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Abstract—The dual-tree complex wavelet transform (DT- WT)
is known to exhibit better shift-invariance than the conventional
discrete wavelet transform. We propose an amplitude-phase rep-
resentation of the DT- WT which, among other things, offers a
direct explanation for the improvement in the shift-invariance. The
representation is based on the shifting action of the group of frac-
tional Hilbert transform (fHT) operators, which extends the no-
tion of arbitrary phase-shifts from sinusoids to finite-energy signals
(wavelets in particular). In particular, we characterize the shifta-
bility of the DT- WT in terms of the shifting property of the fHTs.
At the heart of the representation are certain fundamental invari-
ances of the fHT group, namely that of translation, dilation, and
norm, which play a decisive role in establishing the key proper-
ties of the transform. It turns out that these fundamental invari-
ances are exclusive to this group. Next, by introducing a general-
ization of the Bedrosian theorem for the fHT operator, we derive
an explicitly understanding of the shifting action of the fHT for the
particular family of wavelets obtained through the modulation of
lowpass functions (e.g., the Shannon and Gabor wavelet). This, in
effect, links the corresponding dual-tree transform with the frame-
work of windowed-Fourier analysis. Finally, we extend these ideas
to the multidimensional setting by introducing a directional exten-
sion of the fHT, the fractional directional Hilbert transform. In
particular, we derive a signal representation involving the superpo-
sition of direction-selective wavelets with appropriate phase-shifts,
which helps explain the improved shift-invariance of the transform
along certain preferential directions.

Index Terms—Fractional Hilbert transform, invariances, dual-
tree complex wavelet transform, shift-invariance, Gabor function,
Shannon wavelet, spline wavelet.

I. INTRODUCTION

T HE dual-tree complex wavelet transform (DT- WT)
is an enhancement of the conventional discrete wavelet

transform (DWT) that has gained increasing popularity as a
signal processing tool. The transform, originally proposed by
Kingsbury [1] to circumvent the shift-variance problem of the
decimated DWT, involves two parallel DWT channels with the
corresponding wavelets forming approximate Hilbert transform
pairs [2]. We refer the reader to the excellent tutorial [2] on the
design and application of the DT- WT.
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In this contribution, we characterize the dual-tree transform
from a complementary perspective by formally linking the mul-
tiresolution framework of wavelets with the amplitude-phase
representation of Fourier analysis. The latter provides an effi-
cient way of encoding the relative location of information in
signals through the phase function that has a straightforward in-
terpretation. Specifically, consider the Fourier expansion of a
finite-energy signal on

(1)

Here denotes the fundamental frequency,
and , and are the (real) Fourier co-
efficients corresponding to the even and odd harmonics,
respectively. Now, by introducing the complex Fourier coeffi-
cients and by expressing them in the polar form

, one can rewrite (1) as

(2)

with specifying the displacement of the reference
sinusoid relative to its fundamental period

. The above amplitude-phase representation highlights
a fundamental attribute of the shift parameter : it corresponds
to the shift that maximizes , the correla-
tion of the signal with the reference . The corresponding
amplitude measures the strength of the correlation.

As far as signals with isolated singularities (e.g., piece-
wise-smooth signals) are concerned, the wavelet representa-
tion, employing dilated-translated copies of a fast-decaying
oscillating waveform, has proven to be more efficient [3], [4].
Moreover, the added aspect of multiscale representation allows
one to zoom onto signal features at different spatial resolutions.
Complex wavelets, derived via the combination of non-redun-
dant wavelet bases, provide an attractive means of recovering
the crucial phase information. In particular, the phase relation
between the components (of the complex wavelet) is used to
encode the relative signal displacement (besides offering ro-
bustness to interference). The DT- WT is a particular instance
where the components are related via the Hilbert transform
[2], [5].
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A. Main Results

Analogous to the fact that the complex Fourier coefficients in
(2) are derived from the (primitive) analytic signals

the DT- WT coefficients are obtained by projection the signal
on to the dilated-translated copies of the analytic wavelet

. The central idea of this paper is the
identification of the wavelet counterparts of the phase-shifted
sinusoids in (2). In particular, these so-called
shifted wavelets are derived by the action of the single-pa-
rameter family of fHT operators (for definition and
properties see Section II) on the reference wavelet . The
shift parameter controls the shifting action
of the fHT, and, in effect, results in the realization of a con-
tinuously defined family of shifted wavelets. This action
has an important connotation in relation to pure sinusoids:

. In fact, the amplitude-phase
representation of the DT- WT is derived in Section III-A by
generalizing the following equivalent expression of (2):

which, in turn, is based on the aforementioned phase-shift action
of the fHTs. The significance of either representation is that they
allow us to provide a precise characterization of the shiftability
of the associated reference functions in terms of the shifting
action of the fHT.

Motivated by this connection, we make a detailed study of
the group of fHT operators in Section II-A. In particular, we
highlight their invariance to translations and dilations which
allows us to seamlessly integrate them into the multiresolu-
tion framework of wavelets. Moreover, the observation that
the above-mentioned invariances are exclusively enjoyed by
the fHT group (cf. Theorem 3.1) makes the shiftability of
the dual-tree transform unique. For the particular family of
dual-tree transforms involving HT pairs of modulated wavelets,
we derive an explicit characterization of the shifting action of
the fHT in Section III-B. If the dual-tree wavelet is not modu-
lated, we can still characterize the action of the fHT by studying
the family of fractionally shifted wavelets , and
we do this explicitly for the particular case of spline wavelets
in Section V. Finally, we extend the proposed representation
to the multidimensional setting in Section IV by introducing
certain directional extensions of the fHT.

The above results have certain practical implications. In
Section III-C, we propose certain measures for accessing the
quality of the factors, namely the HT correspondence and
modulation criterion, that are fundamental to the shiftability
property of the dual-tree wavelets. These metrics could prove
useful in the design of dual-tree wavelets with a good shift-in-
variance property.

II. THE FRACTIONAL HIBERT TRANSFORM

In what follows, the Fourier transform of a func-
tion defined over is specified by

, where denotes
the usual inner-product on . The other transform that plays
a significant role is the Hilbert transform (HT) [6], [7]; we will
denote it by . In particular, we shall frequently invoke the
Fourier equivalence

(3)

characterizing the action of the HT on , the class of finite-
energy signals1. Three fundamental properties of the HT that
follow from (3) are its invariance to translations and dilations,
and its unitary (norm-preserving) nature. Moreover, we shall use

to denote the identity operator .
We begin with a detailed exposition of the relevant charac-

teristics of the fHT that forms the cornerstone of the subsequent
discussion. There exit several definitions of the fHT in the signal
processing and optics literature [9]–[12]; however, for reasons
that will be obvious in the sequel, we propose to formulate it
as an interpolation of the “quadrature” identity and HT operator
using conjugate trigonometric functions. In particular, we de-
fine the fHT operator , corresponding to the real-valued shift
parameter , as

(4)

This definition is equivalent to the formulation introduced in
[11], [12], but differs from the ones in [9], [10] up to a complex
chirp. The important aspect of the above operator-based formu-
lation is that it directly relates the fHT and its properties to the
more fundamental identity and HT operator, which are identi-
fied a posteriori as special instances of the fHT: and

. In view of (4), we would like to make note of

fact that and have a nonlinear correspondence

(5)

and act in “quadrature” in the sense that

(6)

These come as a direct consequence of definition (3) and certain
properties of the inner-product.

As far as the domain of definition of (3) is concerned, note
that both and act as bounded operators (with a bounded
inverse) on for [8], and so does . In
particular, the fHT admits the following equivalent specification
on :

(7)

that comes as a consequence of (3). We shall henceforth in-
voke (4) and (7) interchangeably in the context of finite-energy
signals.

A. Characterization of the FHT

As remarked earlier, most of the characteristic features of the
constituent identity and HT operators carry over to the family of

1The domain can also be extended to include distributions such as the Dirac
delta and the sinusoid [8, Ch. 2].
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Fig. 1. Geometrical interpretation of the continuous fHT group using the iso-
morphic unit-circle group � (the multiplicative group of complex numbers
having unit modulus); the correspondence is� �� ��������� ��������.

fHT operators . In particular, the following properties
of the fHT can be readily derived:

(P1) Translation-invariance:
for all real .

(P2) Dilation-invariance:
for all positive .
(P3) Unitary nature: ; in particular,

for all in .
(P4) Composition law: .
(P5) Phase-shift operator:

.
Indeed, (P1) and (P2) are immediate consequences of the di-

lation- and translation-invariance of and ; (P3) follows
from the unitary frequency response (7) and Parseval’s iden-
tity; (P4) follows from (7); and it is the quadrature-shift action

of that results in (P5):

(8)

this is also justified by the frequency response of the fHT.
As will be discussed shortly, properties (P1), (P2), and (P3)

play a crucial role in connection with wavelets. The composition
law (P4) tells us that the family of fHT operators is closed with
respect to composition. Moreover, as the identity

suggests, the inverse2 fHT operator is also a fHT
operator specified by . These closure properties
can be summarized by following geometric characterization:

Proposition 2.1: The family of fHT operators forms a com-
mutative group on .

In this respect, note the marked resemblance between the
family of fHT operators and the commutative group of trans-
lation operators that play a fundamental role in Fourier anal-
ysis; the relevance of the former group in connection with the
DT- WT will be demonstrated in the sequel. Moreover, the
finite subgroup of self-adjoint3 operators
(see Fig. 1) is worth identifying. It is the smallest subgroup

2Note that, for a given � , there exists infinitely many � such that identity

� � � holds. One can easily factor out the periodic structure by iden-
tifying � and � iff� � � ; in effect, this equivalence relation results in
the specification of equivalence classes of fHTs. However, for the simplicity of
notation, we shall henceforth use � to denote both the equivalence class and
its representatives.

3Self-adjoint up to a sign: � � �� for each � in the subgroup.

containing the in-phase/quadrature operators that play a funda-
mental role in the dual-tree transform.

B. The Wavelet Context

Similar to the Hilbert transform, the fHT perfectly fits the
wavelet framework. The implication of properties (P1) and (P2)
is that the fHT of simultaneous dilates and translates of a wavelet
is a wavelet, dilated and translated by the same amount. This has
fundamental ramifications in connection with dyadic wavelet
bases generated via the dilations and translations of a single
mother-wavelet . In particular, let and de-
note the dilated-translated wavelets

and the corresponding (normalized) dilation-
translation operators, respectively. Then the commutativity

(9)

holds for all real and integers and . The significance of
(9) is that it allows us to conveniently factor out the pervasive
dilation-translation structure while analyzing the action of fHTs
on wavelet bases.

On the other hand, a fundamental consequence of the isom-
etry property (P3) is that maps a Riesz basis onto a Riesz
basis; in particular, if forms a wavelet basis of ,
then so does . In fact, preserves biorthogonality:
if and constitute a biorthogonal wavelet basis
satisfying the duality criteria ,
then also we have that

signifying that and form a biorthogonal
basis as well.

III. SHIFTABILITY OF THE DUAL-TREE TRANSFORM

A. Multiscale Amplitude-Phase Representation

We now derive the amplitude-phase representation of the
DT- WT based on the shifting action of the fHT. As remarked
earlier, the parallel is grounded on the observation that instead
of the quadrature sinusoids and ,
the DT- WT employs two parallel wavelet bases, and

, derived via the dilations-translations of the wavelets

and that form a HT pair: . A
signal in is then simultaneously analyzed in terms
of these wavelet bases yielding the wavelet expansions

(10)

The analysis coefficients and are specified by the pro-
jections onto the dual wavelet bases and

The dual wavelet bases are implicitly related to the cor-
responding primal bases through the duality criteria

and .
A fundamental consequence of the unitary property of the HT
is that these dual bases can be generated through the dila-
tions-translations of two dual wavelets, say and ,
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that form a HT pair as well: [13]. In partic-
ular, by introducing the complex wavelet

and its dilated-translated versions —the analytic coun-
terpart of the complex sinusoids —the dual-tree
analysis can simply be viewed as the sequence of transfor-
mations resulting in the complex
analysis coefficients .

Our objective is to derive a representation of in terms of
the modulus-phase information , and the
reference wavelets . In particular, by combining the ex-
pansions in (10) and by invoking (9), we arrive at the following
representation:

(11)

where the synthesis wavelet is de-
rived from the mother wavelet through the action of the
fHT corresponding to the shift . The above mul-
tiresolution amplitude-phase representation provides two im-
portant insights into the signal transformation

The first of these is derived from the observation that the frac-
tionally shifted wavelets in (11) play a role analo-
gous to the phase-shifted sinusoids in (2). In partic-
ular, (11) offers a rigorous interpretation of the ampitude-phase
factors: while indicates the strength of wavelet correla-
tion, the relative signal displacement gets encoded in the shift

corresponding to the most “appropriate” wavelet within
the family .

The “shiftable-wavelet representation” in (11) also offers an
explanation for the improved shift-invariance of the dual-tree
transform which is complementary to the frequency-domain ar-
gument given by Kingsbury in [1]. It is well known that the
signal representation associated with the (critically sampled)
discrete wavelet transform is not shift-invariant; in particular,
the uniform sampling of the translation-parameter of the con-
tinuous transform limits the degree of shift-invariance of the
transform. The fact that the oversampled dual-tree transform
tends to exhibit better shift-invariance can then be explained
in terms of the associated shiftability of the transform. Indeed,
the fractional-shifts of the reference wavelets around their dis-
crete translates partially compensates for the limited freedom of
translation.

It is clear that the invariances of the fHT group were central
to the derivation of (11). The following result establishes the
fHTs as the only complete family of operators that exhibits such
characteristics.

Fig. 2. Idealized spectrum of a modulated wavelet. The spectrum has pass-
bands over � �� � ��� � � ��with local axes of symmetry at � � �� .

Theorem 3.1 (Uniqueness of the fHT): A unitary linear oper-
ator on is invariant to translations and dilations if and
only if it can be represented as

(12)

for some unique in .
The above result (proof provided in Appendix VII-A) sig-

nifies that any family of unitary operators that simultaneously
commutes with translations and dilations is isomorphic to the
fHT group. This provides significant insight into the represen-
tation in (11) since it is these fundamental invariances that facil-
itate the incorporation of the fHT into the wavelet framework.

As discussed next, it turns out that the shifted wavelets
can be very explicitly characterized for certain classes of
wavelets which provides a deeper insight into the above signal
representation.

B. Modulated Wavelets: Windowed-Fourier-Like
Representation

A wavelet is, by construction, a bandpass function. Specifi-
cally, if the wavelet is a modulated function of the form

(13)

where is bandlimited to (for some arbitrary ),
and [cf. Fig. 2], we can make precise statements on
(11) corresponding to the dual-tree transform involving such a
modulated wavelet and its HT pair. In order to do so, we provide
a very generic result that allows us to extend the phase-action in
(8) to modulated functions:

Theorem 3.2 (Generalized Bedrosian Identity): Let and
be two real-valued functions such that the support of

is restricted to , and that vanishes for for
some arbitrary frequency . Then the fHT of high-pass function
completely determines the fHT of the product:

(14)

Informally, the above result (cf. Appendix VII-B for a proof)
asserts that the fHT of the product of a lowpass signal and a
highpass signal (with nonoverlapping spectra) factors into the
product of the lowpass signal and the fHT of the highpass signal.
Note that, as a particular instance of Theorem 3.2 corresponding
to , we recover the result of Bedrosian [14] for the HT
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operator. An important consequence of Theorem 3.2 is that, for
a wavelet is the form with is bandlimited to

, the fHT acts on the phase of the modulating sinusoid
while preserving the lowpass envelope

(15)

In particular, the above modulation action allows us to rewrite
the signal representation in (21) as

(16)

where denotes the (fixed) window at scale
and translation . This provides an explicit interpretation of

the parameter as the phase-shift applied to the modulating
sinusoid of the wavelet. In this regard, its role is therefore sim-
ilar to that of the shift parameter in the Fourier representa-
tion (2). In effect, while the localization window is kept
fixed, the oscillation is shifted to best-fit the underlying signal
singularities/transitions. In this light, one can interpret the asso-
ciated dual-tree analysis as a multiresolution form of the win-
dowed-Fourier analysis, with the fundamental difference that,
instead of analyzing the signal at different frequencies, it re-
solves the signal over different scales (or resolutions).

Two concrete instances of such modulated wavelets are:
• Shannon wavelet: The Shannon wavelet is constructed

from the Shannon multiresolution [3]; it is specified as

and it dilates-translates constitute an orthonormal wavelet
basis of . Many wavelet families converge to the
Shannon multiresolution as the order increases [15]; e.g.,
the orthonormal Battle-Lemari wavelets [16], and the
interpolating Dubuc-Deslauriers wavelets [17].

• Gabor wavelet: The envelope of the Shannon
wavelet results in an “ideal” frequency resolution but
only at the expense of poor spatial decay. As against this,
wavelets modeled on the Gabor functions [18] (modulated
Gaussians) exhibit better space-frequency localization.
Moreover, as in the case of the Shannon wavelet, they
are quite generic in nature since several wavelet families
closely resemble the Gabor function. For example, the
B-splines wavelets (a semi-orthogonal family of spline
wavelets) asymptotically converge to the Gabor wavelet

where is a Gaussian window that is completely de-
termined by the degree of the spline [19]. In fact, based
on this observation, a multiresolution Gabor-like transform
was realized in [13] within the framework of the dual-tree
transform. This Gabor-like transform involved the compu-
tation of the projections

(17)

on to the dilates-translates of the Gabor-like wavelet
, and was realized using the

usual dual-tree transform corresponding to the spline
wavelets and . We would, however, like to
point out that the representation in (16) corresponds to a
situation where the role of the analysis and synthesis func-
tions have been reversed, namely one in which the signal is
analyzed using the dual complex wavelet , and where
the Gabor-like wavelet is used for reconstruction.

Graphical Illustrations: Fig. 3 shows quadrature pairs
of Shannon-like (respectively,

Gabor-like) wavelets corresponding to different . The
fHT pair drives the modulating oscillation
to a relative quadrature that are localized within a common
sinc-like (respectively, Gaussian-like) window specified by

.
In Fig. 4, we demonstrate the shiftability of the dual-tree

transform using a Gabor-like B-spline wavelet of degree 3
as the reference. To this end, we consider the step input

that has a discontinuity at . The -level de-
composition of this signal (cf. [13] for implementation details)
in terms of the conventional DWT is given by

(18)

with denoting the translates of the coarse representa-
tion of the scaling function. As for the DT- WT, we have the
representation

(19)

The idea here is to demonstrate that the shifted wavelets in
(19) respond better to the signal transition than the wavelets
in (18); that is, the oscillations of the shifted wavelets have a
better lock on the singularity at . Fig. 4 shows the reference
wavelet and the shifted wavelet corre-
sponding to a specific resolution and translation

(around the position of the singularity at the coarser
resolution). Also shown in the figures are the step input and the
fixed Gaussian-like localization window of the wavelet. The os-
cillation of the shifted wavelet is clearly seen to have a better
lock on the transition than the reference. The magnitude of the
signal correlation in either case justifies this observation as well.

C. Quality Metrics for Dual-Tree Wavelets

The shiftability of the DT- WT was established based on two
fundamental properties of the wavelets, and , of the
two branches:

(C1) HT correspondence: ,
(C2) Their modulated forms: ,
and , with the support of
restricted to .
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Fig. 3. Quadrature pairs of orthonormal spline (respectively, B-spline) wavelets resembling the Shannon (respectively, Gabor) wavelet: Solid (blue) graph:
� � ���; Broken (red) graph: � � ���; and Solid (black) graph: Common localization window given by �� � ��� � �� � ����.

Fig. 4. Wavelets corresponding to the step unit ����. (a) Reference wavelet
� ��� � � ��� �� corresponding to the conventional DWT. (b) Shifted
wavelet dual-tree � ��� � ����. The magnitudes of the signal correlation
in either case clearly shows that the shifted wavelet has a better lock on the
singularity.

The practical challenge is the construction of different flavors
of wavelets that fulfill or, at least, provide close approximations
of these criteria. Indeed, the first criteria has been marked by an
extensive research into the problem of designing both approxi-
mate and exact HT wavelet-pairs [2], [13].

We propose new design metrics for assessing the quality of
the approximation. A simple measure for criterion (C1) is the
correlation

(20)

The Cauchy-Schwarz inequality asserts that , where
if and only if . Thus, the higher the

value of , the better would be the approximation.
Next, note that criterion (C2) also has a simple Fourier do-

main characterization:

where is complex-valued in general, and has a local axis
of symmetry within its support. In particular, if is con-
strained to be real-valued (corresponding to a symmetric ),
then has a constant instantaneous frequency
(derivative of the phase) over its support. A reasonable quality
metric for (C2) would then be the variation of the instantaneous
frequency. Alternatively, we can also assess the degree of sym-
metry of . In particular, we propose the following measure:

(21)

where , the centroid of , is specified as
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TABLE I
QUALITY METRICS FOR DIFFERENT DUAL-TREE WAVELETS

That is, , which lies between 0 and 1, measures the disparity
between and its reflection around the centroid. Indeed,
equal zero if and only if is symmetric (with as the centre
of symmetry). Conversely, a high value of signifies greater
local asymmetry in , and hence a poorer approximation of
the modulation criterion.

We computed the metrics and for different dual-tree
wavelets (cf. Table I). The wavelets and were syn-
thesized using the iterated filterbank algorithm, and the integrals
involved in (20) and (21) were realized using high-precision
numerical integration. It can easily be verified that and are
appropriately normalized in the sense that they are invariant to
the scale and translation of the synthesized wavelets. This is
a necessary criteria since the wavelets are essentially synthe-
sized by the filterbank algorithm at some arbitrary scale and
translation.

The spline wavelets are analytic by construction [13], and
hence irrespective of their degree. However, as their
degree increases, the B-spline (respectively, orthonormal)
wavelets converge to the real and imaginary components of
the complex Gabor (respectively, Shannon) wavelet which
exhibits a symmetric spectrum (see Section V for details). The
rapid decrease in the value of reflects this improvement in
symmetry (and also the rate of convergence).

IV. MULTI-DIMENSIONAL EXTENSION

In this section, we extend the amplitude-phase representation
derived in Section III-A to the multidimensional setting. The key
ideas carry over directly, and the final expressions (cf. (27) and
(16)) are as simple as their 1D counterparts. The attractive fea-
ture of the multidimensional dual-tree wavelets is that, besides
improving on the shift-invariance of the corresponding trans-
form, they exhibit better directional selectivity than the conven-
tional tensor-product (separable) wavelets [2]. For the sake of
simplicity, and without the loss of generality, we derive the am-
plitude-phase representation for the particular two-dimensional
setting.

Two-Dimensional Dual-Tree Wavelets: To set up the
wavelet notations, we briefly recall the construction framework
proposed in [13] involving the tensor-products of one-di-
mensional analytic wavelets. Specifically, let and
denote the scaling functions associated with the analytic
wavelet , where .

The dual-tree construction then hinges on the identification of
four separable multiresolutions of that are naturally
associated with the two scaling functions: the approximation
subspaces and

, and their multiscale counterparts4. The corre-
sponding separable wavelets—the “low-high,” ‘high-low,” and
“high-high” wavelets—are specified by

(22)

whereas the dual wavelets are specified in terms
of and (here denotes the planar coor-
dinates). As far as the identification of the complex wavelets
is concerned, the main issue is the poor directional selectivity
of the “high-high” wavelets along the diagonal directions. This
problem can, however, be mitigated by appropriately exploiting
the one-sided spectrum of the analytic wavelet , and, in
effect, by appropriately combining the wavelets in (22). In par-
ticular, the complex wavelets

(23)

exhibit the desired directional selectivity along the primal
orientations , and

, respectively, [13]. The dual complex wavelets
, specified in an identical fashion using the dual

wavelets , are also oriented along the same set of directions.
Directional Hilbert Transform (dHT): Having recalled

the complex wavelet definitions, we next recall the “quadra-
ture” correspondence between the components of the complex
wavelets that provides further insight into their directional
selectivity. Akin to the HT correspondence, the components
can be related through the directional HT :

4The tensor-product � ��� � � ��� denotes the subspace spanned by the
translated functions ��� ������ � ��� ����� � � .

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 17, 2009 at 09:43 from IEEE Xplore.  Restrictions apply. 



228 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

where denotes the unit vector5 along the
direction . In particular, one has the correspondences

so that, by denoting the real component of the complex wavelet
by , we have the following convenient representa-

tions

(24)

which are reminiscent of the 1D analytic representation.

A. Amplitude-Phase Representation

Let us denote the dilated-translated copies of the each of the
six analysis wavelets by , so that

where is specified by . The corre-
sponding dual-tree transform involves the analysis of a finite-en-
ergy signal in terms of the sequence of projections

(25)

where the use of the normalization factor will be justified
shortly. Before deriving the representation of in terms of
the analysis coefficients , we introduce the following frac-
tional extensions of the dHT:

(26)

that formally allow us to capture the notion of direction-se-
lective phase-shifts. Certain key properties of the fHT carry
over to the fdHT. In particular, the family of fdHT operators

, exhibit the fundamental invariances
of

• Translation: ;
• Dilation: ; and
• Norm: for all ,

which played a decisive role in establishing (11). Based on the
above invariances, we can derive the following representation:

(27)

involving the superposition of direction-selective syn-
thesis wavelets affected with appropriate phase-shifts (cf.
Appendix VII-C for derivation details). In particular, the
wavelets are derived from the reference wavelet

through the action of fdHT, corresponding to the direc-
tion and shift As in the 1D setting,
further insight into the above representation is obtained by
considering wavelets resembling windowed plane waves.

5Note that the half-spaces ���� � ��� ��� � �� and ���� � ��� ��� � �� play a role,
analogous to that played by the half-lines � � � and �� � � in
case of the HT, in specifying the action of dHT.

B. Directional Modulated Wavelets

A distinctive feature of the dHT is its phase-shift action in
relation to plane-waves: it transforms the directional cosine

into the directional sine . Moreover, what
turns out to be even more relevant in the current context is that
the above action is preserved for certain classes of windowed
plane waves; in particular, we have

provided that bandlimited to the disk
. The following result—a specific multidimensional exten-

sion of Theorem 3.2—then follows naturally for the fractional
extensions.

Proposition 4.1: Let the window function be bandlim-
ited to the disk . Then we have that

(28)

That is, the fdHT acts only on the phase of the oscillation while
the window remains fixed. In particular, if the dual-tree wavelets
are of the form

(29)

then the right-hand side (RHS) of (27) assumes the form

where are the dilated-translated copies of the window
. The above expression explicitly highlights the role of
as a scale-dependent measure of the local signal displace-

ments along certain preferential directions.
Indeed, this is the scenario for the spline-based transform

proposed in [13] where the dual-tree wavelets asymptotically
converge to the two-dimensional Gabor functions proposed
by Daugman [20]. Moreover, these Gabor-like dual-tree
wavelets were constructed using the B-spline scaling function
and the semi-orthogonal B-spline wavelet. Replacing these
with the orthonormal B-spline and the orthonormal wavelet,
respectively, would then result in Shannon-like dual-tree
wavelets—sinc-windowed directional plane waves—fol-
lowing the fact that the orthonormal spline multiresolution
asymptotically converges to the Shannon multiresolution (cf.
Section III-B).

V. SHIFTABLE SPLINE WAVELETS

If the wavelet is not modulated, we can characterize the ac-
tion of the fHT and the fdHT by studying the family of wavelets

and , respectively. The remark-
able fact is that it can be done explicitly for all spline wavelets
derived from the fractional B-splines [21], which are the frac-
tional extensions of the polynomial B-splines.
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Spline Multiresolution: We recall that the B-spline ,
of degree and shift , is specified via the Fourier
transform

(30)

The degree primarily controls the width (and norm) of the func-
tion, whereas the shift influences the phase of the Fourier trans-
form. As will be seen shortly, the latter property plays a key
role in conjunction with the fHT. Though these functions are
not compactly supported in general, their decay
ensures their inclusion in . More crucially, they
satisfy certain technical criteria [21], [22] needed to generate a
valid multiresolution of :

(MRA1) Riesz-basis property: the subspace

admits a stable Riesz basis.
(MRA2) Two-scale relation; the refinement filter is specified

by the transfer function

(MRA3) Partition-of-unity property.
Spline Wavelets: As far as the wavelet specification is con-

cerned, the transfer function of the wavelet filter that generates
the generic spline wavelet , of degree and shift , is
given by

(31)

where the filter satisfies the lowpass constraint
, and is independent of . The filter plays a cru-

cial role in differentiating between various orthogonal (e.g.,
Battle-Lemarié wavelet) and biorthogonal (e.g., semiorthog-
onal B-spline wavelet) flavors of spline wavelets of the same
order [19], [23]. The associated dual multiresolution is spec-
ified by a dual spline function and a dual spline wavelet

; the fundamental requirement for the dual system is
that the dual wavelet—generated using a transfer function
similar to that in (31)—satisfies the biorthogonality criterion

. We shall, henceforth, use
the notation to denote a spline wavelet of order and
shift , irrespective of its genus (orthonormal, B-spline, dual
spline, etc.).

It turns out that the family of spline wavelets (of
a specified genus and order) is closed with respect to the fHT
operation.

Proposition 5.1: The fHT of a spline wavelet is a spline
wavelet of same genus and order, but with a different shift. In
particular

The above result (cf. Appendix VII-D, part I) signifies that the
fHT acts only on the shift parameter of the spline wavelet while
preserving its genus and order. Thus, for the dual-tree transform

involving the corresponding wavelet basis
and its HT pair, we have the following signal representation:

involving the weighted sum of the appropriately “shifted” spline
wavelets.

Finally, we investigate the action of the fdHT on the 2D dual-
tree wavelets constructed using a spline wavelet
of a specific genus, and its HT pair [13]. It turns
out that, as in the 1D case, the action is purely determined by
the perturbation of the shift parameter of the constituent spline
functions. However, the key difference is that the fdHT opera-
tors act “differentially” on the shifts of the spline functions along
each dimension. Before stating the result we briefly digress to
introduce a convenient notation. Observe that the six dual-tree
wavelets are of the general form

where and are spline scaling functions/
wavelets that have a common degree but whose shifts de-
pend on and , respectively. To explicitly emphasize the
dependence on the parameters and , we denote the dual-
tree wavelets by with the shift-vector
specifying the shift parameters of the spline functions involved
along each dimension. For instance, the wavelets
and are specified [see (23)] by

where by construction. In general, setting
for all the six wavelets we deduce (see Appendix VII-D, part II
for a proof) the following.

Proposition 5.2: The fdHT of a 2D dual-tree spline wavelet
is a dual-tree spline wavelet of the same order and direction, but
with a different shift:

where for , and equals for and
6.

The result is quite intuitive. The horizontal and vertical
wavelets can be “shifted” along the direction of the corre-
sponding fdHT by perturbing the shift of the spline functions
running along the same direction; the shift of the spline
functions along the orthogonal direction remains unaffected.
However, the diagonal wavelets can be “shifted” only by si-
multaneously by perturbing the shift of the splines along both
dimensions.
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Thus, as a direct consequence of (27) and Proposition 5.2, we
have the following signal representation:

where the shift information , at different
scales along each of the six directions, is directly encoded
into the shift-parameter of the spline wavelets. As discussed
in Section IV, for sufficiently large constructed
using the B-spline (orthonormal spline) wavelets resemble the
Gabor (respectively, Shannon) wavelet where the shift
gets directly incorporated into the phase of the modulating
plane wave.

VI. CONCLUDING REMARKS

We derived an insight into the improved shift-invariance of
the dual-tree complex wavelet transform based on single funda-
mental attribute of the same: the HT correspondence between
the wavelet bases. Indeed, the identification of the fHT-trans-
formed wavelets involved in representation [16] followed as a
direct consequence of this correspondence. The shiftability of
the transform was then established based on two key results:

• the intrinsic invariances of the fHT group with respect to
translations, dilations and norm-evaluations; and

• theorem (3.2) describing the phase-shift action of the fHT
on modulated wavelets.

In particular, a multiscale amplitude-phase signal representa-
tion was derived for the class of the modulated wavelets which
highlighted the additional freedom of the wavelets to lock on to
singularities of the signal. We also proposed certain metrics for
accessing the modulation criteria and the quality of the HT cor-
respondence between the dual-tree wavelets. These could prove
useful in the design of new dual-tree wavelets with better shifta-
bility.

Before concluding, we would like to remark that the (direc-
tion-selective) shiftability of the dual-tree transform can also be
extended to higher dimensions. In particular, the wavelet con-
struction (23), the fHT correspondences (24), the modulation
law (28), and, crucially, the amplitude-phase representation (27)
carry over directly to the multidimensional setting.

APPENDIX

A. Proof of Theorem 3.1

The sufficiency part of the theorem follows from the proper-
ties of the fHT operator; we only need to prove the converse.
It is well known that a unitary linear operator on is
translation invariant if and only if there exists a bounded (com-
plex-valued) function such that

for all [7, Ch. 1]. This Fourier domain characteriza-
tion reduces the problem to one of specifying a bounded func-
tion such that has the desired invariances. It can be
readily demonstrated that the dilation-invariance criterion trans-
lates into the constraint

(32)

Moreover, since the real and imaginary components of
must independently satisfy (32), one even has

and , for all ,
where and are the real and imaginary compo-
nents of .

Next, observe that the Hermitian symmetry requirement

(33)

on the multiplier require and to be even and
odd symmetric, respectively; that is, and

. These constitute the crucial relations,
since one can easily verify that the only bounded functions (up
to a scalar multiple) that satisfy (32) and (33) simultaneously are
the constant function , and its “skewed” counterpart

; that is, it is both necessary and sufficient that

for some real and . Finally, combining the equivalence

obtained through Parseval’s identity, with the norm invariance
requirement we arrive at the criterion . There-
fore, it is both necessary and sufficient that

for some , and this establishes the
representation

The uniqueness of necessarily follows from the
quadrature correspondence in (6).

B. Proof of Theorem 3.2

We note that the Fourier transform of is given by the
convolution . Thus, if we denote the Fourier
transform of by , then following (7), we
have that

In particular, this gives us the Fourier representation

(34)

Now, by commuting the order of the integrals and by applying
the frequency translation , we can rewrite (34) as the
double integral
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The effective domain of integration in (35) gets restricted to the
region as a consequence of
the assumptions on the supports of and . In particular,
it can easily be verified that on ; this
allows us to factor (35) into two separate integrals giving the
desired result

C. Derivation of (27)

As a first step, we consider the equivalent representations of
in terms of the four distinct bases generated through the

dilations-translations of the separable wavelets in (22)

(36)

where the expansion coefficients are specified by

(37)

Next, we combine and regroup these expansions as follows:

The terms on the right can now be conveniently expressed in
terms of the coefficients and the dual-tree

wavelets . For instance, consider the terms in the third
line. The wavelet pair and are readily
identified; moreover, the correspondences

that follow from (25) and (37), allow us to rewrite it as

with the shift specified by . Subjecting the rest
of the terms to a similar treatment we arrive at the desired rep-
resentation.

D. Proof of Propositions 5.1 and 5.2

Part I: This result is easily established using an auxiliary op-
erator. Specifically, we consider the fractional finite-difference
(FD) operator

(38)

corresponding to the frequency response
, which allows us to relate frac-

tional B-splines (and the corresponding filters) of the same
order but with different shifts. In particular, it allows us to
express the action of the fHT on a B-spline as a linear (digital)
filtering:

(39)

Indeed, based on (30) and (38), and the identity6

, we have the fol-
lowing factorization

which results in the equivalence

Next, we observe that the conjugate-mirrrored version of
the FD filter can also be used to relate the spline refinement
(scaling) filters of the same order but with different shifts:

6We specify the fractional power of a complex number � by � �
��� � corresponding to the principal argument � ������� � �. On this
branch, the identity �� � � � � � holds only if ����� � � ����� � �
���� �� [24, Ch. 3].
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. In particular, we have
the relation between the corresponding
wavelet filters

(40)

As a result of (39) and (40), we have the desired equivalence

Part II: We derive the relation for the spline wavelets
and (the rest can be derived identi-

cally). Using proposition 5.1, we immediately arrive at one
of the results:

.
The second result relies on the factorization

that holds for functions whose frequency
supports are restricted to the quadrants

and . In particular,
the condition is satisfied by so that, in conjunction
with proposition 5.1, we have
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