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Abstract 

The study presented in this thesis aims to numerically explore the micro–mechanisms 

underlying rock fracture and fragmentation under dynamic loading. The approach 

adopted is based on the Discrete Element Method (DEM) coupled to the Cohesive 

Process Zone (CPZ) theory. It assumes rock material as assemblage of irregular–sized 

deformable fragments joining together at their cohesive boundaries. The simulation, 

which is referred to as Cohesive Fragment Model (CFM), takes advantage of DEM 

particle/contact logic to handle the fragments and boundaries in between. In this 

idealization, mechanical properties of particle and more dominantly those of contact 

control macroscopic response of the particle assemblage. A rate–dependent orthotropic 

cohesive law is developed for DEM contacts to capture rock material specific features, 

e.g. brittleness, anisotropy and rate–dependency. Rock experimental behavior is then 

modeled in order to assess individually the sensitivity of results to grain size, confining 

pressure, micromechanical parameters, stored strain energy, loading rate etc. 

The thesis is organized to approach the problem systematically. First, CFM application 

for static analysis is examined. It is shown that CFM quantitatively and qualitatively 

predicts compressive and tensile failure of hard and soft rocks as well as shear strength, 

dilatancy and degradation of rough rock joints. CFM micro–parameters, i.e., stiffness of 

particle and strength, stiffness, and friction of contact are calibrated using a combination 

of statistical disciplines and original closed–form expressions. The calibration process 

provides useful physical interpretation for each micro–parameter in terms of standard 

rock mechanical properties. These interpretations enable to understand how 

macroscopic behavior of rock material originates from its mineral microstructure. 

Energy needed to fully open a contact, the contact energy numerically represents 

material fracture energy in CFM. Experimental investigations suggest that fracture 

energy is independent of loading rate in quasi–static circumstances. Thus, contact energy 



 X 

is simply assumed as constant in static analysis. However, simulation on fast fracturing 

by CFM warns that this assumption causes serious deviations in fracture dynamic 

analysis. 

Laboratory observations reveal that fast–moving fracture consumes more energy than 

slow–moving one does. This inspires to consider contact energy as variable and rate–

dependent to provide the model with the appropriate prediction of the fracture energy 

release process. Applying this new approach, fracture behavior of PMMA plates is 

investigated under different levels of stored strain energy. 

As the final stage, dynamic fracture toughness of rock samples, measured by the split–

Hopkinson pressure bar test, is simulated and promising results are obtained. They 

demonstrate how numerical modeling can practically aid experimental methods in terms 

of measurement verification, error estimation, and performing appropriate corrections. 

The studies suggest that DEM is an effective and convenient tool to investigate fracture 

and fragmentation problems. While predictions by continuum models are restricted only 

to crack initiation, simulation by DEM made it possible to track both the initiation and 

progression of fracture over time by following consecutive damage of contacts. Moreover, 

the research specifically demonstrates that the proposed contact model properly predicts 

the experimental behavior of rock fracture under static and dynamic loading. This result 

verifies the model validity and adequacy for rock fracture analysis. 

Key words: discrete element method, cohesive fragment model, micro–parameter, rate–

dependency, rock dynamics, fracture, fragmentation 
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Résumé 

L'étude présentée dans cette thèse vise à explorer les micro–mécanismes de la rupture et 

la fragmentation des matériaux rocheux soumis aux charges dynamiques. L'approche 

numérique utilisée est basée sur le couplage de la méthode des éléments discrets (DEM) 

et la théorie de la zone cohésive. Le matériau rocheux est supposé être un assemblage de 

fragments irréguliers déformables reliés par leurs bords cohésifs. La méthode, qui est 

appelée le modèle des fragments cohésifs (CFM), tient compte de la logique 

particule/contact de la méthode DEM pour traiter les fragments et l’interaction entre 

eux. Dans cette idéalisation, la réponse macroscopique de l'assemblage est contrôlée par 

les paramètres mécaniques associés aux particules et, de façon plus importante, à ceux 

des contacts. Une loi cohésive orthotropique dépendant du taux de chargement est 

développée pour les contacts afin de saisir les caractéristiques du matériau rocheux, i.e. 

fragilité, anisotropie et dépendance au taux de chargement. Le comportement 

expérimental du matériau est ensuite modélisé afin d'évaluer la sensibilité des réponses à 

la taille des grains, la pression de confinement, les paramètres micromécaniques, l'énergie 

stockée par la déformation, taux de chargement, etc. 

Cette thèse est organisée de façon à aborder le problème systématiquement. Tout 

d'abord, l'application statique du CFM est examinée. Il est montré que le CFM peut 

prédire quantitativement et qualitativement la rupture en compression et en traction de 

roches dures et tendres, ainsi que la résistance au cisaillement, la dilatance et la 

dégradation des joints rocheux rugueux. Les micro–paramètres du CFM, i.e., la rigidité 

des particules et leur résistance, la rigidité et le frottement des points de contact, sont 

étalonnés par des méthodes statistiques et analytiques originales. Le processus 

d'étalonnage fournit une interprétation utile pour chaque micro–paramètre en fonction 

des paramètres mécaniques standards du matériau rocheux. Ces interprétations 
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permettent de comprendre comment le comportement macroscopique du matériau 

dépend de sa microstructure minérale. 

L’énergie de contact, i.e., l'énergie nécessaire pour ouvrir entièrement un contact, 

représente numériquement l'énergie de rupture en CFM. Les études expérimentales 

suggèrent que l'énergie de rupture est indépendante des taux de chargement en 

conditions quasi–statiques. Par conséquent, l'énergie de contact peut simplement être 

supposée constante dans les analyses statiques. Cependant, les simulations des fissures 

rapides par le CFM montrent que cette hypothèse crée des déviations importantes dans 

l'analyse dynamique de la rupture.  

Les observations expérimentales révèlent qu’une fissure qui se propage rapidement 

consomme plus d'énergie que celle qui se propage lentement. Cela incite à considérer 

l'énergie de contact comme une variable dépendant des taux d'ouverture du contact pour 

doter le modèle de prédictions appropriées du processus de libération d'énergie de 

fracturation. Avec l'application de cette nouvelle approche, le comportement de la 

rupture des plaques du PMMA est étudié selon différents niveaux de l'énergie stockée 

par déformation. 

Au final, la ténacité dynamique des échantillons rocheux, mesurée à l’aide d’un essai de 

pression à la barre de Hopkinson, est simulée et les résultats obtenus sont satisfaisants. 

Ils démontrent comment la modélisation numérique peut aider pratiquement les 

méthodes expérimentales en termes de vérification de mesures, d’estimation d'erreurs, et 

comment effectuer les corrections adéquates. 

Ces études suggèrent que le DEM est un outil efficace et pratique pour étudier les 

problèmes de rupture et de fragmentation. Lorsque les prédictions par des modèles 

continus sont limitées seulement à l'initiation des fissures, les simulations par la DEM 

rendent possible de retracer à la fois l'initiation et aussi la progression des fractures au 

cours du temps en suivant les endommagements des contacts. De plus, cette recherche 

montre spécifiquement que le modèle de contact proposé, prédit convenablement le 

comportement expérimental des fractures rocheuses soumises aux chargements statiques 

et dynamiques. Ce résultat vérifie la validité du modèle et l'adéquation pour l'analyse des 

fractures rocheuses. 

Mots–clés : méthode des éléments discrets, modèle des fragments cohésifs, micro–

paramètre, dépendance au taux de déformation, dynamique des roches, fissure, 

fragmentation 
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CHAPTER 1 

1.Introduction 

Rock dynamics, as a branch of rock mechanics deals with dynamic load, deformation and 

failure of rock in relation with time. It covers a wide scope ranging from the formation 

and transmission of dynamic loads in stress waveforms, fracturing and damage of rock 

materials and rock masses under dynamic loading, to support of engineering structures 

in and on rock under dynamic conditions (Zhou and Zhao 2011). However, complex and 

heterogeneous nature of rock substance makes its dynamic response much more 

complicated than any artificial or manufactured material, such that it could not be 

studied through only conventional experimental and numerical methods. 

As a critical aspect of rock dynamics, rock fracture and fragmentation is of significant 

influence on the stability and integrity of rock material. Understanding the micro–

mechanics behind fracture and fragmentation is very important for a vast verity of 

applications involved in rock dynamics. Applications range from the characterization of 

natural fractures influencing rock mass strength to the examination of rock–cutter 

interaction to assess the performance of Tunnel Boring Machines. 

As the most prevalent fracture parameter, fracture toughness is utilized to express the 

resistance of material against fracturing. It helps asses the probability of fracture 

initiation and characterize how fracture propagates through material. Many numerical 

and experimental studies have been carried out on static fracture over the years. These 

studies have extensively examined fracture response under static loads and measured 

fracture toughness for different types of material. They revealed that fracture initiation 

toughness in majority of brittle materials including rock does not markedly change 

during static propagation. Hence, static fracturing is considered as a rate–independent 

phenomenon as its response is independent of fracture propagation velocity and loading 

rate. 
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The characteristics of material fracturing under dynamic circumstances are not actively 

explored yet. Experimental studies arranged over last decade have mostly focused on 

ceramics, polymers and metal alloys to examine fracture toughness, propagation velocity 

and bifurcation patterns. The Split–Hopkinson Pressure Bar (SHPB) technique, 

originally developed by Kolsky (1949, 1963), has been extensively used by many 

investigators to obtain dynamic compressive properties of materials. This technique has 

mostly been used to study the plastic flow stress of metals that undergo large strains at 

high strain rates. The experimental observations have revealed that materials exhibit 

various fracturing behaviors depending on fracture propagation speed and dynamic 

loading rate applied. Hence, fracture response is then referred to as rate–dependent. 

Limited number of the experimental studies has been performed on rock. Using the 

SHPB technique, rock specimens have been tested to measure rock dynamic fracture 

toughness and strength under high–rate loading. The experiments have confirmed that 

rock material, like alloys and polymers, follows a rate–dependent fracture behavior 

where its compressive and tensile strength as well as fracture toughness varies with the 

loading rate applied. Nevertheless, all the laboratory attempts on rock fracture are 

limited to macroscopic measurements. The micromechanics behind the observed rate–

dependent quality has not been fully explored yet. In other words, it is not clearly 

understood yet how rock micro–structure plays role in material rate–dependent 

behavior. This subject requires more investigation which is aimed by this thesis. 

1.1. Research objectives 

Mechanical behavior of rock, as a heterogeneous and grained composite material, is 

deeply affected by its microstructure, which is constituted by minerals (grains) and 

mineral cement (if any). Rock minerals are of different molecular structure and size. 

Igneous rocks are made of minerals with the average size of 1 to 5 mm, while metamorphic 

and sedimentary rocks are of less coarse texture. Grain size is generally reported between 

0.5 to 3 mm for metamorphic and less than 2 mm for sedimentary rock (e.g. Deer et al. 

1992). In addition to mineral properties, the cement pasting sediment grains together 

configures the microstructure of sedimentary rocks. 

As experimentally observed (e.g. Whittles 2006), rock fractures though the weakest 

mineral, grains interface, or mineral cement. Therefore, rock fracture and fragmentation 

behavior expectedly can be interpreted in terms of mineral and cement properties. 

To understand the micro–mechanisms underlying rock fracture and fragmentation, this 

research specifically explores how rock micro–structure controls 

• rock strength and failure in compression, tension, and shear, 

• rock fracture behavior and dynamic fracture toughness, 

• and fracture rate–dependent behavior observed in macroscopic scale. 
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Replying these questions will hopefully broaden our scope to encompass rock fracture 

and fragmentation mechanisms. This will help us handle the engineering applications 

involved in rock dynamics more accurately. 

1.2. Methodology 

We have chosen numerical simulation as the research tool. First, a numerical model 

needs to be developed, and then it must be verified by simulating certain laboratory tests 

and comparing the numerical predictions to the test measurements. To cover all the 

expected objectives, verification simulations should comprise static experiments on 

rocks and rock joints as well as dynamic tests on homogeneous and heterogeneous 

materials. 

Up to the present, numerical developments related to rock dynamic fracture propagation 

are not extensive. Most of the attempts have been performed by adopting continuum 

models, which are not basically able to simulate fracture explicitly. To overcome this 

issue, discontinuum models were introduced. With regard to fracture and fragmentation 

purposes, the advantages of discontinuum to continuum models can be briefly counted as 

follows. 

• Discontinuum models are not engaged with flow rule and potential function, which 

continuum models need to perform nonlinear analysis. 

• Discontinuum models are capable of representing large crack separation as well as 

reattachment of fragmented parts at new contact points whilst continuum models 

are not. 

• While predictions by continuum models are restricted to implicit representation of 

fracture, the use of discontinuum models make it possible to demonstrate fracture 

initiation and propagation over time explicitly by tracking consecutive separation of 

structural elements. 

According to the heterogeneous and grained texture of rock material, discontinuum 

models reproduce its structure as aggregate of particles connecting together by 

structural bonds. Very predominantly, particles are taken as rigid random–sized discs or 

spheres depending on the two– or three–dimensional state of modeling. Therefore, 

contact between the particles inevitably occurs at points where two particles touch each 

other. However, the material constituting rock can be more realistically described as an 

assemblage of deformable and sharp–cornered fragments where contacts are not 

necessarily punctual and frictional contact planes can exist. This idealization is more 

analogous to rock texture and reproduces its fragmentation pattern more accurately. 

Referred to as Cohesive Fragment Model (CFM), the numerical approach adopted in this 

research is based on the Discrete Element Method (DEM) coupled to the Cohesive 

Process Zone (CPZ) theory. It assumes rock material as collection of deformable 
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irregular–sized triangular fragments joining together at their boundaries, which are 

acting as cohesive frictional surfaces. 

To implement CFM, we have selected the Universal Distinct Element Code (UDEC) 

(Itasca 2009) due to its helpful capabilities and relative ease of development. CFM takes 

advantage of UDEC particle/contact logic to handle the fragments and boundaries in 

between. Using two–dimensional Delaunay triangulation (Delaunay 1934), a pre–

processor program has been separately developed to generate arbitrarily sized triangular 

particles. They are then discretized into CST elements (i.e. constant–strain triangles) to 

produce deformable fragments. 

In this study, an orthotropic rate–dependent cohesive law has been developed for UDEC 

contacts to capture the specific properties of rock material, e.g., brittleness, anisotropy 

and rate–dependency. Contact orthotropy is provided by assuming contact to follow 

different tensile and shear behaviors in terms of strength, stiffness and ultimate 

displacement.  

UDEC can be developed by user. Any development for particle or contact constitutive 

model as well as definition of new material properties can be carried out by creating 

Dynamic Link Libraries (DLL) in Visual C++ environment. The created DLL files are then 

attached to the UDEC conventional software, and enable it to perform requested tasks. 

1.3. Thesis outline 

The thesis has been organized to approach the problem systematically. Its structure has 

been tried to follow a continuous flow to ultimately reach the designed objectives. For 

this purpose, we first focus on the model description, and then its applications are 

examined. The model is also employed to explore the micro–mechanism of rock fracture, 

fragmentation and failure. 

1.3.1. Model description and implementation 

This part includes half of the thesis through four chapters. In Chapter 2, we start with 

explaining fundamentals of rock fracture mechanics and the cohesive presses zone 

theory. Then, different features of rock failure surveyed in different observation scales are 

phenomenologically compared. According to rock natural texture and its failure fashion 

in micro–scale, the numerical idealization based on which CFM has been built is 

ultimately described. 

In Chapter 3, existing literature regarding the thesis subject is vastly reviewed in terms of 

numerical and experimental studies. Comparing all the possible numerical methods and 

considering their capabilities and disadvantages, DEM is finally presented as the most 

efficient tool for our purpose. 

Chapter 4 focuses on CFM implementation in UDEC. It begins with a brief description 

of UDEC and explains its fundamentals specifically the concept of particle and contact. 
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Following this, some critical maters related to the solution stability are reviewed. This 

Chapter also explains the adopted particle generation algorithm, and includes a 

statistical study on the size distribution of particles generated. As mentioned earlier, the 

designed pre–processor program makes use of Delaunay triangulation to produce particle 

assemblage. 

In Chapter 5, we explain the orthotropic cohesive contact model developed. This chapter 

describes the concept of micro–parameter and establishes some original closed–form 

equations expressing micro–parameters in terms of material macroscopic properties. 

There is illustrated the algorithm used to create DLL files and to implement the contact 

model into UDEC. 

1.3.2. Model applications 

This section comprises the last four chapters. In Chapter 6, we examine the CFM 

applicability for rock static analysis. First, CFM capability for reproduction of fracture 

mechanics behavior is examined. Then, standard laboratory tests of rock is modeled to 

asses the sensitivity of results to the model micro–parameters and confining pressure. 

Using the obtained results, an established calibration process is proposed, which leads to 

a unique set of the micro–parameters. 

Chapter 7 particularly focuses on rock joint shear behavior, where CFM is used to 

examine strength, dilatancy, and asperity degradation in plaster–made rock joints. 

Obtained numerical results are compared qualitatively and quantitatively to laboratory 

data, and similarities are discrepancies will be discussed in detail. 

In Chapter 8, we explore the CFM application for dynamic problems in homogeneous 

material. For this purpose, dynamic fracture tests on PMMA plates (Shioya and Zhou 

1995) are modeled. The simulations reveal that the fracture behavior of PMMA samples is 

not satisfactorily predicted, unless rate effects are appropriately introduced into the 

contact constitutive model. 

Ultimately, Chapter 9 shows the CFM capabilities for investigating rock fracture 

features observed in the split–Hopkinson pressure bar test. As a representative case, we 

have chosen the semi–circular bend test method proposed by Chen et al. (2009). 

Simulation of the test demonstrates how the test measurements are controlled by the 

rock micromechanics and specimen boundary condition. 
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CHAPTER 2 

2.Fracture process zone theory and description of 
Cohesive Fragment Model (CFM) 

This chapter briefly introduces the theory of rock fracture mechanics and presents some 

key developments. The reader is introduced to the terminology regarding fracture in 

rocks as well as mechanical background of fracturing in terms of stress intensity factor, 

and the theory of fracture process zone. 

Empirically investigating rock failure patterns, a numerical idealization for rock material, 

based on its microstructure and the process zone theory, is eventually proposed, which is 

expected to reproduce and explain the failure process. 

2.1. Discontinuities in rock 

In the literature, terms regarding the description of discontinuities and in particular 

fractures are frequently used in not clearly specified meanings. This might be due to 

different nomenclatures in different disciplines. The terms used in this thesis are 

explained in this section.  

A crack is any separation in rock body that has one or two dimensions much smaller than 

the third. The width to length ratio, termed crack aspect ratio, is typically between 10–3 

to 10–5 (Simmons and Richter 1976). Cracks can be divided into three scale classes, i.e., 

micro, meso and macro. Micro–cracks are planar discontinuities with their longest 

dimension in the order of one to few grain diameters. This might be about one to one 

thousand microns. Based on their occurrence within the rock, they can be divided into 

grain boundary cracks (located at the interface between grains), intra–granular cracks 

(cracks restricted within one grain), and inter–granular cracks (cracks cutting more than 

one grain) (Engelder 1987). A meso–crack is a discontinuity spanning a larger number of 

grains than a micro–crack, formed by a complicated rupture event and eventually 

connecting several micro–cracks. The extension is one to few millimeters. 
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The macro–crack spans several millimeters to decimeters. Meso– and macro–cracks are 

referred to as fracture. 

As seen in Figure 2–1, a fracture system consists of the through–going main separation 

and the surrounding Fracture Process Zone (FPZ) (e.g. Hoagland et al. 1973; Atkinson 1987). 

This process zone includes micro–cracks and meso–cracks. Prior to the main fracture 

growth, extensive micro–/meso–cracking occurs. Meso– or macro–cracks propagating off 

the fracture are called branching cracks. 

 

Figure 2–1: Nomenclature of a fracture system (modified after Liu et al. 2000) 

The width of the fracture process zone depends on grain size and loading nature (e.g. 

Hoagland et al. 1973; Labuz et al. 1985; Zang et al. 2000; Zhou et al. 2005). The size of the 

FPZ is typically about five to ten times the average grain size (e.g. Hoagland et al. 1973; 

Zang et al. 2000). However, greater values up to 40 grain–diameters have been reported 

(Whittaker et al. 1992). Broberg (1999) defines the process zone as the area in the state of 

decohesion, in front of the fracture tip and the wake of it, where micro–cracks coalesce to 

form the through–going main separation. Non–elastic deformation within the FPZ is 

caused by stress concentrations at the fracture tip. 

Figure 2–2 schematically presents the progression of fracturing, where sequence A–D 

shows micro–, meso–, and macro–crack development with increasing load. Evolution of 

the load and number of micro–cracks is given in the below bars. 

 

Figure 2–2: Development of fracture and fracture process zone under tensile load 
perpendicular to starter notch (modified after Hoagland et al. 1973) 

In tectonics and structural geology, the genesis of fractures and fracture networks is 

indicated by the terms joint and fault. A joint is a discontinuity that shows a displacement 

normal to its surface or trace and no displacement parallel to its surfaces. Joints are in 

parallel sets, and often formed during cooling or tectonic movements. A fault has been 
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generated by a shear deformation, therefore showing displacement parallel to the 

surfaces (Pollard and Aydin 1988). In general, these types of discontinuities are much 

larger than fractures. Figure 2–3 shows the length classification from micro–crack to 

fault. In laboratory work, fracture and joint are often interested. This study specifically 

focuses on rock fracture and joint. 

 

Figure 2–3: Length range of different types of discontinuities in rock 

2.2. Theory of fracture mechanics 

2.2.1. Modes of fracturing 

In fracture mechanics, cracks or fractures are usually subdivided into three basic types, 

namely Mode–I, Mode–II and Mode–III, from a mostly mathematical viewpoint (Irwin 

1958). The division, which is based on the crack surface displacement or crack tip 

loading, is generally indicated as either mode of crack propagation, mode of fracturing or mode of 

loading. Relating the modes of fracturing to the modes of loading (with the assumption 

that the fracture propagates within its own plane) is appropriate for most metals (Rao et 

al. 2003). In rocks, a specific mode of loading, however, is not necessarily leading to the 

same mode of fracturing. Note that the reference of mode regarding the applied loading and 

fracture propagation is often mixed up in the literature. For the sake of clarity, an 

apparent distinction between mode of loading (for applied boundary stresses) and mode of 

fracturing or failure (for mechanical breakdown process defined by relative displacement) 

is respected by the thesis. 

 
  

Mode–I Mode–II Mode–III 

Figure 2–4: Basic modes of fracturing 

In terms of crack surface displacement, i.e., mode of fracturing, the modes can be 

classified as depicted in Figure 2–4. In Mode–I, also called tensile mode, the crack tip is 

subjected to a displacement perpendicular to the crack plane. Propagation of the crack is 
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in its plane direction, where it carries no shear traction and no record of shear 

displacement is visible. In Mode–II, the crack faces move relatively to each other in the 

crack plane, and the crack propagates perpendicular to the crack front. Shear traction 

parallels the plane of the crack. In the third mode of fracturing, Mode–III, shear 

displacement is acting parallel to the front in the crack plane. 

Any combination of the three basic modes is referred to as mixed mode. The principle of 

superposition is applicable to describe the most general case of crack tip deformation 

(Atkinson 1987). 

2.2.2. Stress distribution within fractured area 

Inglis (1913) showed mathematically that the local stress concentrated at a sharp tip is 

several times larger than the applied stress. Therefore, any microscopic flaws or even 

inhomogeneities, within rock body, can be considered as a potential plane of weakness. 

This stress concentration concept yields 

n

f

σ
σ ρ

=
1

 (2–1) 

where σn is the stress at the crack tip, σf is the applied stress and ρ is the curvature of the 

crack tip. The ratio in Equation 2–1 is an elastic stress concentration factor and it 

depends on the shape (curvature) of the crack or corner. 

 

Figure 2–5: Notations for stress tensor around an edge notch 

Stresses and displacements at the tip of an existing crack with a sharp tip, i.e., ρ ≈ 0, can 

be calculated using Westergaard’s and Sneddon’s stress functions (Westergaard 1939; 

Sneddon 1945). Derivation and formulation of the stress and displacement functions can 

be found in Lawn (1993). The stress formulations can be reduced to the simple form 

( )k
ij ij

K
f

r
σ θ

π
=

2
 (2–2) 

where σij is the stress tensor in the Cartesian coordinates, and i and j represent the 

Cartesian coordinate axes. fij is a geometric stress factor depending solely on the angle θ 

(see Figure 2–5). Kk is a multiplier depending on the boundary conditions, i.e., applied 

loading and geometry, where the subscript k refers to the corresponding mode. In the 
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theory of fracture mechanics, Kk is referred to as stress intensity factor that gives the grade of 

stress concentration at the tip of a notch of length a and at a given loading. It has the 

dimension of stress times square root of length, e.g. Pa√m in the SI units. When θ  = 0, 

k f ijK a rσ π σ π= = 2  (2–3) 

One must be aware that the concept developed is for the case of a fracture propagating in 

its own plane due to the corresponding modes of loading. Any deflection from this plane 

will result in mixed mode conditions. 

2.2.3. Griffith’ theory and energy release rate  

Most materials fail when stressed beyond some critical level. From this point of view, 

crack initiation will occur, when the stress intensity factor reaches a critical value called 

fracture toughness, KkC. To clarify the essence of this phenomenon, Griffith tried to examine 

it from an energy viewpoint. For this purpose, he formulated a criterion for extension of 

an isolated crack within elastic solids. Introducing the fundamental energy theorems of 

classical mechanics and thermodynamics, He modeled the crack as a reversible 

thermodynamic system. The energy–balance concept by Griffith is given by the following 

equilibrium requirement, 

d
dr
Ψ

= 0  (2–4) 

where dΨ is the change in the system energy and dr is the crack extension. If equilibrium 

is not maintained, a crack would extend or retract reversibly, according to whether the 

left hand side of Equation 2–4 is negative or positive. The failure load, σu is therefore 

defined by the Griffith’s strength relation as follows. 

u

E
a
γσ

π
′

=
2

 (2–5) 

E´= E for plane–stress and E/(1–ν2) for plane–strain, where E is the Young’s modulus, ν the 

Poisson’s ratio, and γ the crack surface energy. 

As long as applied boundary stress, σf, is lower than σu, the crack remains stationary. As 

σu is exceeded, it propagates spontaneously. The logical extension of this idea, 

expounded by Griffith, yields the concept of energy release rate, G, which indicates that 

crack extension occurs as G exceeds the critical energy release rate, Gf. 

Rearranging the Griffith’s strength relation leads to 

u
f

a
G

E
π σγ= =

′

2

2  (2–6) 

Irwin (1958) could show the equivalence of the energy release rate and stress intensity 

factor, i.e., Kk = KkC ↔ G = Gf. The fracture toughness and the critical energy release rate 



 12 

should be therefore related together. For example, if σf = σu in Mode–I, Equation 2–3 

suggests 

IC uK aσ π=  (2–7) 

Combining Equation 2–6 and 7, 

IC
f

K
G

E
=

′

2

 (2–8) 

As the principle of superposition applied to the relationship, it yields 

( )IC IIC IIIC
f

K K K
G

E E E
ν= + + +

′ ′ ′

2 2 2

1  (2–9) 

2.3. Concept of cohesive process zone 

2.3.1. Fracturing process 

The process of fracturing in rock and rock like materials has been frequently studied. 

This was done under different loading condition and for different materials, and by 

means of different observation scales and techniques, e.g. interpretation of mechanical 

data, microscopy at different scales and detection and interpretation of acoustic emission 

events. The reader is referred to textbooks and reviews such as Pollard and Aydin (1988), 

Atkinson (1991), and Dresen and Guéguen (2004). 

When subjecting a plate with an isolated fracture to an increasing tensional stress 

perpendicular to the fracture, it will generally fail by rapid Mode–I fracture propagation. 

The fracture accelerates approaching speeds whose maximum is governed by the speed 

of elastic waves. 

Experimental work on inclined single or multiple prefabricated fractures (notches) 

subjected to compressive loads was carried out by, e.g. Brace and Bombolakis (1963), 

Hoek and Bieniawski (1984) and Sammis and Ashby (1986) in glass, e.g. Erdogan and Sih 

(1963), Horii and Nemat–Nasser (1985), Ashby and Hallam (1986), and Petit and 

Barquins (1988) in PMMA, e.g. Shen et al. (1995), Bobet and Einstein (1998), Park et el. 

(2001), Tang et al. (2001), Wong et al. (2001), and Sagong and Bobet (2002) in model 

materials, and, e.g. Petit and Barquins (1988) in rock samples.  

As recognized in the meso and macroscopic observation of rocks, both tensile and shear 

stress concentrations develop at preexisting inclined inhomogeneities under boundary 

compressive loading. As the compression applied to the sample increases further, tensile 

cracks will be initiated at the tips of the preexisting fractures. These are called wing cracks 

and grow progressively in the direction of the remote major principal stress and finally 

stop (e.g. Brace and Bombolakis 1963; Kemeny and Cook 1987, Petit and Barquins 1988). 

At the early stages of propagation, the growth of the stable wing crack is dominated by 

the stress field of the original fracture. As it extends, it starts interacting with 
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neighboring micro–cracks, where this interaction might lead to coalescence and 

eventually ultimate failure. 

Depending on geometry and pattern of the interacting fractures also stress condition, 

different coalescence behavior was observed. In general, the wing cracks initiate at the 

fracture tips at uniaxial and low confinement biaxial condition (Figure 2–6). Bobet and 

Einstein (1998) reported that the location of crack initiation moves to the middle of the 

flaw, as confining pressure increases. The wing cracks disappear completely at higher 

confining stresses. Later, secondary fractures are likely to connect the preexisting 

fractures. They propagate unstably and follow the direction of shear (Sagong and Bobet 

2002). Figure 2–6 illustrates the most preferable configuration of the developing shear 

fractures, which is a setup with two co–planar initial fractures as well with as without 

confining pressure (Bobet and Einstein 1998). 

 

Figure 2–6: Setup for fracture coalescence in shear and influence of confining pressure (Bobet 
and Einstein 1998) 

Intrinsic limits are reported for growth of 3D cracks, i.e. cracks with not planar but 

curved surface. For further details on this rarely studied subject, refer to, e.g. Dyskin et al. 

(2003) and Germanovich and Dyskin (2000). 

While, e.g. Brace and Bombolakis (1963) or Horii and Nemat–Nasser (1985) indicated 

that shear fractures observed in glass will not propagate in their own plane in the micro–

/meso–scale, rock shear fractures were found to grow in–plane (e.g. Petit and Barquins 

1988; Reches and Lockner 1994; Moore and Lockner 1995) at least in the macro–scale. 

On the micro–scale, Bažant and Pfeiffer (1986) describe the shear fracture resulted from 

Mode–II loading as a zone of inclined tensile micro–cracks subsequently connected by 

shearing. The shear fracture or shear band consists of inclined struts of the material 

between inclined cracks. Shear failure requires these struts to be crushed in compression. 

According to Lockner (1995), shearing will take place along surfaces oblique to the 

maximum tensile stress and play an important role in the development of local stress 

concentrations. Induced near a fracture tip and loaded in shear, the local stresses contain 

a component of tension as well as shear. This will in general lead to tensile failure before 

shear failure is achieved. 

Two processes may take place simultaneously during loading the fractures in 

compressive shear. First, propagation of the extensional cracks decreases stress intensity, 
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so that additional deviatoric stress must be applied to cause further fracture propagation. 

At some point, the extensional crack propagates outward the area of high stress 

concentration and subsequently ceases. Second, diagonal flaws propagate out–of–plane 

and in parallel with the orientation of the maximum tensile stress. These flaws are 

favorably oriented to act as initiation points for shear failure. When the flaw density 

evolves sufficiently for crack interaction to occur, en–echelon arrays of cracks will 

develop (Costin 1987; Lockner 1995). Finally, the stress concentration is high enough to 

initiate shear fractures propagating in plane and being governed by their own stress field. 

The expanse of damaged rock is asymmetrically distributed around the Mode–II fracture 

(Moore and Lockner 1995). Similar observations on PMMA and sandstone were reported 

by Petit and Barquins (1988). They state “various […] examples show that Mode–II 

propagation from a defect cannot induce the formation of a single crack co–planar with 

the defect as is suggested by the fracture mechanics model. A macroscopically […] shear 

zone involving Mode–I minor fractures (micro–cracks) can, however, propagate to 

prolong the defect” (p. 1254). 

Acoustic emission data, recorded in compressive cylindrical samples, in combination 

with micro–structural observations yielded a description for the formation of shear 

fractures. I.e. below yield strength, many dilatant micro–cracks are formed in a random 

distribution; near peak strength nucleation, local increase of crack density causes the 

process zone to expand that leads shear fracture to be created by crushing, buckling and 

rotation (e.g. Lockner et al. 1992; Reches and Lockner 1994; Zang et al., 2000). 

Glaser and Nelson (1992) did detection of AE events during Mode–I and Mode–II 

loading of dolostone samples. They observed that in both the loading cases the most 

common waveform recorded comes from tensile crack propagation. In fact, Mode–II 

cracking occurs due to the growth and coalescence of local tensile cracks which, in 

aggregate, create the shear failure plane observed in macro–scale. They did not detect any 

signal before the peak point in Mode–I loading, which is in direct contrast to the 

observations reported by Hoagland et al. (1973). Evidences, implying for crack growth 

before peak load, are clearly recognized at the onset of nonlinear deformation recorded in 

the load–deflection curve of acoustic emission (Ouchterlony 1982). This has been also 

confirmed by Stanchits et al. (2003) for Mode–I loading of granite samples. 

Since most usually KIIC > KIC, tensile fracture is consequently identified as dominant in 

rocks and rock–type materials. Even in situations where Mode–II seems to be favorable, 

Mode–I takes over (Melin 1989). This is manifested in, e.g. the formation of the wing 

fractures on shear cracks. The wing fractures propagate stably and often stop when 

aligned parallel to the direction of maximum tensile stress. Mode–II fractures are then 

initiated at the wings tips and in parallel with the shear crack. They form an array of en–

échelon cracks, which are later connected. Mostly propagating unstably, the fractures are 

asymmetrically distributed with respect to the shear plane. Confining pressure enhances 

the growth of Mode–II fractures and suppresses development of Mode–I wing cracks.  
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2.3.2. Static–dynamic versus stable–unstable fracture growth  

There exist two terminology frames for fracture propagation process. One is based on 

fracture propagation velocity, and the second is defined by stress intensity factor. The 

velocity–dependent definition differentiates between static and dynamic, while the latter 

deals with the concepts of stable and unstable. Figure 2–7 shows the different regimes of 

fracture propagation. 

 

Figure 2–7: Schematic variation of Mode–I stress intensity factor, KI, versus fracture velocity 
(after Zhang et al. 1999) 

The necessary condition for instability of a crack is that stress intensity reaches material 

fracture toughness, i.e., Kk = KkC, and the derivative of Kk with respect to the crack length 

remains positive. (Lawn 1993). Otherwise, the crack is stable. A stable crack extends 

comparably slow and can be stopped at any stage, i.e., requires an increase in stress for 

each increment of crack growth. An unstable crack will be accelerated by excess energy 

and propagates at the speed approaching the terminal velocity, which is governed by the 

material elastic wave speed. This situation is referred to as dynamic. Instability can be 

either achieved by reaching a critical crack length or by impact loading. The term critical 

is used for the onset of the unstable crack growth, i.e., the transition from stable to 

unstable. The stress intensity factor corresponding to this transition is fracture 

toughness, KkC. Any fracture propagation taking place at fractions of KkC is referred to as 

subcritical crack growth (e.g. Atkinson 1984), which is governed by some competing 

mechanisms including diffusion, dissolution, ion exchange, micro–plasticity, and stress 

corrosion. The latter is important in rocks, whilst the others have been mainly shown as 

active in ceramics and glass. Subcritical fracture propagation takes place at slow speeds. 

The transition from critical cracking to stress–corrosion–dominated propagation is 

reported at a crack propagation velocity of about 10–3 m/s (Atkinson 1984). At stress 

intensities lower than K0, no subcritical crack growth is initiated. 
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2.3.3. Fracture process zone model 

In the previous section, static stress and displacement fields at the vicinity of a loaded 

crack were introduced in terms of the stress intensity factor, Kk. Assuming linear elastic 

behavior, Equation 2–2 suggests an infinite or singular stress at the crack tip, i.e., r → 0, 

providing any nonzero Kk. This is, in fact, a manifestation of Hooke’s law applied beyond 

its limits of validity. Physically, the stress–bearing capacity of a material is limited by its 

yield strength. Hence, a small plastic region is expected immediately ahead of the crack 

tip. This region is called plastic zone in metallic materials (Irwin, 1958); however, it has 

been demonstrated to be a micro–crack–smeared zone or a fracture process zone in rock 

(e.g. Hoagland et al. 1973).  

Some fracture process zone models have been so far proposed. According to Whittaker et 

al. 1992, the most important and popular ones are the maximum normal stress criterion 

(Schmidt 1980) and the cohesive crack model (Dugdale 1960; Labuz et al. 1983). The 

maximum normal stress criterion is based on the assumption that the formation of the 

FPZ takes place when the local tensile stress in the vicinity of the crack tip reaches the 

ultimate uniaxial tensile strength of the rock material. The theory provides formulations 

for size and shape of the process zone. 

 

Figure 2–8: The schematic layout and nomenclature of the cohesive crack model 

Describing the FPZ for Mode–I fracturing in rocks, the cohesive crack model is a 

modification to the Dugdale’s crack model initially introduced for metals. The model 

assumes a crack to be represented by an effective length (see Figure 2–8). This length is 

divided into a traction free portion (true crack length) and a length over which cohesive 

stress applies. The cohesive stress tends to close the crack and refer to the FPZ. The 

material in the process zone, indicated by the shaded area in Figure 2–8, is partially 

damaged but still able to withstand some stress, which is transferred from one surface to 

the other. The material outside the FPZ is assumed linear elastic. 

The FPZ starts expanding if the maximum tensile stress, induced over the FPZ, reaches 

the ultimate tensile strength, σc, while the true crack tip displacement, i.e., opening is 
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still zero. As the crack tip opens up, the stress decays to zero, and eventually the true 

crack tip displacement reaches a critical maximum value, sc. Hence, the stress singularity 

problem is overcome. From now on, the true crack tip displacement is briefly named 

crack displacement, Although Dugdale’s assumption suggests that the crack–closing 

cohesive stress is constant and equal to the yield strength, it is, in reality, thought to 

depend on some other parameters, e.g. the instantaneous value of crack displacement, 

loading nature etc. 

2.4. Rock failure phenomenology 

Experimental observations show that since the rock minerals have different strength and 

hardness, rock expectedly fractures through the weakest minerals (e.g. Hazzard and 

Young 2000). Subsequently, coalescence of fractures causes rock to fragment irregularly 

as observed in macro–scale (Figure 2–9). This process is known as fragmentation in which 

material turns into several or even numerous intact fragments, where each fragment has 

the same texture with that of the original rock, and consequently, inherits physical 

properties from that. 

  
a. compressive sample in low–rate static testing 

  
b. compressive sample in high–rate dynamic testing 

Figure 2–9: Pre– and post–failure appearance of sandstone samples under low– and high–
rate loading (Gong 2010) 

Fragment size depends on the rock texture and more significantly on the loading nature 

that the rock endures. As observed in laboratory tests done on compressive and tensile 
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samples, rock breaks into few pieces in static loading, where distinct failure surfaces are 

observed. On the contrary, the material violently smashes under high–rate loading. 

Figure 2–9 (previous page) compares the post–failure appearance of sandstone samples 

observed under different loading rates. Gradation of the fragments produced by the 

sample, illustrated in Figure 2–9b, is presented in Figure 2–10. 

   
a. sample core (20 mm), very 

big fragments (12~15 mm) 
b. big fragments 

(6~12 mm) 
c. moderate fragments 

(3~6 mm) 

   
d. small fragments 

(2~3 mm) 
e. very small fragments 

(1~2 mm) 
f. fine fragments and 

minerals (<1 mm) 

Figure 2–10: Fragments size gradation of the sample shown in Figure 2–9b (Gong 2010) 

2.4.1. Rock failure in different scales 

Material failure can be interpreted differently in different observation scales. In macro–

scale, strength criteria, e.g. Mohr–Coulomb are used to express the failure phenomenon 

irrespective of the role of rock microstructure. However, as discussed before, micro–

cracks, initiated within the weak grains or mineral cement and propagating throughout 

the rock structure, are the origin of rock failure. Furthermore, mechanical properties of 

each rock mineral depend on its molecular structure, where attractive and repulsive 

forces between molecules govern the mineral strength and stiffness. In such a structure, 

excessive separation of molecules, interpreted as bond break, is the origin of mineral 

fracture. Figure 2–11 (next page) schematically presents how a single rock failure 

phenomenon can be independently investigated at different observation levels. 

Molecular bond rupture is, in fact, the origin of any material failure observed in whether 

micro– or macro–scale. However, its numerical simulation requires extremely fine 

discretization, which is too effortful by current computational facilities. This problem 

turns more serious when laboratory specimens with few centimeters size are aimed to be 
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modeled. That is exactly why micro–scale simulations are vastly preferred, although 

molecular effects cannot be explicitly included into them. However, if relations between 

the model parameters and the material molecular properties are somehow established, 

these effects can be implicitly introduced into the calculations. 

Accepting this logic, this thesis aims to establish a micro–scale model in order to explore 

how micromechanical properties of rock characterize and control its macroscopic 

response. This model will help for rock strength prediction under different loading rates, 

and hopefully provides a clear understanding about rock failure process. 

 

Figure 2–11: Rock failure in different observation scales, and its idealization in micro– and 
molecular–scale modeling 

2.5. Cohesive fragment model 

Considering the presented explanations, the microstructure of rock material can be 

idealized as a collection of fragments cohesively stuck together along their boundaries 

(see the second row in Figure 2–11). The fragments are regarded as a miniature of the 

rock material with the same texture and elastic properties, where the interface between 

the fragments represents a potential fracture. As formerly illustrated in Figure 2–8, force–
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displacement relation in the interfaces should follow a cohesive law in order to mode the 

fracture process zone. 

Global behavior of this idealization can be studied in three distinct stages: 

• Pre–failure or elastic stage where all the fragments are connected together, and no 

fracture, i.e., interface separation exists. The assemblage follows therefore the same 

elastic response with that of the tested rock. 

• Failure stage; once traction force between two or several fragments exceeds its 

ultimate limit, the fragments start separating from each other, and fracturing is 

triggered. The assemblage loses its strength and exhibits a softening behavior. 

• Post–failure stage; if loading keeps increasing, number of fragments detached 

increases and fractures densely propagate throughout the body. Depending on the 

model specifics, this process may create a distinct failure surface or intensively 

shatter the assemblage. 

This simulation approach, which can be applied to a verity of brittle materials, e.g. rock, 

ceramics, polymer and concrete, is called Cohesive Fragment Model (CFM) in this thesis. 

2.5.1. Numerical method for CFM implementation 

The CFM requires a numerical method capable of handling both the fragments and 

interfaces. The method must be also able to treat the cycles of fragments separation and 

reattachment. To choose the best option for the CFM implementation, all the numerical 

methods, related to fracture and fragmentation, should be examined in terms of their 

capabilities and limitations. This is done in the next chapter, where the most efficient 

numerical method to carry out the CFM will be introduced. 
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CHAPTER 3 

3.Numerical models and laboratory tests for rock 
fracture study 

The entire research on rock fracture can be classically divided into two parts, i.e., 

experimental studies and numerical simulations. Each part involves particular 

difficulties. Precise sample preparation is always necessary for laboratory tests and any 

inaccuracy may totally alter the measurements. Moreover, high–speed cameras and 

sensitive data logger systems are needed for dynamic tests to accurately record the 

dynamic event, which occurs within a fraction of microsecond. On the other hand, 

advanced computational facilities are required to handle massive numerical models with 

very high degrees of discretization. These obstacles delayed rock fracture research until 

resent years. However, studies done in the last decade attained promising achievements, 

which have not only extended geomechanics, but also been helpful for the other branches 

of material science. 

This chapter reviews the major progresses achieved in rock fracture simulation and 

briefly explains their basics, assumptions, consequences, and limitations. Laboratory 

tests mainly for measuring static and dynamic fracture toughness are also described. 

Finally, all the numerical methods are compared and the most efficient option in terms of 

the CFM implementation is selected. 

3.1. Numerical modeling 

Subsequent to rapid advancements in computer technology, numerical methods have 

provided powerful tools in rock dynamics study. For example, numerical modeling has 

been used to simulate dynamic response of fractured rock mass (Chen et al. 2000; 

Hildyard and Young 2002), fracture propagation in rock and concrete under static and 

dynamic loading conditions (Bennett 1991; Du et al. 1989; Kaiser and Tang 1998; Liang et 

al. 2004; Prisco and Mazars 1996; Tang and Kaiser 1998; Zhu and Tang 2006), wave 

propagation in jointed rock masses (Chen and Zhao 1998; Lei et al. 2006), and acoustic 
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emission in rock (Hazzard and Young 2000b). A large number of numerical methods 

have been applied to rock mechanics problems, such as the finite element method, finite 

difference method, finite volume method, discrete element method etc. These methods 

will be explained in detail by categorizing them into continuum, discontinuum, and 

coupled methods (Jing 2003). 

3.2. Continuum methods 

3.2.1. Finite difference method 

The Finite Difference Method (FDM) is one of the oldest numerical techniques used for 

solving partial differential equations. The FDM implementation is simple for both two– 

and three–dimensional cases. Unlike other methods, that does not need for any trial or 

interpolation functions. However, the conventional FDM with regular grid systems does 

suffer from inherent inflexibilities in dealing with fractures, complex boundary 

conditions and material heterogeneity. These shortcomings constrain its application for 

rock mechanics. Some FDM developments target at getting rid of these deficiencies. For 

example, the Finite Volume Method (FVM) is considered as an extensional FDM. That is 

not only free of regular mesh constrains but also is specially suited to simulate non–linear 

behavior of solids (Jing and Hudson 2002). 

Introduced by Yee (1966), the Finite–Difference Time–Domain (FDTD) is another 

development of the FDM, which bases on two–layer grid–based differential time–domain 

methodology. The FDTD was widely used for electromagnetic data processing in rock 

mechanics, e.g. imaging electromagnetic data for cross–hole (Ernst et al. 2006; Holliger et 

al. 2001; Yu et al. 1998). By using double grid methodology, the FDTD can deal with 

inhomogeneous problems. It can also be used for determining rock hydraulic 

conductivity (Lesnic et al. 1997) and wave propagation problem in homogeneous and 

heterogeneous media (Barkhatov 2007; JafarGandomi and Takenaka 2007; Sato 2006; 

Schroder and Scott 2000; Schubert et al. 1998; Wang and Tang 2003). 

Based on the FDM fundamental idea, some truly meshless methods have been proposed, 

such as the Generalized Finite Difference Method (GFDM) (Liszka and Orkisz 1980) and 

the Finite Point Method (FPM) (Onate et al. 2001). Despite of many constrains of the 

FDM, its basic idea has been widely used in many numerical methods, especially for 

dynamic analysis, such as the discrete element method, molecular dynamics etc.  

3.2.2. Boundary element method 

The Boundary Element Method (BEM) seeks a weak solution at global level through a 

numerical solution of an integral equation derived using Betti’s reciprocal theorem and 

Somigliana’s identity. The main advantage of the BEM is to reduce the model dimensions 

by one, with much simpler mesh generation and much faster calculation speed. The BEM 

is more suitable for solving fracture problems in inhomogeneous and linearly elastic 
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bodies (Gray et al. 2004; Pan et al. 1997; Saez and Dominguez 2001; Wearing and 

Burstow 1994; Zhao et al. 1999). 

Recent BEM developments can be summarized as follows: The Boundary Contour 

Method (BCM) (Nagarajan et al. 1996) that further reduces computational model 

dimensions; the Galerkin Boundary Element Method (GBEM) (Bonnet et al. 1998; Maier 

and Frangi 1998) which paves the way for the variation formulation of the BEM to solve 

non–linear problems; and the BEM–based mesh–free methods (Liu and Gu 2004; 

Nicolazzi et al. 2005) that overcome the conventional drawback of the BEM on requiring 

boundary element. 

However, according to the literature, the BEM does not sound efficient in dealing with 

material heterogeneity, material non–linearity, and damage evolution process. 

3.2.3. Finite element method 

The term Finite Element Method (FEM) was first used by Clough (1960) for plane stress 

problems. Nowadays the FEM has become the mainstream numerical tool in engineering 

sciences, including rock mechanics and rock engineering. The FEM has a great flexibility 

in treatment with material heterogeneity, non–linear deformability, complex boundary 

conditions, in situ stresses and gravity. These merits made it become the most extensive 

numerical method used in engineering and scientific research (Jing and Hudson, 2002). 

Special development of the FEM in rock mechanics are the joint elements (Goodman et al. 

1968; Katona 1983; Mahtab and Goodman 1970; Zienkiewicz et al. 1970) which are 

targeting at simulation of jointed rock mass. 

An overview on the exiting literature shows that the FEM approaches for fracture 

simulation can be classified into two groups, i.e., element degradation method and element 

boundary breaking method. 

The idea of element degradation approach is treating the fracturing process as a sequence 

of element degradation. The removal technique provided in the ABAQUS is an example 

of this kind of approach, which deletes the elements where the failure criterion is locally 

satisfied, and crack propagation track is visualized as the path of removed elements 

(ABAQUS 2005). The most representative method of the element degradation approach 

is the Continuum Damage Mechanics (CDM), which is widely used in brittle fracturing 

analysis (Bonora 1997; Brooker and Ronalds 2001; Kuna–Ciska and Skrzypek 2004). 

Combination of the CDM with the Weibull’s distribution enables the FEM to represent 

material heterogeneity. This is a common technique for describing damage evolution and 

crack propagation in rock and concrete under static and dynamic loading conditions 

(Bennett 1991; Du et al. 1989; Liang et al. 2004; Prisco and Mazars 1996; Tang and Kaiser 

1998; Zhu and Tang 2006). 

Another degradation technique for representing cracked medium is to work with 

equivalent continuum concept of elastic degradation and/or softening plasticity 
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(Zienkiewicz et al. 1980). Introduced by Rashid (1968), the smeared crack modeling is a 

known representation of this method. It is commonly used in concrete fracturing 

analysis, and very popular because of its computational convenience (Abdollahi 1996; 

Espandar and Lotfi 2003; Lotfi and Espandar 2004). This method has been also used for 

concrete fracture analysis under high strain rate, thermo–mechanical behavior of 

concrete and failure of ceramic refractory materials (Ali, 1996, Andreev and Harmuth 

2003; Tedesco et al. 1993). It is introduced into some commercial FEM codes like the 

ANSYS (ANSYS 2008) and ATENA (Wolfel 2007). 

The main advantage of the element degradation method is avoiding re–meshing and 

adding new degrees of freedom during the calculation process. However, this method 

does not give an explicit interpretation of the fracturing phenomenon. 

Elements boundary breaking approach represents fracturing process by separation 

through the inter–element boundaries. Failure in inter–element boundaries may be based 

on either the fracture mechanics theory or a failure criterion governing the detachment of 

inter–element boundaries. The first approach has been used in several FEM codes like 

the ABAQUS (ABAQUS 2005), FRANC (Agrawal and Sun 2004) and MARC (MSC 

Software 2007). The second method inserts interface elements along the inter–element 

boundaries. That is mostly applied to concrete or rock material (Alfaiate et al. 1997; Cho 

et al. 2003; Cho and Kaneko 2004). The most successful development of the element 

boundary breaking approach is the Cohesive Zone Modeling (CZM), which dates back 

to the work of Hillerborg et al. (1976) and Belytschko et al. (1976). The CZM has been 

successfully used in the simulation of fracture and fragmentation in brittle materials, 

multiple discrete crack propagation, and dynamic crack growth in ceramic materials 

(Block et al. 2007; Camacho and Ortiz 1996; Elmarakbi et al. 2009; Karedla and Reddy 

2007; Li et al. 2004a; Molinari et al. 2007; Murphy and Ivankovic 2005; Pinho et al. 2006; 

Remmers et al. 2008; Tomar et al. 2004; Yang and Chen 2005; Zhai et al. 2004; Zhou and 

Molinari 2004b; Zhou et al. 2005a). 

Application of these techniques is usually coupled with a re–meshing algorithm to 

eliminate stress singularity and element dependence problems happening at the crack tip 

(Yang and Chen 2005). Re–meshing techniques (Bocca et al. 1990; Bocca et al. 1991; 

Molinari and Ortiz 2002; Wawrzynek and Ingraffea 1989) require rather complicated 

programming, and may accumulate calculation errors through the variable mapping. As 

the worse effect, adaptive re–meshing can hardly be used to simulate complex cracking 

aspects such as crack coalescence or crack bifurcation. 

Generally speaking, the continuum assumption makes the FEM unsuitable to deal with 

the complete detachment and large–scale fracture opening problems (Jing and Hudson 

2002; Jing 2003), which are the most concerned issues in micromechanical modeling of 

rock material failure. The locking effects including element locking and numerical 

locking, i.e., ill–conditioning are other shortcomings of the FEM (Arnold 1981; Babuska 
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and Suri 1992; Chilton and Suri 1997; Suri 1996; Szabo 1990). They have more or less 

negative influences on the FEM application in brittle material fracturing. 

Recently, the FEM has been specifically extended to deal with fracturing problems in 

continua. Two main streams in this way are categorized as follows. 

a. Extended finite element method 

The Extended Finite Element Method (XFEM) (Belytschko and Black 1999) is based on 

the Partition of Unity Method (PUM) (Babuska 1997) which allows for addition of a 

priori knowledge about the final solution into the approximation space of the numerical 

solution. The XFEM treats cracking at element level by using the Level Sets Technique 

(Prabel et al. 2007; Stolarska 2001). Usually Heaviside function and asymptotic functions 

are used to deal with the discontinuity and singularity problems. Compared with the 

classical FEM, the XFEM has several advantages in terms of mesh independence. In the 

XFEM, elements containing a crack are not required to conform to crack edges, and 

consequently mesh generation is much simpler than the classical FEM. The most 

important aspect of the XFEM is to perform crack extension without any re–meshing 

effort. That was successfully applied to dynamic crack propagation, multiple cracks and 

three–dimensional cracking (Asadpoure and Mohammadi 2007; Asferg et al. 2007b; 

Pedro and Belytschko 2005; Prabel et al. 2007; Rethore et al. 2005a, b; Sukumar et al. 

2003b). 

Fracture propagation analysis in quasi–brittle and polycrystalline materials (Mergheim 

et al. 2005; Sukumar et al. 2003a), dynamic fracturing and time–dependent problems 

(Cavin et al. 2005; Rethore et al. 2005b) have been also handled by using the XFEM. Its 

recent developments include dealing with cohesive fracturing (Asferg et al. 2007a, b; 

Belytschko et al. 2003; Zi and Belytschko 2003), explicit reformulation (Menouillard et 

al. 2006, 2007), anisotropic problems (Asadpoure and Mohammadi 2007; Asadpoure et 

al. 2006), and assuming contact between cracks (Khoei and Nikbakht 2007; Ribeaucourt 

et al. 2007). 

Although the XFEM can deal with weak and strong discontinuities and profits from 

mesh independency (Fernandez–Mendez and Huerta 2004), it suffers from some defects. 

For example, the global stiffness matrix may become singular, if crack truncates a very 

small part of a finite element (Markus Peters 2005). The XFEM implementation in 

available commercial codes is a little difficult, because additional degrees of freedom are 

introduced (Stéphane et al. 2007). And all of these methods would suffer from ill–

conditioning when using higher order trial functions (Strouboulis et al. 2007). 

b. Meshless methods 

In recent years, a large family of meshless methods has been invented to eliminate the 

troubles associated with model discretization involved in solving partial differential 
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equations. In these methods, only discrete modes are generated and distributed within 

the concerned medium, while no fixed element–node topological relation is predicted as 

it is in the FEM. The basic idea of meshless methods is therefore to provide numerical 

solutions using a set of arbitrarily distributed points without any element to connect 

them. Compared to mesh generation algorithms, it is relatively simpler to create only a 

node distribution and adapt it locally. 

There are many versions of meshless method, such as the Smoothed Particle Hydro–

dynamics (SPH) (Monaghan 1988; Randles and Libersky 1996), the Diffuse Element 

Method (Nayroles et al. 1992), the Element–Free Galerkin Method (EFGM) (Belytschko 

et al. 1992; Belytschko et al. 1994b), the Reproducing Kernel Particle Method (Chen et al. 

1996; Liu et al., 1996; Liu et al. 1997b), the H–p Clouds Method (Liszka et al. 1996), the 

Partition of Unity Method (PUM) (Melenk and Babuska 1996), the Finite Point Method 

(FPM) (Onate et al. 1996a, b; Perazzo et al. 2008), the Method of Finite Spheres (De and 

Bathe 2000), the Natural Element Method (NEM) (Sukumar et al. 1998) etc. A vast 

review on these methods is given by Belytschko et al. (1996) and Jing (2003). 

Depending on the methodology used to handle the equations, meshless methods can be 

classified into two major categories, i.e., meshless strong–form methods and meshless weak–form 

methods. Most of meshless weak–form methods such as the EFGM (Belytschko et al. 

1992) are “meshless” only in terms of the numerical approximation of field variables. They 

have to adapt a background mesh to perform numerical integration of a weak form over 

the problem domain, which is computationally expensive. Meshless strong–form 

methods such as the Generalized Finite Difference Method (Liszka and Orkisz 1979) 

often use the Point Collocation Method to satisfy governing partial differential equations 

and boundary conditions. These are easy to implement and computationally efficient. 

Since they do not need any background mesh, they are purely “meshless”. In this review, 

only two mainstream meshless methods of the Element–Free Galerkin Method (EFGM) 

and the Smoothed Particle Hydrodynamics (SPH) method are presented. 

The EFGM (Belytschko et al. 1992), which is based on the Moving Least Square (MLS) 

interpolants, requires only nodal data and no element connectivity is needed. This makes 

the method attractive particularly for dynamic crack problems, since in which re–

meshing algorithm is avoided. The EFGM application and development includes various 

fields, such as static crack growth (Belytschko et al. 1994a), dynamic problems 

(Belytschko et al. 1995; Belytschko and Tabbara 1996; Lu et al. 1995), 3–D material non–

linearity (Belytschko et al. 1997), adaptive approach (Haussler–Combe and Korn 1998), 

dynamic propagation of arbitrary 3–D cracks (Krysl and Belytschko 1999), mixed–mode 

dynamic crack propagation and probabilistic fracture mechanics (Belytschko et al., 2000; 

Rahman and Rao 2002; Rao and Rahman 2002), parallel EFGM algorithms (Singh and 

Jain 2005a, b), and multiple cracking and cohesive crack growth (Muravin and Turkel 

2006; Soparat and Nanakorn 2008). 
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Furthermore, contact logic, based on a penalty method, is introduced into the EFGM by 

Belytschko and Fleming (1999), and that is applied for the analysis of jointed rock masses 

with block–interface models (Zhang et al. 2000). These advances make the EFGM 

capable of handling rock mechanics problems, although it is entangled with high 

computational cost. 

The SPH method was initially invented to deal with astrophysical problems (Monaghan 

1988). The elasto–dynamic equations were first studied by Libersky and Petschek (1991). 

The SPH application mainly includes fragmentation analyses, such as dynamic 

fragmentation in brittle elastic solid (Benz and Asphaug 1994, 1995), high distortion 

impact computations (Johnson et al. 1996; Medina and Chen 2000), concrete 

fragmentation under explosion loading (Rabczuk and Eibl 2003), formation of cracks 

around magma chambers (Gray and Monaghan 2004) and strain rate effect on 

heterogeneous brittle materials (Ma et al. 2006a). However, it exhibits an instability, 

known as tensile instability, and suffers from zero–energy modes. Hence, that requires special 

treatments to produce stable and accurate results (Campbell et al. 2000; Dyka et al. 1997; 

Gray et al. 2001). Furthermore, the SPH results are vastly affected by the kernel function 

adopted (Fulk and Quinn 1996). Generally speaking, the SPH method has some 

advantages in dynamic fragmentation, but precision and computational time is still a 

problem for its further application in rock mechanics. 

As the main advantage, the meshless approaches sharply reduce the expenses for domain 

discretization compared to the standard FEM or FVM. However, they involve several 

troublesome defects including difficulty in enforcement of essential boundary conditions, 

stability, and high computational cost. The interpolation functions are non–polynomial 

that makes the integration more demanding for the weak–form approach. The strong–

form approach do not need integration, however it would suffer from unstable solutions. 

From a pure computational viewpoint, the meshless methods have not yet outperformed 

the FEM. However, due to their flexibilities in fracture simulation, they are potentially 

applicable for civil engineering and geomechanical purposes. 

3.3. Discontinuum methods 

3.3.1. Discrete element method 

The key concept of the Discrete Element Method (DEM) is that the domain of interest is 

treated as assemblage of rigid or deformable blocks/particles/bodies (Cundall 1971). The 

DEM is capable of analyzing multiple interacting deformable continuous, discontinuous 

or fracturing bodies undergoing large displacements and rotations. Formulation and 

development of the DEM have progressed over a long period of time since the pioneering 

study of Cundall (1971). The DEM were widely used in underground works (Lemos 1993; 

Sofianos and Kapenis 1998; Souley et al. 1997; Zhao et al. 1999), laboratory test 
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simulations and constitutive model development (Jing et al. 1993; Jing et al. 1994; Min 

and Jing 2003), rock dynamics (Cai and Zhao 2000), wave propagation in jointed rock 

masses (Chen and Zhao 1998; Lei et al. 2006; Zhao et al. 2006), nuclear waste repository 

design and performance assessment (Jing et al. 1995), rock fragmentation process (Gong 

and Zhao 2007), and acoustic emission in rock (Hazzard and Young 2000b). 

Contact detection and contact interaction are the most important aspects of the DEM, as many 

researchers distinguish the DEM from other methods because of its ability for new 

contacts detection during calculation. There are several contact detection algorithms 

aiming efficiency of computation time and memory space. Details on this topic are 

provided by Munjiza (2004). 

Mechanical interaction between two contacting blocks has a great influence on the 

mechanical behavior of a DEM simulation. It is usually characterized by two finite 

stiffness springs in normal and tangential direction. Other improvements for block 

interaction are reported. For example, Donze et al. (1999) and Hentz et al. (2004) have 

extended the classical DEM by introducing an interaction range and using a modified 

Mohr–Coulomb rupture criterion. Kemeny (2005) also implemented a first order 

differential equation for contact cohesion. Jing and Stephansson (2007) have extensively 

provided the fundamentals of the DEM and its application in rock mechanics. 

According to the solution algorithm used, the DEMs can be divided into two groups of 

explicit and implicit formulation. 

a. Explicit DEM (distinct element method) 

As the explicit formulation of the DEM, the distinct element method appeared in the 

early 1970s by a fundamental paper on progressive movement of rock mass as a 2–D 

assemblage of rigid blocks (Cundall 1971). It became more presented by Cundall and 

Strack (1979), Cundall and Hart (1992), Hart (1993), Lemos et al. (1985), Lemos (1994) 

and Curran and Ofoegbu (1993). The most popular numerical representation of the 

explicit DEM has been implemented with the computer codes of PFC2D and UDEC in 

2D and PFC3D and 3DEC in 3D modeling (Itasca 2008, 2009). Other developments were 

made behind or in parallel with these two. The distinct element method appear to be the 

main direction of the DEM implementations for rock mechanics problems, although the 

term discrete element method is more universally adopted. 

In explicit algorithm, there also exist two kinds of approaches, i.e., static relaxation and 

dynamic relaxation. In static relaxation, blocks displacement at the next time step is 

figured out by the equilibrium equations. Examples of the DEM with static relaxation are 

found in Taylor (1983) and Williams and Mustoe (1987). Dynamic relaxation uses 

Newton’s second law to get the displacement of blocks at the next time step (Cundall 

1988; Hart et al. 1988). Static relaxation iterates faster than dynamic one and has no need 

to set damping, but it cannot examine the dynamic effects. 



 29 

One use of the explicit DEM is to represent rock–type material as a dense packing of 

irregular–sized particles interacting at their contact. This method has been already 

known as the Bonded Particle Method (BPM) (Potyondy and Cundall 2004). Many have 

employed the BPM with circular particles, to capture different failure features of rock 

material and other grained media (Azevedo et al. 2008; Cho et al. 2007; Hazzard et al 

2000a; Jensen et al. 1999; Potyondy 2007; Schöpfer 2009; Tan 2008; Tan 2009; Yoon 2007; 

Wanne and Young 2008), and some others have made use of polygonal particles 

(Camborde et al. 2000; Damjanac et al. 2007; Kazerani and Zhao 2010; Kazerani et al. 

2010b). 

b. Implicit DEM (discontinuous deformation analysis) 

As the DEM implicit formulation, the Discontinuous Deformation Analysis (DDA) was 

proposed by Shi (1988) to analyze mechanical behavior of blocky systems. The DDA is 

somewhat similar to the FEM, but accounts for the interaction of independent blocks 

along discontinuities in fractured and jointed rock masses. The DDA is typically 

formulated as a work–energy method, and can be derived using the principle of minimum 

potential energy or Hamilton's principle. 

The applications of the DDA are mainly on tunneling, caverns, earthquake effects, and 

fracturing and fragmentation process of geological and structural materials (Hatzor et al. 

2004; Hsiung and Shi 2001; Jiao et al. 2007b; Zhang et al. 2007). The DDA developments 

include discretizing the blocks with finite elements (Shyu 1993), handling the contacts as 

stiff joints and removing penetration criteria to improve the efficiency and to accelerate 

the convergence (Cheng 1998), coupled stress–flow problems (Kim et al. 1999), 3D block 

system analysis (Jiang and Yeung 2004), higher order elements (Hsiung 2001), more 

comprehensive representation of the fractures (Zhang and Lu 1998), and viscous 

boundary for modeling stress wave propagation (Jiao et al. 2007a). 

The DEM has had wide application in rock mechanics, mainly because of its conceptual 

attraction in explicit crack representation. In addition, its theory is simple and easy to 

understand. However, the DEM is relatively new and its performance, particularly for 

dynamic analysis, is not fully explored yet. 

3.3.2. Molecular dynamics  

The Molecular Dynamics (MD) is a form of computer simulation in which atoms and 

molecules are allowed to interact for a period of time under potential laws of physics. It 

is regarded as an interface between laboratory experiment and theory, and can be 

assumed as a virtual experiment. This technique was originally conceived in theoretical 

physics in the late 1950's (Alder and Wainwright 1959). 

Since early time, the MD has been used for crack modeling at atomic scale, where the 

obtained results were in agreement with the continuum and fracture mechanics (Dienes 
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and Paskin 1987; Mullins and Dokainish 1982; Paskin et al. 1980; Paskin et al. 1983). Other 

applications of the MD can be summarized as follows: transition between brittle to 

ductile propagation of a sharp crack and favorable crack propagation direction in 

crystallize material (Cheung and Yip 1990; Kohlhoff et al. 1991), failure mechanism of 

micro granular material (Farkas et al. 2002; Hasnaoui et al. 2003), crack propagation of 

Mode–I in an icosahedral quasicrystal model (Rosch et al. 2005) and Yoffe's linear theory 

of dynamic brittle fracture (Abraham 2005). Nowadays, the MD is widely used in 

material science and biochemistry to interpret some phenomena at atomic level. 

Rock mechanics related problems solved by the molecular dynamics include interaction 

between complex granular particles (Poschel and Buchholtz 1995), creation of 

polycrystalline computer materials (Krivtsov and Wiercigroch 2001), visco–elastic 

behavior of granite rock (Ichikawa et al. 2001) and influence of porosity on elastic 

strength properties of polycrystalline specimens (Krivtsov 2003). 

Potential laws used for crack propagation includes the Lennard–Jones potential (Paskin 

et al. 1980), Hooke’s law (Abraham 2005, 2006), the EAM potentials (Farkas et al. 2002; 

Hasnaoui et al. 2003), and the ReaxFF reactive force field (Buehler et al. 2006). The 

Lennard–Jones potential and Hooke’s law are simple but do not have much physical 

reality. The EAM potentials were successfully used in metal simulation. However, they 

suffer from some problems when facing with non–metal material (Buehler et al. 2006). 

Suitable for non–metal materials, the ReaxFF reactive force field has been developed to 

describe many different elements across the periodic table (Buehler et al. 2006). 

The key problem of any MD simulation is that the adapted potential function strongly 

affects on the results, while no verified manner is proposed yet to correctly pick the 

potential function. 

Although, the MD is a powerful tool for studying crack propagation mechanism at 

microscopic level, long time simulations are mathematically ill–conditioned, that makes 

the MD problematic to perform long period processes. Furthermore, simple potential 

functions are not sufficiently accurate to reproduce molecular systems while complicated 

functions usually are computationally expensive. The explained time and space barriers 

make the MD inefficient for rock mechanics. Nevertheless, the MD techniques are still 

promising for people interested in micro–mechanics. 

3.3.3. Lattice model 

Formulated by Brandtzaeg (1927), the lattice model, assumes a continuum as a network of 

bar or beam elements. Hrennikoff (1941) demonstrated that a regular triangular lattice of 

bars, i.e., a truss, is capable of solving problems of continuum elasticity with a Poisson's 

ratio fixed at one third. Because of computational limits, further work stalled until 

Herrmann et al. (1989) proposed the use of beam elements instead of bars and using 

regular or random lattice for fracture simulation in heterogeneous solid. 
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The classical lattice models basically aim to describe how concrete or reinforced concrete 

fails due to fracturing (Katsman and Aharonov 2006; Sands et al. 2007; Schlangen and 

van Mier 1992a, b). Fracture process is modeled by removing elements which exceed 

their tensile strength. Material heterogeneity can be also introduced by assigning 

different properties to lattice elements (Reuschle 1998). The most prevalent applications 

of the lattice modeling can be summarized as follows: deformational response and 

fracturing process subjected to dynamic loading (Song and Kim 1996), 3D fracture 

processes in brittle materials (Chen et al. 2002, 2003; Donze and Magnier 1995; Kazerani 

et al. 2010a; Kozicki 2007; Lilliu and van Mier 2003; Zhao 2010), multi physical 

simulation (Eker and Akin 2006; Jimenez–Hornero et al. 2005; Szymczak and Ladd 

2004), and dynamic fracture simulations of brittle solid and seismic wave radiation 

(Mora and Place 1994; Wang et al. 2006b; Wang et al. 2000). 

The lattice model combined with the digital imaging method and the principal–tensile–

stress fracture law seems to give quite realistic crack patterns (Liu et al. 2008; Schlangen 

and Garboczi 1997). There are many other numerical methods, which use the basic idea 

of the lattice modeling, including the Virtual Internal Bond (VIB) model (Gao and Klein 

1998; Klein and Gao 1998), the irregular lattice model (Berton 2003), the cellular 

automata model (Li et al. 2004b) and the fractal lattices (Babadagli 2005). 

3.4. Coupled methods 

3.4.1. Continuum–discontinuum coupled methods 

Continuum and discontinuum methods are respectively unsuitable for modeling the 

post–failure and pre–failure behavior of rock. A combination of the both sounds to be 

helpful in many geophysical applications in order to predict the formation and 

interaction of fragments (Morris et al. 2006). Coupled methods can take advantages of 

each method while avoiding the disadvantages. Creating fractured zones with a 

discontinuum–based method and intact zones with a continuum–based one forms a 

direct simple coupled methodology. Examples of this kind of coupled method include 

hybrid DEM/BEM models (Lorig et al. 1986), combinations of the DEM, DFN and BEM 

approaches (Wei and Hudson 1988), and most popularly hybrid DEM/FEM models 

(Chen and Zhao 1998; Pan and Reed 1991; Munjiza et al. 1999; Morris et al. 2006; Cai 

2008). 

The combined finite–discrete element method (Munjiza et al. 1999; Munjiza et al. 2004; 

Munjiza and John 2002; Munjiza et al. 1995) aims at simulating failure, fracture and 

fragmentation in solids. In this way, each block, viewed as a single discrete element, 

interacts with neighboring discrete elements, while it is itself discretized into finite 

elements and may break into smaller blocks during calculation. This approach has been 

widely used to simulate fracturing process of rock. For example, Morris et al. (2006) 

developed the FEM/DEM code of LDEC to investigate the effects of explosion and 
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impact loading on geological media. Karami and Stead (2008) used their FEM/DEM 

model to simulate crack propagation under mixed mode loading. Ariffin et al. (2006) 

created a hybrid FEM/DEM code to study joint surface damage and tensile failure in 

near–surface intact rock. 

As a hybrid DDA/FEM, the Numerical Manifold Method (NMM) was developed by Shi 

(1991). This method employs two sets of system, one is mathematical and to define 

domain approximations, and the other is physical and defines integration fields. The 

NMM main advantage is getting rid of meshing and combining discontinuum and 

continuum problems into a single framework. For this reason, the NMM is reported as 

suitable for fracture simulation (Chiou et al. 2002; Zhang et al. 1997). The Finite Cover 

Method (FCM) has been proposed by Terada et al. (2003) to enhance the NMM for 

dealing with heterogeneous materials by using Lagrange multipliers. Terada and 

Kurumatani (2005) and Terada et al. (2007) have recently developed the method for 3D. 

3.4.2. Multi–scale coupled methods 

Multi–scale modeling has been regarded as a promising methodology for the simulation 

of cracking process (de Borst 2008; Guidault et al. 2007; Hettich et al. 2008). The 

purpose of multi–scale modeling is to reduce computational expense (Wu and Lin 2008) 

and to obtain directly material macroscopic response from micromechanical properties 

(Sansoz and Molinari 2007). This methodology has been widely used in coupling the 

molecular dynamics with continuum mechanics approaches such as the FEM (Mullins 

and Dokainish 1982), analytical solutions (Hasnaoui et al. 2003) and the Generalized 

Interpolation Material Point (GIMP) method (Ma et al. 2006b). 

As another example, the Quasi–Continuum (QC) method is a coupled continuum and 

atomistic method, which is proposed by Tadmor et al. (1996a, b) for simulating the 

mechanical response of polycrystalline materials. The QC method is basically designed 

for metal material studies, such as effects of structure and size on deformation of 

bicrystals in copper (Sansoz and Molinari 2007), atomic scale fracturing (Miller et al. 

1998), and deformation and failure of metal material controlled by atomic scale properties 

(Miller and Tadmor 2007). 

Other examples of multi–scale modeling include the three–scale computational method 

(Takano and Okuno 2004; Vernerey et al. 2008), the multi–scale BEM (Sfantos and 

Aliabadi 2007) and the Voronoi cell FEM with a non–local Gurson Tvergaard Needleman 

(GTN) model (Hu et al. 2007). 

Most popularly, the double scale approaches are applied to fracture analysis. In this 

solution, domain of interest is split into two parts, i.e., an overall coarse mesh, which is 

unchanged during crack propagation and a dense discretization with a nonlinear analysis 

over a small part of solution space (Haidar et al. 2003; Guidault et al. 2007; Stefan 

Loehnert 2007; Belytschko 2007). 
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The wavelet theory is a powerful mathematic tool for multi–scale analysis. It has been 

used in solving partial differential equations (Kaminski 2005; Ko et al. 1995) and crack 

tip singularity (Shen and Yi 2000; Spanos and Rao 2001). It has been also employed as an 

upscaling technique to obtain rock properties from geological data at small scale (Chu et 

al. 1998). There are some wavelet–based numerical methods such as the Reproducing 

Kernel Particle Methods (RKPM) (Liu et al. 1997a) and the multi–resolution FEM based 

on the second generation wavelets (Han et al. 2005; He et al. 2007). 

Some numerical methods have been specifically designed for multi–scale analysis. For 

example, the Multi–scale Finite Element Method (MsFEM) (Hou and Wu 1997) was 

created for solving a class of elliptic problems. And the Finite Difference Heterogeneous 

Multi–scale Method (FD–HMM) (Abdulle and Weinan 2003) was designed to solve 

multi–scale parabolic problems. 

3.5. Experimental studies 

Although this chapter mainly discusses about numerical modeling of rock fracture, a 

summary of related laboratory tests are reviewed as well. These experimental studies 

produce benchmarks to verify numerical models in terms of algorithm correctness, 

approach validity and adequacy. 

First, static measurement techniques are outlined and then dynamic tests are reviewed. 

3.5.1. Static tests 

The most matured laboratory works are the Mode–I testing methods evidently in three 

ISRM suggested methods. Some Mode–II methods exist, but most are insufficient to provide 

reliable results. There are very few methods available to provide Mode–III loading 

condition (e.g. Cox and Scholz 1988; Yacoub–Tokatly et al. 1989). Mode–I and–II fracture 

toughness testing methods are summarized below and the effective factors on 

measurement are discussed. At the end, some typical data measured are provided. 

a. Mode–I fracture toughness testing methods 

Several testing methods for the Mode–I fracture toughness, KIC, have been introduced, 

e.g. the Semicircular Core in three point Bending (SCB) test (Chong and Kuruppu 1984), 

the chevron–notched SCB test (Kuruppu 1997), the Brazilian Disc (BD) test (Guo et al. 

1993), the Radial Cracked Ring (RCR) test (Shiryaev and Kotkis 1982), the Modified 

Ring (MR) test (Thiercelin and Roegiers 1986), and the  Double Torsion (DT) test 

(Evans 1972). Reviews of the methods can be found in, e.g. Whittaker et al. (1992) and 

Chang et al. (2002). The DT test is of special importance, as it has been also applied to 

the study of subcritical crack growth in rock (Atkinson 1984). 

Three testing methods have been introduced by the International Society for Rock 

Mechanics (ISRM) as suggested methods (Ouchterlony 1988; Fowell 1995). 
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In 1988, the Chevron Bend (CB) and Short Rod (SR) methods were introduced as ISRM 

suggested methods (Figure 3–1a and b). The CB method uses cores with a prefabricated 

chevron shaped notch that is subjected to three–point bending. 

The SR method uses the remaining halves of the CB method. A notch is introduced into 

the core in long axis direction and is subjected to tension. This combination of CB and 

SR method provides the possibility to study anisotropy effects, i.e., determination of KIC 

parallel and perpendicular to the core axis. 

 
a. Chevron Bend (CB) method 

  
b. Short Rod (SR) method c. Cracked Chevron Notched 

Brazilian Disc (CCNBD) method 

Figure 3–1: ISRM suggested methods for determination of Mode–I fracture toughness 

The Cracked Chevron Notched Brazilian Disc (CCNBD) was introduced in 1995 by the 

ISRM as suggested method (Fowell 1995). It uses Brazilian discs (Brown 1981) with a 

notch in the centre of the specimen (Figure 3–1c). The evaluation of KIC from this method 

is still under discussion (e.g. Wang and Xing 1999; Wang et al. 2003). 

b. Mode–II fracture toughness testing methods 

Several methods for the Mode–II fracture toughness, KIIC, have been introduced. Most of 

the procedures have been developed for metals but later applied to rocks. Only those that 

have been applied to rock or rock like materials, e.g. concrete, are mentioned. 

Ingraffea (1981) introduced the antisymmetric four–point bending test for application of 

both mixed Mode I–II and Mode II loading (Figure 3–2a). Swartz and Taha (1990) 

numerically analyzed this test method and stated that tensile stresses inevitably exist 

around the notch tips, even under pure shear loading. Despite of not being able to avoid 

the tensile stresses, the antisymmetric four–point bending cube test has been applied to 

concrete and rock by Barr and Derradj (1990) (Figure 3–2d). 

Watkins (1983) introduced the rectangular punch through shear test (Figure 3–2c) and 

argued numerically that failure takes place in Mode–II (Davies et al. 1986). 
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The compression–shear cube test (Figure 3–2f) (Jumikis 1979) was shown to be a 

potential method for determining KIIC (Izumi et al. 1986). This method was employed by 

Rao (1999) to determine KIIC of granite and marble. 

The short beam compression test (Figure 3–2e) with a special notch orientation was 

developed by Watkins and Liu (1985). The notches are orientated perpendicular to the 

loading direction. The KIIC values determined in this test are always less than the KIC 

values, despite KIC is thought to be lower than KIIC. The result that KIIC measured is 

smaller than KIC is not reasonable for brittle rock, because experiments generally show 

shear strength larger than tensile strength (Rao et al. 2003). An exception to this might 

be very porous materials like some sandstones, mortar and concretes. 

 

 

a. antisymmetric four–point bending b. triaxial compression 

   
c. punch through shear d. antisymmetric four–point 

bending cube 
e. short beam compression 

 

 
 

f. compression–shear cube g. three–point bending semi–
disc 

h. centrally cracked Brazilian 
disc 

Figure 3–2: Mode–II fracture toughness testing methods 

Several other testing methods for KIIC have been introduced. Some were first developed 

for determination of stress intensity factor in Mode–I or mixed mode. However, as the 

stress intensity factor depends on the angle between applied load and fracture plane 

(Atkinson et al. 1982), they were modified to perform KIIC testing. For example, Mode–II 

loading can be induced in the CCNBD, if the slot is distinctly inclined (Figure 3–2h), but 

slight inaccuracy in the test setup may result in mixed mode condition. Therefore, this 

method is not practical for Mode–II. Nevertheless, Chang et al. (2002) claim the CCNBD 

method is suitable for mixed mode as well as Mode–II determination. 
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The same problem and discussion as for the CCNBD test is evident with the three–point 

bending semi–disc test (Chong and Kuruppu 1984), which uses a half Brazilian disc with 

an introduced notch at diagonal cut (Figure 3–2g). 

An evaluation method for the triaxial compression test was introduced by Hakami and 

Stephansson (1990) to estimate the Mode–II energy release rate (Figure 3–2b). It showed 

that the energy release rate and, hence, fracture toughness is influenced by confining 

pressure. 

c. Influential factor on fracture toughness 

Fracture toughness was introduced in Chapter 2. The critical stress intensity factor is a 

mechanical property for any material that may vary with changing environmental and 

loading condition. 

Winter (1983) could show experimentally that KIC increases with increasing confining 

pressure. Tests on three–point bending specimen with increasing confining pressures on 

e.g. Ruhr sandstone showed a linear increase of fracture toughness by a factor of five up 

to 100 MPa confining pressure. Thallak et al. (1993) confirm the linear increase of KIC with 

confining pressure for laboratory hydro–fracture experiments. Al–Shayea et al. (2000) 

applied confining pressures up to 28 MPa to centrally cracked Brazilian disc specimens. 

KIC for a limestone increased 274% with an increase of 28 MPa of confining pressure, 

while KIIC increased 137% only (see Table 3–1) for the same increase in confining pressure. 

Rao (1999) varied the loading angle and confining pressure in the compression–shear 

cube testing for determination of KIIC, that was found to linearly increase with increasing 

confining pressure. For marble, KIIC increased approximately 2.5 times for an increase of 

confining pressure from ambient conditions to 20 MPa. KIIC of granite increased by a 

factor of 1.7 at 10 MPa confinement. 

Other variations in boundary condition have shown to influence fracture toughness. 

These are, e.g. temperature (Al–Shayea et al. 2000; Dwivedi et al. 2000) or moisture 

content. Dwivedi et al. (2000) noted KIC to increase with decreasing temperature, i.e., 

+30° to –50° C, in the CCNBD specimen. They related this effect to the remaining 

moisture content in the samples, where the water freezes and the fracture toughness of 

the ice adds to the one of the rock. Changing the moisture content changes the degree of 

KIC variation with temperature change. With increasing temperature, KIC increases 

slightly until approximately 100° C, and then starts dropping (Al–Shayea et al. 2000). KIIC 

was shown to slightly increase with temperature, at least for temperatures up to 120° C 

(Al–Shayea et al. 2000). 

For the influence of loading rate on fracture toughness, do refer to Section 2.3.2 and, e.g. 

Zhang et al. (1999) and Atkinson (1984). This topic is to be extensively discussed in 

Chapter 8 and 9 of the thesis. 
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Fracture toughness can be related to physico–mechanical properties of rock, like the 

Young’s modulus, uniaxial compressive strength, tensile strength, point–load index, the 

Poisson’s ratio, compressive wave velocity, grain size, grain contact length, and dry 

density (e.g. Whittaker et al. 1992; Bearman 1999; Zhang 2002; Alber and Brardt 2003). 

Table 3–1 summarizes the typical values of KIC and KIIC for several rock types. In general, 

KIIC is larger than KIC in rock, a factor of 2 to 3 is usually assumed for ambient conditions 

(e.g. Rao et al. 2003). Lockner (1995) even suggests a factor of 15. 

Table 3–1: Fracture toughness for different rocks, P: confinement, 1CB, 2SR, 3antisymmetric 
four–point bending, 4compression–shear cube, 5centrally cracked Brazilian disc 

rock type KIC KIIC KIC/KIIC reference 

granite ~2.0 ~2.2 ~1.1 Ingraffea (1981)3 
 1.88 4.90 2.6 Rao et al. (2003)1/4 
 0.65−2.47 

1.75−2.60 
 Müller and Rummel (1984)1, Ouchterlony (1988)1 

Singh and Sun (1989) 
limestone ~0.8 ~0.9 ~1.1 Ingraffea (1981)3 
 0.82−2.21   Bearman et al. (1989)1, Guo (1990)1 
P = 0.1 MPa 0.42 0.92 2.1 
P = 28 MPa 1.57 2.18 1.4 

Al–Shayea et al. (2000)5 

marble 2.21 6.1 2.8 Rao et al. (2003)1/4 
 0.46−2.25 

3.33−6.36 
 Guo (1990)1, Ouchterlony (1988)2 

Rao (1999)4 
sandstone 1.67  3.0 Rao et al. (2003)1/4 
 0.67−2.56 

0.32−0.41 
 Guo (1990)1, Ouchterlony (1988)1/2 

Singh & Sun (1989) 
P = 0.1 MPa 1.08   
P = 40 MPa 2.21   
P = 80 MPa 2.54   

Müller (1984)1 

3.5.2. Dynamic tests 

All the dynamic experiments have been performed in two major groups, i.e., dynamic 

fracture toughness tests (Chen et al. 2009; Dia et al. 2009; Dia et al. 2008; Jun et al. 2006; 

Kidane and Shukla 2010; Kim and Chao 2007; Nasseri et al. 2007; Sahraoui et al. 2009; 

Weerheijm and Van Doormaal 2007) and rock strength testing or fragmentation under 

high loading rates (Chlup et al. 2010; Cho et al. 2003; Dai et al. 2010; Fukui et al. 2004; 

Huang et al. 2010; Jeong et al. 2006; Qi et al. 2009; Wang et al. 2006a; Whittles et al. 

2006; Xia 2006; Xia et al. 2008; Zhai et al. 2008; Zhao and Li 2000; Zhou and Yang 2007). 

Different toughness testing methods with various specimen geometries have been so far 

proposed to capture fracture initiation toughness, fracture propagation toughness, 

fracture energy, and fracture velocity. Conventional sample geometries include the three–

point bend specimen, the wedge–shaped specimen, and the compact compression 

specimen (Bayoui et al. 1984; Popelar et al. 2000; Sahraoui et al. 2009; Yokoyama and 

Kishida 1989). The Brazilian disc specimen (also called central cracked circular disc) has 

been widely used to measure fracture properties of brittle materials (Fowell and Xu, 

1994; Liu et al. 1998; Shetty et al. 1987), because its configuration can cover the entire 
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mode mixity range from pure Mode–I to pure Mode–II by changing the loading angle, i.e., 

the angle of crack inclination relative to the line of loading. 

Using the notched Semi–Circular Bend (SCB) specimen, Chen et al. (2009) and Dia et al. 

(2009) have developed and validated a method to simultaneously measure the Mode–I 

fracture parameters. Fracture initiation toughness is obtained from the peak load given 

by dynamic force equilibrium. A Laser Gap Gauge (LGG) has been developed to monitor 

crack opening displacement, from which fracture propagation velocity and fracture 

energy are calculated. The method can be also adapted to evaluate dynamic tensile 

strength of brittle solids (Dia et al., 2008). 

a. Split–Hopkinson pressure bar test 

Originally developed by Kolsky (1949, 1963), the Split–Hopkinson Pressure Bar (SHPB) 

technique has been comprehensively used by many investigators to reproduce high–rate 

loading in laboratory. 

 

Figure 3–3: Schematic plot of a conventional split–Hopkinson pressure bar 

As shown in Figure 3–3, a conventional SHPB consists of a striker bar, an incident bar, a 

transmission bar and a sample placed between the incident and transmission bars. A gas 

gun launches the striker bar at the incident bar. The produced impact creates an elastic 

compressive wave traveling through the incident bar toward the sample. Assuming the 

elementary theory for wave propagation, the sample response can be recorded from 

measurements taken with strain gages mounted on the incident and transmission bars. 

The evolution of this experimental method and recent advances are discussed by 

Follansbee (1985), Gray (1999), Gray and Blumenthal (1999), Nemat–Nasser et al. (1991), 

Nicholas (1982), and Ramesh and Narasimhan (1996). 

For an ideal SHPB experiment, the sample should be in dynamic stress equilibrium and 

should deform at a constant strain rate over most the duration of the test. To closely 

approximate these ideal conditions for the specimens tested, a pulse shaper, e.g. a thin 

copper disc is placed on the impact surface of the incident bar. It causes that a non–

dispersive ramp pulse propagates within the incident bar. 

Assuming a uniform deformation for the sample, its strain rate is given by 

( ) ( )s
s

v t v td
dt l
εε

−
= = 1 2

0

�  (3–1) 

where lo is the sample length. 
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Subscripts 1 and 2 represent the locations of the ends of the sample as shown in Figure 3–

3. v1 and v2, which are the particle velocities at the sample–bar interfaces, can be written 

as follows, 

( ) ( ) ( )I Rv t c t tε ε⎡ ⎤= −⎣ ⎦1  and ( ) ( )Tv t c tε⎡ ⎤= ⎣ ⎦2  (3–2) 

where εI, εR and εT denote respectively the incident, reflected and transmitted strain 

recorded by the gauges mounted on the bars. Note that compressive stress and 

contractive strain are assumed positive, and positive particle velocity is toward right. 

By substituting the velocities into Equation 3–1, 

( ) ( ) ( )s I R T

c
t t t

l
ε ε ε ε⎡ ⎤= − −⎣ ⎦

0

�  (3–3) 

where c is the compressive wave speed. Thus, the stresses at the ends of the sample are 

( ) ( ) ( )I R
s

EA
t t t

A
σ ε ε⎡ ⎤= +⎣ ⎦1  and ( ) ( )T

s

EA
t t

A
σ ε⎡ ⎤= ⎣ ⎦2  (3–4) 

E is the Young's modulus, A the cross–sectional area of the bars, and As that of the sample. 

Assuming dynamic stress equilibrium of the sample, σ1 = σ2, therefore 

( ) ( ) ( )I R Tt t tε ε ε+ =  (3–5) 

Finally, the stress, σs, the strain, εs, and the strain rate for the sample are given by 

( ) ( ) ( ) ( ) ( )s I R
s

t t EA
t t t

A

σ σ
σ ε ε

+
⎡ ⎤= = +⎣ ⎦

1 2

2
 (3–6) 

( )s R

c
t

l
ε ε−
=

0

2�  and ( )s R

c
t dt

l
ε ε−
= ∫

0

2
 (3–7) 

3.6. Discussion and conclusion 

As the studies reviewed show, each numerical method benefits from some advantages, 

and suffers from some shortcomings. It is therefore impossible to find a perfect one to 

satisfy all the requisites of the problems related to rock dynamics. 

As any discontinuous deformation is intrinsically banned in continuum methods, they 

are unsuitable to handle the problems involving large–scale fracture opening or complete 

detachment, which are the most concerned issues in rock dynamics. These methods 

cannot consequently help solve the problems related to material post–failure state or 

jointed medium. 

Discontinuum methods model rock material or rock mass as an assemblage of blocks, 

particles or bars. Rock fracture process is therefore represented by the failure of inter–

block contacts, inter–particle bonds or bars. Although discontinuum methods provide a 

realistic prospect to the failure process, they are relatively ineffective for stress 
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distribution analysis in the pre–failure state. As described earlier, coupled approaches 

have been basically created to optimize the capabilities of each method. 

Table 3–2 summarizes the weakness and strength points of every method, and compares 

their attributes together. 

Table 3–2: Comparison of reviewed numerical methods in terms of their capabilities for rock 
mechanics applications 

purpose FEM XFEM DEM lattice MD coupled multiscale 

static � � � � � � � 
dynamic � � � � � � � 
pre–failure � � � � � � � 
post–failure � � � � � � � 
rock material � � � � � � � 
rock mass � � � � � � � 
fracture � � � � � � � 
fragmentation � � � � � � � 

(�� : strong/easy to apply; �: applicable but with treatment; �: weak/hard to apply) 

Since the thesis objective is to investigate rock fracture and fragmentation, none of the 

continuum methods can be chosen. However, pre–failure behavior of rock is also needed 

to be examined. That is why a pure discontinuous method may not be perfectly helpful, 

and some items of continuous techniques must be also employed. Hence, a coupled 

model may be proposed, in which the discontinuous side is more participating than the 

continuous one. This idea leads to the choice of a DEM code, provided it supplies the 

deformability of particles. 

As it will be explained in the next chapter, the Universal Distinct Element Code 

(UDEC), as a coupled discrete element/finite difference model, satisfactorily provides 

these requirements. Its discrete element basics guarantee properly treating the 

separation and reattachment of the CFM fragments, where its finite difference 

formulation allows handling their deformation.  
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CHAPTER 4 

4.UDEC and implementation of CFM 

As a finite deference–discrete element coupled code, the Universal Distinct Element 

Code (UDEC) permits 2D plane–strain and plane–stress analyses (Itasca 2009). As 

explained in Chapter 2, the CFM suggests to model rock material as assemblage of 

distinct deformable fragments interacting at their boundaries. The CFM makes use of the 

particle/contact logic of UDEC to model the fragments and the interfaces in between, 

where each particle is composed of the Constant–Strain Triangular (CST) elements, as 

seen in Figure 4–1. 

 

Figure 4–1: A representative CFM particle assemblage used for the Brazilian test simulation, 
and configuration of model–constructing particles and contacts 

A perturbation within this particle assemblage, caused by an applied excitation, 

propagates through the whole system and leads to the particles movement. A series of 

calculations, tracing the particles motion, give the induced contact forces in this dynamic 

process, and the perturbation propagation speed will depend on the physical properties 

of the discrete system. 

In coming sections, the particle and contact numerical representation in UDEC as well as 

the formulation of the governing equations is explained in detail. Then, the process 

developed for particle generation according to the CFM assumptions will be described. 
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4.1. Particle and contact representation 

4.1.1. Contact detection and identification 

The interface between fragments is numerically represented as a contact surface formed 

between two particle edges. In general, for each pair of particles that touch (or are 

separated by a small enough gap), data elements are created to represent contact points. 

In UDEC, adjacent particles can touch along a common edge segment or at discrete 

points where a corner meets an edge or another corner. 

 

Figure 4–2: Contact between to particles 

Figure 4–2 illustrates a scheme for the representation of contacts. For rigid particles, a 

contact is created at each corner interacting with a corner or edge of an opposing 

particle. If the particles are deformable, i.e., internally discretized by the CST elements, 

contact points are created at all grid–points located on the particle edge in contact. Thus, 

the number of contact points can be increased as a function of the internal discretization 

of adjacent particles. 

 
a. corners rounding using constant rounding length, r0 

 
b. corners rounding using constant rounding radius, r, demonstrating unacceptable 

truncation of acute angled corner 

Figure 4–3: Definition of corner rounding length, r0 
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A specific problem with contact schemes is the unrealistic response that can result when 

particle interaction occurs close to or at two opposing particle corners. Numerically, 

particles may become locked or hung–up. This is a result of the modeling assumption 

that particle corners are sharp or have infinite strength. In reality, crushing of the 

fragment corners would occur as a result of a stress concentration. Explicit modeling of 

this effect is impractical. However, a realistic representation can be achieved by rounding 

the corners of the particles so that they can smoothly slide past one another when two 

opposing corners interact. Corner rounding is used in UDEC by specifying a circular arc 

for each particle corner. The arc is defined by the distance from the true apex to the point 

of tangency with the adjoining edges. Examples are shown in Figure 4–3. By specifying 

this distance rather than a constant radius, truncation of sharp corners is not severe 

(compare Figure 4–3a to Figure 4–3b). 

 
a. details of rounded corner–to–edge contacts (rounding length is exaggerated) 

 
b. smooth interaction of corner–to–corner contact 

Figure 4–4: Definition of contact point, contact normal and shear direction (contact point is 
indicated by gray rigid circle) 

The point of contact between a corner and an edge is located at the intersection between 

the edge and the normal taken from the centre of the radius of the circular arc at the 

corner with the edge (see Figure 4–4a). If two corners are in contact, the point of contact 

is the intersection between the line joining the two opposing centers of radii and the 

circular arcs (Figure 4–4b). If the edges of two deformable particles are in contact, i.e., 

edge–to–edge contact, the points of contact are still treated as corner–to–edge contacts. 

However, they are located at the intersections of the normal to the grid–points along the 

edge of one particle and the edge of the other particle; corner rounding is not used in this 

case. If a grid–point along the edge of one deformable particle is created at the same 
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location as a grid–point along the edge of another deformable particle, two contacts will 

be created; one contact for each grid–point. This provides for better accuracy, 

particularly if the two grid–points slide past each other. 

The directions of normal and shear force acting at each corner–to–corner or corner–to–

edge contact are defined with respect to the direction of the contact normal, as 

illustrated in Figure 4–4. 

Corner rounding only applies to the contact mechanics calculation in UDEC. All other 

calculations and properties are based on the entire particle. Corner rounding can 

introduce inaccuracy in the solution if the rounding is too large. If the rounding length is 

kept to approximately one percent of the representative particle edge length in the 

model, good accuracy is achieved (Cundall 1987). 

4.1.2. Domain contact detection 

Contact points are updated automatically as particle motion occurs. The algorithms to 

perform this updating must be computationally efficient, particularly for dynamic 

analysis, where large displacements may require deleting and adding hundreds of 

contacts during the dynamic simulation. UDEC takes advantage of a network of domains 

created by the 2D particle assemblage. Domains are the regions of space between 

particles which are defined by the contact points, as are D1 and D2 in Figure 4–5. During 

one time step, new contacts can only be formed between corners and edges within the 

same domain, so local updates can be executed efficiently whenever some prescribed 

measure of motion is reached within the domain. The main disadvantage of this scheme 

is that it cannot be used for very loose systems because the domain structure is ill–

defined. 

 

Figure 4–5: Configuration of deformable particles, CST elements, contacts, and domains 
between to particles 

Contact updating is triggered by significant relative motion within a domain. A fictitious 

displacement is accumulated for each domain, and this displacement is related to the 

relative motion that has taken place in the domain since the previous update. The 
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fictitious displacement is the accumulated maximum relative velocity between any two 

corners in a domain times the time step. When this displacement exceeds a certain 

tolerance, i.e., 35% of the rounding length, an update is triggered. This ensures that 

contacts are always detected before physical contact is made. 

During an update, new contacts are made and old ones deleted depending on the relative 

motion at each contact. For example, if two blocks are found to be separated by a gap 

that is equal to or less than half of the rounding length, a contact is created. Conversely, if 

an existing contact acquires a separation greater than a predefined tolerance, the contact 

is deleted. The default value for this tolerance is 55% of the rounding length. 

For particles sliding past each other, if the relative shear displacement at a contact 

exceeds two times the rounding length, a new contact is formed. For large shear 

displacements, contact updating must ensure that contact forces are preserved when 

contacts are added or deleted such that a smooth transition will exist between 

neighboring states. This is particularly important for dynamic analyses with high stress 

gradients. 

The logic described above ensures that the data structure for all potential contacts is in 

place before physical contact takes place. It also ensures that contact searching is only 

done for moving particles; there is no time wasted on relatively inactive ones. 

4.2. UDEC solution procedure and formulation 

Dynamic behavior is numerically represented by a time stepping algorithm in which time 

step duration is limited by the assumption that velocities and accelerations are constant 

within the time step. The solution scheme is identical to that used by the explicit finite 

difference method for continuum analysis. Solving procedure in UDEC alternates 

between the application of a stress–displacement law at all the contacts and the 

Newton’s second law for all the particles. The contact stress–displacement law is used to 

find the contact stresses from the known and fixed displacements. The Newton’s second 

law gives the particles motion resulting from the known and fixed forces acting on them. 

The motion is calculated at the grid points of the triangular constant–strain elements 

within the elastic particle. Then, application of the material constitutive relations gives 

new stresses within the elements. Figure 4–6 (next page) schematically presents the 

calculation cycle in UDEC along with a brief review of the basic equations, which are 

fully explained in coming sections. 

4.2.1. Equations of particle motion 

The motion of an individual particle is determined by the magnitude and the direction of 

the resultant out–of–balance moment and forces acting on it. Considering a one–

dimensional motion for a single mass acted on by a varying force ( )tF , the Newton’s 

second law of motion can be written in the form 
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( )
=

� t

p

du F
dt m

 (4–1) 

where u�  is the velocity, t is the time, and mp denotes the particle mass. The central 

difference scheme for the left–hand side of Equation 4–1 at time t can be written as 

( ) ( )

Δt
uu

dt
ud 2Δtt2Δtt −+ −
=

���
 (4–2) 

Substituting Equation 4–2 in Equation 4–1 and rearranging yields 

( ) ( )
( )

+ −= +� �
t

t Δt 2 t Δt 2

p

Fu u Δt
m

 (4–3) 

 

Figure 4–6: Calculation cycle in UDEC: particle motion calculation, application of contact 
constitutive law to obtain contact forces acting on particle as its force boundary condition, 
and application of elasticity rules for CST elements to calculate stress and stain field within 

particle 
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Displacement can be expressed in terms of the velocities stored at the half time step 

point: 

( ) ( ) ( )t t t t t 2u u u tΔ Δ Δ+ += + �  (4–4) 

Because the force depends on the displacement, the force–displacement calculation is 

done at one time instant. The central difference scheme is second–order accurate, i.e., first–

order error terms vanish from the solution. This is an important characteristic that 

prevents long–term drift in a discrete element simulation. 

For the particles, acted upon by several forces as well as the gravity, the velocity 

equations become 

( ) ( )
( )t

t t 2 t t 2

p

F
u u g t

m
Δ Δ Δ+ − ⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

�� � �� �  

( ) ( )
( )t

t t 2 t t 2 M
t

I
Δ Δθ θ Δ+ − ⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

�� �
� �  

(4–5) 

where u
�
�  and θ

�
�  are the vectors of the linear and angular velocity of the particle, 

respectively. I is its moment of inertia about the centroid. F
�

 and M
�

 denote the vectors 

of the total force and moment acting on the particle, and g
�

 is the gravitational 

acceleration vector (see Figure 4–6). 

New velocities in Equation 4–5 are used to determine the updated particle location 

according to 

( ) ( ) ( )t t t t t 2x x u tΔ Δ Δ+ += +
�� � �  

( ) ( ) ( )t t t t t 2 tΔ Δθ θ θ Δ+ += +
�� � �  

(4–6) 

where x
�

 is the location vector pointing to the particle centroid, and θ
�

 is the particle 

rotation vector about its centroid. Note that the rotations are not stored, and instead, the 

incremental rotations are used to update the positions of the particle vertices. In 

summary, each time step produces the new particle position that generates the new 

contact forces. The resultant forces and moments are used to calculate the linear and 

angular accelerations of each particle. The velocities and displacements of the particle are 

determined by the integration over the time increments. The procedure is repeated until 

a satisfactory state of equilibrium or continuing failure results. 

4.2.2. Force–displacement equation in contact 

Having individual particle motion, the position of the particles within the assemblage is 

updated. Then the displacement for each contact is calculated by the relative 

displacements of the two particles creating it. 

Given the contact displacement, contact constitutive law calculates the contact force, Fc, 

which actually acts as the force boundary condition for the neighboring particles. This 
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law is, in fact, an algebraic function of the contact stiffness coefficient, k, contact normal 

displacement, δn, contact shear displacement δs, and some additional parameters: 

( )c n sF f k , , ,...δ δ=  (4–7) 

The additional parameters are to introduce the particular features of rock behavior into 

the model, i.e., anisotropy, brittleness, rate dependency, and residual strength. 

Under certain circumstances, if the stress or displacement within one or more contacts 

exceeds its ultimate value, the contact breaks, i.e., its stress decays and it endures an 

increasing displacement. This procedure causes that a limited amount of energy gets 

numerically dissipated, and the model loses some extent of its macroscopic stiffness and 

strength. Note that since the CFM particles are assumed to have an elastic behavior, the 

model global failure is controlled only by the contact constitutive law. 

Details of the developed contact model will be presented in Chapter 5. 

4.2.3. Particle deformability 

Particles are internally discretized into the finite–difference triangular elements. The 

complexity of the deformation at each particle depends on the number of elements into 

which the particle is divided. The vertices of the triangular elements are called grid point 

(see Figure 4–5). The grid point force at each time step ( )tF
�

 is obtained as the sum of the 

four terms as follows 

( )t
l c ij j g

C

F F F n ds m gσ= + + +∫
� � � � �

 (4–8) 

where lF
�

 is the external applied load, as illustrated in Figure 4–6. cF
�

 results from the 

contact forces, and exists only for the grid points along the particle boundary. σij is the 

element stress tensor, and nj is the unit outward normal to the contour C, which follows 

the closed polygonal line defined by the straight segments which bisect the element 

edges converging on the grid point under consideration. Finally, mg is the lumped 

gravitational mass at the grid point, defined as the sum of one–third of the masses of the 

triangles connected to the grid point. The grid point will be accelerated by ( )tF
�

 according 

to the finite difference form of the Newton’s second law of motion, 

( ) ( ) ( )t t 2 t t 2 t

g

t
u u F

m
Δ Δ Δ+ −= +

� � �
� �  (4–9) 

where u
�
�  is the velocity vector at the grid point, and the superscripts show the time at 

which the corresponding variable is evaluated. 

During each time step, the element strain rate ijε�  is related to the nodal displacements in 

the following usual fashion, 
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( )ε = +� � �ij ij ji

1
u u

2
 (4–10) 

where iju�  denotes the partial derivative of the ith component of u
�
�  with respect to the jth 

component of the Cartesian coordinate frame. The incremental strain tensor is then 

calculated as 

Δε ε Δ= �
ij ij t  (4–11) 

The constitutive relations for the deformable particles are used in an incremental form so 

that the implementation on the nonlinear problems can be accomplished easily. Since the 

particles are assumed to have an elastic isotropic behavior, the relation of stress to strain 

in plane–stress is expressed by the Hook’s law as 

( )

11 1 11 2 22

22 2 11 1 22

12 21 3 12

33 2 11 22

Δσ α Δε α Δε
Δσ α Δε α Δε
Δσ Δσ α Δε

Δσ α Δε Δε

= +
= +
= =

= +

 (4–12) 

where 

( )
( )( )

ν
α

ν ν

−
=

+ −
p p

1

p p

1 E

1 1 2
, 

( )( )
ν

α
ν ν

=
+ −

p p
2

p p

E

1 1 2
and α

ν
=

+
p

3
p

E

1
 (4–13) 

Ep and νp are the particle Young’s modulus and Poisson’s ratio, respectively.  

In plane–stress these equations become 

11 1 11 2 22

22 2 11 1 22

12 21 3 12

33 0

Δσ β Δε β Δε
Δσ β Δε β Δε
Δσ Δσ β Δε
Δσ

= +
= +
= =
=

 (4–14) 

where 

2
2

1 1
1

αβ α
α

= − , 
2
2

2 2
1

αβ α
α

= − and 3 3β α=  (4–15) 

4.3. Analysis stability 

4.3.1. Time step determination 

The solution scheme used in UDEC is conditionally stable. A limiting time step that 

satisfies both the stability criterion for calculation of particle deformation as well as that 

for contact displacement is determined. The time step required for the stability of 

particle deformation computations is estimated as 
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i
n

i

m
t minΔ

κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1
2

2  (4–16) 

where mi is the mass associated with grid–point i; and κi is the measure of stiffness of the 

elements surrounding the grid–point. The ratio of mass to stiffness is related to the 

highest eigenfrequency in a linear elastic system. 

The stiffness term, κi, must account for both the particles and contacts stiffnesses. It is 

calculated as the sum of the two components. 

con CST
i i iκ κ κ= +∑  (4–17) 

The first term on the right–hand side denotes the contact stiffness and exists only for 

grid–points located on the particle boundary. It is taken as the product of the contact 

stiffness coefficients, k, and the sum of the lengths of the two particle edge segments 

adjacent to the grid–point i. 

The second term represents the sum of the contributions of the stiffness of all the CST 

elements connected to the grid–point i, which are estimated as 

( )
( )( )

p pCST max
i

minp p

E b
h

ν
κ

ν ν

⎛ ⎞−
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

218
3 1 1 2

 (4–18) 

where Ep and νp are the Young’s modulus and the Poison’s ratio of the particle, 

respectively; bmax is the largest CST element edge, and hmin is the minimum height of them. 

For calculations of contact displacement, the limiting time step is calculated by analogy 

to a single degree–of–freedom system, as 

min
c

max

M
t CΔ

Κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1
2

12  (4–19) 

where Mmin is the mass of the smallest particle in the system; and Κmax is the maximum 

contact stiffness. The multiplier C1 is a user–supplied value that accounts for the fact that 

a single particle may be in contact with several particles simultaneously. A typical value 

for C1 is 0.1. 

The controlling time step for a quasi–static or a moderate–rate dynamic analysis is 

( )s n ct min t , tΔ Δ Δ=  (4–20) 

However, the time step suggested above may not guarantee the stability of the analysis 

under high–rate dynamic loading. In fact, high particle speed, which has not been 

introduced into the formulation yet, may be the critical factor in this case. Therefore, the 

Courant–Friedrichs–Lewy (CFL) (Courant 1967) condition is additionally applied to 

provide a more conservative limitation for the time step. The critical time step, suggested 

by the CFL condition, is calculated as follows, 
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j
CFL

p j

b
t C min

c v
Δ

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

2  (4–21) 

where cp is the material adiabatic sound speed; bj is the smallest edge size for particle j; vj 

is the particle speed, and C2 is a constant factor around 0.3. Finally, the time step for the 

analysis under high–rate loading is 

( )s CFLt min t , tΔ Δ Δ=  (4–22) 

4.3.2. Mechanical Damping 

There are several designs for the mechanical damping in UDEC. For the CFM, local 

damping is the most convenient choice in which the damping force on a node is 

proportional to the magnitude of the unbalanced force. In this scheme, the direction of 

the damping force is such that energy is always dissipated. For this purpose, the 

equations of motion (Equation 4–9) are replaced by the following equation, which 

incorporates local damping, 

( ) ( ) ( ) ( ) ( )( ){ }t t t t t t t t

g

t
u u F F sgn u

m
Δ Δ Δ Δα+ − −= + −2 2 2

� � �� �
� � �  (4–23) 

where α is a constant. This type of damping has several advantages including that the 

magnitude of damping constant, α, is dimensionless and is independent of the model 

properties or boundary condition. Moreover, the amount of damping varies from point to 

point (Cundall 1987). 

4.4. Implementation of CFM in UDEC 

In UDEC, the discrete–element information is all stored within a linked–list data 

structure that corresponds to the topological structure of the physical system. Each 

physical entity, such as a particle or contact, is represented by a data element that is 

linked by pointers to the data structure from a main accessible storage array. The 

topological nature of the data structure permits a direct translation of the model 

structural data into UDEC. The physical characteristics describing particle size and 

shape and the contact locations are translated directly into data elements and linked to 

the data structure. 

Importing the particle data into UDEC, each particle is independently discretized into a 

mesh of triangular elements. The automatic mesh generator performs the internal particle 

discretization and stores the CST elements information in the data structure. Other data 

for constitutive models, material properties and initial and boundary conditions are also 

linked to the data structure during model generation. The structure facilitates the 

assignment of different constitutive models, properties and conditions to user–selected 

locations in the model. The data structure can easily be accessed via the UDEC internal 

programming language, FISH (Section 4.5.2). 
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4.4.1. Particle generation 

Since the CFM simulates material as the collection of irregular triangular particles, a 

preprocessor program is needed to produce a mesh of triangles with random size. This 

process is implemented by developing a separate computer code, which creates a 

particle/contact data file importable into UDEC. For this purpose, the pre–processer 

algorithm is designed to insert points into the domain of interest such that the spacing 

between each two is not smaller than a limit value of dl. dl is actually the lower bound of 

the future particle edge size, dp. The x– and y–coordinates of the points are produced by 

the conventional pseudorandom number generators imbedded in any compiler used, e.g. 

the function rand() in Visual C++ 6.0 (Zaratian 1997). The point insertion continues until 

a specific criterion in terms of the minimum number of the points inserted, nmin, is 

satisfied. 

Using 2D Delaunay triangulation (Delaunay 1934), the triangular net is then constructed 

on the preinserted points. The algorithm proposed by Du (1996) is used to implement the 

Delaunay triangulation. 

 
a. domain geometry 

 
b. regular discretization of domain with nmax inserted points 

Figure 4–7: An irregular domain designed for verification and its regular discretization 

Four tests on an irregular concave domain as illustrated in Figure 4–7a are designed to 

verify the adequacy of the proposed particle generation algorithm, and to find a valid 

estimation for nmin. If the domain was estimated by a collection of equilateral triangles 

with the edge size of dl (see Figure 4–7b), the number of points inserted, which was the 

maximum number possible, would be 

D D
max

ll

S P
n

dd
= − +

2

2 1
23

 (4–24) 

where SD is the surface area of the domain of interest into which the points are being 

added, and PD is its perimeter which is highlighted by the thick black line in Figure 4–7b. 
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Using four values for dl, i.e., 1, 2, 3 and 4, the preprocessor is run. Over fifty million cycles 

of point generation is tried to ensure that no more point can be inserted into the domain, 

and the mesh generated, i.e., particle assemblage, is shown in Figure 4–8. 

The histograms of the percentage distribution of the particles edge size for each particles 

assemblage is presented by Figure 4–9, where the horizontal axes are normalized to dl. 

    
a. T1 (dl = 1.0) b. T2 (dl = 2.0) c. T3 (dl = 3.0) d. T4 (dl = 4.0) 

Figure 4–8: Four different particle assemblages generated by different dl values 

  
a. model T1 b. model T2 

  
c. model T3 d. model T4 

Figure 4–9: Histograms of percentage distribution of particles edge size 
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Figure 4–9 clearly shows that all the samples follows nearly the same particle edge size 

distribution. Regardless of dl, the majority (over 90%) of the particles generated  have an 

edge size between 1.1dl to 1.8dl, where the mean value declines to the left, i.e., 1.1dl. This 

result can be also observed in Table 4–1, where the minimum (dmin), maximum (dmax), and 

average (dmean) values of the normalized edge size are listed. As seen, dmean is fixed at about 

1.35, and the ratio of the ultimately inserted points, ninsert, to nmax is around 0.57. 

Table 4–1: Tests results in terms of number of points inserted, number of triangles and edges 
created and minimum, maximum, and mean length of particles edge 

Test dl nmax ninsert ninsert/nmax ntriangle nedge dmin dmax dmean 

T1 1 3997 2346 0.59 5010 7355 1.0000 1.9914 1.3369 
T2 2 960 548 0.57 1254 1801 1.0000 1.9936 1.3445 
T3 3 409 223 0.55 552 774 1.0002 1.9957 1.3622 
T4 4 220 123 0.56 324 446 1.0003 1.9842 1.3413 

All the results presented yield to this conclusion that to generate a particle assemblage 

with the average edge size of dp, dl should be taken as 0.75dp, and at least 0.57nmax points 

must be randomly inserted into the domain. Then, the majority of triangles created will 

have an edge size between 0.85 to 1.35 times dp. 

To verify these results, particle generation is repeated again to produce an assemblage 

with the average edge size of dp = 2.0. As suggested above, dl = 1.5 and since nmax calculated 

by Equation 4–24 is 1741, ninsert = 992. Finally, as Figure 4–10 shows, more that 90% of the 

triangles generated have the expected edge size, with the mean value of 2.03. 

 
Figure 4–10: Histogram of percentage distribution of particles edge size for a model 

generation with dp = 2.0 (horizontal axis is normalized to dp) 

4.4.2. Built–in programming 

FISH is the programming language embedded within UDEC that enables the user to 

define new variables and functions. As mentioned earlier, FISH functions have access to 

the linked–list data structures. The global indices that point to these data structures are 

provided as FISH scalar variables, which are contained in a series of files supplied with 

UDEC. 

These functions are vastly used for the CFM implementation to extend the model 

usefulness and to add user–defined features, e.g. to plot and print variables associated 

with the CFM, to implement special model generators, to apply servo–control for 

numerical tests, and to perform calibration process and parametric studies. 
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CHAPTER 5 

5.Orthotropic cohesive contact model 

The model failure behavior is controlled by the contact constitutive law. Hence, the 

failure characteristics of rock, i.e., anisotropy, brittleness and rate–dependency, must be 

appropriately reflected in the CFM contact model. This chapter describes the cohesive 

contact model developed for this purpose. A cohesive contact acts like some glue 

cohering particles together, which follows an orthotropic behavior at the same time. It is 

also assumed to have a decaying stiffness in the pre–failure stage in order to represent the 

damage behavior of the fracture process zone. The necessity of this assumption will be 

justified in this chapter and additionally in Chapter 8, where loading rate effects are 

needed to be introduced into the formulation. 

Depending on whether a contact undergoes tension or shear, it endures either gradual or 

perfect stress softening after its strength is exceeded. In tension, the supposed glue 

gradually loses its stress and is stretched up to a length called contact cohesive displacement, 

beyond which the contact will no longer endure stress. In shear, the contact stress 

abruptly decreases to a residual frictional strength, which represents the friction acting 

on the fractured surface. 

5.1. Formulation 

In the cohesive contact model, the stress σ applied on the contact surface is defined as 

( )eff t s c c c,k ,k ,t ,c , ,Dσ σ δ φ=  (5–1) 

where δeff is the contact effective displacement, and kt and ks denote the contact initial 

stiffness coefficients in tension and shear, respectively. The parameters tc, cc, and φc 

characterize the strength of contact. They respectively referred to as contact tensile 

strength, contact cohesion, and contact friction angle. D is the contact damage variable. 
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In mixed–mode separation, i.e., concurrent existence of normal and shear displacements 

of contact, δeff is defined as 

δ δ δδ
δ δ

⎧ + ≥⎪=⎨
<⎪⎩

2 2
n s n

eff

s n

0

0
 (5–2) 

where δn and δs are the normal separation and shear sliding over the contact surface (see 

Figure 4–2). δn is assumed positive where the contact undergoes opening (tension). 

A review of various types of fracture laws is given by, e.g. Shet and Chandra (2002). 

Presented in Figure 5–1, the contact model developed for the CFM can be regarded as a 

combination of those given by Xu et al. (2003) and Zhou et al. (2005a). However, it 

contains additional parameters to account for the initial stiffness of the cohesive surface 

and the irreversibility of separation with damage. 

5.1.1. Tensile behavior of contact 

Contact cohesive stress in tension is expressed as  

δ δ δ δ δ

δ δ
σ δ δ δ

δ δ δ

δ δ

− ≤⎧
⎪

− = ⎫⎪ ⎪= < ≤⎨ ⎬< ⎪⎪ ⎭
⎪ >⎩

t eff eff ct eff ct

c eff max

ct eff ut
red eff eff max

eff ut

k exp( )

t ( 1 D )

k

0

 (5–3) 

In hardening stage (δeff ≤ δct), the governing equation is the exponential traction–

separation law described by Xu and Needleman (1995). δct is the critical tensile 

displacement of contact beyond which cohesive softening happens, and δut is the 

ultimate tensile displacement of contact at which contact entirely loses its cohesive 

strength. In this stage, stress–displacement behavior elastic, i.e., the unloading and 

reloading paths are the same and no energy dissipation occurs within contact. 

Substituting σ = tc and δeff = δct, and solving for δct, it is obtained as follows where e = exp(1) 

is the base of the natural logarithm. 

c
ct

t

t
e
k

δ =  (5–4) 

In softening stage (δct < δeff ≤ δut), contact is permitted to release energy during unloading–

reloading cycles. δmax is then defined as the maximum effective displacement that contact 

has ever undergone (Figure 5–1a). δmax is δeff, when contact is increasingly opened, and 

held fixed as it undergoes unloading and reloading until δeff again reaches δmax. 

The damage variable is defined as follows. 

max ct

ut ct

D
δ δ
δ δ

−
=

−
 (5–5) 
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As contact undergoes softening, D irreversibly increases from 0 to 1 or remains constant, 

even if multiple unloading–reloading cycles happens. 

In unloading–reloading cycles (δeff < δmax), contact follows a linear stress–displacement 

path, where kred is defined as the secant stiffness at the point with an effective 

displacement equal to δmax (see Figure 5–1a). 

  
a. tensile behavior b. compressive–shear behavior 

Figure 5–1: Schematic stress–displacement behavior of cohesive contact, arrows denote 
loading, unloading and reloading paths (displacements at peak points are exaggerated) 

5.1.2. Compressive–shear behavior of contact 

When contact is sheared under compression, the stress–displacement law is described as 

δ δ δ δ δ
σ

σ δ φ δ δ

− ≤⎧⎪=⎨ =− >⎪⎩

s eff eff cs eff cs

res t n c eff cs

k exp( )

k tan( )
 (5–6) 

Similarly, the critical shear displacement of contact is calculated as follows. 

c
cs

s

c
e
k

δ =  (5–7) 

The unloading–reloading path of contact is linear as demonstrated in Figure 5–1b, where 

the contact stress increment (or decrement) is calculated as 

s eff res

res

k Δδ σ σ
Δσ

σ σ

<⎧
= ⎨

=⎩0
 (5–8) 

In each solution iteration, Δσ is calculated and added to the current value of the contact 

stress to produce its new value. 

Finally, the normal component of contact force is obtained as 

n
c n

effn

t n c n

a 0
F

k a 0

δ
σ δ

δ

δ δ

⎧− ≥⎪= ⎨
⎪− <⎩

 (5–9) 
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where ac is the contact surface area which is defined based on the contact domain and 

length. Contact shear force is calculated in a similar way using 

s
s c

eff

F a
δσ
δ

= −  (5–10) 

5.1.3. Contact fracture energy 

According to the Griffith–Irwin’s fracture criterion, the condition necessary for fracture 

propagation is if sufficient energy is provided to detach material thereby increase the 

fractured surface. This energy should be supplied by the loading system and the elastic 

energy stored in the body. By definition, the Griffith’s fracture energy, Gf is the rate of this 

energy per unit area along the fracture edge. The area under the curve in Figure 5–1a 

represents the energy needed to fully open the unit area of contact surface. Since contact 

is the numerical representation of fracture, the area under the curve should be equal to Gf: 

( )
ut

ut ct
f eff c ct cG d t e t

δ δ δσ δ δ −
= = − +∫

0

2
2

 (5–11) 

5.2. CFM micro–parameters 

The parameters involved in modeling are classified under the term micro–parameter. Table 

5–1 lists them along with the analogous material properties. 

Table 5–1: Material properties and CFM micro–parameters 

material property model micro–parameter 

Young’s modulus (E) particle Young’s modulus (Ep) 
Poisson’s ratio (ν) particle Poisson’s ratio (νp) 

fracture toughness in Mode–I (KIC) contact initial tensile stiffness coefficient (kt) 
fracture toughness in Mode–II (KIIC) contact initial shear stiffness coefficient (ks) 

Brazilian strength (σt) contact tensile strength (tc) 
internal cohesion (C) contact cohesion (cc) 

internal friction angle (φ) contact friction angle (φc) 
uniaxial compressive strength (σc) contact ultimate tensile displacement (δut) 

Since any CFM simulation is deeply affected by the micro–parameters, they must be 

appropriately set such that the model reproduces a response similar to that of the 

physical material. To reach this purpose, the relation between the micro–parameters and 

the model behavior should be investigated. This is done by establishing analytical and 

statistical equations, which explicitly define each model macroscopic response in terms 

of the micro–parameter. These equations, in fact, express the physical interpretation of 

the micro–parameters. 

5.2.1. Physical interpretation of contact stiffness coefficient 

In numerical simulation of structures involving bodies in contact, the effect of ill–

conditioning may destabilize the solution. Briefly speaking, this problem is raised due to 
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the lack of appropriate judgment about the contact stiffness. As commonly thought, the 

ideal choice for the contact stiffness is to take it as infinite to prevent any reduction in 

the global stiffness of the structure. However, this assumption causes numerical 

inconsistencies within the FEM solver or the DEM contact force algorithm (e.g. Babuska 

and Suri 1992; Chilton and Suri 1997). Therefore, contact stiffness is arbitrarily reduced, 

but not so much as the structure global stiffness is altered. That is why no exact 

suggestion for the contact stiffness is provided yet, and it is always assumed as an 

arbitrary parameter, which is estimated by empirical formula (e.g. Zhai et al. 2004; Pinho 

et al. 2006; Elmarakbi et al. 2009). 

However, the fracture cohesive zone theory suggests that the fracture process must be 

regarded as the combination of material detachment and the cohesive zone, i.e., damaged 

area surrounding the crack–tip. Since the model assumes no damage for particles, contact 

stiffness must represent the stiffness of the damaged material of the cohesive zone. Thus, 

before fracture initiation, the contact (initial) stiffness coefficient should be as follows 

for tension and shear, 

t

E
k

w
=  and s

G
k

w
=  (5–12) 

where E and G are the Young’s and shear modulus of the undamaged material, and w is 

the thickness of the cohesive zone, perpendicular to the orientation of crack propagation. 

Contact should gradually lose its stiffness upon opening or sliding in order to represent 

the cohesive zone damage. That is why the nonlinear (exponential) curves are adopted 

for the contact hardening behavior in tension and shear (see Figure 5–1), where their 

derivative at the origin equals the suggestions provided by Equation 5–12. The slope of 

the curves then gradually decays with the contact displacement increase, and ultimately 

it reaches zero. In tension, the softening stage then begins and contact starts losing its 

cohesive stress, and in shear, contact friction is mobilized on the fractured surface. 

As a matter of fact, the assumption of infinite contact stiffness signifies that the cohesive 

zone in the model has no thickness, which is in contradictory with the cohesive zone 

theory. Therefore, the usual assumption of huge contact stiffness is not only needed, but 

also incorrect. 

a. Estimation of cohesive zone thickness 

There are several descriptions to formulate the length of the cohesive zone (e.g. Anderson 

1995), but not for its thickness. This section provides an estimation for the cohesive zone 

thickness in terms of the material mechanical properties. 

a.1. Material strength in molecular mechanics 

A material cracks when the sufficient stress and energy are applied to break the inter–

molecular bonds. These bonds hold the molecules together and their strength is supplied 
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by the attractive forces between the molecules. Many equations have been proposed to 

formulate this force and its potential energy. The Lennard–Jones potential (Griebel et al. 

2007) is a simple and extensively used function in this way, 

( ) ξ ξΨ αε
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

n m

x
x x

 (5–13) 

where m < n. x denotes the separation distance between two adjacent molecules, and 

1

1 n n m

m

n
n m m

α
−⎛ ⎞
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 (5–14) 

This potential is parameterized by ξ and ε. As depicted in Figure 5–2, ε describes the 

depth of the potential and thereby the strength of the repulsive and attractive forces. The 

value ξ parameterizes the zero crossing of the potential. The integer m and n are 

dependent of the material molecular nature and are more commonly among 6 to 16. 

 

Figure 5–2: Plots of Lennard–Jones’ potential function (left) and intermolecular force (right) 

As the potential derivative with respect to x, the inter–molecular force P(x) is written as 

( ) Ψ αε ξ ξ⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞= = − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

n m

P x n m
x x x x

 (5–15) 

The peak value of the inter–molecular force, which is called cohesive force, Pc, happens at 

xm as shown in Figure 5–2. Solving the derivative of P(x) for x, 
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Substituting xm into Equation 5–15 leads to 
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The equilibrium spacing between two molecules, xo occurs when the potential energy is 

at a minimum or the force is zero (see Figure 5–2). Thus if solving Equation 5–15 for x, 

ξ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠

1

0

n mn
x

m
 (5–18) 

In unit volume of a perfect material, there should ideally exist x 3
01  molecules and x 3

03  

bonds. However, the number of molecules and bonds in reality never reaches these 

predictions because of material imperfections as molecular vacancies and nano–fractures. 

Therefore, the number of existing bonds, nb, can be defined as 

γ=
3
0

3
bn

x
 (5–19) 

where γ is a multiplier, smaller than one, that indicates the rate of the existing bonds per 

unit volume of the physical material. 

For perfect material, 2
0cP x  estimates the material tensile strength, σt. However, σt never 

reaches 2
0cP x  again due to material imperfections. Given the definition of γ, σt can be 

estimated as 

2
0

c
t

P
x

σ γ=  (5–20) 

a.2. Material fracturing 

A tensile force is required to increase the separation distance from the equilibrium value. 

If this force exceeds the cohesive force, the bond is completely severed, and the material 

starts cracking. The energy needed to break a single bond, called bond energy, is 

calculated as follows. 

( ) ( ) ( )
0

0

x
x

U P x dx x xΨ Ψ ε
∞

∞
⎤= = = − =⎦∫ 0  (5–21) 

 

Figure 5–3: Fracture representation in CFM simulation (left) and molecular–scale (right) 

As discussed in Chapter 2, there is a high stress concentration at the areas close to the 

crack tip during crack propagation process. Therefore, bond rupture takes place across 

an extended crack tip, i.e., fracture process zone. As Figure 5–3 suggests, the number of 
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bonds located at the cohesive zone, nbc can be estimated by the multiplication of nb by the 

volume of the cohesive zone: 

z
bc

wa
n

x
γ= 3

0

3  (5–22) 

where w and az denotes the thickness and the surface of the cohesive zone, respectively. 

When a bond breaks, a quantity of energy equal to U is dissipated. The accumulation of 

these energies over the cohesive zone surface supplies the energy dissipation through 

fracturing. Therefore, the Griffith’s fracture energy Gf, defined as the rate of total energy 

release per unit cracked area, is expressed as 

bc
f

z

n w
G

a x
ε εγ= = 3

0

3  (5–23) 

Substituting the parameter ε obtained from Equation 5–17 into the above relation, 
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Substituting Pc by Equation 5–20, x0 by Equation 5–18, and solving for w, the cohesive 

zone thickness is estimated in terms of σt and Gf as 

β σ
=

1
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G
w  (5–25) 

where 

β + +
− −

−
=

+ +⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

1 1

1 1

1 1
1 1

m n
n m n m

m n

m m
n n

 (5–26) 

depends on the integers m and n. Table 5–2 shows that β is relatively constant at 0.25 for 

common values of m∈[8,12] and n∈[13,18]. 

Table 5–2: Values of β for common values of m and n 

m n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 

8 0.30 0.29 0.28 0.27 0.26 0.26 
9 0.28 0.27 0.26 0.25 0.25 0.24 
10 0.26 0.25 0.24 0.24 0.23 0.22 
11 0.25 0.24 0.23 0.22 0.22 0.21 
12 0.24 0.23 0.22 0.21 0.21 0.20 

In mixed mode fracture, Gf is stated as  

2 2
IC IIC

f

K K
G

E E
= +� �  (5–27) 
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where E E=�  for plain–stress, and E E ( )ν= − 21�  for plain–strain. If contact undergoes 

pure tension, 

2
IC

t

K
w

Eβ σ
=

1
3 �  (5–28) 

and in case of pure sliding 
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IIC

t

K
w

Eβ σ
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3 �  (5–29) 

Given Equation 5–12, the contact initial stiffness coefficients in plane–stress are, 

σβ=
2

2
3 t

t
IC

E
k

K
 and 

σβ=
2

3 t
s

IIC

GE
k

K
 (5–30) 

and in plane–strain, 
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The ratio of the initial stiffness coefficients is 
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 (5–32) 

5.2.2. Particle elastic properties 

Particle stiffness and that of contact together determine the model global stiffness. If 

contact stiffness is much higher than that of particle, its effect can be neglected. As a 

measure of particle deformability, E/dp can be compared with the contact stiffness 

coefficients to examine the validity of this condition, where dp denotes the particle edge 

size. Table 5–3 lists the value of kt, obtained from Equation 5–31, in comparison to the 

ratio of E/dp for different materials studied in the thesis. 

Table 5–3: Values of contact stiffness coefficient versus particle deformability ratio for brittle 
materials studied in thesis1 

material type Augig granite Laurentian 
granite 

Transjurane 
sandstone 

gypsum plaster PMMA 

kt [MPa/mm] 2.60e+6 3.79e+7 8.30e+5 2.61e+3 6.64e+5 
E/dp [MPa/mm] 6.45e+3 1.80e+5 6.25e+3 6.50e+2 3.09e+4 

Since the contact stiffness is one to three orders greater than the particle deformability 

ratio, contacts do not have considerable effect on the model global elasticity. Therefore, 

                                                               

1 Further information on Augig granite and Transjurane sandstone is found in Chapter 6; for 

gypsum plaster in Chapter 7; for PMMA in Chapter 8; and for Laurentian granite in Chapter 9. 
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the Young’s modulus and the Poisson’s ratio of the model particles are assumed equal to 

those of the materials to make the model reproduce their Young’s modulus and Poisson’s 

ratio: 

pE E=  and pν ν=  (5–33) 

5.2.3. Contact strength parameters 

Although the micro–parameters related to the model elasticity, i.e., Ep, νp, kt, and ks, are 

explicitly calculated through Equations 5–30 to 5–33, the others, i.e., tc, cc, and φc, are still 

unknown (note that given Gf and kt, δut is related to tc and calculated through Equation 5–

11). A calibration process in which the model response is compared with that of physical 

material is required to obtain tc, cc, and φc. The calibrated micro–parameters should be 

unique and result in the best quantitative and qualitative agreement between the model 

response and that of tested rock in terms of the Brazilian tensile strength, uniaxial 

compressive strength, internal cohesion and internal friction angel. Note that these four 

parameters are dependent of each other. In other words, if having three of them for a 

typical material, the forth is predictable by the Mohr–Coulomb equations. Therefore, 

tensile strength, internal cohesion, and internal friction angle are considered as the 

parameters characterizing material mechanical response. 

Since the model failure is controlled by the contact model, tensile strength, internal 

cohesion, and internal friction angle of the modeled material are related to tc, cc and φc of 

contact. If finding these relations in an explicit algebraic form, there will be three 

equations with the same number of unknowns, i.e., tc, cc, and φc, that will lead to a unique 

solution. 

As described in the next chapter, the calibration process estimates these equations by a 

statistical approach called Design Of Experiment (DOE). The DOE provides a limited 

number of suggestions for the micro–parameters to simulate the laboratory tests. Using 

the obtained results from the simulations, the DOE eventually offers the equations on a 

polynomial form of desirable order. 

5.3. Implementation of developed contact model in UDEC 

The  source code of UDEC is needed to be developed to implement the proposed contact 

model. Since the source code is originally written in Visual C++ 6.0, any development of 

UDEC requires sufficient knowledge about this programming environment, particularly 

the object–oriented features. 

The flowchart presented in Figure 5–4 (next page) illustrates the algorithm used to carry 

out the formulation of the cohesive contact model. Note that it includes merely those 

equations that are related to the contact stress calculation. The rest of the formulation, 

e.g. contact force calculation, as well as the functional or object–oriented design of the 
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code, i.e., input data management, interface with the code main body and class structure, 

are not comprised in Figure 5–4. 

 

Figure 5–4: Flowchart illustrating the algorithm adopted to calculate contact stress in terms 
of contact separation mode and effective displacement 
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CHAPTER 6 

6.Compressive and tensile failure of rock material 

The CFM applicability for rock static analysis is explored in this chapter. First, the CFM 

capability for the reproduction of fracture mechanics behavior is examined. The results of 

this part approves that the CFM can reproduce the patterns of stress distribution at the 

crack tip as the Linear Elastic Fracture Mechanics (LEFM) suggests. 

The standard laboratory tests of rock are then modeled to verify the model adequacy for 

rock simulation. The presented results show that a unique set of the micro–parameters 

exists using which the CFM properly reproduces the material macroscopic response as 

observed in the tests. 

6.1. Reproduction of fracture mechanics behavior 

Although contact failure in a particle assemblage might sound conceptually different 

from cracks propagating in a brittle continuum, a formal link could be established 

between the CFM numerical mechanism and the LEFM. For this purpose, pure tensile 

failure, defined as Mode–I, is simulated. Meanwhile, some mathematical developments 

are derived to establish closed–form expressions describing the relationship between 

contact tensile strength, particles size, and material fracture toughness. 

6.1.1. Simulation of material fracture in Mode–I 

Consider the 2D square plate shown in Figure 6–1 (next page), in which a crack, i.e., a 

line of contacts with no strength, is created in a packing of equilateral triangles of the 

side length dp = 0.4 mm. No contact failure is assumed to let the plate have perfect elastic 

behavior. Width of the plate is 100 mm and it is subjected to an extension strain normal 

to the crack. The material properties assumed for the plate are the Young’s modulus, E = 
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18000 MPa and the Poisson’s ratio, ν = 0.26. The contact stiffness coefficients in tension 

and shear are taken as kt = ks = 1.0×108 MPa/mm. 

 

Figure 6–1: Plate particle assemblage with deformable particles 

The crack with half–width of a = 12.2 mm contains 61 particles along its width. The model 

boundaries are at a distance of 4a and 3a above and in front of the crack, respectively. 

According to the LEFM (Anderson 1995), for a through–thickness crack of half–width a 

in a wide plate of isotropic linear elastic material subjected to a remote tensile stress, σf, 

acting normal to the crack, the induced stress, σn, acting on the crack plane near the 

crack tip, i.e., r << a, is 

( )σ σn f
a aC2r w= ⋅  (6–1) 

where r is the distance from the crack tip and C is a function of model geometry as 

presented by Equation 6–2. 

( ) ( ) ( ) ( )( )a aC sec . a w . a ww w
π= − +2 41 0025 0062  (6–2) 

The force Fp acting over a line segment as long as the particle side, dp, at a mean distance 

of r is given by 

( )σ σ
+ + −

− −
= = ⋅∫ ∫

p p

p p

r d 2 r d 2 1 2
p n fr d 2 r d 2

a aF dr r dr C2 w  (6–3) 

Carrying out the above integration and assuming r = (2m–1)dp where m is a positive integer 

denoting the particle sequence number (e.g. for the particle next to crack tip, m = 1, for 

the next one it is 2 and so on), 

( ) ( )σ= − − ⋅p f p
aF 2ad m m 1 C w  (6–4) 

As Equation 6–4 suggests, the largest contact tensile force occurs at the contact just 

adjacent the crack tip, where m = 1. Therefore, 
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( )σ= ⋅max
p f p

aF 2ad C w  (6–5) 

The normalized contact forces acing along the crack plane are obtained as the division of 

Fp by its maximum value as follows. 

p
p max

p

F
F m m 1

F
= = − −  (6–6) 

Figure 6–2 compares tensile forces obtained from Equation 6–6 with those calculated by 

the CFM simulation in which sum of tensile forces acting on both contacts of each 

particle creates Fp. As seen, the force magnitude obtained by the CFM fairly fits those of 

the LEFM that would be induced over a finite line segment near crack tip in an isotropic 

linear elastic continuum. 

 

Figure 6–2: Variation of contact tensile force versus particle sequence number, m 

This result confirms the CFM capabilities in reproducing the LEFM solutions, while the 

problematic singularities, discussed extensively in fracture mechanics references, do not 

arise in a discontinuous model. There is thus no need to propose some devices, such as 

plasticity assumptions, to eliminate the crack–tip singularity. This also verifies the 

LEFM validity as a tool to derive closed–from expressions needed to link micro– and 

macro–properties involved in the CFM.  

The foregoing analysis is based on incipient failure and does not address the condition for 

propagation of a crack. Assuming contact fails with no cohesive displacement, the new 

induced force, pF ′ , following breakage of the contact nearest the crack tip, is found by 

substituting the new crack length in Equation 6–5 for the original crack length. 

( ) ( )σ′ = + ⋅ = +max
p f p p p p

aF 2 a d d C F 1 d aw  (6–7) 

Thus, the new maximum contact force is always greater than the previous maximum and 

consequently greater than the contact tensile strength. This condition determines that 

the crack will be propagating in an unstable fashion, if the contacts have no cohesive 

behavior. Thus, crack stability aspects, e.g. crack arrest, bifurcation, and propagation 

speed, can be controlled by adjusting contact ultimate displacement. This topic will be 

discussed in Chapter 8. 
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6.1.2. Developing closed–form expressions 

Figure 6–3 offers a cutout of a representative particle collection, within which a finite 

number of contacts are already broken to form a cracked surface. Assuming that the 

boundary is sufficiently far from the crack, concentrated force on the first contact point, 

just adjacent the crack tip, is calculated by an integration similar to Equation 6–3, 

σ σ= = ⋅∫ �pd 2

c n f pF dr ad C
0

 (6–8) 

where �C  is a multiplier with a definition like ( )C a w  to introduce the geometry effects. 

 

Figure 6–3: Crack representation within a particle assemblage 

As soon as Fc exceeds the assumed contact strength, the contact breaks and the crack 

expands. Since the Mode–I stress intensity factor for the system is defined as 

aK fI πσ=  (6–9) 

Equation 6–8 can be re–written as 

π= ⋅ �p
c I

d
F K C  (6–10) 

Therefore, the tensile stress created at the first contact point is evaluated by 

( )
σ π= = ⋅

−−
�c I p

c
pp

F K d
C

d rd r 00

2
22 2

 (6–11) 

where r0 denotes the particle rounding length which is most often taken 2 to 5% of the 

particle edge size, dp (see Chapter 4). 

For a regularly packed assemblage loaded along packing direction, at the incipient failure 

or crack extension, σc = tc and KI = KIC, where tc is the contact tensile strength and KIC is 

the Mode–I fracture toughness. Substituting them into Equation 6–11 yields 

π= ⋅
−

�IC p
c

p

K d
t C

d r0

2
2

 (6–12) 
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Equation 6–12 indicates that contact tensile strength can be physically interpreted in 

terms of the material fracture toughness and depends on the particle size employed. If 

solving Equation 6–12 for KIC, and neglecting r0 as it is so small compared to dp, 

π≈ ⋅ p
IC c

d
K t 4  (6–13) 

This result is anticipated, as the concept of fracture toughness implies an internal length 

scale, whereby the ratio of fracture toughness to material strength has the dimension of 

square root of length. The particle size supplies this internal length scale in the CFM. 

a. Interpretation of contact tensile strength in terms of the Brazilian strength 

Zhang (2002), Gunsallus and Kulhawy (1984), Bhagat (1985), Haberfield and Johnston 

(1989), and Harison et al. (1994) separately tested a vast range igneous, metamorphic and 

sedimentary rocks to explore how rock strength and fracture toughness are related 

together, and proposed few empirical formula. As suggested by Zhang (2002), a good 

estimation of the Brazilian strength, σt, with a coefficient of determination r2 = 0.94 is 

provided by 

σ =t IC. K6 88  (6–14) 

where the dimension of the parameters involved is expressed with the SI units. 

Failure of a Brazilian specimen can be fairly estimated by the idealization presented in 

Figure 6–4, where sample failure initiates with tensile fracture due to the tensile stress 

induced at the specimen centre and along the loading axis. Similarity of Figure 6–4 to 6–3 

may indicate that Equation 6–13 could be applied for the Brazilian specimen too. If 

substituting Equation 6–14 into 6–13, 

σ ∝t c pt d  (6–15) 

Equation 6–15 suggests that the Brazilian tensile strength predicted by the CFM varies 

with contact tensile strength and particle size, while it is independent of the other 

contact micro–parameters. Choosing a specific size of particle, tc can be found through a 

trial and error procedure. 

 

Figure 6–4: An idealized Brazilian specimen at tensile failure 
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6.2. Reproduction of compressive and tensile response of a hard rock 

As mentioned in Chapter 2, the CFM represents brittle material as a dense packing of 

irregular–sized particles interacting at their boundaries. Whereas continuum models 

indirectly represent damage through empirical flow rules and complicated potential 

functions, the CFM utilizes breakage of individual structural units, i.e., contacts, to 

represent material failure directly. 

It should be noted that some other researchers have tried similar approaches to handle 

the discontinuum modeling of rock. The most implementations in this way have been 

carried out by the Particle Flow Code (PFC) which is commercially available and used to 

solve many rock engineering and geomechanics problems (e.g. Potyondy and Cundall 

2004; Cho et al. 2007; Yoon 2007; Wanne and Young 2008; Schöpfer et al. 2009; Tan et al. 

2009). It has been applied in modeling static behavior of rocks, particularly damage and 

non–linear behaviors. However, there is a serious disconcerting result, i.e., PFC predicts 

the Brazilian Tensile Strength (BTS) of rock approximately 0.25 of its Uniaxial 

Compressive Strength (UCS) (Diederich 2000; Potyondy and Cundall 2004; Cho et al. 

2007). Comparing various types of rocks, this value is unrealistically high, where the 

ratio of tensile to compressive strength is typically reported around 0.05 to 0.1 (Hoek and 

Brown 1998). 

In addition, Potyondy and Cundall (2004) reported that calibrating PFC to the uniaxial 

strength gives a very low triaxial strength. They argued that the so–called cluster logic is 

required to improve the results. Cho et al. (2007) proposed the clump logic to resolve these 

shortcomings. Yoon (2007) applied a statistical approach for calibrating PFC parameters 

to fit mechanical properties of modeled material excluding its tensile strength. 

These problems are arising because PFC generates material by rigid rounded discs, which 

do not appropriately represent the irregular–shaped and interlocked grains of rock. As 

neglecting interlocking, PFC parameters have to be chosen disproportionately large to fit 

the material compressive strength. Therefore, the model tensile strength will become 

exceedingly higher than that of rock. 

The proposed logics, i.e., cluster and clump, seem to be only a way to eliminate this 

intrinsic defect of PFC. However, in addition to execution difficulties, these logics are 

suffering from some disadvantages. For example, since each cluster or clump is composed 

of several particles, its size is perforce much larger than that of the actual rock minerals. 

Moreover, PFC works with 10 parameters some of which, e.g. coefficient of friction, 

contact modulus, and parallel bond modulus, have no effect on the model global 

response, i.e., these parameters are deprived of any physical sense (Diederich 2000; 

Potyondy and Cundall 2004). 

As Kazerani and Zhao (2010) mentioned, using polygonal rigid particles removes the 

discussed shortcomings, and provides a useful picture of material behavior. 
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This section examines the CFM capabilities to simulate mechanical behavior of a granite. 

It will show that the CFM is fully able to meet this objective, where no troublesome 

extra logic or modification is needed. 

6.2.1. Solution process 

A numerical simulation by the CFM requires proper selection of the unknown micro–

parameters, i.e., tc, cc, and φc, by means of a calibration process in which the model 

responses are directly compared to the observed responses of the physical material. 

Depending on the application intended by the CFM, these comparisons can be made 

either at laboratory scale, e.g. uniaxial or triaxial and static–fatigue testing, or at field 

scale, e.g. evolution and extent of damage around various excavations. 

From now on in this chapter, any micro–parameter expressing contact strength, i.e., tc, cc, 

or φc, is briefly called micro–parameter. The objective of this section is to develop an 

approach that calculates proper micro–parameters for model generation. With this 

approach, a set of micro–parameters is obtained by which the generated model closely 

reproduces physical properties of the rock material. 

Once the unknown micro–parameters are obtained, they are used to generate the model. 

Simulation of the Brazilian tension and uniaxial compression is then carried out on the 

generated model and the results, in terms of strength parameters, elastic constants, and 

crack distribution, are compared to those of the laboratory tests. If a fair agreement is 

met, solution adequacy and credibleness will be verified for further applications. 

6.2.2. Numerical simulation of experiments 

As explained, a series of the conventional experiments, i.e., uniaxial/triaxial compression 

and the Brazilian tension, must be modeled to implement the CFM calibration. 

Meanwhile, the obtained results will describe how macroscopic response of a CFM 

simulation is influenced by the micro–parameters. 

a. Material properties 

Since Augig granite has been extensively tested by the rock mechanics laboratory (LMR) 

in EPFL, it is selected as a representative hard rock. As a coarse aggregate rock, it is 

composed of minerals ranging from 2 to 6 mm (4 mm on average). The mechanical 

properties of Augig granite are listed in Table 6–1. 

Table 6–1: Mechanical properties of Augig granite 

Young’s modulus, E 25.8 GPa internal cohesion, C 21 MPa 
Poisson’s ratio, ν 0.23 internal friction angle, φ 53˚ 
fracture toughness in Mode–I, KIC 1.5 MPa√m Brazilian tensile strength, BTS 8.8 MPa 
fracture toughness  Mode–II, KIIC 3.0 MPa√m uniaxial compressive strength, UCS 122 MPa 
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The values of fracture toughness are average for different testing orientations. KIC is 

measured in the EPFL LMR laboratory according to the ISRM suggested testing method 

for chevron bend specimens (Ulusay and Hudson 2007). However, KIIC is an estimated 

value by those reported in the literature for other types of granite. 

b. Discrete element mesh 

According to the specimens’ geometry and condition, a plane–strain (axisymmetric) and 

a plane–stress analysis are respectively adopted for the compressive and Brazilian 

models. The compressive cylindrical sample is 80 mm in diameter and 160 mm high, and 

the Brazilian specimen is a disc with a diameter of 80 mm. They are placed between two 

steel platens whose interfacial friction angle is assumed 5˚. The geometry and the 

boundary condition of the samples modeled are illustrated in Figure 6–5. 

  

Figure 6–5: Model geometry for simulation of compression and Brazilian tension tests 

The particle assemblage is generated arbitrarily to capture the material heterogeneity and 

diverse fracture patterns. Both the samples are generated as explained in Chapter 4, and 

consist of irregular triangular particles with an average edge size of dp = 4.0 mm, 

corresponding to 1122 and 452 particles for the compressive and tensile samples, 

respectively. dp has been chosen according to the granite grain size. Each particle consists 

of one CST element. 

c. Quasi–static analysis 

Using Equation 5–33, the particle’s Young’s modules and Poisson’s ratio are held fixed at 

Ep = 25.8 GPa and νp = 0.23. 

Assuming β = 0.25 in Equation 5–30 and 5–31, the tensile and shear initial stiffness 

coefficients of contact are obtained as kt = 1.95×106 MPa/mm and ks = 1.98×105 MPa/mm for 

the Brazilian sample and kt = 2.06×106 MPa/mm and ks = 2.10×105 MPa/mm for the 

compressive one. 
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As explained earlier, UDEC basically works with a dynamic algorithm. To simulate static 

test condition, loading rate must be set the same as the practice, i.e., 0.02 mm/s. 

Considering that the time step calculated by the code is about 10–7 sec, half a billion steps 

are needed to move the platen for 1.0 mm (ultimate deformation of Augig granite at its 

compressive failure), that it is quite inefficient. 

The only way feasible to keep the solution efficient is raising the loading rate up to a 

reasonable level as well as applying a sufficiently high numerical damping (e.g. α = 0.85 in 

Equation 4–23) to avoid any probable dynamic effect and unexpected increase in 

material strength. The loading rate is therefore set to 10 mm/sec for both the compression 

and tension tests. The probable effects of the loading rate on the model response will be 

studied later. 

Although the over damping removes any dynamic oscillations, it causes stress wave to 

decelerate. Thus, a stress delay may happen between two ends of the sample that 

possibly annuls the necessary quasi–static equilibrium. To overcome this problem, the 

upper and lower platens are simultaneously moved toward together with an identical 

speed of 5 mm/sec. During this process, the reaction force at both the upper and lower 

support are continuously recorded to generate stress–strain curves and to estimate the 

samples strength. For the Brazilian sample, tensile strength is measured through the 

following equation 

max
t

F
tD

σ
π

=
2

 (6–16) 

where Fmax is the maximum axial force recorded. D and t denote the sample diameter and 

thickness, where t = 1 for 2D simulation. 

6.2.3. Parametric study 

A parametric study is needed to determine which micro–parameters have the largest 

impacts on which macroscopic responses of the model. A set of micro–parameters should 

be initially chosen to carry out the study. As a starting point, contact cohesion and 

friction angle are assumed equal to the rock UCS and internal frictional angle, 

respectively. Thus cc = 122 MPa, and φc = 53˚. 

a. Effect of contact tensile strength 

A series of simulations are designed to explore how the model global strength is related 

to the contact tensile strength. Considering Equation 5–27, the mixed–mode fracture 

energy, Gf, of Augig granite is calculated to be 413.0 and 436.0 J/m2 for plain–strain and 

plain–stress, respectively, i.e., for the compressive and Brazilian samples. Given Gf, 

contact ultimate displacement, δut, can be calculated by Equation 5–11 for different values 

of tc as listed in Table 6–2 (next page). 
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Table 6–2: Values of contact tensile strength and corresponding ultimate displacement for 
each simulation 

tc [MPa] (tc /BTS) 8.8 (1) 17.6 (2) 26.4 (3) 35.2 (4) 
δut for compressive test [mm] 0.094 0.047 0.031 0.023 

δut for Brazilian test [mm] 0.099 0.050 0.033 0.025 

Based on the behavior of a CFM system, one could recognize that the model global 

strength is dependent of tc. Figure 6–6 confirms that and indicates a linear relation 

between tc and the Brazilian strength predicted by the model, σt. This result is in 

agreement with the earlier prediction by Equation 6–15. The relationship for the uniaxial 

compressive strength, σc, is nonlinear. Note that the axes in Figure 6–6 are normalized to 

the rock corresponding strengths, where BTS = 8.8 MPa, and UCS = 122 MPa. 

 

Figure 6–6: Tensile and compressive strength of the model versus contact tensile strength, tc 

By establishing a linear regression fit to the data, tc is predicted 24.15 MPa to fit the 

tensile strength of the rock. Repetition of the simulation with tc = 24.15 MPa verifies this 

anticipation and gives σt = 8.73 MPa, which is very near the Augig granite tensile strength. 

b. Effect of contact friction angle and cohesion 

Having tc = 24.15 MPa, the sensitivity of the model to cc and φc are examined as presented 

in Figure 6–7 and 6–8, where the values of cc and φc are normalized to their reference 

values, i.e., the uniaxial compressive strength and the internal friction angle of the rock, 

respectively. 

 

Figure 6–7: Tensile and compressive strength of the model versus contact cohesion, cc 
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Figure 6–8: Tensile and compressive strength of the model versus contact friction angle, φφc 

The pictures show that the model Brazilian strength is independent of both cc and φc., 

while predicted uniaxial compressive strength is highly influenced by them. Figure 6–8 

illustrates that the model uniaxial compressive strength will not change with φc any 

more, when φc goes bellow a certain threshold, i.e., about 0.75φ. All these results yield the 

fact that the predicted tensile strength in the Brazilian test simulation depends on the 

contact tensile strength only. Therefore the obtained tc = 24.15 MPa is the ultimate 

solution for the contact tensile strength. However, the relationship between the other 

two micro–parameters (cc and φc) and the model global response is not explicit yet and 

needs more investigations. 

6.2.4. Design of experiment 

Consisting a group of statistical techniques, the Design Of Experiment (DOE) is an 

efficient, structured and organized discipline to quantitatively evaluate the relations 

between the measured responses of an experiment and the given input variables called 

factors (NIST/SEMATECH 2003). The objective of the DOE is to observe how and to 

what extent changes in the factors influence on the response variables. It is also used for 

planning experiments so that the results obtained can be analyzed to yield valid and 

objective conclusions. There are many different DOE methods. The best choice depends 

on the number of factors involved and the accuracy level required. Kennedy and Krouse 

(1999) presented the details for different DOE methods and categorized them based on 

the experimental objectives they meet. 

The DOE begins with the definition of the experiment objectives and the selection of the 

input/output variables. In our purpose, the unknown micro–parameters, i.e., cc and φc, are 

chosen as the factors; and the assemblage macroscopic responses, in terms of the internal 

cohesion C, and internal friction angle φ, are considered as the responses. 

a. Estimation of lower and upper bounds of factors 

The DOE needs to define a range for each factor. For this purpose, the results of the 

parametric study are used. As Figure 6–7 presents, if the contact cohesion is about half 
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the rock compressive strength, the model reproduces a uniaxial compressive strength 

approximately equal to that of Augig granite. Therefore, the range of cc is defined 

between 0.25×UCS and 0.75×UCS, i.e., 30.50 to 91.50 MPa. Since the model response does 

not vary when φc is below 0.75φ (Figure 6–8), the range of φc is assumed between 0.85φ to 

1.15φ, i.e., 45.05˚ to 60.95˚. 

Table 6–3: Range of model micro–parameters to perform DOE on Augig granite test results 

micro–parameter lower bound upper bound centre (mean) 

contact cohesion, cc [MPa] 0.25×UCS 0.75×UCS 0.50×UCS 
contact friction angle, φc [˚] 0.85φ 1.15φ 1.00φ 

b. Response surface analysis 

Depending on the level of accuracy required, a complete description of the response 

behavior might need a linear, a quadratic or even a higher–order DOE. Under some 

circumstances, a design involving only main effects and interactions may be appropriate 

to describe a response surface when analysis of the results reveals no evidence of pure 

quadratic curvatures in the response of interest. As the curvature observed in Figure 6–8 

implies, there is, however, a probability of existing interaction between the factors. It 

causes to believe that a linear design does not satisfy our objective; and a quadratic model 

is strongly necessary. 

For this purpose, the Response Surface Method (RSM) is applied for the estimation of 

non–linear relations between the two unknown micro–parameters and the CFM 

macroscopic responses. One of the methods used to predict response quadratic curvature 

is the Central Composite Design (CCD). 

b.1. Application of the central composite design 

The CCD provides high quality prediction of a response surface over the entire design 

space, including linear, quadratic, and interaction effects. It contains an imbedded 

factorial or fractional factorial design with centre points that are augmented with a group 

of star points that allows estimation of curvature (see Table 6–5). If the distance from the 

design space centre to a factorial point is assumed ±1 unit for each factor, the distance from 

the design space centre to a star point will be ±α. The precise value of α depends on the 

number of factors involved. Since there are two factors in the model (cc, and φc), α = 21/2 ≈ 

1.414, and the number of factorial runs will be four (NIST/SEMATECH 2003). 

Table 6–4: Definition of factors and numerical value of micro–parameters at each coded level 

factor corresponding micro–
parameter 

value of micro–parameters at coded 
levels transformation formula 

  –α –1 0 +1 +α  

x1 contact cohesion, cc 17.87 30.50 61.00 91.50 104.13 cc = 30.50×[coded level] + 61.00 

x2 contact friction angle, φc 41.76 45.05 53.00 60.95 64.24 φc = 7.95×[coded level] + 53.00 
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The levels ±1 represent the upper and lower bounds assumed for the factors. The value of 

each factor at the centre point is defined as the arithmetic mean of the upper and lower 

bound values. Considering the lower and upper bounds presented in Table 6–3, the 

centre, factorial, and star points are calculated as listed in Table 6–4. 

The CCD offers a limited number of combinations for the factors. These combinations are 

collected in a matrix called design matrix as listed in Table 6–5. This matrix can be 

converted to the matrix of the real factors, i.e., micro–parameters, by the transformation 

formula expressed at the last column in Table 6–4. The laboratory tests are then 

simulated using each set of the CCD–suggested micro–parameters, and the model results 

are obtained as recorded in Table 6–6. These tests include the uniaxial and triaxial 

compressive tests on the sample shown in Figure 6–5, where the confining pressure, σ3, 

of 0, 4, and 8 MPa is applied. Using the compressive strengths obtained at each run, 

internal cohesion and internal friction angle of the model are calculated as the DOE 

responses. 

Table 6–5: Complete design matrix for central composite design 

run point type factor 1 (x1) factor 2 (x2) 
1 corner (1) –1 –1 
2 corner (2) +1 –1 
3 corner (3) –1 +1 
4 corner (4) +1 +1 
5 star (a) –1.414 0 
6 star (b) +1.414 0 
7 star (c) 0 –1.414 
8 star (d) 0 +1.414 
9 centre (i) 0 0 
10 centre (ii) 0 0 
11 centre (iii) 0 0 
12 centre (iv) 0 0 
13 centre (v) 0 0  

Table 6–6: CCD–suggested design matrix and obtained results 

 micro–parameters matrix DOE responses CFM results for compressive models 

run cc φc C φ σ3 = 0 MPa σ3 = 4 MPa σ3 = 8 MPa 
1 30.53 45.05 7.2 57.6 55.98 84.10 151.04 
2 91.58 45.05 35.7 38.9 147.32 171.56 182.38 
3 30.53 60.95 15.1 73.7 181.74 460.30 570.00 
4 91.58 60.95 13.7 74.1 180.57 433.50 590.34 
5 17.88 53.00 3.9 69.8 35.87 183.62 287.03 
6 104.22 53.00 26.4 56.4 181.09 205.94 268.65 
7 61.05 41.76 35.3 21.9 104.08 114.09 121.63 
8 61.05 64.24 17.3 74.8 245.97 510.31 694.55 
9 61.05 53.00 11.4 67.0 115.40 200.89 308.71 
10 61.05 53.00 12.1 64.6 107.89 183.33 264.81 
11 61.05 53.00 10.1 69.5 114.47 227.16 358.74 
12 61.05 53.00 10.2 70.2 106.14 269.88 369.24 
13 61.05 53.00 11.8 63.6 103.95 165.91 248.86 

For each run, the particle assemblage is separately created. In addition, the simulations 

are repeated for five times with the same micro–parameters at the centre points (see runs 
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9 to 13 in Table 6–6). That is because the particle assemblage is generated arbitrarily and 

two CFM runs might produce slightly different results. Hence, the CCD predictively 

carries out this repetition to minimize the variability in modeling. 

The targeted response parameters are statistically analyzed by applying the above data in 

statistical software of JMP (Sall et al. 2007). The individual parameters are evaluated 

using the Fischer test, and quadratic models of the form 

Y x x x x x xβ β β β β β= + + + + +2 2
0 1 1 2 2 3 1 2 4 1 5 2  (6–17) 

are generated for each response parameter using multiple linear regression analysis and 

analysis of variance. Y stands for the level of the measured response, i.e., C and φ here. β0 

is the intercept; β1 to β5 are the regression coefficients. x1 and x2 stand for the coded 

factors; x1x2 is the interaction between the main effects; x 2
1  and x 2

2  are the quadratic 

terms of the independent variables that are used to simulate the curvature of the 

designed surface. Predictor equations containing only the significant terms are generated 

using a backward elimination procedure. A numerical optimization procedure using 

desirability approach is used to locate the optimal settings of the formulation variables in 

view to obtain the desired response (Park and Park 2010). 

Using the data presented in Table 6–6, the following equations between the model 

macroscopic response and the coded factors are constructed. 

2 2C . . x . x . x x . x . x= + − − + +1 2 1 2 1 21112 7 36 494 7 48 132 6 89  (6–18) 
2 2. . x . x . x x . x . xφ = − + + − −1 2 1 2 1 266 98 466 1576 478 060 7 98  (6–19) 

Comparing the multipliers in the above equations, the necessity of a quadratic RSM is 

clearly justified. Solving them for C = 21 MPa and φ = 53˚ of Augig granite, x1 = 0.443 and x2 = 

–0.533. These are coded factors and have to be transformed to uncoded values using the 

transformation equations that eventually leads to cc = 74.57 MPa, and φc = 48.76˚ as the 

target micro–parameters. 

6.2.5. Solution verification 

The proposed calibration process is expected to provide the best micro–parameters for 

the model generation and give the closest match between the laboratory results and 

those of the simulation. The validity of the solution can be verified through quantitative 

and qualitative comparisons of these two sets of results. 

a. Quantitative comparison 

For a quantitative comparison, the results of the Brazilian tension, uniaxial and triaxial 

compression tests on Augig granite are reproduced again. The results of laboratory test 

were previously inserted into the obtained system of equations and the target set of the 

micro–parameters is calculated. They are then used as input for the new simulations, 
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which are expected to give the closest match with the laboratory test in terms of the 

Young's modulus, Poisson's ratio, Brazilian tensile strength, uniaxial compressive 

strength, internal cohesion, and internal frictions angle. 

If the discrepancy between the experiment and simulation is limited to a reasonable 

range, the CFM solution can be admitted as adequate for modeling any target rock 

material and can be further applied for more complicated problems. 

Table 6–7 presents the complete list of the micro–parameters, which have been obtained 

by the closed–formed expressions, parametric study, and CCD calculation. 

Since different assemblage arrangements result in different model strength, five models 

with different particle arrangement but the same micro–parameters as Table 6–7 are 

created. The results of mean, standard deviation, and relative error percentage are listed 

in Table 6–8, which show fair agreement with the experimental measurements, where 

the relative error is always less than 5%. 

Table 6–7: List of target micro–parameters for simulation of Augig granite 

Ep [GPa] νp kt [TPa/mm] ks [TPa/mm] tc [MPa] cc [MPa] φc [˚] 

25.80 0.23 1.95 / 2.06 0.198 / 0.21 24.15 74.57 48.76 

Table 6–8: Experimental properties of Augig granite versus CFM predictions 

property E [GPa] ν σt [MPa] σc [MPa] C [MPa] φ [˚] 
experimental value 25.8 0.23 8.8 122.0 21.0 53.0 

numerical mean 25.2 0.24 8.7 125.4 20.9 53.5 
standard deviation 0.21 0.01 0.16 2.35 0.85 1.12 

relative error % 2.33 4.35 1.14 2.79 0.48 0.94 

Though the target set of the micro–parameters is expected to provide a close match, little 

variations in the numerical results are unavoidable because of the inherent randomness of 

particle placement in the model generation. Note that this is not regarded at all as the 

CFM disadvantage, when even two separate experimental tests on rock material do not 

lead necessarily to identical results due to rock intrinsic heterogeneity. In fact, the 

randomness of the particle arrangement relatively represents rock heterogeneity, while 

material anisotropy is introduced into the model by the adopted orthotropic contact law. 

  
a. axial stress versus axial and lateral strain b. axial strain versus lateral strain 

Figure 6–9: Comparison of predicted stress–strain curves with those obtained in laboratory 
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Comparisons between the curves of axial stress versus axial and lateral strain for the 

laboratory test and a representative simulation are presented in Figure 6–9. Note that 

some special aspects for rock behavior such as sliding at grain boundaries or closure of 

initial flaws and pores are not captured by the CFM. This causes stress–strain curves in 

the simulation to be slightly different from those of the laboratory tests, particularly 

where the initial nonlinearity is not reflected in the modeling. 

The elastic constants for the laboratory testing were obtained from the middle portions 

of the curves where relatively linear relation between stress and strain is maintained. For 

numerical simulation, those are computed using stress and strain increments occurring 

between the start of the test and the point at which one half of the peak stress has been 

obtained (tangent method). 

Figure 6–10 illustrates the CFM predictions for the Brazilian, uniaxial and triaxial 

simulations in comparison with the laboratory measurements. The Hoek–Brown failure 

envelops are also plotted for the both. As seen, the curves show fair agreements. 

 

Figure 6–10: The Hoek–Brown failure envelop for Augig granite 

b. Qualitative comparison 

Some specific features of the simulation, e.g. failure mode or fracturing pattern, cannot be 

adequately quantified. A qualitative comparison can be as an alternative to complete the 

verification of the CFM solution. For this purpose, the solution correctness is 

investigated by comparing the mentioned features obtained from the laboratory test with 

those from the CFM simulation. 

b.1. Compressive failure mode 

As shown by Paterson (1987), rocks exhibit higher ductility under triaxial circumstances 

than uniaxial. Figure 6–11 offers that this phenomenon is fairly captured by the CFM. The 



 83 

simulation gives further yielding and plastic deformation with confinement, whilst an 

abrupt softening at post–peak region is observed in the laboratory results. 

  
a. σσ3 = 4.0 MPa b. σ3 = 8.0 MPa 

Figure 6–11: Experimental stress–strain response of Augig granite compared with the CFM 
predictions in triaxial compression 

As Wawersik and Fairhurst (1970) describes, rock failure in unconfined circumstances 

occurs in two distinct modes of axial splitting (cleavage failure) and shear rupture 

(faulting). Axial cleavage generally precedes faulting for hard rocks and characterizes 

failure initiation. On the contrary, failure of soft rocks usually starts with shear faulting. 

Figure 6–12 shows that this phenomenon is clearly observed by the CFM, where the 

predicted failure mode shows typical cleavage happening in the laboratory tests. 

  

Figure 6–12: Comparison of laboratory compressive failure of Augig granite with CFM 
predictions under unconfined condition 

b.2. Tensile fracturing pattern 

In the CFM simulation, tensile failure initially starts at about sample centre, and then the 

induced fracture rapidly propagates in parallel with the loading axis. That is why sample 

resistance suddenly decays after failure starts. Further increasing the load causes more 

contacts break around the major fracture, particularly beneath the platens.  

The post–failure picture for Augig granite and the CFM simulation is plotted in Figure 

6–13 (next page). The failure features, in terms of the major fault induced into the sample 
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and the wedge–shaped zone created at the contact points with the platens, are fairly 

captured. 

  

Figure 6–13: Comparison of laboratory tensile failure with the CFM predictions 

6.2.6. Complementary investigations 

a. Effect of particle size 

Equation 6–15 predicts that the Brazilian strength predicted by the CFM is affected by 

particle size. A series of simulations are carried out to numerically examine this 

analytical prediction. They consist of particles with the average edge size between 2 to 

7.5 mm. This range of particle size is chosen regarding the Augig granite grain size. The 

details for some of the models are presented in Figure 6–14. 

    

 
a. dp = 2.0 mm 

 
b. dp = 3.0 mm 

 
c. dp = 5.0 mm 

 

d. dp = 6.0 mm 

Figure 6–14: Some of particle assemblages created to explore particle size effects  
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The results, presented in Figure 6–15, indicate that although the compressive strength 

has nearly no change, the Brazilian strength decreases with the particle size decrease, 

and follows a trend similar to that predicted by Equation 6–15. The CFM results are 

compared with Equation 6–15 by fitting a power–law curve, with an exponent of 0.39, to 

the numerical data. However, the equation suggests a power of one–half. This 

discrepancy may be explained through the argument that the power will be one–half, if 

the LEFM conditions apply. However, such conditions are not valid here, because (1) the 

CFM’s contacts follow a cohesive behavior, i.e., δut ≠ 0, and (2) despite of the ideal plate 

shown in Figure 6–3 in which only one single contact breaks at every instant of crack 

growth, an accumulation of contact failures represents the Brazilian sample rupture. 

 

Figure 6–15: Variation of compressive and Brazilian strength versus particle size 

These results yield to this conclusion that the CFM’s particles are not needed to be 

extremely small. They, in fact, must be sufficiently small to allow the model to exhibit 

the actual failure fashion of the rock, particularly in terms of the frequency of the 

dominant cracks controlling the failure procedure. For grained media, particle size is 

chosen mainly by the material texture and its average grain size. 

b. Effect of loading rate 

As discussed earlier, due to efficiency limitations, the model has to be loaded with a rate 

much higher than that of practice. This increased–rate loading is suspected to alter the 

strength and failure of the model. Hence, a series of compressive and tensile models are 

loaded with different rates varying from 2 to 1000 mm/sec to explore how the CFM 

predictions are affected. 

Figure 6–16 (next page) shows that the model response approaches to an asymptotic 

value, as loading rate decreases. However, the results are seriously impacted after the rate 

of loading exceeds 100 mm/sec.  

It also suggests that the Brazilian models are more sensitive to the loading rate than the 

compressive ones. The results presented confirm that the rate adopted in the CFM, i.e., 

10 mm/sec, has no effect on the model responses, and the quasi–static equilibrium is 

properly satisfied. 
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Figure 6–16: Variation of CFM macroscopic response versus loading rate exerted 

6.3. Reproduction of compressive and tensile response of soft rocks 

For additional verification, the same procedure is applied to reproduce the mechanical 

properties of Transjurane sandstone as a soft rock. 

6.3.1. Numerical simulation of experiments 

a. Material properties and elastic micro–properties 

As a moderately coarse aggregate rock, Transjurane sandstone is composed of the grains 

with the average size of 1.75 mm. Its mechanical properties are listed in Table 6–9. 

Table 6–9: Mechanical properties of Augig granite 

Young’s modulus, E 12.5 GPa internal cohesion, C 8.5 MPa 
Poisson’s ratio, ν 0.3 internal friction angle, φ 41.0˚ 
fracture toughness in Mode–I, KIC 0.7 MPa√m Brazilian tensile strength, BTS 2.8 MPa 
fracture toughness  Mode–II, KIIC 0.8 MPa√m uniaxial compressive strength, UCS 40.0 MPa 

Using Equation 5–33, the particle’s Young’s modules and Poisson’s ratio are held fixed at 

Ep = 12.5 GPa and νp = 0.3. Given Equation 5–30 and 5–31, the contact initial stiffness 

coefficients in tension and shear are calculated as kt = 7.31×105 MPa/mm and ks = 1.97×105 

MPa/mm for the Brazilian sample and kt = 8.03×105 MPa/mm and ks = 2.17×105 MPa/mm for 

the compressive one. 

b. Discrete element mesh 

A plane–strain and a plane–stress analysis are adopted for the compressive and Brazilian 

models, respectively. The compressive cylindrical sample is 30 mm in diameter and 70 mm 

high, and the Brazilian specimen is a disc with a diameter of 70 mm. Both the samples are 

generated by irregular triangular particles with an average edge size of dp = 2.0 mm, 

corresponding to 740 and 1134 particles for the compressive and tensile samples, 

respectively. Each particle consists of one CST. Friction angle between the rock and steel 

platens is assumed 5˚, and loading rate is set 10 mm/sec. 
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The geometry and boundary condition of the samples are presented in Figure 6–17. 

  

Figure 6–17: Model geometry for compression and Brazilian tension tests simulation 

6.3.2. Parametric study 

The parametric study is repeated for Transjurane sandstone. Considering the results of 

the Augig granite simulation, the initial set of the micro–parameters are chosen as cc = 

UCS/2 = 20 MPa and φc = φ = 41˚. A series of Brazilian samples are the designed to study the 

effects of the contact tensile strength on the model global tensile strength. The values 

assumed for tc and δut are listed in Table 6–10. Given Equation 5–11, Gf for Transjurane 

sandstone is calculated as 87.1 J/m2 for plain–stress. 

Table 6–10: Values of contact ultimate displacement for the Brazilian tension models 

tc [MPa] (tc/BTS) 2.8 (1) 5.6 (2) 8.4 (3) 11.2 (4) 14.0 (5) 16.8 (6) 19.6 (7) 
δut for Brazilian test [mm] 0.0566 0.0283 0.0189 0.0142 0.0113 0.0094 0.0081 

Similar to Augig granite and as anticipated by Equation 6–15, the Brazilian strength of 

the model is linearly dependent of tc (see Figure 6–18). The linear regression fit predicts tc 

as 10.97 MPa to produce the laboratory measured tensile strength, BTS = 2.8 MPa. 

Repetition of the simulation with the obtained tc provides σt = 2.90 MPa, which is very 

close to the rock tensile strength. 

 

Figure 6–18: Variation of tensile strength of the model versus contact tensile strength, tc 
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Having tc = 10.97 MPa, the sensitivity of the model response to cc and φc are examined 

through simulating a series of the Brazilian and compressive samples. Like Augig granite, 

the Brazilian strength of the sandstone model is not affected by any of the two micro–

parameters. Therefore tc = 24.15 MPa is the target value for the contact tensile strength. 

Figure 6–19 shows that the compressive behavior of the model is highly influenced by cc 

and φc. However, the results do not change any more with φc, when it is lower than 0.50φ. 

  

Figure 6–19: Variation of uniaxial compressive strength of the model versus contact cohesion, 
cc, and contact friction angle, φφc 

6.3.3. Design of experiment 

a. Estimation of lower and upper bounds of factors 

Regarding  Figure 6–19, the range of cc and φc is defined as listed in Table 6–11. 

Table 6–11: Applied range of micro–parameters to implement DOE on Transjurane sandstone 

micro–parameter lower bound upper bound centre (mean) 

contact cohesion, cc [MPa] 0.25×UCS = 10.00 0.75×UCS = 30.00 0.50×UCS = 20.00 
contact friction angle, φc [˚] 0.85φ = 34.85 1.15φ = 47.15 1.00φ = 41.00 

b. Central composite design 

According to the design matrix in Table 6–5, and the micro–parameters range presented 

in Table 6–11, the centre, factorial, and star points, corresponding to the sandstone 

properties, are calculated in Table 6–12. 

Table 6–12: Definition of factors and numerical value of micro–parameters at coded levels 

factor corresponding micro–
parameter 

value of micro–parameters at coded 
levels transformation formula 

  –α –1 0 +1 +α  

x1 contact cohesion, cc 5.86 10.00 20.00 30.00 34.14 cc = 10.0×[coded level] + 20.00 

x2 contact friction angle, φc 32.30 34.85 41.00 47.15 49.70 φc = 6.15×[coded level] + 41.00 

The CCD–suggested micro–parameters and the obtained results, under confining 

pressures of 0, 3, and 6 MPa, are listed in Table 6–13 (next page). Using the data 

presented there, the following equations between the model macroscopic responses, i.e., 

C and φ, and the coded factors are constructed. 
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2 2C . . x . x . x x . x . x= + − − + +1 2 1 2 1 2800 552 307 220 083 016  (6–20) 
2 2. . x . x . x x . x . xφ = − + + + +1 2 1 2 1 23760 818 16 89 248 066 044  (6–21) 

Solving them for C = 8.5 MPa and φ = 41˚ of the sandstone, x1 = 0.292 and x2 = 0.323. After 

converting x1 and x2 to the uncoded values, cc = 22.92 MPa and φc = 42.99˚ are finally 

obtained as the target micro–parameters. 

Table 6–13: CCD–suggested design matrix and obtained results 

 micro–parameters matrix DOE responses CFM results for compressive models 

run cc φc C φ σ3 = 0 MPa σ3 = 3 MPa σ3 = 6 MPa 
1 10.00 34.85 4.1 33.5 17.19 21.46 37.97 
2 30.00 34.85 18.2 16.4 48.23 55.12 58.96 
3 10.00 47.15 2.6 60.2 19.02 62.57 103.91 
4 30.00 47.15 7.9 53.0 53.39 61.10 107.10 
5 5.86 41.00 1.7 51.4 10.65 33.22 59.71 
6 34.14 41.00 19.2 22.3 56.59 65.35 69.94 
7 20.00 32.30 13.6 11.0 33.01 37.71 41.84 
8 20.00 49.70 4.6 61.8 36.07 85.14 130.87 
9 20.00 41.00 8.0 37.6 34.45 40.61 59.25 
10 20.00 41.00 5.7 48.9 35.81 40.23 78.54 
11 20.00 41.00 6.1 45.9 34.03 40.35 70.58 
12 20.00 41.00 6.0 48.7 36.41 43.14 78.68 
13 20.00 41.00 5.6 48.7 34.91 40.57 77.11 

6.3.4. Solution verification 

a. Quantitative comparison 

All the calibrated micro–parameters for the sandstone simulation are listed in Table 6–14. 

Using this data, the tensile and compressive simulations are again repeated for five times. 

The results in terms of mean, standard deviation and relative error are presented in Table 

6–15, where they show perfect agreements with the experimental measurements. 

Table 6–14: List of the target micro–parameters for simulation of Transjurane sandstone 

Ep [GPa] νp kt [TPa/mm] ks [TPa/mm] tc [MPa] cc [MPa] φc [˚] 

12.5 0.30 0.731 / 0.803 0.197 / 0.217 11.97 22.92 42.99 

Table 6–15: Experimental properties of Transjurane sandstone versus CFM predictions 

property E [GPa] ν σt [MPa] σc [MPa] C [MPa] φ  [˚] 
experimental value 12.5 0.30 2.8 40.0 8.5 41.0 

numerical mean 12.7 0.31 2.9 39.8 8.5 40.7 
standard deviation 0.30 0.01 0.36 1.85 0.51 1.24 

relative error % 1.61 3.33 3.57 0.50 0.00 0.73 

The experimental and numerical stress–strain curves are compared in Figure 6–20 (next 

page). Like Augig granite simulation, the initial nonlinearity is not reflected in the 

modeling. As Figure 6–21 (next page) presents, the model predicts higher ductility under 

triaxial than uniaxial condition, which agrees with the general compressive behavior of 

rocks (Paterson 1978). 
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Figure 6–20: Comparison of laboratory and CFM–predicted results for uniaxial compressive 
behavior of Transjurane sandstone 

 

Figure 6–21: Triaxial compression results predicted by CFM for different confinements 

Figure 6–22 plots the CFM predictions for the model compressive and tensile strengths 

in comparison with the laboratory measurements obtained from the uniaxial, triaxial and 

Brazilian tests. As seen, the CFM results follow nearly the same pattern with the 

laboratory data. The Hoek–Brown failure envelops are also drawn for both the numerical 

and experimental data, where fair agreement is observed. 

 

Figure 6–22: The Hoek–Brown failure envelop for Transjurane sandstone 
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b. Qualitative comparison 

Figure 6–23 compares the experimental failure mode of the sandstone with that 

predicted by the CFM. The experimental picture illustrates a typical failure observed in 

soft rocks, where shear faulting is more dominant than cleavage failure (Wawersik and 

Fairhurst 1970). The picture on the right shows that this phenomenon is clearly captured 

by the CFM, where the model is sheared over an inclined surface; thereby the upper part 

of the simulation is sliding down. 

  

Figure 6–23: Comparison of experimental compressive failure of Transjurane sandstone with 
CFM predictions under unconfined condition 

6.4. Conclusion 

The results presented in this chapter ensured there is a unique set of the CFM micro–

parameters by which the model, not only quantitatively but also qualitatively, can 

reproduce the rock experimental behavior in compression and tension. Using them, good 

predictions for the laboratory response of both strong and weak rocks are obtained. 

The results also showed how rock macroscopic behavior is influenced by its 

micromechanical properties, i.e., grain size, inter–granular contact strength and friction. 

In addition, it was seen how static loading rate and lateral confinement affects on the 

model predictions. 
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CHAPTER 7 

7.Shear failure and degradation of rock joint 

Formed in sets, natural rock joints are the most common preexisting weak discontinuity 

within rock masses. Their scale in terms of length and spacing may vary from centimeters 

to meters. Understanding their mechanical behavior is of prime importance for many 

applications such as tunnel excavation and support, slope stability and foundation 

design. Since the 1970s, numerous investigations have been conducted to determine the 

mechanical properties of rock joints and the influence of externally applied normal and 

shear stress (Barton and Choubey 1977; Ladanyi and Archambault 1977; Patton 1996; 

Zhao 1997a). Roughness of the joint walls was identified early on as a key parameter of 

the mechanical behavior of rock joints (Barton 1971; Barton 1976). However, it is not 

constant as the joint morphology evolves upon shearing (Grasselli et al. 2002; Hans and 

Boulon 2003; Zhao 1997b). In fact, very high local stresses are generated within the joint 

during shearing which leads to a progressive breakage of the asperities. This 

phenomenon induces a reduction in shear strength and dilation, usually visible at 

residual state and particularly for cyclic shearing, as has been discussed extensively in 

the literature (Barton and Choubey 1977; Huang et al. 1993; Yang and Chiang 2000; Lee et 

al. 2001; Jafari et al. 2003). 

Asperity degradation is of major significance to the mechanical behavior of rock joints 

and therefore has been included in models to accurately assess the joint shear strength 

(Plesha 1987; Nguyen and Selvadurai 1998; Lee et al. 2001). The joint roughness governs 

the dilation of the joint (Barton, Bandis et al. 1985) and progressive joint closure is 

observed when asperities are worn off. 

Regarding experimental controllability and sample preparation ease, artificially made 

joints with simplified geometries such a saw–tooth are more preferred than natural rock 

joints whose surface profiles are complex and non–repeatable. The artificial joints are 
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normally made of cement or gypsum mortar for small–size samples and concrete for big–

size ones. 

This chapter examines the capability of the CFM for modeling asperity degradation 

within plaster–made joints under shearing. For this purpose, the CFM micro–parameters 

are initially calibrated by the compressive and tensile test data of the plaster material. 

Using the target micro–parameters and with no additional modification, shear tests on 

the plaster joint specimens are then modeled. Ultimately, the obtained results are 

qualitatively and quantitatively compared to the experimental data, and the agreements 

and discrepancies are discussed in detail. 

7.1. Experimental data 

The geometry of the present numerical rock joints corresponds to that used by Yang and 

Chiang (2000). They tested a series of the plaster–made specimens under different levels 

of normal stress. They first focused on the shear behavior of two single–tooth joints 

(joints A and B with a tooth angle of 15˚ and 30˚, respectively) before combining the two 

teeth in joints AB and BA (see Figure 7–1). In all the specimens tested, the tooth height is 

fixed at 5.0 mm, and the joint surface area is 10×10 cm2. 

 

Figure 7–1: Rock joint models used by Yang and Chiang (2000) 

The tests demonstrated that the tooth geometry and the normal stress very much affect 

on the strength and dilatancy response of the joints. 

This chapter makes use of the CFM to investigate these issues for joints A and AB. 

7.1.1. Material properties 

The plaster mortar, used to make the specimens, is made of plaster and water mixed by 

the weight ratio of 1:0.65. All the specimens are cured for 5 days inside a chamber with 

the temperature of 25˚ C and the relative humidity of 55%. The mechanical properties of 

the plaster are listed in Table 7–1. 

Table 7–1: Mechanical properties of the plaster 

Young’s modulus, E 1.3 GPa internal cohesion, C 1.75 MPa 
Poisson’s ratio, ν 0.2 internal friction angle, φ 40˚ 
fracture toughness in Mode−I, KIC 0.9 MPa√m Brazilian tensile strength, BTS 1.6 MPa 
fracture toughness  Mode−II, KIIC 1.1 MPa√m uniaxial compressive strength, UCS 7.5 MPa 
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Yang and Chiang (2000) have not reported KIC and KIIC of the tested plaster. Hence, those 

parameters were estimated by the values reported for other types of plaster made of 

similar mixtures and having nearly the same mechanical properties with the tested 

plaster (Saadaoui et al 2000; Eve et al. 2002; Gmouh et al. 2003). 

7.2. Model calibration 

The standard compressive and tensile tests are simulated to find the target micro–

parameters. As described in Chapter 6, the calibration process begins with the definition 

of the experiment objectives and the selection of the input/output variables. 

All the three unknown micro–parameters, i.e., tc, cc and φc, are chosen as factors, and the 

CFM predictions for the Brazilian strength σt, internal cohesion, C, and internal friction 

angle, φ, of the plaster are regarded as responses. Therefore, each CCD run must include a 

Brazilian simulation in addition to the uniaxial and triaxial ones. 

7.2.1. Reproduction of compressive and tensile test data 

A plane–strain and a plane–stress analysis are adopted for the compressive and Brazilian 

models, respectively. The compressive cylindrical sample is 54 mm in diameter and 130 

mm high, and the Brazilian specimen is a disc with a diameter of 54 mm. They are placed 

between two steel platens whose interfacial friction angle is assumed negligible. The 

geometry and boundary condition of the samples are shown in Figure 7–2 (next page). 

The both groups of the samples are generated as explained in Chapter 4, and consist of 

irregular triangular particles with the average edge size of dp = 2.0 mm. dp is believed to be 

sufficiently small to allow the simulation to provide the actual failure fashion of the 

plaster, as observed in laboratory. 

Using Equation 5–33, the particle’s Young’s modules and Poisson’s ratio are fixed at Ep = 

1.3 GPa and νp = 0.2. Given Equation 5–30 and 5–31, the tensile and shear initial stiffness 

coefficients of contact are obtained as kt = 2.61×103 MPa/mm and ks = 7.27×102 MPa/mm for 

the compressive sample, and kt = 2.50×103 MPa/mm and ks = 6.98×102 MPa/mm for the 

Brazilian one. 

As explained earlier, the over damping, introduced in order to eliminate dynamic effects, 

makes the material unnaturally viscous and therefore decelerates stress wave speed. 

Consequently, stress delay inevitably happens between the two ends of the sample and 

its middle points, which may annul the static equilibrium needed for each solution step. 

To overcome this inconvenience, the loading process is divided into stages. During each 

stage, each platen moves for 0.01 mm that causes the sample to be compressed as one 

hundredth of its ultimate deformation at failure. Then, loading stops and the sample is let 

reach stress equilibrium. These stages repeat until the sample fails. At the end of each 
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stage, the sample deformation and the reaction force of the platens are recorded in order 

to generate stress–strain curve and to estimate the sample strength. 

  
  

  
a. geometry and boundary 

condition before failure 
b. predicted failure mode using 

target micro–parameters 

Figure 7–2: Plaster models for simulation of compression and Brazilian tension tests 

7.2.2. Design of experiment 

a. Estimation of lower and upper bounds of factors 

Regarding the discussion provided in Chapter 6, the upper and lower bounds for cc and φc 

are assumed as listed in Table 7–2 (next page). Since tc obtained for the hard and soft 

rocks, examined in Chapter 6, is 2.8 and 3.9 times their BTS, respectively, its target value 

for the plaster has been guessed to be between 1.5×BTS to 4.5×BTS, i.e., 2.4 to 7.2 MPa. 



 97 

Table 7–2: Upper and lower bound of CFM micro–parameters for plaster simulation 

micro–parameter lower bound upper bound centre (mean) 

contact tensile strength, tc [MPa] 1.50×BTS 4.50×BTS 3.00×BTS 
contact cohesion, cc [MPa] 0.25×UCS 0.75×UCS 0.50×UCS 

contact friction angle, φc [˚] 0.85φ 1.15φ 1.00φ 

b. Application of the central composite design 

Since there are three factors involved in the design, α = 23/4 ≈ 1.682, and the number of 

factorial runs is eight (NIST/SEMATECH 2003). Considering the lower, upper and mean 

values presented in Table 7–2, the centre, factorial, and star points are calculated as listed 

in Table 7–3. In three–dimensional space, the factorial points denote eight vertices of a 

cube centred at the origin, with edges parallel to the Cartesian axes representing x1, x2 

and x3 and with an edge length of 2. The centre points are then placed on the origin, and 

the star points are represented by the intersection of the axes and the circumscribed 

sphere of the cube. 

Table 7–3: Definition of factors and numerical value of micro–parameters at each coded level 

factor corresponding micro–
parameter 

value of micro–parameter at coded 
levels transformation formula 

  –α –1 0 +1 +α  

x1 contact tensile strength, tc 0.76 2.4 4.80 7.20 8.84 tc = 2.40×[coded level] + 4.80 

x2 contact cohesion, cc 0.60 1.88 3.75 5.63 6.90 cc = 1.88×[coded level] + 3.75 

x3 contact friction angle, φc 29.91 34.00 40.00 46.00 50.09 φc = 6.00×[coded level] + 40.0 

Table 7–4: Complete design matrix for central composite design 

run point type factor 1 (x1) factor 2 (x2) factor 3 (x3) 
1 corner (1) –1 –1 –1 
2 corner (2) 1 –1 –1 
3 corner (3) –1 1 –1 
4 corner (4) 1 1 –1 
5 corner (5) –1 –1 1 
6 corner (6) 1 –1 1 
7 corner (7) –1 1 1 
8 corner (8) 1 1 1 
9 star (a) –1.682 0 0 
10 star (b) 1.682 0 0 
11 star (c) 0 –1.682 0 
12 star (d) 0 1.682 0 
13 star (e) 0 0 –1.682 
14 star (f) 0 0 1.682 
15 centre (i) 0 0 0 
16 centre (ii) 0 0 0 
17 centre (iii) 0 0 0 
18 centre (iv) 0 0 0 
19 centre (v) 0 0 0 
20 centre (vi) 0 0 0 

Table 7–4 offers the CCD design matrix for three factors (NIST/SEMATECH 2003). 

Using the transformation formula expressed at the last column of Table 7–3, this matrix 

can be converted to the matrix of the real factors, i.e., micro–parameters matrix at Table 
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7–5. The laboratory tests are then simulated using each set of the CCD–suggested micro–

parameters. These tests include the Brazilian tension, uniaxial and triaxial compression 

tests on the samples shown in Figure 7–2a, where the confining pressures applied in 

triaxial tests, σ3, equals 0.5 and 1 MPa. Finally, the model macroscopic results, in terms of 

tensile strength, internal cohesion, and internal friction angle are recorded as the DOE 

responses (Table 7–5), where internal cohesion and internal friction angle are calculated 

based on the obtained uniaxial and triaxial compressive strengths. 

Table 7–5: CCD–suggested micro–parameters and obtained results 

 micro–parameters matrix DOE responses CFM results for compressive models 
run tc cc φc σt C φ σ3 = 0 MPa σ3 = 0.5 MPa σ3 = 1.0 MPa 

1 2.40 1.88 34.00 0.38 0.69 49.58 3.75 7.44 11.71 
2 7.20 1.88 34.00 0.47 1.91 21.78 5.65 6.74 7.85 
3 2.40 5.63 34.00 0.38 0.60 69.79 6.79 22.54 41.05 
4 7.20 5.63 34.00 1.04 1.86 62.67 15.27 23.73 33.18 
5 2.40 1.88 46.00 0.31 0.60 62.89 5.00 13.60 23.15 
6 7.20 1.88 46.00 0.81 2.09 39.91 8.95 11.24 13.89 
7 2.40 5.63 46.00 0.31 1.59 70.77 18.77 36.19 54.00 
8 7.20 5.63 46.00 1.11 1.81 70.57 21.11 38.16 57.70 
9 0.76 3.75 40.00 0.07 1.15 61.35 9.01 16.68 24.54 
10 8.84 3.75 40.00 1.14 2.55 50.97 14.39 18.37 22.84 
11 4.80 0.60 40.00 0.10 0.49 33.06 1.79 3.49 5.53 
12 4.80 6.90 40.00 0.70 0.87 73.53 11.96 35.83 62.55 
13 4.80 3.75 29.91 0.70 1.10 56.53 7.33 12.86 19.25 
14 4.80 3.75 50.09 0.76 1.68 66.39 16.10 27.55 40.93 
15 4.80 3.75 40.00 0.70 1.71 57.46 11.75 17.62 23.98 
16 4.80 3.75 40.00 0.63 1.77 60.41 13.39 20.56 28.32 
17 4.80 3.75 40.00 0.80 1.93 56.67 12.91 18.49 24.33 
18 4.80 3.75 40.00 0.90 2.14 53.39 12.93 17.50 22.80 
19 4.80 3.75 40.00 0.71 1.53 60.82 11.76 19.14 26.83 
20 4.80 3.75 40.00 0.79 1.71 57.67 11.80 17.75 24.62 

Again, the simulations are predictively repeated for several times with the same micro–

parameters at the centre point to minimize the variability in modeling. 

Using the data presented in Table 7–5, the following equations between the model 

macroscopic response and the coded factors are constructed. 

t

2 2 2

0.75 0.28x 0.1 x 0.0 x 0.1 x x 0.0 x x 0.03x x

0.0 x 0.1 x 0.002x

σ = + + + + + −

− − −
1 2 3 1 2 1 3 1 3

1 2 3

4 3 1 7
5 2

 (7–1) 

2 2 2

C 1. 0.4 x 0.09x 0.1 x 0.15x x 0. x x 0.1 x x

0.04x 0.37x 0.12x

= + + + − − +

+ − −
1 2 3 1 2 1 3 2 3

1 2 3

80 8 5 10 1
 (7–2) 

2 2 2

57.77 5.53x 12.28x 4.17x 5.43x x 1.4 x x 2.82x x

0.75x 1.77x 1.12x

φ = − + + + + −

− − +
1 2 3 1 2 1 3 2 3

1 2 3

7
 (7–3) 

Equations 7–1 to 7–3 form a quadratic system of simultaneous equations for the coded 

factors. Solving it for σt = 1.6 MPa, C = 1.75 MPa and φ = 40˚ of the plaster, x1 = 0.871, x2 = 

0.675 and x3 = –0.583. Using the transformation equations, the uncoded factors are tc = 

6.89 MPa, cc = 5.02 MPa, and φc = 36.50˚ as the target micro–parameters. 
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7.2.3. Calibration verification 

The target micro–parameters obtained are listed in  Table 7–6. Using this set of data, the 

tensile and compressive simulations are again repeated for five times. The results in terms 

of mean, standard deviation and relative error are listed in Table 7–7, where they show 

perfect agreements with the experimental measurements. 

Table 7–6: List of target micro–parameters for simulation of the plaster 

Ep [GPa] νp kt [GPa/mm] ks [GPa/mm] tc [MPa] cc [MPa] φc [˚] 

1.30 0.20 2.50 / 2.61 0.698 / 0.727 6.89 5.02 36.50 

Table 7–7: Experimental properties of the plaster versus CFM predictions 

property E [GPa] ν σt [MPa] σc [MPa] C [MPa] φ  [˚] 
experimental value 1.3 0.20 1.6 7.5 1.75 40.0 

numerical mean 1.3 0.20 1.6 7.4 1.77 40.3 
standard deviation 0.01 0.01 0.04 0.16 0.04 0.59 

relative error % 1.54 4.03 3.13 4.01 3.43 2.51 

The CFM predictions for failure mode of the Brazilian tension and uniaxial compression 

tests have been plotted in Figure 7–2b. As seen, the characteristic failure reported for soft 

rocks is reproduced, as shear faulting is the major rupture process (Paterson 1978). 

7.2.4. Discussion 

Comparing the multipliers in Equations 7–1 to 7–3, necessity of a quadratic RSM is 

justified (See Section 6.2.4 for the description of the RSM). Equation 7–1 shows that the 

model tensile strength is more dependent of the contact tensile strength than its 

cohesion, while it is not very affected by the contact friction angle. The first and second 

order variables in Equation 7–2 show that the model cohesion is more significantly 

related to the contact tensile strength than its cohesion and friction angle. Equation 7–3 

presents that the contact tensile strength has an important role on the model friction 

angle, although the most significant effect comes from the contact cohesion. 

These results indicate that contact tensile strength is the critical micro–parameter, as it 

mainly characterizes the sample strength in the CFM simulations. This agrees with the 

experimental observations by Hazzard and Young (2000) mentioning that failure in 

rocks starts with the creation of inter–mineral tensile fractures in parallel with the 

applied load. Then, coalescence of these micro–fractures creates a major failure surface as 

observed in the numerical modeling as well as the laboratory. 

7.3. Rock joint modeling 

7.3.1. Specimen geometry and boundary condition 

The model geometry corresponds to that chosen by Yang and Chiang (2000). Figure 7–3 

offers a schematic view of the joint samples together with the assigned boundary 
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condition. The joint lower half is free to displace horizontally while vertically restrained. 

Conversely, the upper part is quite bonded by a rigid body prevented from any movement 

in the lateral direction. The rigid body is to obstruct the upper half from any global 

rotation. Consequently, dilation is allowed while rotation is not. These are the standard 

circumstances under which the rock joint shear tests are normally preformed. 

  

Figure 7–3: Schematic representation of joint samples and applied boundary condition  

As shown by Yang and Chiang (2000), the material damage zone is limited to the joint 

tooth. Hence, only the teeth are permitted to break and the other parts of the specimen 

are assumed as elastic. The damage zone, i.e., the joint tooth, is discretized by particles 

with the average edge size of 0.2 mm. Figure 7–4 illustrates the particle assemblage 

forming a 30˚ asperity. A total of 393 and 1241 particles have been taken part in model A 

and AB, respectively. 

 

Figure 7–4: Particle assemblage in a 30˚ joint asperity (units in millimeter) 

The test proceeds by first compressing the joints to reach the prescribed normal stress. 

Adopting a plain–stress analysis, the joints are then sheared by a controlled lateral 

displacement horizontally exerted to the lower half. To limit the computation time, a 

rate of 2 mm/s has been applied. 

7.3.2. Predictions and discussion 

The joints mechanical response is examined under normal stress of 0.39 and 1.47 MPa. A 

Coulomb friction law is assigned to the joint surface illustrated by the black thick line in 

Figure 7–4. The penalty parameter to control surface interpenetration is assumed 2.50 
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GPa/mm, equal to kn for plain–strain. This value is large enough to avoid any excessive 

overlap between the upper and lower parts of the specimen. The shear stiffness 

coefficient of the joint surface is fixed at 10 MPa/mm to best fit the elastic deformation of 

the joint in the pre–failure region. The friction angle of the joint surface is 35˚. 

a. Single–tooth joint 

As shown in Figure 7–5, the overall trend of the experimental response of the 

discontinuity, in terms of the joint strength and dilatancy, is satisfactorily reproduced, 

and the maximum and tail values of the shear stress are properly predicted. 

  

Figure 7–5: Shear stress and dilation versus shear displacement for the simple joint 

 

Figure 7–6: Numerical and experimental failure modes for the simple joint under 1.47 MPa 

Every time that one or several contacts fail, a sudden drop in the numerical response 

happens. However, the initial normal stress causes the broken contacts to get closed, and 

therefore the joint shear stress evolves again. These sequences of the drop and evolution 
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give an oscillating appearance to the model shear response. Figure 7–6 demonstrates that 

the numerical and experimental failure patterns eventually are fairly similar. 

b. Double–tooth joint 

Both the high and low values of the normal pressure are applied on the composite joint. 

Although the peak shear strength is fairly reproduced under 1.47 MPa, there is a 

qualitative difference between the laboratory results and the numerical response in the 

post–failure stage (see Figure 7–7). Comparing the test measurement, the model does not 

reproduce the flat zone and shows a larger drop in the shear stress, after which stress 

increases again. This is typical of a staggered contribution to the shear strength, i.e., the 

30˚ tooth breaks and subsequently the 15˚ one is mobilized. This phenomenon causes a 

sudden fall in the joint shear response. On the contrary, the smooth inclination in the 

experimental observation suggests that both the teeth are somehow sheared 

simultaneously. The reason of this difference might be a matter of the experimental 

boundary condition, which is uncertain, or the 2D state of the numerical simulation 

versus the 3D nature of the experiment. Note that the numerical instabilities (mainly 

excessive particles interpenetration) caused the calculation to stop after 5 mm of 

shearing. To remove this inconvenience, we have to reduce the time step further, which 

makes the solution inefficient. 

As seen in Figure 7–7, the laboratory measurements are better predicted under normal 

stress of 0.39 MPa than 1.47 MPa, where both the peak and residual shear strengths are 

properly reproduced. 

 

Figure 7–7: Shear stress versus shear displacement for the composite joint 

7.4. Conclusion 

Using the CFM, two types of the plaster–made rock joints were modeled. The results for 

the simple joint were excellent. Shear strength, dilation and failure mode of the joint 

were properly predicted, where no additional modification or effort was required. 
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The model fitted the pre–failure response and the peak strength for the composite joint 

as well. However, there was a qualitative difference between the experiment and the 

numerical reproduction under high normal pressure, where the model showed a 

significant drop in shear stress following its peak value. Nevertheless, the model 

succeeded to match the laboratory results of the composite joint under low normal 

pressure. 

The presented results demonstrate that the CFM is able to predict rock joints shear 

response, when the micro–parameters used are obtained from the standard compressive 

and tensile test data of the rock. 
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CHAPTER 8 

8.Dynamics fracturing in homogeneous material 

This chapter examines the CFM application for dynamic problems specifically in terms 

of homogeneous materials. First, related studies, concerning crack propagation in metals 

and polymers, are briefly reviewed. Following this, a distinctive experimental study, 

chosen for the verification of the simulation, will be explained in detail. Modeling the 

test and comparing the obtained results with those of the experiment, the capabilities 

and deficiencies of the CFM simulation will be explored. Finally, necessary developments 

will be adopted in order to incorporate dynamic effects into the CFM. 

8.1. Dynamic fracture in homogenous material 

A major objective in studying dynamic fracture is to predict crack dissemination pattern 

and velocity. The linear elastic fracture mechanics suggests the Rayleigh surface wave 

speed, cR, as the upper limit for the material cracking velocity, vcr (Freund 1990; Broberg 

1999). However, in rapid cracking of brittle solids, the crack–tip zone undergoes a series 

of complex mechanisms such as large and nonlinear deformation, high strain rate, 

plasticity, micro–crack nucleation, heat diffusion and subsequent thermal softening. 

These mechanisms cause the fracture energy release rate, Gf, to increase when the crack 

velocity increases. For most materials, when vcr approaches a critical value called terminal 

velocity, vL, Gf infinitely increases, and finally the crack stops further accelerating (Ravi–

Chandar and Knauss 1984; Dally et al. 1985; Fineberg et al. 1991; Sharon et al. 1996). 

Several approaches have been applied to examine dynamic fracturing. Nishioka (1995) 

and Nishioka et al. (2001) introduced the dynamic J–integral into a moving finite element 

mesh that needs a re–meshing algorithm with a very fine mesh around the crack tip. 

Belytschko and Black (1999) and Moes et al. (1999) suggested an extended FEM (XFEM) 

solution with crack propagation through the ordinary elements which gives a smooth 
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crack path with minimal re–meshing effort. However, discontinuities must be considered 

in the shape functions to model broken elements. This makes the solution too effortful 

when cracks intersect. 

Introduced by Dugdale (1960) and Barenblatt (1962), the cohesive finite element methods 

which are based on the cohesive zone concept, have been extensively used in recent 

years. Xu and Needleman (1994, 1995, 1996) applied an elastic–exponentially decaying 

cohesive law. Camacho and Ortiz (1996, 1997) proposed a rigid–linear law in 2D space. 

Later on, Pandolfi et al. (1999, 2000) and Ruiz et al. (2000) carried it out for 3D analysis. 

Zhai et al. (2004) analyzed dynamic fracture in two–phase Al2O3/TiB2 ceramic composite 

microstructures using the cohesive element. The model integrates cohesive surfaces along 

all finite element boundaries as an intrinsic part of the material description. This 

approach obviates the need for any specific fracture criteria and assigns models with the 

capability of predicting fracture paths and fracture patterns. Karedla and Reddy (2007) 

applied high inertia zone theory to a cohesive finite element model to examine crack 

branching in PMMA. Nevertheless, the crack propagation speed was not fully discussed. 

In all the research mentioned, the cohesive laws used are rate–independent, i.e., the 

traction mobilized within the crack is just a function of its separation but independent of 

its opening speed. 

Much attention has been paid recently to the rate–dependent cohesive models. Li and 

Bazant (1997a, 1997b) proposed a visco–elastic rate–dependent law to analyze a 

stationary crack under dynamic loading in concrete that results in cohesive forces 

extremely exceeding the material ultimate strength. Lee and Prakash (1999) studied 

dynamic fracturing in high–strength brittle steels. They found that the rate–dependency 

assumption is crucial to reproduce the experimental results. 

Zhou et al. (2005b) introduced a linear decaying law into the cohesive interface elements 

to reproduce the laboratory results of PMMA cracking. However, their numerically 

predicted vcr was not limited to vL. Block et al. (2007) developed the cohesive nodal force 

method which needed a compulsory continuum damage model for solid elements to 

control the model energy dissipation at high loading rates. 

8.2. Dynamic crack propagation in PMMA plates 

In this section, the experimental work done by Shioya and Zhou (1995) on fracture 

behavior of the pre–strained PMMA strips is presented. More explanation in terms of the 

test setup and the experimental results is published by Zhou et al. (2005a), and a 

detailed description is presented by Zhou (1996). 

8.2.1. Experimental setup and measurement 

Polymethyl Methacrylate (PMMA) rectangular plate (3 mm thick) was used as the test 

material. Before crack propagation, a universal test machine loaded the specimen in 
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tension. The magnitude of the loading was measured by the load cell in the test machine. 

After reaching a given load level, a small sharp crack was initiated at the middle point of 

one specimen end by a razor. Since the material is very brittle, the crack quickly 

propagated straight across the specimen. 

To record the crack propagation during the test, electric conductive lines were drawn on 

the specimen surface. They were connected to an electronic logic circuit. When the crack 

propagated, the time at which it cut each line was recorded by a digital memory. From 

this record and the position of each line, the crack propagation history and its velocity 

were obtained. 

 

Figure 8–1: Crack velocity recorded under various levels of loading (Zhou et al. 2005a) 

As presented in Figure 8–1, the test data showed that the crack velocity tends to a steady 

asymptotic value, and this steady propagation state continues until the crack tip reaches 

the opposite edge of the specimen. The average steady velocity of the crack is called crack 

velocity and is denoted by vcr. 

8.2.2. Test results 

Various specimens with different geometries were tested. By changing the induced 

tension and size of the specimen, different values of elastic strain energy, W, were 

obtained. From each test, a data point of (W,vcr) was produced some of which are plotted 

in Figure 8–2. 

 

Figure 8–2: Initial stored energy versus crack propagation velocity (Zhou et al. 2005a) 
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During the fracture process, the vast majority of the specimen strain energy is consumed 

through material fracture, and the rest is converted to kinetic energy. Since the initial 

deformation applied to each specimen was small compared to its size, the material 

kinetic energy in the region behind the crack front can be assumed negligible. Therefore, 

the strain energy stored per unit length of the specimen is approximately equal to the 

energy consumed by unit length of the crack propagation, i.e., the dynamic fracture 

energy release rate, Gf. This equality is verified by Zhou et al. (2005a). 

Hence, Figure 8–2 demonstrates, in fact, the variation of Gf versus vcr. If fitting a 

monotonically–increasing curve to the points in Figure 8–2, the relation ship between 

the material fracture energy and the crack propagation speed can be expressed by the 

following empirical equation, where vL = 675 m/s and G0 = 1000 N/m. 

L
f

L cr

v
G G

v - v
= 0  (8–1) 

8.2.3. Crack branching (bifurcation) 

It was observed the crack surface becomes rougher with increasing crack velocity. As 

described by Zhou et al. (2005a), under low pre–strain (W < 4000 N/m) the crack 

propagation velocity was low (vcr < 450 m/s), and the fractured surface was smooth. In 

moderate values of pre–strain (W = 4000–8000 N/m), the crack velocity was higher (vcr = 

450–600 m/s), and some streaks and roughness were observed on the crack surface. At 

first, these streaks were not remarkable. However, when the crack velocity approached 

600 m/s, they became more evident and deeper (0.01 mm order), but the crack still ran in a 

single straight path. 

 

Figure 8–3: Schematic plot of crack bifurcation under very high pre–strain 

Under very high pre–strain (W > 8000 N/m), the crack velocity exceeded 600 m/s, and 

some small cracks started branching from the main crack (Figure 8–3). Generally, in the 

velocity range about 600–650 m/s, these small cracks stopped further propagating and 

created the micro–branches seen in the laboratory. However, when vcr > 650 m/s, one or 

few of these small cracks continued running as far as 1 mm or more, and crack bifurcation 

happened. 

8.3. Reproduction of the dynamic crack velocity by CFM 

Validity of the CFM for dynamic fracture simulation is examined here through modeling 

the experimental data. 
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8.3.1. Material properties 

Mechanical properties of the model are assumed the same with the experiment. 

Table 8–1: Mechanical properties of PMMA 

Young’s modulus, E 3090 MPa Poisson’s ratio, ν 0.35 
Mode−I fracture toughness, KIC 0.96 MPa√m fracture energy, Gf 300 N/m 
Mode−II fracture toughness, KIIC 0.83 MPa√m tensile strength, σt 75 MPa 

The Mode–II fracture toughness has been measured using the semi–circular bend 

specimen at the crack angle of 50˚ (reported by Ayatollahi and Aliha 2006). 

The PMMA density is 1180 kg/m3. According to the elastic wave equations (Bedford and 

Drumheller 1996), the longitudinal, shear and Rayleigh surface wave speed are obtained 

as cL = 1618 m/s, cS = 985 m/s, and cR = 906 m/s, respectively. Therefore the experimental 

terminal velocity of crack propagation, vL, is about 75% of cR. 

8.3.2. Model geometry and boundary condition 

The PMMA plate modeled is l = 32 mm long, h = 16 mm high and contains a 4 mm long slit 

along the centerline. The plate is made of 204,800 right isosceles triangular particles with 

the hypotenuse of dp = 0.1 mm, where each particle consists of one CST. The model totally 

has 2,457,600 degrees of freedom. Its geometry and a part of the particle assemblage are 

shown in Figure 8–4. 

 

 

Figure 8–4: Model geometry and boundary condition (left) and a part of particle assemblage 
focusing initial crack–tip (right), dimensions in millimeter 

8.3.3. Analysis procedure 

The plate is initially loaded by a prescribed tensile displacement, Δ, along the upper and 

lower boundaries in the y–direction, while the crack is not allowed to propagate. The 

specimen is not constrained in the x–direction. A plane–stress static analysis is then 

conducted to calculate the initial strain and stress state of the plate with the stationary 

crack. To reach this purpose, the local damping factor, α, is taken as 0.8 to secure the 
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quasi–static equilibrium of the plate. Under these loading circumstances, the strain 

energy, stored per unit area of the (pre–strained) plate, is 

( )2 2E 21 2E
W

2 h h

Δ Δ
= =  (8–2) 

After the static calculation, the plate is allowed to fracture, where its boundary condition 

is kept fixed. An explicit dynamic analysis is performed by assuming α = 0. As suggested 

in the classical numerical methods, e.g. FEM and DEM, the time step in an explicit 

analysis must be shorter than the time of P–wave propagation through the particle 

length, which is calculated as 6×10–8 sec for the model. As the time step suggested by 

UDEC is 4×10–9 sec, numerical stability of the dynamic analysis is therefore guaranteed. 

At the end of the static analysis, a high stress concentration is induced at the tip of the 

pre–existing crack. This stress far exceeds the contact strength and thus may lead to a 

sudden and extensive failure over the zone close to the crack tip at the beginning of the 

dynamic analysis. However after a short time, the crack is seen to propagate in a steady 

state similar to the laboratory observations (see Figure 8–5). 

8.3.4. Micro–parameters 

The orthotropic cohesive contact law was completely explained in Chapter 5. Since 

PMMA is considered as an isotropic homogeneous material, the contact law can become 

simplified, e.g. both the tensile and shear peak strengths of contact can be assumed equal 

to the PMMA tensile strength, i.e., tc = cc = 75 MPa. Moreover, as the plate is subjected to 

the Mode–I loading, contact shear failure is not expected to occur, and therefore 

numerical fracture propagation is only controlled by the tensile parameters of contact. 

Consequently, the contact friction angle can be assumed an arbitrary value, e.g. zero. 

Given Equation 5–30, the contact stiffness coefficients in tension and shear are calculated 

as kt = 5.83×105 MPa/mm and ks = 2.89×105 MPa/mm. The ultimate tensile opening of contact, 

δut, is obtained through Equation 5–11 as 7.54 μm for Gf = 300 N/m. 

8.3.5. Calculation results 

The CFM predictions in terms of crack propagation velocity are compared with the 

laboratory data for different amounts of loading. The prescribed boundary displacement, 

Δ is chosen as 0.06, 0.08, 0.10, 0.12, 0.14, and 0.16 mm. Given Equation 8–2, the stored 

energy, W is then calculated as 1391, 2472, 3863, 5562, 7571, and 9888 N/m, respectively. 

Since no rate effect is introduced into the model, this modeling exercise is referred to as 

Rate–Independent (RI) model, in which the strength and the ultimate displacement of 

contact are constant regardless the loading rate. NCRI (Non–Cohesive RI) denotes a 

particular RI model where the ultimate tensile displacement of contact is assumed equal 
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to its critical displacement. NCRI is brought into consideration to evaluate how much 

contact cohesiveness affects on the model dynamic response. 

The particle size adopted is the minimum possible regarding efficiency considerations. 

However, it is much larger than the size of the streaks and micro–branches observed on 

the crack surface when applying low or moderate pre–strain. Therefore, crack branching 

is not allowed in the numerical model except under very high pre–strain, where the 

branch size is larger than the mesh size. 

  

Figure 8–5: Variation of crack propagation velocity calculated using a constant Gf (left) and 
crack tip location versus time (right) for the RI simulation 

For low and moderate loading, i.e., Δ ≤ 0.14 mm, where crack branching is permitted, the 

crack reaches the steady velocity after a short acceleration stage, and propagates straight 

forward until halves the specimen. vcr is then obtained from the curves of the crack tip 

distance versus time as presented in Figure 8–5. For Δ = 0.16 mm, bifurcation is allowed 

that causes messy crack dissemination (see Figure 8–18a). vcr is there estimated as the 

average velocity of the crack front.  

Figure 8–5 manifestly shows that vcr increases with W, which is qualitatively in accord 

with the laboratory observations. However, significant deviations are recognized, where 

under the same level of stored energy, the calculated steady velocity is excessively beyond 

the test data. The calculated vcr reaches the theoretical crack velocity, i.e., the Rayleigh 

surface wave speed, even if crack bifurcation is allowed. 

The reason of this deviation can be attributed to the process of fracture energy release in 

the model. Fracture is numerically represented by contact opening that always releases a 

constant amount of energy, i.e., Gf = 300 N/m. This energy is much smaller than the strain 

energy stored in the unit length of the plate (W), as W varies from 1391 to 9888 N/m. This 

means that the fracture driving energy, i.e., W, is much larger than the contact fracture 

energy, i.e., Gf, which undertakes the model resistance against fracturing. This energy 

unbalance causes the numerical fracture to propagate much faster than that observed in 

the experiment, where the fracture energy release is adaptively changing with the instant 

speed of fracture propagation. 
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Note that assuming a larger Gf parameter does not effectively resolve this deviation. For 

example, given Gf = 3000 N/m, the crack stops propagating for W < 3000 N/m. The reason is 

the fracture driving energy is not then adequate to overcome the contact resistance 

against fracturing. If there is sufficiently high value of W (> 3000 N/m), crack will 

propagate, but its steady state velocity again approaches cR. 

8.3.6. Discussion 

The presented results reveal that the rate–independent cohesive law with constant Gf 

cannot satisfactorily reproduce the experimental measurements. This means that 

structural inertia alone cannot explain the velocity–toughening effect. 

Review of the experimental observations can help explore the reason. As schematically 

illustrated in Figure 8–6, the experimental observations suggest that the main crack 

propagates straight forward at low crack velocities (Section 8.2.3). Micro–cracking 

deformation is not then significant, and thus the fracture surface is smooth. On the 

contrary, many micro–cracks are developed within the process zone when the fracture 

propagates at high speed. Consequently, dynamic fracture process happens in an 

expanded damage zone that causes larger amount of energy to be dissipated. Hence, the 

velocity–toughening phenomenon can be attributed to these microscopic deformations 

and damage mechanisms happening at the fracture process zone (Shioya et al. 1995). 

  
a. slow fracture with small process zone b. fast fracture in extended process zone 

Figure 8–6: Schematic formation of micro–cracks at fracture process zone 

One may argue that the correct macroscopic behavior of crack propagation would be 

captured, if incorporating the fracture process zone’s details into the model by adopting 

an extremely fine mesh, e.g. 0.01 mm. This solution is practically impossible due to several 

reasons. First, crack propagation will not be then limited to the process zone and instead 

spreads over the whole specimen size. Second, such a CFM simulation will contain, e.g. 

245,760,000 degrees of freedom, and is most likely too huge to be implemented by 

current computer facilities. Third, deformation mechanisms in the process zone, e.g. large 

deformation, nonlinear hardening, visco–plasticity, and thermal softening are so complex 

that their full numerical simulation seems out of reach. 

An alternative solution would be creating a rate–dependent model by somehow 

introducing the rate effects into the contact cohesive law. 
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8.4. Rate–dependent cohesive model 

In the rate–dependent model, the fracture energy of contact, which represents the 

material fracture energy, Gf, is assumed to change with the crack propagation velocity. 

However, since this velocity is a macroscopic quantity, it cannot be directly introduced 

into the contact constitutive law. Alternatively, the contact opening speed, effδ� , is 

assumed as the factor that controls energy release process within the crack–tip zone: 

eff
eff t

δ
δ

∂
=

∂
�  (8–3) 

With an explicit relationship between the numerical crack propagation velocity and the 

contact opening speed, the (contact) fracture energy, expressed by Equation 8–1, can be 

reformulated in terms of the contact opening speed. Since the strength and ultimate 

displacement of contact define its fracture energy, the relationship between each of them 

and the contact opening speed will be therefore configured. 

8.4.1. Introducing rate effects into the cohesive contact model 

The NCRI results suggest that the modeled crack propagates at the Rayleigh surface 

wave speed, when no contact cohesive behavior is assumed, i.e., δut = δct. Therefore, the 

time needed for the crack to pass through the edge of a particle is 

p

R

d
t

c
Δ =  (8–4) 

With contact cohesiveness, this time will be definitely longer. The time extension is 

assumedly proportional to the time needed for a cohesive contact to fully open. In fact, 

contact cohesiveness delays the stress evolution at the next contact points. Hence, the 

fracture will propagate slower than the Rayleigh surface wave. 

Assuming constant speed for contact opening, the discussed time is defined as 

fin

eff

t
δ

δ
δ

= �  (8–5) 

where δfin is the final effective displacement that contact undergoes until failure. δfin = δut 

for the rate–independent model. It may be however larger, if taking the rate–dependency 

into account. Therefore, for the cohesive contact model 

p

R

d
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c
Δ γδ= +  (8–6) 

where γ is the proportion factor. As in fact Δt is represented by dp / vcr, 
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Finally, the explicit relation between vcr and effδ� takes the following form. 

fin

cr R p effv c d

δ
γ

δ
= +

1 1
�  (8–8) 

If assuming no cohesive contact displacement (δfin ≈ 0), Equation 8–8 predicts the crack 

propagation velocity equal to the Rayleigh surface wave speed, which is in accord with 

the NCRI results and the LEFM suggestions. However, if admitting the cohesive contact 

assumption (δfin > 0, e.g. δfin = δut as in the RI model), a lower vcr is predicted which agrees 

with the results obtained from the RI simulation. 

Substituting vcr from Equation 8–8 into Equation 8–1, and assuming vL = αcR (α = 0.75), 
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where 
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is called reference opening speed of contact. Note that Equation 8–9 and 8–10 suggest 

that the rate effects, represented by the contact opening speed, would be neglected 

(constant Gf assumption), if an extremely small mesh size was adopted, i.e., dp → 0. As 

explained earlier, this is however impossible with the current modeling practice. 

Equation 8–9 provides a pattern for the contact energy variation in terms of the contact 

opening speed. Since Gf is numerically the product of contact peak strength and ultimate 

displacement, one or both of them may be assumed to follow a similar pattern. Hence, 
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where utδ ′  and ct′  denote the rate–dependent evaluations of the ultimate tensile 

displacement and tensile strength of contact, respectively. rδ and rt are referred to as 

displacement and stress components of rG. 

Note as the product of Equation 8–11 and 8–12 should give the dynamic fracture energy, 

the exponents of η and ξ have to be taken into account. 

Two approaches can be possibly adopted to build the rate–dependent model: 

• Partial rate–dependency (RD–P); only the ultimate tensile displacement of contact is 

changing with the contact opening speed, while the contact tensile strength is fixed. 



 115 

• Full rate–dependency (RD–F); both the contact tensile strength and ultimate 

displacement change in terms of the contact opening speed. 

Since any development of the contact model is needed to be consistent with the original 

numerical methodology outlined in Chapter 5, the linear–decaying irreversible cohesive 

law is still used. In this framework, the two models of rate–dependency are illustrated as 

follows. 

 

Figure 8–7: Rate–dependent cohesion law of contact 

8.4.2. Partial rate–dependent model 

In the RD–P model, tensile peak strength of contact is fixed at tc = 75.0 MPa. In the 

softening stage, the ultimate tensile displacement of contact is momentarily updated 

through Equation 8–11, where δut = 7.54 μm. As soon as contact displacement exceeds utδ ′ , 

contact fails and its displacement is taken as the contact final displacement, δfin. From 

this instant on, contact will carry no tension whatever its displacement is. 

Like the classical CFM formulation, the rate–dependent tensile stress of cohesive contact 

is expressed through 

δ δ δ δ δ

σ δ δ δ

δ δ

⎧ − ≤
⎪

′= − < ≤⎨
⎪ >⎩

t eff eff ct eff ct

c ct eff ut

eff fin

k exp( )

t ( 1 D )

0

 (8–13) 
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is constant. The damage variable, D, is determined by the same manner as described in 

Section 5.1.1. The unloading–reloading cycles are also handled based on the suggestions 

outlined there 
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a. Influence of rate–dependency parameters 

RD–P’s specific parameters are rδ and η. Assuming three different values for η as 1.0, 1.5, 

and 2.5, the variation of vcr versus rδ is investigated. In these calculations, the crack is only 

allowed to propagate along the specimen centerline. The prescribed boundary 

displacement, Δ, is fixed at 0.14 mm, i.e., W = 7570 N/m. Five values of rδ are chosen: 2.5, 5, 

10, 20, and 100 m/s. The very large value of rδ = 100 m/s implies that the model essentially 

behaves as the rate–independent simulation. Figure 8–8 presents the variation of the 

crack propagation velocity versus the natural logarithm of rδ. 

 

Figure 8–8: Sensitivity of crack propagation velocity to rate–dependency parameters 

Clearly, decreasing rδ slows down the crack propagation. In addition, increasing η makes 

the results more sensitive to rδ, where the inclination of the fitted lines gets steeper. All 

the solutions expectedly converge to the RI prediction, i.e., vcr = 916 m/s, when rδ = 100 m/s. 

b. Reproduction of experimental data 

The experimental data fit, depicted in Figure 8–2, offers vcr = 654 m/s for W = 7570 N/m. 

Figure 8–8 suggests that if rδ equals 2.5, 5.0, and 10.0 m/s respectively for η = 1.0, 1.5, and 

2.5, the simulation will produce vcr as 654 m/s. Using these parameters, three RD–P 

simulations are designed as named in Table 8–2. In each simulation, main crack is 

allowed to bifurcate for Δ = 0.16 mm, where the crack will deviate from the centerline 

shortly after propagation. That is why the numerical results under Δ = 0.16 mm may not be 

comparable to the experiments and should be examined cautiously. 

Table 8–2: Details of the partial rate–dependent simulations 

RD–P1 RD–P2 RD–P3 

rδ = 2.5 m/s and η = 1.0 rδ = 5.0 m/s and η = 1.5 rδ = 10.0 m/s and η = 2.5 

As Figure 8–9 (next page) presents, the simulations results show the same tendency as 

the experimental data. As manifestly observed, the RD–P predictions are much closer to 

the test data than those of the RI model are. There still exist certain deviations, where 

the curvature of the line fitted to the laboratory data is not appropriately reproduced. 
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Figure 8–9: Crack propagation speed predicted by the RD–P models listed in Table 8–2 

Nevertheless, the trend of curvature produced by RD–P2 is the most comparable one to 

the experimental data. 

The rate parameters are scaled for Δ = 0.14 mm. Assuming η = 1.5, if the process done in 

Section a is repeated to fit the laboratory data but for Δ = 0.06 mm, this time rδ is obtained 

as 9.0 m/s. Using this set of the rate parameters, crack propagation is again simulated. 

The results, labeled RD–P4, are compared to the test data and those of RD–P2 in Figure 

8–10. It reveals that the RD–P simulation is not able to properly reproduce the test 

measurements, as the deviation is still existing. The reason may be attributed to the 

significance of the local stress increase, which is basically absent in the RD–P model. 

  

Figure 8–10: Variation of crack propagation speed predicted by the model RD–P2 and 4 
(left) and crack tip location versus time for the model RD–P4 (right) 

As seen in Figure 8–10, the lines fitted to the results of RD–P2 and RD–P4 follow nearly 

the same trend of curvature, although rδ is changed. Therefore, rδ does not affect on the 

curvature of the fitted lines. Considering this and the conclusion made in Section a, η is 

known as the factor determining the hyperbolic shape and curvature of the fitted lines. 

The numerical predictions by Zhou et al. (2005a) are also plotted. They modeled the 

fracture behavior of the PMMA plated through adopting an FEM–based scheme called 

Cohesive Element Model assuming the crack–tip ultimate deformation to be rate–

dependent. As seen, their predictions are similar to those of RD–P when the true 

curvature of the test data is not well reproduced. One may think that the RD–P model 

may lead to better predictions through changing η or rδ. Unfortunately, that is not 
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helpful. In case using so small rδ, the final displacement of contacts becomes 

unacceptably large and sometimes exceeds the total boundary displacement of the 

specimen, i.e., 2Δ. If increasing η very much, the crack may behave in a stop–go fashion 

and eventually stop further running. Figure 8–11 demonstrates this phenomenon, where 

failure instant for the contacts, located on the crack path, is plotted versus their distance 

from the crack initiation point, for η = 2.5 and rδ = 1.0 and 2.5 m/s. It shows that far 

contacts break earlier than near ones do, implying that the crack–tip locks, while the 

contact points beyond it start separating. This event causes the particles to inter–lock 

and to overlap each other that finally renders the calculation unstable. Figure 8–11 shows 

that this situation is more critical as rδ decreases. 

 

Figure 8–11: Failure time of contacts versus their distance from the initial slit tip for ηη = 2.5 

All the discussions made lead to this conclusion that the RD–P model cannot reproduce 

the real energy dissipation occurring in the dynamic fracture event. Therefore, increasing 

both the contact strength and ultimate deformation is necessary to produce the actual 

fracture energy, and consequently to limit the fracture propagation velocity. 

8.4.3. Full rate–dependent model 

Several experimental investigations (e.g. Li and Bazant 1997a, 1997b; Costanzo and 

Walton 1998; Allen and Searcy 2001; Kubair et al. 2003; Xu et al. 2003; Ivankovic et al. 

2004) suggest that fast cracking results in both local stress and deformation increase in 

the crack–tip zone. Consequently, contact peak strength as well as its ultimate 

displacement is expected to change with the contact opening speed. To establish 

corresponding contact law, the tensile stress of contact is assumed as 
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In the hardening stage (see Figure 8–7), the contact tensile strength is momentarily 

updated by Equation 8–12, where tc = 75.0 MPa. As soon as contact reaches the cohesive 

softening phase, its instantaneous tensile stress and displacement are recorded as tmax and 

δcri, respectively. Given these values and utδ ′  obtained from Equation 8–11 where δut = 7.54 

μm, the damage variable (D), and subsequently the contact cohesive stress are evaluated. 

Note that if a simple linear equation was adopted in Equation 8–15 to represent the 

contact hardening process, the contact opening speed would be prevented to evolve 

significantly due to constantly high stiffness of contact. To resolve this inconvenience, 

contact must lose its stiffness as its displacement evolves. Therefore, an exponential 

hardening behavior is assumed, where its decaying stiffness allows the separation of 

contact to accelerate, and consequently lets its opening speed be numerically defined. 

a. Influence of rate–dependency parameters 

Fixing rδ and η as they are in RD–P4, the influence of rt and ξ on the RD–F model 

response is examined. For this purpose, assuming two levels of rt as 2.0 and 3.0 m/s, the 

variation of vcr versus ξ is investigated. In these calculations, the crack is only allowed to 

propagate along the plate centreline. The prescribed boundary displacement, Δ is fixed at 

0.14 mm, where W = 7570 N/m, and the experimentally observed speed is estimated as 654 

m/s (Figure 8–2). 

Figure 8–12 presents the variation of the crack propagation velocity versus ξ varying from 

0.1 to 0.4. Clearly, increasing ξ slows down the fracture propagation. In addition, the 

higher rt gives less sensitive results to ξ, specifically when ξ < 0.3. For the lowest ξ, both 

the simulations tend to the same predictions, which is, as expected, very near the RD–P4 

result, i.e., vcr = 734 m/s.  

 

Figure 8–12: Sensitivity of crack propagation velocity, predicted by the RD–F model, to rate–
dependency parameters 

b. Reproduction of experimental data 

As Figure 8–12 suggests, the experimental measurement of crack velocity, i.e., 654 m/s, 

can be reproduced, if taking ξ as 0.2 and 0.3 respectively for rt = 2.0 and 3.0. Using these 
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parameters, two RD–F runs are implemented, as named in Table 8–3 (next page). Their 

results, in terms of W versus vcr, are illustrated in Figure 8–13, where the single crack is 

allowed to bifurcate only for Δ = 0.16 mm. 

Table 8–3: Details of the full rate–dependent simulations 

RD–F1 RD–F2 

rδ = 9.0 m/s and η = 1.5 rδ = 9.0 m/s and η = 1.5 
rt = 2.0 m/s and ξ = 0.2 rt = 3.0 m/s and ξ = 0.3 

The numerical results show very much the same pattern with the experimental data. The 

RD–F predictions are so closer to the test data than those by the RD–P model are. The 

RD–F2 simulation decreases crack propagation speed too much under high pre–strain. 

This means that ξ = 3 is so large, that causes contacts located at the crack–tip zone not to 

break under very high tensile stresses. The RD–F1 results provide the best fit, as they 

properly reproduce the experimental measurements all over the stored energy values. 

  

Figure 8–13: Variation of crack propagation speed predicted by the model RD–F1 and 2 (left) 
and crack tip location versus time for the optimal model of RD–F1 (right) 

In order to observe how the rate parameters control contact response, variation of 

cohesive stress within a contact point, located at x = 12 mm, is plotted versus its effective 

displacement. Figure 8–14 and 8–15 present these curves for the RD–P4 and RD–F1 

models under different levels of Δ. As manifested in both the plots, the contact ultimate 

displacement is much larger than its static value, i.e., δut = 7.54 μm. 

 

Figure 8–14: Contac cohesive stress versus contact displacement for the RD–P4 simulation 
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Figure 8–15: Contact cohesive stress versus contact displacement for the RD–F1 simulation 

The RD–P4 model gives δfin as 0.24 mm for the total boundary displacement of 0.32 mm (Δ 

= 0.16 mm). δfin predicted by the RD–F1 simulation is smaller, i.e., 0.19 mm, where the 

contact peak strength is increased and reaches 1.42tc (= 106.5 MPa) under the highest pre–

strain (see Table 8–4 for details). For low pre–strain, i.e., Δ < 0.1 mm, the contact strength 

increase is insignificant and RD–F1 follows the RD–P4 predictions (see Figure 8–13). 

 

Figure 8–16: Contact opening speed versus contact cohesive stress for the RD–P4 simulation 

 

Figure 8–17: Contact opening speed versus contact cohesive stress for the RD–F1 simulation 

Figure 8–16 and 8–17 show the variation of the contact opening speed versus its stress. As 

seen, the contact opening speed approaches a steady value as the contact undergoes the 

cohesive softening stage. This verifies the assumption made for Equation 8–5. The RD–F1 
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model further than the RD–P4 simulation limits the contact opening speed for the high Δ 

values that results in lower crack propagation velocity. 

Table 8–4 summarizes the RD–F1 results in terms of the maximum–recorded cohesive 

strength (tmax) and the final tensile displacement (δfin) of the contact. The contact fracture 

energy (Gf) is subsequently obtained from the area under the curves in Figure 8–15. 

Table 8–4: Details of the full rate–dependent simulations 

Δ [mm] W [N/m] vcr [m/s] tmax [MPa] δfin [mm] Gf [N/mm] 

0.06 1391 295 78.41 0.037 1387 
0.08 2472 463 85.74 0.068 2855 
0.10 3863 601 79.27 0.100 4022 
0.12 5562 654 89.60 0.140 5883 
0.14 7571 670 104.28 0.160 8094 
0.16 9888 684 106.49 0.195 1018 

The equality of W and Gf demonstrates that all the strain energy stored in the model is 

consumed through the contact fracturing. Thus, the RD–F1 contact model can reproduce 

the real energy release of fracturing process. Note that calculated Gf is a little larger than 

W, because Equation 8–2, which is adopted for the analytical evaluation of W, is valid for 

a regular rectangular plate. In the actual case, as the pre–existing slit makes the plate 

stress increase locally, the real amount of the stored strain energy is larger than that 

estimated by Equation 8–2. 

c. Crack bifurcation 

As discussed in Section 8.3.5, crack bifurcation is not numerically permitted when low or 

moderate pre–strain is applied. For this purpose, infinite strength is assumed for all the 

contacts not located on the plate centerline. As the specimen is loaded to the highest 

extent (Δ= 0.16 mm), all the contacts are allowed to break to provide the possibility of 

crack branching. The RI and RD–F predictions for branching are schematically presented 

in Figure 8–18. 

  
a. rate–independent model (RI) b. full rate–dependent model (RD–F1) 

Figure 8–18: Qualitative presentation of crack bifurcation patterns 

Post–processing tools of UDEC are not effective for fracture visualization. None of the 

built–in facilities, e.g. stress/deformation contour or nodal displacement/velocity vector, 

satisfactorily represent material splitting. Furthermore, due to extremely small extent of 

particle separation compared to the model dimensions, presentation of the fractured 
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particle assemblage is not representative either. That is why fracturing process has been 

shown only schematically. 

The images, shown in Figure 8–18, are drawn out from post–fracture arrangement of the 

particles. They show that while the rate–independent simulation produces very chaotic 

crack dissemination, the rate–dependent model provides much more realistic 

predictions. Nevertheless, the bifurcation pattern is still different from the laboratory 

observation (compare Figure 8–18b with Figure 8–3). 

8.4.4. Discussion on rate–dependency parameters 

As ξ is much smaller than η (ξ = 0.2 and η = 1.5), the simulation suggests that material 

strength against fracturing is less influenced by loading rate than its deformation is. This 

is in agreement with the numerical investigation of Zhou and Molinari (2004a), where 

they observed that strength increase in ceramics is limited to 15% as the strain rate varies 

from 40 to 5000 s–1. 

Equation 8–10 provides an interpretation for the parameters of rδ and rt in terms of the 

material properties and model mesh size. The parametric study done shows that η and ξ 

determine how sensitive the results of the rate–dependent model are to the contact 

opening rate. Choosing very high η may engage the numerical fracture process with the 

stop–go type instabilities. High ξ may produce excessively large cohesive stress at the 

fracture process zone, which suppresses fracture propagation acceleration. 

Consequently, an optimum set of the rate–dependency parameters, e.g. those of RD–F1, 

exists that reproduces the experimental data. However, despite of the classical micro–

parameters of the CFM, the rate–dependency parameters are deprived of clear physical 

interpretation and their uniqueness is still under question. Nevertheless, they are 

doubtlessly necessary for CFM modeling of dynamic fracture. 

8.5. Conclusion 

Validity and adequacy of the CFM for dynamic fracture simulation was examined 

through modeling the fracture response of PMMA. It showed that the CFM does not 

reproduce the experimental fracture propagation velocity, unless loading rate effects get 

appropriately introduced into the cohesive contact model. Two approaches were 

adopted to reach this purpose, namely partial rate–dependent (RD–P) and full rate–

dependent (RD–F) model. In the both, contact opening speed was the parameter 

representing the rate effects. 

RD–P assumed that only contact ultimate displacement changes with its opening speed, 

while contact peak strength is fixed. Although its predictions were much better than the 

rate–independent model, certain deviations from the experimental data still existed. The 
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results suggested that the RD–P contact model cannot reproduce actual amount of 

energy released through dynamic fracture propagation. 

In the RD–F simulation, both the peak strength and effective displacement of contact are 

assumed to be dependent of the contact opening speed. Using this, the experimental 

fracture propagation speed was properly reproduced over the whole range of the applied 

load. The results demonstrated that the RD–F contact model can manage energy release 

process during the dynamic fracture event. 

While the rate–independent model led to a very messy crack dissemination, introducing 

the rate effects into the contact model improved the CFM predictions for fracture 

bifurcation. However, distinct differences between the numerical and laboratory 

patterns of crack branching were still observed. 

The obtained results emphasize the necessity of the rate–dependent contact model in 

order to effectively predict the dynamic fracture behavior of brittle materials. 
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CHAPTER 9 

9.Dynamic fracturing in heterogeneous rock 
material 

The most critical parameter characterizing fast crack propagation is dynamic fracture 

toughness. It refers to the resistance of a material against fracture under high–rate 

loading. Accurate measurement of dynamic fracture toughness of rock is of clear 

importance to understand correctly the mechanism of crack initiation and propagation 

within rock. These issues are in direct relation with the stability and durability of 

underground structures under dynamic loads caused by earthquake, blast and explosion. 

However, the standard methods used to measure dynamic fracture toughness of metals 

cannot be applied simply to rock material because of the special specimen geometry they 

require (Fowell and Xu 1993; Ouchterlony 1989). 

As explained in Chapter 2, fracture tests on rock material usually resort to compression–

induced tension in order to avoid pre–mature failure due to gripping in purely tensile 

testing. As an example, the three point bending specimen with the Split–Hopkinson 

Pressure Bar (SHPB) apparatus and the bar–impact testing machine, have been 

extensively used. Recently, the Semi–Circular Bend (SCB) specimen, originally used by 

Chong and Kuruppu (1984), has been adopted by Chen et al. (2009) because of its 

relative ease in terms of sample preparation and experiment setup.  

A disconcerting point regarding fracture toughness is that different test methods may 

result in different measurements. The reason is often addressed to the undesired 

influences of specimen’s geometry, boundary condition and loading nature on the test 

results. How to obtain a unique dynamic fracture toughness as a reliable material 

property is still subjected to open discussions. 

Since numerical methods have provided a powerful tool to study dynamic fracture, they 

can potentially aid the experimental methods for measurement verification or performing 

appropriate corrections (e.g. Maigre and Rittel 1995). This chapter shows how the CFM, 
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as a numerical method, is able to evaluate the validity of dynamic fracture toughness 

measured in laboratory. As a representative case, the semi–circular bend test method 

(Chen et al. 2009) is chosen. As seen later, simulations of the tests will demonstrate how 

some factors may affect on the test results, and finally suggests that few critical points 

must be considered to guarantee the test accuracy. 

9.1. Semi–Circular Bend (SCB) dynamic fracture toughness test 

In this section, the experimental work done by Chen et al. (2009) on dynamic fracture 

behavior of the SCB specimens is presented. More explanations about the test are 

published by Dai et al. (2008) and Dai et al. (2009). 

9.1.1. Sample preparation 

To make the SCB specimens, rock cores (40 mm nominal diameter) were drilled from 

Laurentian granite blocks, and sliced into discs with an average thickness of 16 mm. A 

circular diamond saw was used to cut a disc into two half–discs and to create a 4 by 1 mm 

notch on each half–disc. The material was chosen since its mineralogical and mechanical 

characteristics are well investigated (e.g., Nasseri and Mohanty 2008). Table 9–1 lists the 

mechanical properties of the specimens used. 

Table 9–1: Mechanical properties of Laurentian granite 

Young’s modulus, E 92.0 GPa Poisson’s ratio, ν 0.21 
fracture energy, Gf 25.1 N/m density, ρ 2630 kg/m3 
Mode−I fracture toughness, KIC 1.52 MPa√m tensile strength, σt 13.2 MPa 

The dominant constituents of Laurentian granite are feldspar (60%) and quartz (33%). 

The mineral grain size of the granite varies from 0.2 to 2 mm with average grain sizes of 

0.5 and 0.4 mm for quartz and feldspar, respectively. Biotite grain size is of the order of 0.3 

mm and constitutes 3–5% of the rock. 

9.1.2. SHPB test setup 

The SCB specimen is tested by a SHPB machine whose schematic configuration is 

presented in Figure 9–1, where R, B, and a respectively denote the radius, thickness, and 

depth of the notch. Two steel pins, spanning S, are placed between the transmitted bar 

and specimen to minimize the disturbances that the specimen surface friction may make. 

 

Figure 9–1: Schematics of the SHPB test setup and the SCB sample (Chen et al. 2009) 
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The striker bar is launched by a low–pressure gas gun to impact the incident bar, 

resulting in an incident stress wave. The incident pulse propagates along the incident bar 

before it hits the sample, resulting in the reflected and transmitted stress waves. The 

forces applied to the specimen by the incident and transmitted bars are denoted as Pi and 

Pt. Details of the SHPB testing and related formulation have been review in Chapter 3. 

9.1.3. Measurement 

The stress intensity factor for the Mode–I fracture in the SCB specimen is obtained as 

( )Id .

SP( t )
K t

BR
ψ= 15  (9–1) 

where P(t) is the time–varying loading force. ψ is a dimensionless factor, which depends 

on the specimen geometry. For the sample used, ψ = 0.9615 (Dai et al. 2009). Since the 

specimen is in dynamic equilibrium, the forces applied on both sides of the sample are 

identical during the test. Thus, P(t) = Pi = Pt (see Chapter 3 for details). The dynamic 

fracture toughness, KICd, corresponds to the maximum loading force, Pmax. 

The test results suggested that KId(t) evolves with a nearly linear trend, as its slope can be 

used to represent the average loading rate as follows, where td is when KId = KICd. 

ICd

d

K
t

κ =�  (9–2) 

9.1.4. Test results 

Figure 9–2 presents the measured dynamic fracture toughness at different loading rates, 

where it increases almost linearly with increasing loading rates. This phenomenon has 

been frequently observed in other test methods as well (e.g. Li 1999; Zhang et al. 1999). 

The fitted line predicts that the minimum dynamic fracture toughness is 1.35 MPa√m for 

a loading rate close to zero. This is in fair agreement with the static fracture toughness of 

Laurentian granite, which is 1.52 MPa√m (Table 9–1). 

 

Figure 9–2: Results of the SCB dynamic fracture toughness (Chen et al. 2009) 
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9.2. Simulation of the SCB dynamic fracture toughness test 

9.2.1. Model geometry and boundary condition 

As reviewed in Chapter 2, rock fracture happens in mineral structure whose scale is in 

the order of 10–4 to 10–3 m. This means that a model, composed of particles with the size of 

10–4m, should reproduce rock fracture behavior. Therefore, particle size for the simulation 

of Laurentian granite is taken as its average mineral size, i.e., 0.5 mm. 

 

Figure 9–3: Model geometry and boundary condition 

Presented in Figure 9–3, the geometry and boundary condition of the model are the same 

with the experiment. The model contains a 4 mm long slit along the centerline. The SCB 

model is made of 3480 irregular triangular particles with the average edge size of dp = 0.5 

mm, where each particle consists of one CST. As the area in contact between the 

specimen and the support pins is reported about 1 mm, the pins are estimated by two 

fixed steel squares with 1 mm edge length. 

The SHPB incident bar is simulated by the upper steel plate. It moves down to model the 

bar dynamic load, where its time–dependent velocity is 

( ) d

d

t
v t t

tv t
v t t

⎧ ≤⎪= ⎨
⎪ >⎩

0
0

0

 (9–3) 

vd is the applied dynamic velocity and t0 is the arise time to reach the applied velocity 

which is assumed 20μs for all the simulations. Equation 9–3 suggests that the applied 

velocity gradually increases to vd. This is to help the specimen reach stress equilibrium. 

For this purpose, t0 should be at least five times longer than the time needed for wave 

transmission through the specimen (Ma et al. 2010). Respecting the suggestions made in 

Chapter 4, the time step is taken as 5×10–10 sec, which secures the analysis stability. 
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9.2.2. Micro–parameters 

The orthotropic cohesive law was fully explained in Chapter 5. Since the SCB specimen 

is subjected to the Mode–I fracturing, contact shear failure is not expected to occur. 

Therefore, the numerical fracture process should be controlled only by the contact tensile 

parameters. Consequently, the contact cohesion and friction angle should be assumed 

large enough to prevent any shear failure in contacts. They are taken as the uniaxial 

compressive strength and internal friction angle of Laurentian granite as reported by 

Nasseri and Mohanty (2008), i.e., 220 MPa and 50˚, respectively. A comparison with the 

upper bound of the micro–parameters in the Augig granite simulation (Table 6–3) 

confirms the adequate largeness of these estimations. 

Given Equation 5–30, the tensile stiffness coefficient of contact in plane–stress is 

calculated as kt = 3.63×107 MPa/mm. Since no shear failure is assumed, the shear stiffness 

coefficient of contact is assumed as kt. 

To obtain the contact tensile strength, tc, a series of static fracture tests are arranged, 

where tc varies from 1 to 8 times the rock tensile strength, σt. Given Gf = 25.1 N/m, the 

ultimate tensile displacement of contact, δut, is obtained through Equation 5–11 for each 

simulation, as listed in Table 9–2. 

In order to secure quasi–static equilibrium for the model, the local damping factor, α, is 

fixed at 0.2, and vd is assumed 2 mm/sec. The kinetic friction angle between the steel 

loading plate, support pins, and the rock specimen is assumed 5˚ (e.g., Li et al. 2009). 

Table 9–2: Details of static fracture toughness tests 

tc [MPa] 13.2 26.4 52.8 79.2 105.6 
δut [mm] 3.805 1.903 0.951 0.634 0.476 

KIC [MPa√m] 1.051 1.237 1.362 1.618 2.032 

 

Figure 9–4: Variation of static fracture toughness versus contact tensile strength 

The results are presented in Table 9–2 and Figure 9–4. They demonstrate a clear linear 

dependence between the static fracture toughness, KIC, and the contact tensile strength, 

tc. Note that the equation of the fitted line suggests that KIC never comes below 0.912 
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MPa√m, even if tc is zero. This is due to the resistance that the model exhibits against 

loading, which is mainly raised by the inertia effects and, as seen later, by the slip friction 

between the specimen and the support pins. 

Given KIC = 1.52 MPa√m, the fitted line equation predicts tc = 66.0 MPa (δut = 0.761 mm). 

Repeating the simulation with the obtained micro–parameters exactly gives target KIC. 

9.2.3. Calculation results using rate–independent contact model 

First, the simulation is performed by using the classical CFM. Three groups of simulation 

are designed, which are labeled as RI(φ : 0), RI(φ : 5), and RI(φ : 10). The values in the 

parentheses indicate the friction angle assumed for the specimen boundary surface, i.e., 

the interface of the loading plate and pins with the specimen. Each group includes five 

runs with different applied dynamic velocities as vd = 200, 400, 600, 800 and 1000 mm/s. In 

all the simulations, no numerical damping is applied, i.e., α = 0. This is to restrict the 

model to release energy only through contact failure and not particle viscosity. 

 

Figure 9–5: Variation of dynamic fracture toughness versus loading rate and specimen 
surface friction for rate–independent models 

The results are presented in Figure 9–5. The difference between the fracture toughness 

predicted by the classical CFM and that measured by the test is apparent. However, the 

experimentally observed rate–sensitivity of the fracture toughness is partly captured, 

where KICd predicted increases with the loading rate increase for all the simulations. 

Nevertheless, the fitted lines to the simulation data are all less steep than that of the test 

results. 

Figure 9–5 also suggests that the boundary surface friction highly influences the SCB test 

results, i.e., higher friction assumed on the specimen boundary surface, larger fracture 

toughness predicted. This signifies that the friction between the SCB specimen and the 

loading bars can potentially alter the measurements. The reason can be explored in the 

specimen motion mode. When the incident wave strikes the specimen, it splits in half, 

and each part laterally slides over the pins. Therefore, the slip friction between the pins 

and the specimen is mobilized, which disturbs the fracture opening process, and 
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consequently increases the sample resistance against fracturing. As seen, the fitted lines 

to the data of the different groups have the same slope. This implies that the specimen 

surface friction does not control the model sensitivity to the applied loading rate. 

9.2.4. Calculation results using rate–dependent contact model 

a. Influence of rate–dependency parameters 

Since the dependence of measured KICd on loading rate is nearly linear (Figure 9–2), the 

partial rate–dependent model (RD–P) sounds sufficient for our purpose. To find the 

corresponding rate parameters, i.e., rδ and η, a series of CFM situations are arranged to 

evaluate how numerical predictions are sensitive to the rate–parameters. For this 

purpose, rδ is changed from 100 to 1000 m/s and η from 1 to 3, where the specimen surface 

friction is assumed 5˚, and vd is fixed at 1000 mm/s. 

 

Figure 9–6: Variation of dynamic fracture toughness versus rate parameters 

The results are plotted in Figure 9–6. It shows that increasing η or decreasing rδ leads to 

increasing KICd. In addition, increasing η makes the CFM predictions more sensitive to rδ. 

If the loading rate, calculated by Equation 9–2, was plotted for all the points of Figure 9–

6, it would be seen to vary between 90 and 100 GPa√m/s for which experimental KICd ≈ 5 

MPa√m (Figure 9–2). Figure 9–6 suggests that the best combination of the rate–

parameters to get the dynamic fracture toughness of 5 MPa√m is η = 2 and rδ = 400 mm/s. 

b. Reproduction of experimental results 

Given η = 2 and rδ = 400 mm/s, the SCB specimen is again simulated. The obtained results, 

labeled as RD(φ : 5), are compared to the experimental data and those of the rate–

independent model in Figure 9–7 (next page). The results clearly show that the RD 

model reproduces the test data much better than the RI model did. As seen, the slope of 

the fitted line to the RD model data is nearly as steep as the one fitted to the 

experimental data. This means that the RD model, unlike RI, is able to predict the actual 

rate–varying fracture toughness of the SCB specimens. As the selected rate–parameters 
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make the RD model reproduce the laboratory data, the validity of the approach leading η 

and rδ, is verified. 

The results of the RI and RD models are listed in Table 9–3 in detail. For every vd value, td 

obtained from the rate–dependent model is longer than that from the rate–independent 

one. The difference becomes greater as the loading rate increases. This demonstrates that 

the energy absorbing capacity of the RD model is larger than that of RI. 

 

Figure 9–7: Variation of dynamic fracture toughness versus loading rate for rate–
independent and rate–dependent models 

Table 9–3: Results of the RI and RD simulations 

 rate–independent model (RI) rate–dependent model (RD) 

vd [mm/s] td [sec] κ [GPa√m/s] KICd[MPa√m] td [sec] κ [GPa√m/s] KICd[MPa√m] 
200 8.11e–5 26.76 2.17 9.86 e–5 24.34 2.40 
400 5.11 e–5 45.21 2.31 6.74 e–5 42.43 2.86 
600 4.09 e–5 65.04 2.66 5.68 e–5 64.44 3.66 
800 3.76 e–5 80.59 3.03 4.82 e–5 86.93 4.19 
1000 3.61 e–5 91.14 3.29 5.10 e–5 91.57 4.67 

 

Figure 9–8: Nodal displacement vectors of particle assemblage 

Figure 9–8 depicts the nodal displacement vectors of the particle assemblage under vd = 

1000 m/s. As seen, the centre of rotation of each specimen half is located neither at the 

pins nor at the contact point with the incident bar (point A). It is at the points B and C, 

which have no displacement. The plot also shows that both the halves are sliding over 
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the support pins. This demonstrates that the slip friction between the specimen and the 

pins is an unavoidable matter of the SCB test. 

To explore the friction effects from an energy point of view, an energy analysis is 

performed, where the total boundary loading work supplied to the system, W, the total 

strain energy stored in the assemblage, Uc, the current kinetic energy of the system, Uk, 

the total dissipated energy through the specimen surface friction, Wj, are continuously 

calculated by UDEC. The total energy released by fracture propagation will be therefore: 

f c k jW W U U W= − − −  (9–4) 

Figure 9–9 offers the energy analysis output for the RD model under vd = 1000 m/s, and 

assuming 5˚ surface friction angle. It shows that the amount of energy dissipated through 

the specimen surface friction (≈ 6.40 N.mm) is rather comparable to the total fracture 

energy (≈ 9.96 N.mm), although the friction angle assumed is very small. This again 

emphasizes how significantly the frictional effects influence the SCB test results. 

 

Figure 9–9: Variation of different components of energy versus time for vd = 1000 mm/s. 

 

Figure 9–10: Variation of stress intensity factor predicted by the RD model under different 
values of applied dynamic velocity 

Variation of the stress intensity factor versus time for the RD model is plotted in Figure 

9–10. Comparison of the results when vd = 1000 m/s with Figure 9–9 indicates that the 

model strain energy as well as the stress intensity factor reaches their peaks at 50 μs. 

However, Figure 9–11b (next page) demonstrates that the fracture just starts propagating 
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25 μs after the loading bar touches the specimen, when KId = 2.33 MPa√m. This means that 

the peak of KId (= 4.67 MPa√m), which is experimentally reported as the dynamic fracture 

toughness, does not correspond with the instant of fracture initiation. The simulation 

suggests that the actual toughness value, regarding fracture initiation, is much lower 

than the laboratory measurement. The same is observed under vd = 200 mm/s, where the 

fracture starts propagating at 55 μs when KId = 1.40 MPa√m, but the peak value (= 2.40 

MPa√m) happens some time later at 97 μs.  

Under vd = 1000 mm/s, the fracture propagation ends at about 70 μs. From 80 μs on, the 

specimen does not bear any more load, and all the energy components get nearly constant 

(Figure 9–9). Note that since the specimen is still in contact with the pins, the friction 

work (Wj) slightly evolves and consequently the kinetic energy decays. 

Details of the fracture propagation are illustrated in Figure 9–11, where the contacts fully 

damaged are colored in brown thick lines, and those in cohesive softening stage are 

plotted by thin red lines. It reveals that the fracture propagates much faster under high–

rate than low–rate loading. Moreover, the cohesive zone, ahead the crack tip, broadens, 

as the loading rate increases. 

  
pre–peak (55 μμs) pre–peak (25 μs) 

  
peak (97 μs) peak (50 μs) 

  
post–peak (118 μs) post–peak (70 μs) 

a. vd = 200 mm/s b. vd = 1000 mm/s 

Figure 9–11: Details of fracture propagation under the lowest and the highest applied 
dynamic velocities 
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Figure 9–11b indicates that the high–rate loading may cause local damages around where 

the specimen touches the loading bars. Note, since particles arrangement thereby 

contacts orientation is quite arbitrary, the individual failure pattern of each specimen 

half may differ from the other half. That is why the failure examples are unsymmetrical. 

9.3. Conclusion 

The semi–circular bend (SCB) dynamic fracture toughness tests were simulated by the 

CFM. The obtained results emphasized the necessity and importance of the rate–

dependent contact model for the simulation of dynamic fracture toughness. In addition, 

they indicated that the friction between the rock specimen and loading bars plays an 

important role in the test results. Therefore, it has to be managed carefully in order to 

secure the measurement accuracy. 

The results suggested that the frictional effects must be eliminated to have the most 

precise measurement. However, since this is practically impossible, numerical modeling 

may assist to correct the experiment measurements. For this purpose, the fracture 

toughness test can be reproduced by the CFM, when the frictional boundary condition is 

introduced. Keeping all the input parameters and loading condition fixed but setting the 

friction to be zero, the simulation is repeated which eventually provides the correct 

dynamic fracture toughness of the SCB test. 

More importantly, the simulation revealed that the maximum dynamic force, which is 

recorded in the test to calculate dynamic fracture toughness, does not correspond with 

the instant of fracture initiation. For both the low and high loading rates, fracturing is 

triggered far before the applying dynamic force (or correspondingly stress intensity 

factor) reaches its peak value. This is a point of concern as it means that the actual 

dynamic fracture toughness of material is overestimated by the laboratory measurements. 
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CHAPTER 10 

10.Conclusions and research outlook 

This thesis was dedicated to expand our knowledge about rock failure and fracture, 

particularly with focus on micromechanical effects. The thesis demonstrated the 

capability and effectiveness of the DEM as a numerical tool for fracture research. This is a 

promising sign suggesting the DEM for tackling intrinsically discontinuous problems. 

As discussed in Chapter 3, the DEM can be potentially coupled with other continuous 

numerical method, e.g. FEM and FDM, in order to handle the particles. As an example, 

UDEC is an FDM–DEM coupled code, which solves each particle using the FDM 

formulation and handles particle interaction by the DEM. Very recently, Mahabadi et al. 

(2010a, b) have presented a combined FEM–DEM simulation concerning almost the 

same objectives we followed. Although their research is still ongoing (at the time of the 

thesis preparation) and hence the results are not entirely presented, those published 

agree with our statement regarding the advantages of DEM modeling. 

Results obtained at each chapter are listed at the end of the chapter. However, here are 

the results brought together to provide a recapitulation of the thesis objectives and its 

achievements. 

10.1. Summary of conclusions 

The investigations on rock fracture and failure by the CFM have been carried out in the 

last four chapters, where we started with static failure response of rock and ended to its 

dynamic fracture behavior. 

The DEM calibration has been a matter of discussion for a long time since the bonded 

particle modeling was introduced. Chapter 6 investigated how the micromechanical 

properties of rock control its compressive and tensile behavior. It showed that the CFM 

micro–parameters can be calibrated such that the model, not only quantitatively but also 
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qualitatively, reproduces the rock standard properties measured in laboratory for both 

hard and weak rock. 

Using the CFM calibrated micro–parameters, the numerical simulation properly fitted 

the static test data in terms of the Young’s modulus, the Poisson’s ratio, unconfined 

compressive strength, internal cohesion, internal friction angle, and tensile strength 

measured by the Brazilian split test. This suggests that the particle/contact model 

adopted in the CFM embodies the actual properties of rock microstructure. 

Sensitivity of the results to particle size, numerical loading rate, and numerical damping 

applied has been also evaluated. Furthermore, the numerical circumstances, necessary for 

securing the quasi–static state of analysis, have been discussed in detail. 

Chapter 7 introduced the use of the CFM in modeling the shear response of the plaster–

made joint specimens. As reported, the predictions for the single–teeth joint were 

hopeful. Shear strength, dilation and asperity crushing were properly predicted, where 

no additional modification or effort was required. 

For the double–teeth joint, the model fitted the pre–failure response and peak shear 

strength. However, there was a qualitative deviation between the experiment and 

numerical reproduction under high normal pressure, where post–peak behavior of the 

model is more brittle than that of the laboratory sample. Nevertheless, the model 

succeeded to fully predict the laboratory results when low normal pressure is applied. 

Chapter 8 was dedicated to the examination of DEM modeling for dynamic fracture 

analysis in homogeneous isotropic materials. This purpose has been reached through 

modeling the fracture response of the PMMA plates. 

The simulations revealed that the rate–independent contact model was not able to 

predict the experimental fracture propagation velocity. This made us believe that the 

loading rate effects have to be introduced appropriately into the cohesive contact model. 

Two conducts were adopted to embody this idea, labeled as RD–P and RD–F, where the 

contact opening speed was taken as the parameter representing rate effects. 

RD–P assumes that only the contact ultimate displacement is rate–dependent whilst the 

contact peak strength is fixed. Although the RD–P predictions were much better than 

those of the rate–independent model, there still existed distinct deviations from the 

experimental data. The results suggested that the RD–P contact model cannot reproduce 

the actual amount of energy released through dynamic fracture propagation. 

In the RD–F simulation, both the peak strength and effective displacement of contact are 

assumed as dependent of the contact opening speed. As reported, the RD–F model 

properly reproduced the PMMA fracture propagation speed. 

Introducing the rate effects into the contact model improved the CFM predictions for 

crack bifurcation. However, distinct differences between the numerical and experimental 

crack branching were still observed. 
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Having all the numerical progresses achieved, Chapter 9 aimed to examine rock fracture 

behavior under dynamic loading. The semi–circular bend dynamic fracture toughness 

test was simulated to reach this purpose. The obtained results indicated the necessity of 

the rate–dependent contact model for the simulation of rock dynamic fracture toughness. 

The simulation demonstrated how DEM modeling can help us assess the validity of rock 

dynamic tests. The two investigated matters concerning the test validity were the effect 

of friction between rock specimen and loading bars and the true instant of fracture 

initiation. 

The simulations indicated that the specimen surface friction with the loading bar (more 

importantly with the support pins) causes the test to overestimate the dynamic fracture 

toughness. As suggested in Chapter 9, since it is practically impossible to fully remove 

the frictional effects, numerical modeling hopefully can help us correct the experimental 

measurements.  

More importantly, the simulation revealed that the maximum dynamic stress intensity 

factor occurs far beyond the instant of fracture initiation. Whether low or high loading 

rate is applied, fracture is initiated when the dynamic stress intensity factor is 

approximately half its maximum value. This is a point of serious concern as implies that 

the actual dynamic fracture toughness of material is nearly half of the laboratory reported 

value. 

10.2. Critical considerations 

Beside the results presented, the study specifically provides some critical suggestions, 

which are believed as necessary for any discontinuous modeling of fracture and 

fragmentation. 

10.2.1. Particle size 

Physical interpretation of particle varies with the microstructural characteristics of the 

simulated material. For rocks, particle size is basically a matter of their physical texture. 

Simulation of coarse large–grained rocks needs bigger particles than that of fine–grained 

ones. Since rock fracture expectedly passes through mineral interface, the weakest grains 

or mineral cement (if any), the rock fragments are at least as small as one or several 

minerals. Therefore, DEM particles, which numerically represent the fragmented pieces 

of failed rock, do not need to be smaller than the rock grains size. 

For isotropic homogeneous material, e.g. PMMA, particles size should respect the 

considerations suggested by continuum models, e.g. it should be a reasonable fraction of 

the stress wavelength or the length of the fracture process zone. However, here is also a 

lower bound for particle size. Since the contact stiffness represents the stiffness of 

material existing in the fracture cohesive zone, only one particle is allowed to be placed 

within the cohesive zone thickness. Otherwise, the material located in this zone would 
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be modeled less stiffly than reality because there would exist several contacts over the 

zone thickness, which act as springs in series. Therefore, particles size must not be 

smaller than the thickness of the fracture cohesive zone. 

10.2.2. Necessity of a representative contact model 

Since macroscopic response of any bonded particle assemblage is dominantly controlled 

by contact (or bond) constitutive model, this model must be appropriately adopted to 

allow the assemblage to simulate material physical response. Therefore, simulation of 

rock, as an anisotropic brittle material, needs a contact model providing these qualities. 

That is why the CFM contact model is orthotropic, cohesive, frictional, and rate–

dependent. All these items are necessary for rock failure modeling. If neglecting contact 

orthotropy, the assemblage is no longer able to follow different compressive and tensile 

behaviors as physical rock does. Contact cohesiveness is required to provide real rock 

fracture energy, and contact friction is to present real slip behavior of broken fragments 

past each other. However, contact model should meet all these needs by using the fewest 

micro–parameters possible. 

10.2.3. Physical interpretation of numerical micro–parameters 

Each particle or contact micro–parameter should have a physical interpretation in terms 

of material mechanical properties. The aim for DEM modeling is to not only fit or 

reproduce laboratory data but also explore how the micromechanics of material produces 

its macroscopic behavior. 

The developed closed–form expressions along with the CFM calibration process 

described how each CFM micro–parameter is related to rock standard properties in the 

rate–independent simulation. For example, it was shown that rock tensile strength and 

cohesion are much controlled by contact tensile strength, which numerically represents 

the tensile strength of mineral cement or weak grains through which material fractures. 

It was also revealed that rock internal friction angle is dominantly affected by the friction 

acting over the grains surfaces. Since contact friction starts acting after contact cohesion 

is exceeded, the mentioned examples support the idea suggesting that the mobilization 

of rock internal cohesion and friction angle is not coincident, where the former is 

activated first, and then the latter. 

10.2.4. Numerical process of fracture energy release 

No numerical damping must be applied to dynamic fracture simulations. We believe that 

the key for any successful simulation of fracture is that the adopted numerical model 

must be able to reproduce the actual amount of energy released in the material fracturing 

process. Very importantly, this issue must not be disturbed or manipulated at all by the 

application of any artificial (numerical) damping, e.g. local or Rayleigh damping. In other 
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words, all the energy dissipation in a particle assemblage must occur only and only 

through the rupture of bonding elements (contacts). 

10.2.5. Necessity of rate–dependent model for fracture in micro–scale 

The thesis results supported the use of the rate–dependent contact (crack) model for 

dynamic fracture simulation. This approach is to let contact appropriately reproduce the 

actual amount of energy released during material fracturing process. Otherwise, 

numerical energy released through contact failure is held constant whatever the applied 

loading rate is. There are two points that we should pay attention to in rate–dependent 

simulation: physical interpretation of rate–dependent parameters and scale of modeling. 

The results obtained from dynamic fracture simulation suggest that the rate–dependent 

parameters somehow express the sensitivity of dynamic fracture response to loading rate. 

However, the essence of this sensitivity is not clear yet. While the SHPB test on the 

granite SCB specimens suggested a linear rate–dependency, the test on the PMMA plates 

demonstrated a nonlinear asymptotic response. It is not vividly known how much these 

behaviors are related to material microstructure, and how much to the test 

circumstances such as boundary condition and specimen geometry. Therefore, admitting 

the observed rate–dependency as a material property is still under question for us. 

The simulations suggested that the RD–P model, with only contact displacement 

increase, is sufficient when a linear rate–dependency is observed. However, it is not able 

to satisfactorily reproduce nonlinear asymptotic rate–dependencies. The RD–F model is 

then needed, which allows both the contact strength and displacement to increase with 

loading rate. 

Although the rate–dependent model is needed for micro–scale simulation, its necessity 

for modeling at the scale of crystallites is not approved. As mentioned, we believe that 

the key point in accurate simulation of fracture is that the simulation properly 

reproduces the actual amount of energy released through material fracturing process. If 

current computational facilities let us establish a particle assemblage with a particle size 

in the order of material crystallites, the assemblage would be able to reproduce all the 

micro–cracking events happening in the fracture process zone. Since this model 

produced more fracture energy than the CFM does, it could possibly match the actual 

amount of energy released in the fracture process zone without the rate–dependent 

assumption. 

10.3. Research perspective 

With a particular focus on the contact constitutive model, this study was specifically 

dedicated to the application of the 2D DEM for the micromechanical investigation of 

rock material. The proposed model was established based on two main assumptions, i.e., 

elastic particle and orthotropic cohesive contact. The results of the DEM simulations 
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were very promising in terms of their capability and adequacy for qualitative and 

quantitative prediction of rock failure behavior. These achievements offer a bright 

prospect for failure modeling by the DEM and encourage us for further attempts. In this 

framework, we suggest the following topics as the future continuation of this stream of 

research. 

10.3.1. Three–dimensional modeling 

As a pioneer attempt to assess the DEM applicability for fracture and fragmentation 

purposes, the thesis had to focus on 2D analysis, which inevitably prevented us from a 

comprehensive view over the problem. This issue gets more serious, when a 3D Lattice 

simulation has very recently shown that the thickness of the SCB specimen (examined in 

Chapter 9) influences the dynamic toughness measurement (Zhao et al. accepted). 

The DLL files, provided for the CFM, are basically developed in 3D space and can be 

therefore imported directly into the 3D version of UDEC (3DEC). However, physical 

interpretation of the micro–parameters in 3D space may be slightly different from one in 

2D. Furthermore, a 3D assemblage, composed of arbitrarily packed particles, must be 

generated by the 3D Delaunay triangulation, which is engaged with some additional 

efforts. 

10.3.2. Particle geometry 

The CFM makes use of triangular particles. As the arrangement of particle facets may 

affect on the mobilization of contact friction, the simulation of compressive and tensile 

failure of rock would be expectedly affected by the particle geometry. Hence, other 

particle geometries, e.g. quadrilateral, can be introduced to research this effect. 

10.3.3. Heterogeneity of particles 

The research presented assumed all particles to have the same elastic properties. In order 

to have a more genuine representation of heterogeneous rock material, a restricted 

variety of the properties can be randomly attributed to the particles through the 

statistical distributions, e.g. Weibull distribution. As Ma et al. (2010) have very recently 

shown, rock heterogeneity level, represented by the Weibull distribution parameters, 

affects on the sensitivity of rock behavior to loading rate. 

10.3.4. Particle crushing 

This study assumed that rock rupture is exclusively dominated by contact failure. 

Although this assumption is close to reality, grain crashing is sometimes reported in rock 

failure, particularly for highly stressed rock media (e.g. Guimaraes et al. 2007; Zang et al. 

2000). This issue can be examined by introducing a continuum damage model into 

particle constitutive law, which is allowed in UDEC. 
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The aforementioned research suggestions may require developing new particle/contact 

constitutive models or defining additional micro–parameters. However, the critical 

considerations, discussed earlier, must be always respected in order to guarantee the 

effectiveness of any numerical study aiming rock micro–mechanical research. 
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