the definition of the hot and cold composite
curve of the process (Figure 1) that allows one to calculate the possible heat recovery by heat
exchange between process streams. Resulting from the heat balance of the process requirement,
the hot and cold composite define also the heating and cooling requirement of the process. The
calculation of the Grand composite curve (Figure 2) defines the enthalpy-temperature profile
of the heating, cooling and refrigeration requirement. Resulting from the pinch analysis, the
heat recovery potential corresponds to 1143 kW i.e. 45 % of the actual consumption. This also
corresponds to more or less doubling the present heat exchange recovery.
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Figure 1: Hot and cold composite curves of the process

Figure 2: Grand composite curve of the process

The analysis of the energy requirement leads to the following conclusion
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* Dumbliauskaite, M., Becker, H., Maréchal, F., 2010. Utility optimization in a brewery process based
on energy integration methodology. Proceedings of ECOS 2010, 91–98.
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Challenges for heat pump integration 

• Simultaneously integration with other utilities (e.g. cooling water, steam boiler, 
cogeneration units, ...) 

• Find optimal integrated heat pump(s) system for a given process

• Select appropriate fluids 

• Cycle configuration and operating conditions 

• Temperature / pressure levels (discontinuous optimization problem) 

• Size of installations and economic evaluation

• Realistic solutions: Heat pump data base (collection of realistic heat pumps to be 
integrated) 

• Systematic methodology: Easy to add new heat pumps 
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• Definition of heat pump technologies  

• Compressor types (8) --> Operating condition ranges (volumetric flow rate, 
pressure ratio)

• Refrigerants (2) --> Operating condition ranges (temperature levels) 

• Each technology is implemented n times --> possibility of multi-stage heat 
pumps and several times the same type of heat pump

• Heat pump data base is developed in a way that new heat pump models can 
be added easily 

• User can define the list of available heat pumps & change the limits of 
operating conditions
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1. Definition of 
decision variables

2. Master problem

3. Slave problem 

4. Evaluation objective 
functions  

Tcond,c = Tcond,max(f)− k1,c · (Tcond,max(f)− Teva,min(f))

Teva,c = Teva,min(f) + k2,c · (Tcond,c − Teva,min(f))

i : investment rate [0%,20%]
k1,c & k2,c : temperature levels [0,0.99] 
∀c = 1 : nc ∀f = 1 : nf

Example for one refrigerant

∀c = 1 : nc ∀f = 1 : nf
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4. Evaluation objective 
functions  

Heat pump data base
(thermodynamic 

calculations) 

evaporation / 
condensation temperature 

k1,c & k2,c

Calculation of thermodynamical heat pump cycle for a 
nominal flow rate

Definition of thermal streams of heat pumps for heat 
integration 

∀c = 1 : nc ∀f = 1 : nf
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1. Definition of decision 
variables

2. Master problem

3. Slave problem 

4. Evaluation objective 
functions  

Operating costs

Minimize objective function  (MILP - problem)

Heat cascade for Energy integration

Fobj,slave = TC = OpC + InvC

(
i(i + 1)n

(i + 1)n − 1

)

Optimizing flow rates and utilization 
factors (fu) of utilities

∀c = 1 : nc ∀f = 1 : nf

nsh,k∑

hk=1

Ṁhqh,k −
nsc,k∑

ck=1

Ṁcqc,k + Ṙk+1 − Ṙk = 0 ∀k = 1..., nk

Ṙ1 = 0 Ṙnk+1 = 0 Ṙ−k ≥ 0 ∀k = 2..., nk

Ṁh = fu ∗ ṁh Ṁc = fu ∗ ṁc

OpC = c+
f

nu∑

u=1

fuĖ+
f,u + c+

el

nu∑

u=1

fuĖ+
el,u − c−el

nu∑

u=1

fuĖ−el,u
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1. Definition of decision 
variables

2. Master problem

3. Slave problem 

4. Evaluation objective 
functions  

Minimize operating costs (fu)

Minimize investment costs (fHPc)

Performances to multi-objective 
optimization using evolutionary algorithm 

(Generating new values for the set of 
decision variables for the next iteration step) 

OpC = c+
f

nu∑

u=1

fuĖ+
f,u + c+

el

nu∑

u=1

fuĖ+
el,u − c−el

nu∑

u=1

fuĖ−el,u

InvC =
∑

a · (fHPcĖ
+
elHPc

)b
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InvC OpC Fuel Cooling water Electricity HP units
[kEuro] [kEuro/year] [kW] [kW] [kW] [-]

point1 497.3 355.2 1485 860 206 3
point2 680.8 285.7 615.3 482.4 532.3 5
point3 1106.0 253.3 562.3 368.2 461.3 5

Pareto front: optimal solutions in 
terms of operating and investment 

costs

after 1000 iterations
refrigerants: R717 / R134a HPs
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Example of Integrated composite curves 
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InvC OpC Fuel Cooling water Electricity HP units
[kEuro] [kEuro/year] [kW] [kW] [kW] [-]

point1 497.3 355.2 1485 860 206 3
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Heat pump integration 	

• Advantages

• Systematic and flexible integration of heat pumps (technologies, fluids, 
multi-stage) 

• Optimal solutions which can be analyzed in a second step for approbation 

• Drawbacks

• Time - consuming

• Experts can find easily good results by analyzing grand composite curves

• Initialization procedure ? 
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Conclusion

• Optimal heat pump integration (single & multi stage)

• Systematic heat pump data base approach 

• Easy to add new heat pump model (fluids, mixtures, ...) 

• All points on the pareto front represent optimal feasible solutions 

• Final solution can be chosen by applying economical analysis 
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Thank you for your attention ! 


