
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. A. Ionescu, président du jury
Prof. Y. Leblebici, A. Vachoux, directeurs de thèse

Prof. D. Atienza Alonso, rapporteur 
Prof. A. Jantsch, rapporteur 
Prof. I. O'Connor, rapporteur 

Efficient Modelling and Simulation Methodology for the 
Design of Heterogeneous Mixed-Signal Systems on Chip

THÈSE NO 4993 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 15 AVRIL 2011

 À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES

PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2011

PAR

Torsten MäHNE





Résumé

Les systèmes intégrés sur puce ou en boîtier sont des composants clés de gammes de produits très
variés, qui vont des cartes à puces en passant par les téléphones mobiles aux voitures. En plus de
composants logiques/numériques de plus en plus complexes et logiciels embarqués pour le traitement et
stockage de données, ils peuvent intégrer des composants analogiques/RF, des capteurs et actuateurs
pour interagir avec leur environnement analogique. Cette tendance vers des systèmes plus complexes
et hétérogènes supportant plus des fonctionnalités entremêlées est rendu possible par les avancées
continues des technologies de fabrication et de production et accéléré par la demande pour des nouveaux
produits. C’est pourquoi la réutilisation et la migration de composant existants deviennent de plus en
plus importants. Tous ces facteurs rendent le processus de conception de plus en plus complexe et
multidisciplinaire. Aujourd’hui, la conception des composants individuels est bien maîtrisée et optimisée
par l’utilisation d’une grande diversité de logiciels CAO/EDA, de langages de conception et de formats
de données. Ils sont basés sur des concepts de modélisation/abstraction, des formalismes de descriptions
(aussi appelés modèles de calcul) et des méthodes d’analyse/simulation spécifiques. Le concepteur doit
combler le vide entre les outils et méthodologies en utilisant des conversions manuelles de modèles et
des liaisons/intégrations propriétaires des outils de conception/simulation, un travail complexe et sujet à
erreurs. Il manque ainsi une méthodologie de conception commune et une plateforme indépendante pour
la gestion, l’échange et le développement collaboratif des modèles de différents formats et différents
niveaux d’abstraction. La vérification du système complet est un grand problème, qui nécessite l’existence
de modèles compatibles pour chaque composant et au bon niveau d’abstraction pour achever des résultats
satisfaisants par rapport à la fonctionnalité du système et à la couverture des tests, tout en gardant
une performance de simulation satisfaisante en termes de vitesse et précision. Ainsi, le grand défi est
l’intégration parallèle de tous ces divers sous-processus de conception. Les concepteurs ont donc besoin
d’une plateforme de conception et simulation commune pour créer et raffiner une spécification exécutable
du système complet (un prototype virtuel) à un haut niveau d’abstraction, qui supporte plusieurs modèles
de calcul. Ceci permet l’exploration des différents options architecturales, l’estimation des performances
du système, la validation des composants réutilisés, la vérification des interfaces entre des composants
hétérogènes et l’interopérabilité avec des autres systèmes ainsi que le bilan des influences provenant de
l’environnement d’opération et des tolérances de fabrication utilisées pour la création de ces systèmes.
Pour les systèmes embarqués analogiques et mixtes, la plateforme SystemC et ses extensions AMS, à la
standardisation desquelles l’auteur a contribué, sont en train de s’établir.

Cette thèse décrit la contribution de l’auteur à la résolution des problèmes de modélisation et simulation
susmentionnés dans trois phases thématiques. Dans la première phase, le prototype d’une plateforme
basée sur le web, appelée ModelLib, pour collecter des modèles de domaines et niveaux d’abstractions
différents et leur méta-informations structurelles et sémantiques a été développée. Ce travail inclut
l’implémentation d’un mécanisme de contrôle d’accès hiérarchique, qui permet la protection de la
propriété intellectuelle constituée par les modèles à des différents niveaux de détail. Des cas d’utilisation
ont étés développés, qui montrent comment l’outil peut supporter le processus de conception de systèmes
sur puce analogiques/mixtes en renforçant la réutilisation et le développement commun des modèles
pour des tâches comme l’exploration architecturale, la validation du système et la création progressive de
modèles plus élaborés du système.

i



Résumé

Les expériences du développement de ModelLib ont permis d’identifier quels aspects doivent être
adressés particulièrement pendant le développement des modèles pour les rendre réutilisables : notam-
ment flexibilité, documentation et validation. Ceci a constitué le point de départ pour le développement
d’une méthodologie de modélisation efficace pour la conception descendante (top-down) et la vérification
montante (bottom-up) de systèmes RF basées sur l’utilisation systématique des modèles comportemen-
taux. Un résultat est le développement d’une bibliothèque de modèles VHDL-AMS bien documentés,
paramétrables et fidèles au niveau circuit des composants analogiques/numériques/RF typiques d’un
émetteur-récepteur. Les modèles proposent deux gammes de paramètres au concepteur : une qui est
basée sur les spécifications de performances et une qui est basée sur les paramètres des composants du
circuit, repris de l’implémentation au niveau des transistors. Le niveau d’abstraction pour la description
du comportement analogique/numérique/RF des composants a été choisi pour atteindre un bon com-
promis entre précision, fidélité et performance de simulation. Les interfaces permettent l’intégration
des modèles au niveau de transistor pour la validation de modèles comportementaux et la vérification
de l’implémentation des composants dans le contexte du système complet. Ces propriétés rendent les
modèles utilisables pour des différentes tâches de conception comme l’exploration architecturale ou
la validation du système. Ceci est démontré sur un modèle d’un émetteur-récepteur à modulation par
déplacement de fréquence binaire (BFSK), qui peut être paramétré pour satisfaire des spécifications très
différentes. Ce projet démontre aussi les limitations des langages de description de matériel classiques en
terme d’abstraction et de performance de simulation.

C’est pourquoi la troisième et dernière phase a été dédiée à augmenter le niveau d’abstraction pour la
description des systèmes sur puce analogiques et mixtes hétérogènes et complexes, afin de permettre
leur simulation efficace en utilisant des différents modèles de calculs synchronisés. Ce travail utilise la
plateforme de simulation SystemC basée sur C++ et ses extensions AMS. Des nouvelles capacités de
modélisation, qui vont au-delà des extensions AMS standard pour SystemC, ont été développées pour
décrire des systèmes multi-domaines à conservation d’énergie dans une façon formelle et cohérente à
un haut niveau d’abstraction. Dans ce but, toutes les constantes, variables et paramètres d’un modèle
de système qui représentent une quantité physique peuvent déclarer leur dimension et système d’unités
comme une partie intrinsèque du type de donnée. Leurs affectations doivent ainsi spécifier une valeur et
son unité de mesure. Cela permet une définition bien plus précise mais toujours compacte des interfaces
et équations du modèle. Cela permet aussi au compilateur C++ de vérifier l’assemblage correct des
composants et la cohérence des équations par analyse dimensionnelle statique. L’implémentation est
basée sur la bibliothèque Boost.Units, qui utilise des techniques de métaprogrammation avec des patrons.
Un filtre dédié pour les types de données représentant les unités de mesure a été développé pour simplifier
les messages du compilateur et faciliter la recherche des erreurs d’unité. Pour assurer que les modèles
soient réutilisables malgré leur interface très spécifique, leur interfaces et comportements doivent être
paramétrables d’une façon bien définie. Les techniques d’implémentation nécessaires ont été démontrées
par le développement d’une bibliothèque de modèles génériques des composants de schémas des blocs
pour le modèle de calcul Timed Data Flow (TDF) des extensions AMS de SystemC. Ces techniques
sont aussi la clé pour l’intégration d’un nouveau modèle de calcul basé sur le formalisme de graphe
de liaisons (bond graphs) dans les extensions AMS de SystemC. Les graphes de liaisons facilitent la
description unifiée des parties à conservation d’énergie de systèmes hétérogènes à l’aide d’un ensemble
limité de primitives de modélisation paramétrables au domaine physique et permettent leur simulation
avec des performances comparables à celles d’un modèle de flot de signaux équivalent.

Mots-clés : analyse dimensionnelle ; graphe de liaisons (bond graph) ; bibliothèque de modèles ; métho-
dologie de modélisation ; simulation ; modèle de calcul ; systèmes sur puce analogique/mixtes/RF
et multi-physique ; OSCI SystemC AMS extensions ; VHDL-AMS.

ii



Zusammenfassung

Elektronische Einchip- und Eingehäusesysteme sind Schlüsselkomponenten einer immer größeren Viel-
falt an Produkten, angefangen von Chipkarten über Mobiltelefone bis hin zu Kraftfahrzeugen. Neben
zunehmend komplexerer digitaler Hard- und Software zur Datenverarbeitung und -speicherung integrieren
sie immer mehr analoge/RF Schaltungen, Sensoren und Aktoren, um mit ihrer (analogen) Umgebung zu
interagieren. Dieser Trend, hin zu immer komplexeren und heterogeneren Systemen mit mehr ineinander
greifenden Funktionen, wird durch die anhaltenden Fortschritte in der Fertigungstechnologie ermöglicht
und durch die stetige Marktnachfrage nach neuen Produkten und Varianten getrieben. Die Wiederverwen-
dung und Neuanpassung von bestehenden Komponentenentwürfen wird daher immer wichtiger. Durch
all diese Faktoren wird aber auch der Entwurfsprozess immer komplexer und multidisziplinärer. Dabei
ist der Entwurf der einzelnen Komponenten durch die betroffenen Fachdisziplinen gut verstanden und op-
timiert durch Einsatz verschiedenster Entwurfsautomatisierungsprogramme, Beschreibungssprachen und
Datenformate. Diese basieren auf spezifischen Modellierungs-/Abstraktionskonzepten, Beschreibungs-
formalismen (auch Berechnungsmodelle genannt) und Analyse-/Simulationsmethoden. Die Designer
müssen die bestehenden Lücken zwischen den Werkzeugen und Entwurfsmethoden durch manuelle
Übertragung der Modelle sowie durch selbstentwickelte Werkzeugkopplungen und -integration über-
brücken, was fehleranfällig und zeitaufwändig ist. Es fehlt eine gemeinsame Entwurfsmethodik und
eine unabhängige Plattform zur Verwaltung, dem Austausch und der gemeinsamen Entwicklung von
Modellen verschiedener Formate und Abstraktionsniveaus. Die Verifikation des Gesamtsystems durch
Simulation bezüglich seiner Funktionalität und mit guter Testabdeckung ist ein großes Problem, da
sie kompatible Komponentenmodelle auf einem passenden Abstraktionsniveau voraussetzt, die eine
zufriedenstellende Simulationsgeschwindigkeit und -präzision ermöglichen. Die Herausforderung besteht
daher in der parallelen Integration dieser sehr unterschiedlichen Teilentwurfsprozesse. Die Designer benö-
tigen dazu eine gemeinsame Entwurfs- und Simulationsplattform zur Erstellung und Verfeinerung einer
ausführbaren Spezifikation des Gesamtsystems (virtueller Prototyp) auf einem hohen Abstraktionsniveau,
das verschiedene Berechnungsmodelle unterstützt. Diese ermöglicht die Evaluierung von Architek-
turoptionen, die Abschätzung der Systemleistung, die Validierung wiederverwendeter Komponenten,
die Verifikation der Schnittstellen zwischen den heterogenen Komponenten und der Interoperabilität
mit anderen Systemen sowie die Abschätzung des Einflusses der zukünftigen Arbeitsumgebung und
des genutzten Fertigungsprozesses. Für digital/analoge Hard-/Softwaresysteme ist das C++-basierte
SystemC mit seinen AMS-Erweiterungen, zu deren Standardisierung der Autor beitrug, dabei sich als
solche Plattform zu etablieren.

Diese Doktorarbeit beschreibt den Beitrag des Autors zur Lösung der genannten Modellierungs- und
Simulationsprobleme in drei thematischen Phasen. In der ersten Phase wurde der Prototyp, genannt
ModelLib, einer webbasierten Plattform zum Sammeln von Modellen verschiedener Disziplinen und Ab-
straktionsniveaus und den dazugehörigen semantischen und strukturellen Metainformationen entwickelt.
Diese Arbeit beinhaltete auch die Implementierung eines Zugangskontrollmechanismuses zum abgestuf-
ten Schutz des aus den Modellen gebildeten geistigen Eigentums. Die entwickelten Anwendungsfälle für
dieses Werkzeug zeigen, wie es den Entwurfsprozess von Einchipsystemen unterstützen kann, indem es
die Wiederverwendung und gemeinsame Entwicklung von Modellen erleichtert, für Aufgaben wie die
Architekturauswahl, Systemvalidierung und Erstellung immer komplexerer Systemmodelle.

iii



Zusammenfassung

Die Erfahrungen aus der ModelLib-Entwicklung zeigten, welche Aspekte bei der Entwicklung wieder-
verwendbarer Modelle besonders beachtet werden müssen: Flexibilität, Dokumentation und Validierung.
Dies war in der zweiten Phase der Ausgangspunkt zur Entwicklung einer effizienten Modellierungsme-
thodologie für die Top-Down-Entwicklung und Bottom-Up-Verifikation von RF-Systemen basierend
auf dem systematischen Einsatz von Verhaltensmodellen. Ein Ergebnis ist die entwickelte Bibliothek
gut dokumentierter, flexibel parametrierbarer und pinakkurater VHDL-AMS-Modelle von typischen
analogen, digitalen und RF-Komponenten eines Sender/Empfängers. Die Komponentenmodelle bieten
dem Entwickler zwei Parametersätze an: einer basiert auf der Leistungsspezifikation und der andere
basiert auf den aus der Schaltungsebene zurückübernommenen Bauteilparametern. Dabei wurde das
Abstraktionsniveau der Modelle so gewählt, dass sie einen attraktiven Ausgleich zwischen den Anfor-
derungen Präzision, vielseitige Verwendbarkeit und hoher Simulationsgeschwindigkeit erzielen. Die
pinakkuraten Modellschnittstellen erlauben eine einfache Integration von Modellen von der Transistore-
bene zur Validierung der Verhaltensmodelle oder der Verifizierung der Komponentenimplementierung
im Kontext des Gesamtsystems. Diese Eigenschaften machen die Modelle, von der Architekturauswahl
bis hin zur Validierung des Gesamtsystems, vielseitig einsetzbar. Demonstriert wurde dies am Modell
eines Senders mit zweiwertiger Frequenzumtastung (BFSK), welches durch seine Parameter an sehr
unterschiedliche Zielspezifikationen anpassbar ist. Diese Arbeit zeigte auch die Grenzen klassischer
Hardwarebeschreibungssprachen bezüglich erreichbaren Abstraktionsniveaus und Simulationsgeschwin-
digkeit auf.

Das Ziel der dritten und letzten Phase war es daher das Abstraktionsniveau bei der Beschreibung
komplexer, heterogener Systeme anzuheben und durch den Einsatz verschiedener synchronisierter Be-
rechnungsmodelle ihre effiziente Simulation zu ermöglichen. Diese Arbeit setzt auf den OSCI SystemC
AMS extensions auf. Neue Modellierungsfähigkeiten, die über ihren standardisierten Umfang hinausge-
hen, wurden eingeführt, um energieerhaltende, multiphysikalische Systeme formal und konsistent be-
schreiben zu können. Alle Konstanten, Variablen und Parameter eines Systemmodells, die physikalische
Größen repräsentieren, können nun ihre Dimension und das zugehörige Einheitensystem als intrinsischen
Teil ihres Datentyps deklarieren. Zuweisungen an diese müssen dann neben dem Wert auch die korrekte
Maßeinheit enthalten. Dies ermöglicht für die Modelle eine viel präzisere und dennoch kompakte Defini-
tion der Schnittstellen und Gleichungen, so dass nun der C++-Compiler die korrekte Verdrahtung der
Komponenten und die Konsistenz der Gleichungen durch Dimensionsanalyse prüfen kann. Die Imple-
mentierung basiert auf der Boost.Units-Bibliothek, die dafür Template-Metaprogrammierungstechniken
nutzt. Ein speziell implementierter Filter für die Maßeinheitendatentypen in den Compilermeldungen
vereinfacht die Suche nach Einheitenfehlern. Um trotz präzis definierter Schnittstellen die Wiederver-
wendung von Modellen sicherzustellen, müssen ihre Schnittstellen und Verhalten auf wohldefinierte
Weise parametrierbar sein. Die dazu notwendigen Implementierungstechniken demonstriert die ent-
wickelte generische Bibliothek von Modellen typischer Blockdiagrammelemente für das Timed Data
Flow (TDF)-Berechnungsmodell. Diese Techniken sind auch die Basis für die Implementierung eines
neuen Berechnungsmodells für die SystemC AMS extensions zur Unterstützung des Bondgraphen-
formalismus. Dieser ermöglicht eine vereinheitlichte Beschreibung der energieerhaltenden Teile eines
heterogenen Systems mit Hilfe eines kleinen Satzes von, auf die Energiedomäne parametrierbaren,
Elementen und ihre Simulation mit einer hohen Geschwindigkeit vergleichbar mit der eines äquivalenten
Signalflussplanmodells.

Schlagwörter: Dimensionsanalyse; Bondgraph; Modellbibliothek; Modellierungsmethodologie; Simu-
lation; Berechnungsmodell; multidisziplinäre RF/analog/digitale Einchipsystem; OSCI SystemC
AMS extensions; VHDL-AMS.

iv



Abstract

Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening
range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital
hardware and software for data processing and storage, they integrate more and more analogue/RF
circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more
complex and heterogeneous systems with more intertwined functionalities is made possible by the
continuous advances in the manufacturing technologies and pushed by market demand for new products
and product variants. Therefore, the reuse and retargeting of existing component designs becomes
more and more important. However, all these factors make the design process increasingly complex
and multidisciplinary. Nowadays, the design of the individual components is usually well understood
and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats.
These are based on applying specific modelling/abstraction concepts, description formalisms (also
called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge
the gaps between tools and methodologies using manual conversion of models and proprietary tool
couplings/integrations, which is error-prone and time-consuming. A common design methodology
and platform to manage, exchange, and collaboratively develop models of different formats and of
different levels of abstraction is missing. The verification of the overall system is a big problem, as it
requires the availability of compatible models for each component at the right level of abstraction to
achieve satisfying results with respect to the system functionality and test coverage, but at the same
time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the
parallel integration of these very different part design processes. Therefore, the designers need a common
design and simulation platform to create and refine an executable specification of the overall system (a
virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the
exploration of different architecture options, estimation of the performance, validation of re-used parts,
verification of the interfaces between heterogeneous components and interoperability with other systems
as well as the assessment of the impacts of the future working environment and the manufacturing
technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the
C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is
currently establishing itself as such a platform.

This thesis describes the author’s contribution to solve the modelling and simulation challenges
mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to
collect models from different domains and levels of abstraction together with their associated structural
and semantical meta information has been developed and is called ModelLib. This work included the
implementation of a hierarchical access control mechanism, which is able to protect the Intellectual
Property (IP) constituted by the model at different levels of detail. The use cases developed for this
tool show how it can support the AMS SoC design process by fostering the reuse and collaborative
development of models for tasks like architecture exploration, system validation, and creation of more
and more elaborated models of the system.

The experiences from the ModelLib development delivered insight into which aspects need to be
especially addressed throughout the development of models to make them reusable: mainly flexibility,
documentation, and validation. This was the starting point for the development of an efficient modelling

v



Abstract

methodology for the top-down design and bottom-up verification of RF Systems based on the system-
atic usage of behavioural models in the second phase. One outcome is the developed library of well
documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF com-
ponents of a transceiver. The models offer the designer two sets of parameters: one based on the
performance specifications and one based on the device parameters back-annotated from the transistor-
level implementation. The abstraction level used for the description of the respective analogue/digital/RF
component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simula-
tion performance. The pin-accurate model interfaces facilitate the integration of transistor-level models
for the validation of the behavioural models or the verification of a component implementation in the
system context. These properties make the models suitable for different design tasks such as architecture
exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift
Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed
also the limits in terms of abstraction and simulation performance of the “classical” AMS Hardware
Description Languages (HDLs).

Therefore, the third and last phase was dedicated to further raise the abstraction level for the de-
scription of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using
different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its
AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions
have been introduced to describe energy conserving multi-domain systems in a formal and consistent
way at a high level of abstraction. To this end, all constants, variables, and parameters of the system
model, which represent a physical quantity, can now declare their dimension and associated system
of units as an intrinsic part of their data type. Assignments to them need to contain besides the value
also the correct measurement unit. This allows a much more precise but still compact definition of
the models’ interfaces and equations. Thus, the C++ compiler can check the correct assembly of the
components and the coherency of the equations by means of dimensional analysis. The implementation
is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated
filter for the measurement units data types has been implemented to simplify the compiler messages
and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely
defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner.
The enabling implementation techniques for this have been demonstrated with the developed library
of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC
AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph
formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the
energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives
parametrisable to the physical domain. The resulting models have a simulation performance comparable
to an equivalent signal flow model.

Keywords: dimensional analysis; bond graphs; model library; modeling methodology; simulation;
Model of Computation (MoC); multiphysical, RF, and Analogue and Mixed-Signal (AMS)-
Systems on Chip (SoCs); OSCI SystemC AMS extensions; VHDL-AMS.

vi



Acknowledgements

This thesis marks not only the end of a six year long research project but also of a period of my life,
which inspired and marked me in many ways. I will fondly remember all the people and events linked to
it. Therefore, I would like to take the opportunity to thank some of the people without whom I wouldn’t
have come so far.

First of all, I would like to thank my advisor, Prof. Yusuf Leblebici, for giving me the opportunity to
pursue this research in his lab. He gave me his confidence as well as provided me with motivation and
support during all these years.

I am particular grateful to my co-advisor Dr Alain Vachoux for his continuous guidance, support,
motivation, close collaboration, and continuous exposure to French throughout this research work. His
door has been always open for me. In many fruitful technical discussions, he shared his experience
with me and thus provided me with knowledge, insight, inspiration, and perspective, which significantly
contributed to my scientific work. Working for him as a teaching assistant in his various courses was a
demanding, valuable, and satisfying experience for me. Moreover, he provided me with great assistance
during the course of writing this Ph.D. thesis and previous publications. It has been a great pleasure and
honour to work with him so closely.

At the same time, I would like to thank the members of my thesis committee, Prof. Adrian Ionescu,
Prof. David Atienza Alonso, Prof. Axel Jantsch, and Prof. Ian O’Connor for investing their time to read
my thesis and evaluate my research work.

I would like to thank the members of the OSCI AMS working group—among them in particular
Martin Barnasconi, Christoph Grimm, Karsten Einwich, Alain Vachoux, François Pêcheux, Marie-
Minerve Louërat, Serge Scotti, Thomas Uhle, Markus Damm, Sumit Adhikari, and Philipp A. Hartmann—
for the many fruitful technical discussions during all these years of standardisation of the SystemC
AMS extensions, which formed the base of my own research work and significantly influenced it. It
has been a unique experience to participate in it. In particular, I would like to thank Karsten Einwich
and Thomas Uhle as the main developers of the SystemC-AMS proof-of-concept implementation at
Fraunhofer IIS/EAS in Dresden, Germany, who gave me insight into the internals of SystemC-AMS
and showed me how my ideas for a new model of computation based on the bond graph formalism
could be integrated with their work during a six week stay at their institute. I am very thankful to
Martin Barnasconi, who, despite his demanding work at NXP and continuous efforts as the chair of
the AMS working group, found the time to carefully review my Ph.D. thesis and provide me with
many valuable comments and corrections. I would also like to thank the authors of the OSCI SystemC
proof-of-concept library implementation and the countless ones of the Boost C++ libraries—these open
source libraries formed together with Fraunhofer’s SystemC-AMS library the solid foundation for my
own work in this domain.

I would like to thank the members of the RF group (secteur 161) of the Centre Suisse d’Électronique et
de Microtechnique SA (CSEM) in Neuchâtel for the fruitful collaboration on the modelling methodology
project for RF systems: Frédéric Giroud, Matteo Contaldo, Paola Tortori, and Vincent Peiris. Especially
Frédéric’s experience as an RF designer was invaluable throughout the course of the project from the
initial behavioural specification of the RF components, over the validation of the developed VHDL-
AMS models, to the review of Chapter 4 describing the outcome of this work. He also helped me,

vii



Acknowledgements

together with Alain Vachoux and Matteo Contaldo, in the supervision of the Master’s thesis project
of Christian Ntongo Bazangula, who implemented the initial versions of the parametrisable divider,
Σ-∆ modulator, and pulse shaper component models and performed the first FSK transmitter simulations.

I would like to thank Prof. Georg Paul from the Otto-von-Guericke-Universität in Magdeburg, Germany,
for the successful collaboration on the ModelLib project and his continuous support and promotion
through all these years since I took his computer science introductory course in the first year of my
studies. I would like to thank my Master’s students Thomas Böhm and Daniel von dem Knesebeck for
their contribution to the development of the ModelLib prototype reimplementation.

I would like to thank my friends Michela Peisino and Aristeidis Matsokis for carefully proof reading
my Ph.D. thesis.

This research work was primarily funded by the Hasler-Stiftung under project № 2161. My first
year in the doctoral program at École Polytechnique Fédérale de Lausanne (EPFL) was made possible
through the grant of a bourse d’excellence by the École Doctorale MIcrosystèmes et microéléctronique
(EDMI). Parts of this research work have been funded by Projet CIMENT (Centre inter-universitaire de
recherche en Microsystèmes et Nanotechnologies EPFL – UniNE), the European Union’s 7th Framework
Programme (FP7) projects GALAXY (GALS interface for complex digital system integration) and
CREAM (Innovative technological platform for compact and reliable electronic integrated in actuators
and motors) as well as the Megawatch Project of EPFL. Without this funding, it would not have been
possible to carry out this research work.

I would like to thank Marie Halm for her warm welcome from the first day on and all her understanding
and continuous support for the doctoral students in the administrative processes related to the EDMI and
beyond that. In this context, I would also like to thank Prof. Jacques Giovanola and Dr Verity Elston
from the École Doctorale as well as Dr Wajd Zimmermann from the Association du Corps Intermédiaire
de l’EPFL (ACIDE) for their constant strive for improving the situation of doctoral students at EPFL.
These thanks go also to all the members of the Commission des Doctorants (ComDoc) de l’ACIDE.
Many of them, I can now count as friends. It has been a great pleasure and fun for me spending time
together with you organising so many social events for us Ph.D. students from barbecues, hikes, and ski
weekends to ballroom dancing to get out of the anonymity of our labs.

I would like to express my gratitude towards all former and current members of the Laboratoire
de Systèmes Microélectroniques (LSM). Amongst them are: Hossein Afshari, Omer Can Akgün,
Panagiotis “Takis” Athanasopoulos, Stéphane Badel, Vahid Majidzadeh Bafar, Giulia Beanato, Alessan-
dro Cevrero, Radisav Cojbasic, Olivier Croset, Nilay Däğtekin, Davide Garetto, Christophe Guillaume-
Gentil, Frank Kagan Gürkaynak, İlhan Hatırnaz, Sylvain Hauser, Neil Joye, Nikola Katic, Gözen Köklü,
Thomas Liechti, Serge Lopez, Paul Muller, Nuria Pazos-Escudero, Davide Sacchetto, Miloš Stanisavl-
jević, Fengda Sun, Seyed Armin Tajalli, Roman Benoît Tanzer, Yüksel Temiz, Zeynep Toprak-Denis,
and Michail Zervas. I am thankful to Dr Alexandre Schmid for his efficient administration of the lab
operations and computer resources. I would like to thank the current and former secretaries of the lab
Patricia Vonlanthen, Silvia “Sly” Hirschi Dunmore, Séverine Eggli, Valérie Marguerite Aquet for their
administrative support. I enjoyed the good working atmosphere in the lab through all these years and
want to thank all of you for the good times we had inside and outside of the lab.

I am particularly grateful to all my dear friends that I got to know over the past six years here in
Lausanne, and which made it such an enjoyable and unforgettable experience for me. Elena Aritonovska,
Haykel Ben Jamaa, Pamela Collins, Vera Janowski, Neil Joye, Tobias Kober, Severin Leven, Aris-
teidis Matsokis, Amin Rostamian, Sébastien Rumley, Pamela Sanchez, and Miloš Stanisavljević: I
cannot count the number of funny lunch breaks and other great moments on ski slopes, hikes, and other
outings that we spent together and which were always accompanied by lively and inspiring discussions.

viii



You became my closest friends here. Fedor Bezrukov, Vincent Held, Martin Hutle, Anders Sandholm,
Sylvie Rockel, and Eric Lumis: we spent together so many hours climbing together indoors and outdoors.
Philippe Curtet and Paul-Louis Meylan: you introduced me to the joys of scuba diving and helped
me to improve my Vaudois accent. Virginie Fracheboud: out of the mutual interest in each others
language grew a deep friendship, which I do not want to miss. Anja Kunze, Dominique Zosso, and your
twins Florentin and Valentin: you have been close friends of mine since the beginning and I enjoyed
many nice moments with you. Enrica Alasonati, Bojana Apostolovic, Yadira Arroyo, Camille Cour-
tois, Emile Dupont, Sven Gowal, Murielle Goy, Estelle Guy, Ruud van Heeswijk, Carly Huitema,
Nikola Knežević, Thomas Liechti, Sylvain Maréchal, Maria Mateescu, Melisa Nazan Kocabiyik, Bram-
mert Ottens, Chiara Paderno, Amanda Prorok, Sébastien Quatrefages, Camille Raillon, Ali Saffarpour,
Maya Shevlyakova, Jelena Stojadinovic, Nevena Vratonjic, Regina Witter, Vlasta Zavadova, and Wilhelm-
Jan Zwanenburg: we have spent many nice times together. The time and activities I spent with all of
you compensated so well my isolation and lack of movement in front of my computer. Axel Franke,
Nadine Fröhlich, Thomas Löffler, Matthias Kriegel, Volker Peters, Felix Petri, Susann Sirotkin-Schlegel,
Christian Strube, Anna Todinova, Steffen Toscher, Matthew Wasko, Philipp Weispfenning, Hannes Wil-
leck, Claudia Wittenberger, Falk Zimmermann: thank you for staying in touch with me as good friends
despite the long distances between our places of living. However, this long list of friends would not be
complete without the name of Michela Peisino. I am deeply grateful to you for all your support and
understanding throughout all the phases of my thesis writing. You helped me more than you can possibly
imagine by always being there for me giving me love and stability throughout the difficult last year.

Last but not least, I am deeply grateful towards my family—especially, my parents Manfred and Gabi,
my grand parents Anne, Wernerd, Ida, and Heinz as well as my brother Steffen—for their love, patience,
encouragement, and understanding during all these years. Thank you for easing so much my life with
your constant presence and care.

Lausanne, 21 March 2011

Torsten Mähne

ix





Contents

Résumé i

Zusammenfassung iii

Abstract v

Acknowledgements vii

1. Introduction 1

2. State of the Art 7
2.1. Heterogeneous System Design Environments . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Application of Modelling Languages to Hardware Design . . . . . . . . . . . . . . . . 8
2.3. Overview of AMS extensions to SystemC . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Unified Description of Multiphysical Systems with Bond Graphs . . . . . . . . . . . . 16
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. ModelLib: A Web-Based Platform for Collecting Behavioural Models 19
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Use Cases and Requirements for a Model Library . . . . . . . . . . . . . . . . . . . . 20
3.3. Implementation of the ModelLib Prototype . . . . . . . . . . . . . . . . . . . . . . . 25
3.4. Fine-Grained Access Control Mechanism for the Meta Information . . . . . . . . . . . 28
3.5. Towards a 3-Tier Reimplementation of ModelLib . . . . . . . . . . . . . . . . . . . . 31
3.6. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems 37
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Modelling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3. Modelling the Frequency Synthesiser . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1. Specification of the Frequency Synthesiser Behaviour . . . . . . . . . . . . . . 40
4.3.2. Specification of the Voltage Controlled Oscillator Behaviour . . . . . . . . . . 42
4.3.3. Design and Implementation of the Component Models . . . . . . . . . . . . . 45
4.3.4. Validation of the Frequency Synthesiser Component Models . . . . . . . . . . 53

4.4. Application of the RF_TRX Library to the Design of a Binary FSK Transmitter . . . . . 58
4.4.1. Implementation of the FSK Transmitter Model . . . . . . . . . . . . . . . . . 58
4.4.2. Top-Down Design Exploration for Different Target Specifications . . . . . . . 60
4.4.3. Bottom-Up Verification of a Design Case Implementation . . . . . . . . . . . 65

4.5. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



Contents

5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling 69
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2. Overview on the OSCI SystemC AMS extensions . . . . . . . . . . . . . . . . . . . . 73

5.2.1. Timed Data Flow Model of Computation . . . . . . . . . . . . . . . . . . . . 75
5.2.2. Structural refinement using the LSF and ELN Models of Computation . . . . . 80
5.2.3. Conclusions about the OSCI SystemC AMS extensions . . . . . . . . . . . . . 81

5.3. Modelling Multiphysical Systems on Different Abstraction Levels . . . . . . . . . . . 84
5.3.1. Using Domain-Specific Modelling Primitives . . . . . . . . . . . . . . . . . . 84
5.3.2. Using Generic Bond Graph Primitives . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3. Using a Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4. Integrating Dimensional Analysis with SystemC AMS extensions . . . . . . . . . . . 91
5.4.1. Compile-time dimensional analysis with Boost.Units . . . . . . . . . . . . . . 92
5.4.2. Facilitating the Debugging of Errors Related to Quantity Types . . . . . . . . . 95
5.4.3. Using Quantity Types in SystemC Models . . . . . . . . . . . . . . . . . . . . 99

5.5. SystemC AMS extensions eXperiments Library . . . . . . . . . . . . . . . . . . . . . 100
5.6. Generic TDF Modules for Common Block Diagram Primitives . . . . . . . . . . . . . 102

5.6.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2. Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions . . . . . . . . . . . . 109
5.7.1. Requirements for the BG MoC . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7.2. Architecture of the BG MoC . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7.3. Module Layer of the BG MoC . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7.3.1. Overview on the Classes implementing the Module Layer . . . . . . 113
5.7.3.2. Definition of Physical Domains . . . . . . . . . . . . . . . . . . . . 116
5.7.3.3. Implementation of Non-Conservative and Conservative BG Modules 117

5.7.4. Elaboration and Simulation Cycle of the Bond Graph Model of Computation . 120
5.7.4.1. Elaboration of BG Models . . . . . . . . . . . . . . . . . . . . . . . 120
5.7.4.2. Simulation of BG Models . . . . . . . . . . . . . . . . . . . . . . . 127

5.7.5. Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.7.5.1. Electromechanical Transducer with Linked Micromechanical Resonator129
5.7.5.2. Interaction of the BG, TDF, and DE Models of Computation . . . . 137
5.7.5.3. Treatment of Algebraic Loops . . . . . . . . . . . . . . . . . . . . . 138

5.8. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6. Conclusions and Outlook 147

A. Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library 151

Bibliography 161

Curriculum Vitæ 177

xii



List of Figures

1.1. General architecture of a heterogeneous System on a Chip (SoC). . . . . . . . . . . . . 2
1.2. V-model of the design process of a technical system. . . . . . . . . . . . . . . . . . . 3
1.3. Receiver front-end architecture of a communication link. . . . . . . . . . . . . . . . . 5

2.1. Usage of modelling and verification languages in the SoC design process. . . . . . . . 9
2.2. Transformation of an electrical circuit to an equivalent causal bond graph. . . . . . . . 17

3.1. Use cases of a model library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Architecture of the ModelLib prototype. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3. Entity-Relationship diagram of the meta information database. . . . . . . . . . . . . . 27
3.4. Meta information about a selected model. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5. Meta information about design languages. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6. Meta information about design tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7. Implementation of the tuple-wise access control mechanism. . . . . . . . . . . . . . . 32
3.8. Access rights inheritance between the tables. . . . . . . . . . . . . . . . . . . . . . . . 32
3.9. Proposed architecture for the Java EE reimplementation of ModelLib. . . . . . . . . . 33
3.10. Refined architecture for the Java EE reimplementation of ModelLib. . . . . . . . . . . 34

4.1. Architecture of an RF transceiver for frequency-modulated signals. . . . . . . . . . . . 38
4.2. Global structure of the frequency synthesiser. . . . . . . . . . . . . . . . . . . . . . . 41
4.3. Resonant elements of the VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4. Wiring of the varicap inside the VCO and resulting input/output impedances. . . . . . 43
4.5. Fitting of the varicap density and its derivative to the TSMC 0.18 µm process. . . . . . 44
4.6. VCO models with transient outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7. Simulation results of the test bench for the VCO model with differential digital output. 56
4.8. Validation of the behavioural VCO model against its circuit level implementation. . . . 59
4.9. Structure of the binary FSK transmitter model. . . . . . . . . . . . . . . . . . . . . . . 60
4.10. Organisation of the FSK transmitter test benches. . . . . . . . . . . . . . . . . . . . . 61
4.11. Transient analysis of the binary FSK transmitter model. . . . . . . . . . . . . . . . . . 62
4.12. Frequency spectrum of the FSK transmitter output signal. . . . . . . . . . . . . . . . . 63
4.13. Eye diagram of the FSK transmitter output frequency. . . . . . . . . . . . . . . . . . . 64
4.14. Bottom-up verification of the CP and VCO circuits with the FSK transmitter model. . . 68

5.1. Architecture of the OSCI SystemC AMS extensions 1.0 standard. . . . . . . . . . . . 74
5.2. TDF model of a simple RF front end connected to a DSP. . . . . . . . . . . . . . . . . 75
5.3. Linear Signal Flow (LSF) model of a first-order low-pass filter. . . . . . . . . . . . . . 81
5.4. Electrical Linear Network (ELN) model of a first-order low-pass filter. . . . . . . . . . 81
5.5. Models of an electromechanical transducer linked to a micromechanical resonator. . . 85
5.6. The tetrahedron of state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7. Interpretation of a bond as a bilateral signal flow. . . . . . . . . . . . . . . . . . . . . 90

xiii



List of Figures

5.8. Car wheel model of an electronically controlled suspension system. . . . . . . . . . . 91
5.9. Architecture of the bufilt utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10. Class diagram of bufilt’s data model to represent a unit. . . . . . . . . . . . . . . . 97
5.11. Schematic of the electromechanical transducer block diagram model for the TDF MoC. 105
5.12. Integration of the SCAX library into the architecture of Fraunhofer’s SystemC-AMS. . 111
5.13. Diagram of the classes constituting the module layer of the Bond Graph (BG) MoC. . . 114
5.14. Overview on the modelling, elaboration, and simulation phases for the BG MoC. . . . 122
5.15. Diagram of the classes related to the view layer and the solver layer of the BG MoC. . 123
5.16. Schematics and simulation results of the electromechanical transducer example. . . . . 130
5.17. Dependency graphs of the electromechanical transducer BG models. . . . . . . . . . . 132
5.18. Simple model of a sensor to measure the velocity of a mechanical resonator. . . . . . . 139
5.19. Simple electrical example yielding a bond graph with an algebraic loop. . . . . . . . . 141
5.20. Simple electrical example yielding a bond graph with two algebraic loops. . . . . . . . 142

xiv



List of Tables

4.1. Overview on the architectures of the VCO model instantaneous frequency output. . . . 51
4.2. Overview on the RF_TRX model library. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3. VCO model simulation performances for different architecture and output options. . . 55
4.4. Simulation performances of the FSK transmitter model variants. . . . . . . . . . . . . 65

5.1. Power and energy variables for different physical domains. . . . . . . . . . . . . . . . 87
5.2. Basic primitives of a bond graph with their legal causality assignments. . . . . . . . . 89
5.3. Controlled junctions in hybrid bond graphs for modelling discrete switching. . . . . . 90
5.4. Compilation/execution performances of the electromechanical transducer models. . . . 134

A.1. Organisation of the SCAX library implementation into several namespaces. . . . . . . 151
A.2. Generic waveform functors provided by the scax_utility library. . . . . . . . . . . 152
A.3. Symbols used to represent the DE, TDF, LSF, ELN, and BG MoC modelling elements. 153
A.4. Block diagram modules for the TDF MoC provided by the scax_tdf library. . . . . . 154
A.5. Block diagram modules for the BG MoC provided by the scax_bond_graph library. . 156
A.6. Bond graph modules for the BG MoC provided by the scax_bond_graph library. . . . 157

xv





List of Listings

4.1. Overall structure of the VHDL-AMS models developed for the RF_TRX library. . . . . 46
4.2. Architecture implementing the differential loop filter behaviour. . . . . . . . . . . . . 48
4.3. Entity declaration of the VCO with frequency output model. . . . . . . . . . . . . . . 50
4.4. Top-down detailed architecture of the VCO with frequency output model. . . . . . . . 52

5.1. TDF model of the mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2. TDF model of the low-pass filter using a Laplace transfer function. . . . . . . . . . . . 77
5.3. TDF model of the Analogue-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . 78
5.4. Structural model of the RF front end. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5. Event-controlled low-pass filter model with switchable gain. . . . . . . . . . . . . . . 80
5.6. LSF model of the lowpass filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7. ELN model of the lowpass filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8. Unformatted compiler error message for “quantity<si::current> i = R * v;”. . 94
5.9. Simplified compiler error message for “quantity<si::current> i = R * v;”. . . 94
5.10. Time-dependent function module with two inputs from the scax_tdf library. . . . . . 104
5.11. Electromechanical transducer module using the scax_tdf library. . . . . . . . . . . . 106
5.12. Test bench for the electromechanical transducer and the mechanical resonator. . . . . . 108
5.13. Physical domain traits class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.14. Trapezoidal integrator block diagram module for the BG MoC. . . . . . . . . . . . . . 119
5.15. Modulated 2-port transformer bond graph module with TDF input for the BG MoC. . . 121
5.16. Generic 2-port C-field transducer module. . . . . . . . . . . . . . . . . . . . . . . . . 133
5.17. Test bench of the bond graph model of the electromechanical transducer example. . . . 136
5.18. Causality assignment results for the bond graph depicted in Figure 5.20b. . . . . . . . 144
5.19. Dependency graph analysis results for the bond graph depicted in Figure 5.20b. . . . . 144

xvii





List of Acronyms

AC Alternating Current

ACID Atomicity, Consistency, Isolation, and Durability

ACIDE Association du Corps Intermédiaire de l’EPFL

ACL Access Control List

ADC Analogue-to-Digital Converter

ADMS ADVance MS™

AK Arbeitskreis

AM Amplitude Modulation

AMS Analogue and Mixed-Signal

AMSWG AMS Working Group

APF All-Pass Filter

API Application Programming Interface

ASK Amplitude-Shift Keying

ASM Abstract State Machine

BB Base Band

BD Block Diagram

BER Bit Error Ratio

BG Bond Graph

BPF Band-Pass Filter

CAD Computer Aided Design

CAO Conception Assistée par Ordinateur

CGS Centimetre Gram Second system of units

CMOS Complementary MOS

CP Charge Pump

xix



CPU Central Processing Unit

CS Clocked Synchronous

CSEM Centre Suisse d’Électronique et de Microtechnique SA

CSP Communicating Sequential Processes

CT Continuous-Time

CTRL ConTRoL

DAC Digital-to-Analogue Converter

DAE Differential Algebraic Equation

DC Direct Current

DE Discrete Event

DF Data Flow

DIV DIVider

DMD Digital Mirror Device

DPI Direct Programming Interface

DSL Digital Subscriber Line

DSP Digital Signal Processing

DT Discrete-Time

EBNF Extended Backus-Naur Form

EDA Electronic Design Automation

EDMI École Doctorale MIcrosystèmes et microéléctronique

EJB Enterprise JavaBean

ELN Electrical Linear Network

EPFL École Polytechnique Fédérale de Lausanne

ER Entity-Relationship

ESL Electronic System Level

FAT Forschungsvereinigung Automobiltechnik

FE Finite Elements

FEM Finite Element Method

xx



FIFO First-In, First-Out

FIR Finite Impulse Response

FM Frequency Modulation

FMEA Failure Modes and Effects Analyses

FSK Frequency-Shift Keying

FSM Finite State Machine

GSM™ Global System for Mobile communications: originally from Groupe Spécial Mobile

GUI Graphical User Interface

HDL Hardware Description Language

HPF High-Pass Filter

HTML HyperText Markup Language

HVL Hardware Verification Language

HW HardWare

IC Integrated Circuit

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEE Institution of Electrical Engineers

IEEE Institute of Electrical and Electronics Engineers

IET Institution of Engineering and Technology

IF Intermediate Frequency

IFA Intermediate Frequency Amplifier

I2C Inter-Integrated Circuit bus

IIR Infinite Impulse Response

INL Integral Non-Linearity

IP Intellectual Property

ISM Industrial, Scientific, Medical

ISO International Organisation for Standardisation

Java EE Java Platform, Enterprise Edition

xxi



JSP JavaServer Pages

KCL Kirchhoff’s Current Law

KPN Kahn Process Network

KUL Katholieke Universiteit Leuven

KVL Kirchhoff’s Voltage Law

LF Low Frequency

LNA Low-Noise Amplifier

LO Local Oscillator

LPF Low-Pass Filter

LRM Language Reference Manual

LSF Linear Signal Flow

LSM Laboratoire de Systèmes Microélectroniques

LTF Laplace Transfer Function

LVS Layout-Vs.-Schematic

MASH Multi-stAge-noise-SHaping

MEMS Micro-Electro-Mechanical System

MOEMS Micro-Opto-Electro-Mechanical System

MGC Mentor Graphics, Inc.

MIX MIXer

MNA Modified Nodal Analysis

MoC Model of Computation

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

NLN NonLinear Network

ODE Ordinary Differential Equation

OSCI Open SystemC Initiative

OVM Open Verification Methodology

PA Power Amplifier

PDA Personal Digital Assistant

xxii



PDE Partial Differential Equation

PFD Phase/Frequency Detector

PLL Phase-Locked Loop

PM Phase Modulation

PN Petri Net

PoC Proof of Concept

POTS Plain Old Telephone Service

POW POWer management

PPF Poly-Phase Filter

PS Pulse-Shaped

QO Quartz Oscillator

RAM Random Access Memory

RDBMS Relational Database Management System

RF Radio Frequency

ROM Reduced-Order Modelling

RSSI Received Signal Strength Indication

RTL Register Transfer Level

RX Receiver

SAE Engineering Society For Advancing Mobility Land Sea Air and Space International

SAW Surface Acoustic Wave

SCA Sneak Circuit Analysis

SCAP Sequential Causality Assignment Procedure

SCAX SystemC AMS extensions eXperiments library

SDF Synchronous Data Flow

SDL Specification and Description Language

SDR Software-Defined Radio

SFDR Spurious-Free Dynamic Range

SI Système International d’unités

xxiii



SINAD Signal-plus-Noise-plus-Distortion to Noise-plus-Distortion ratio

SiP System in a Package

SoC System on a Chip

SOI Silicon On Insolator

SPI Serial Peripheral Interface

SQL Structured Query Language

SR Synchronous Reactive

SRD Short Range Device

SS State Space

STL Standard Template Library

SW SoftWare

TDF Timed Data Flow

TLM Transaction-Level Modelling

TRX Transceiver

TX Transmitter

TSMC Taiwan Semiconductor Manufacturing Company Limited

URL Uniform Resource Locator

UVM Universal Verification Methodology

VCD Value Change Dump trace file format

VCO Voltage Controlled Oscillator

VDA Verband der Automobilindustrie

VPI Verilog Procedural Interface

WDF Wave Digital Filter

XML eXtensible Markup Language

xxiv



1. Introduction

Systems on Chip (SoCs) and Systems in Package (SiPs), as combinations of computer/communication
hardware and software equipped with autonomy based on perception, cognition, and control capabilities,
are key parts of a perpetually broadening range of applications, from chip cards and mobile phones
to cars and industrial equipment. The design of such systems has currently to address a number of
significant issues, namely:

Increasing complexity, due to the integration of significant computing and communication power (in-
telligent systems).

Significant heterogeneity, due to the variety of integrated components (analogue/RF/digital hardware,
embedded software, sensors, actuators), which need to interact closely to achieve an optimal design
with intertwined functionality.

Increasing environmental awareness, due to energy saving, battery operated systems, environmen-
tal monitoring capabilities, and continuous interaction with the working environment.

Increasing impact of modern silicon technologies, due to deep sub-micron and nanometer tech-
nological processes.

Increasing re-use of subsystems, due to the pressure for an ever shrinking time to market and rapid
product obsolescence.

The fast progressing advances in manufacturing technology allow the integration of more and more
functionality from different disciplines into a single complex heterogeneous SoC (Figure 1.1). This
leads to a continuous growth in the needed design effort, where at the same time product cycles get
shorter. The resulting increase in the “design productivity gap” is especially notable in semiconductor
industry. There, the technological production capacity (measured by the number of available transistors)
has increased since 1985 yearly between 41 % and 59 %, whereas the design capacity (measured by the
efficient use of transistors) has increased only at a yearly rate of 20 % to 25 % [128]. To allow the control
of the design costs and prevent them to get prohibitively expensive, new design technologies have to be
continuously introduced, like block reuse and retargeting or IC implementation tools.

Analogue and Mixed-Signal (AMS) SoCs are a predominant part of today’s embedded systems used
in the telecommunication, automotive, and multimedia application areas. Analogue and RF parts are
playing key roles in these systems, as they are responsible for the interface to the environment (signal
conditioning and communication). The steady advances of the technology will continuously broaden
their application range in the future.

The design of heterogeneous AMS systems is still a highly manual work and not as automatised as
the design of digital systems, which can rely on logic synthesis and place & route tools. Heterogeneous
designs require a multidisciplinary approach. This imposes a diversity of description formalisms,
also called Models of Computation (MoCs), analysis and simulation methods provided by specialised
simulators for different physical disciplines and levels of abstraction, as well as CAD/EDA tools for the
design and layout of the physical realisation of each heterogeneous system component. For example, the

1



1. Introduction

Processors

MOEMS sensors and actuators

Consumer peripherals

Copro-
cessors

Memories:
ROM, RAM,

FLASH,
EEPROM,

FPGA Support devices:
DMA, Timer, SPI,

PWM, UART,
FPGA

Analogue and
mixed-signal
components:
ADC, DAC,

Bandgap, VCO,
OpAmp, radio

DSP

Clock:
PLL,
DLL

Bus
inter-
faces

Figure 1.1.: General architecture of a heterogeneous System on a Chip (SoC). The components containing
AMS or multiphysical behaviour are highlighted in red.

design of a typical Micro-Electro-Mechanical System (MEMS) like an inertial yaw rate sensor [108]
requires for example:

• Optimisation and characterisation of the micromechanical resonator and (separately) of the electro-
static field distribution of the comb drive structures, which are driving and sensing the movement
of the flexible structure. This is done with the help of an FEM tool like ANSYS™ from mechanical
engineering.

• Simulation of the whole system on the circuit level, taking into account the coupling between
mechanical and electrostatic domain within the MEMS transducer and feedback from the analogue
and digital driving and sensing circuits. For this behavioural simulators and modelling languages
like VHDL-AMS from electrical engineering are employed.

• Layout of the mechanical structure and of the electronic circuits. This is carried out with the help
of IC layout tools.

These tools originate from different engineering fields, which leads to problems when exchanging models
and other design data. The designers are forced to bridge the gaps between tools and methodologies
using manual conversion of models, proprietary tool couplings and tool integrations. It is still difficult to
simultaneously handle all the different design aspects of a mixed-signal system. An efficient tool support
for the AMS design flow (Figure 1.2) is thus missing and rendering it overly complicated, error-prone,
and time consuming.

In the short term, the challenge for the EDA industry is to improve the links between the existing tools.
One research area, which relates to the given yaw rate sensor example, is the development of reduced-
order modelling methods that allow the extraction of fully coupled behavioural models for circuit-level
simulation from detailed FE models of the device [108]. In the long term, new design methods and
integrated tool chains are needed to support the whole process of specification, design, integration,
validation, verification, and integration of the components of a complex AMS system. First approaches
for the specification, synthesis, and automated layout generation exist for moderate-complexity analogue
circuits (device count less than 100), e.g., the AMGIE approach and the Mondriaan tool described in Van
der Plas, Gielen, and Sansen [171].

2



Recursions

Requirements
analysis

Component
design

System design

Acceptance test

System test

Component test

Problem definition Product performance

System performanceSystem specification

Component specification Component performance

Top-dow
n

techniques
(partitioning,

architectural exploration, synthesis) Bo
tto

m
-u

p
te

ch
ni

qu
es

(m
ea

su
re

m
en

ts
,

m
od

el
ca

lib
ra

tio
n,

R
O

M
m

et
ho

ds
)

Implementation/Layout Manufacturing

Functional
models

Behavioural
models

Physical
models

Figure 1.2.: V-model of the design process of a technical system.

Another very important issue is the capability to perform efficient overall system verification in the
early phases of the design process. System verification is based on the development of virtual prototypes
of the complete heterogeneous system and its main goals are to support use cases such as architecture
exploration, performance estimations, validation of reused parts, verification of the interfaces between
RF, analogue, and digital parts, verification of the interoperability with other systems, and assessment of
the impacts of the future working environment and the silicon technologies used to realise the system.

Modelling tasks are therefore at the heart of the SoC design process, so it is of paramount importance
that appropriate modelling languages are consistently used throughout the design process. Hardware
Description Languages (HDLs) such as VHDL [77] or Verilog [78] are today routinely used for the
top-down digital design process from Register Transfer Level (RTL) descriptions to the gate-level
implementation and design flows based on these languages are fairly well established. At system level,
the C++-based design language SystemC [79], promoted by the Open SystemC Initiative (OSCI) [82],
has become a standard language for supporting more abstract discrete event modelling of both hardware
and software components. The quest for more efficient simulation in conjunction with the increasing
importance of embedded software lead in the recent years to the establishment of C-based design
methodologies at system level with strong links to HDL-based design methodologies to allow a seamless
path to implementation.

The situation is however more critical when it comes to the concurrent design of electrical or non-
electrical, mixed-technology components such as analogue, RF, and MEMS blocks. Analogue and mixed-
signal extensions to HDLs such as VHDL-AMS [76] or Verilog-AMS [2] have been developed to address
this issue. However, they do not provide enough flexibility at system level to support in parallel different
kinds of Models of Computation (MoCs) for an adapted description of the different system components
including embedded software. They also do not provide enough simulation efficiency for validating
complex heterogeneous SoCs. Tools like Matlab/Simulink do offer a partial alternative at system level
but they do not provide a complete seamless path to the design of hardware circuits and systems. Since
SystemC has established itself as an efficient solution for designing digital SoCs at the system level, it
is a logical step to augment its capabilities to also support mixed-signal and mixed-technology SoCs.
This is an ongoing process, which has been notably driven throughout the past years by the members of
the OSCI AMSWG in form of the standardisation of SystemC AMS extensions [131]. This simulation
framework is currently establishing itself for the abstract modelling and efficient simulation of complete
heterogeneous systems. It is able to use in parallel different MoCs for an adapted description of the
individual system parts.

Behavioural modelling of analogue/RF/MEMS blocks is a methodology that is being increasingly
used in industry today as part of the design process for integrated systems. It is facilitated through

3



1. Introduction

the abovementioned standardised mixed-signal and mixed-technology behavioural HDLs, which are
implemented by several commercial and open source simulators. Behavioural models describe the
functionality of a component as input-output behaviour augmented with major non-idealities of real
implementations, but without requiring a complete description of all implementation details. The purpose
is mostly to verify the correct functionality of the system in acceptable CPU times by replacing (some)
analogue/RF circuit schematics or 2-D/3-D models with behavioural models. The usage of behavioural
models is beneficial on both sides of the V-shaped design process (Figure 1.2):

• During top-down design, to develop a system architecture that meets the system specifications.
Although automatic formal refinement or synthesis methods for analogue/RF/MEMS systems are
still mostly lacking, the existence of a well-defined library of behavioural models and area/power
estimation models combined with fast high-level simulation methods may considerably help the
designer during architecture exploration. Furthermore, it enables him to optimally map the top-level
performance specifications onto the different blocks in the system architecture, trading off different
specifications and implementation costs (e.g., area, power). An example is given in Figure 1.3,
which shows a possible realisation of the receiver front-end of a digital telecommunication link and
the block specification parameters, which have to be derived from the overall system specifications.

• During bottom-up design, to allow the overall system verification, for which the detailed circuit
net lists are replaced by more abstract models that are characterised against their respective circuit
implementations. The behavioural models for that kind of task may be the same as the ones
used in the top-down phase or they may be different. In the latter case, they may be obtained by
extracting/simplifying the circuit or device behaviour using the already mentioned reduced-order
modelling methods, which involve typically symbolic equation manipulation or the generation of
look-up tables.

The management of models of a device, component, or the whole system on different abstraction
levels is thus an important aspect of an AMS design flow. However, the development of a model for a
specific block is not an easy task because of several issues:

• The block heterogeneity requires specific knowledge of all the different involved physical domains.

• The model is the formalisation of the designer’s intent and is thus requiring from him the knowledge
of the modelling language, the methodology, and the used design tools.

• The model needs to be adapted to the tools and to the specific design task, e.g., simulation, (formal)
verification, optimisation, or synthesis.

• The abstraction level needs to be adapted to satisfy the requirements for a specific design task by
choosing the right trade-off between level of detail (accuracy) and execution speed of the model.

To speed up the creation of these models, it is advantageous to reuse existing models and to possibly
adapt them further. Nowadays, designers often reuse only their own models or those provided by the
design environment for two important reasons, which need to be addressed. First, an exchange of
the models between designers is complicated by the fact that they are often not aware if and where a
similar model is already existing. Second, the designer has to gain trust in the validity of the model
for his specific design task, which is more difficult to achieve for foreign models because of the “Not
Invented Here” syndrome. To overcome these problems, a common platform to manage, exchange, and
collaboratively develop models of different formats and of different levels of abstraction is required.

4



ADC

• NF
• IP3
• G

• SNR
• DR
• BW

• ωL
• n

• ωLO1

• ∆ωLO1

• THDLO1

• fs
• nbits

• ωLO2

• THDLO2

• fs• ωc
• BW
• n

Channel
Digital pre-
processing

Transmitter Receiver

Analogue
receiver
frontend

Digital
postpro-
cessing

Analogue
modulation
and amplifi-

cation

Figure 1.3.: Choosing receiver front-end architecture and deriving block specifications of a digital
communication link (adapted from Gielen [63]).

The goal of the research work described in this Ph.D. thesis has been the development of an efficient
modelling and simulation methodology for the design of heterogeneous mixed-signal SoCs to solve
the modelling and simulation challenges mentioned above in three thematic areas that build on each
other. The first problem addressed was how to improve the reuse of existing models in the complex
design process for heterogeneous system, which involves so many different tools. This is a question of
efficient organisation and documentation of model collections, which needs to be supported by a proper
tool-independent library infrastructure. This infrastructure needs to facilitate the access to the stored
models by guiding the user to find a suitable model for his current design task at hand. Additionally,
it needs to provide appropriate protection mechanisms for the Intellectual Property (IP) stored in this
library. The results of this work are presented in Chapter 3.

Building on this, the second problem to address was the definition of a proper modelling methodology
for creating flexible models at different levels of abstraction, which can augment each other and be
reused in the different phases of the design process. This has been exercised with the development of
a novel library of VHDL-AMS models for supporting the top-down design and bottom-up verification
of complex RF systems. The results are presented in Chapter 4 and demonstrate the capabilities and
limitations of “classical” AMS-HDLs in terms of abstraction and simulation performance.

Therefore, the third and last problem to address was the need to further raise the abstraction level for
the description of complex and heterogeneous AMS systems to enable their efficient simulation using
different synchronised MoCs. This work is founded on the C++-based simulation framework SystemC
with its AMS extensions. This popular framework for the HW/SW co-design of mainly electrical
AMS systems is missing modelling capabilities to efficiently describe energy conserving multi-domain
systems in a formal and consistent way at a high level of abstraction. Suitable modelling formalisms
needed to be identified and efficiently supported in this simulation framework to enable the description
of the non-conservative and conservative continuous-time behaviour. These have been found in form of
the block diagram and bond graph formalisms. Their application to multiphysical systems modelling
requires a stricter specification of the interfaces and a stricter definition of their model equations to
not lose the link to the physical domain despite the generic nature of these formalisms and to enable
formal assembly and equation coherency checks. The found solution based on the systematic usage
of quantity types and automated dimensional analysis will be described. To efficiently support the
two new modelling formalisms, a dedicated MoC has been developed. The experiences gained from
the development of the RF systems modelling methodology greatly helped in the definition of flexible

5



1. Introduction

modelling primitives for the SystemC AMS extensions on higher levels of abstraction, which constitute
the user interface to the newly proposed modelling formalisms within this simulation framework. For
this task, dedicated techniques had to be developed, which enable the writing of abstract, flexible, and
reusable models despite the very strict interface definition. The developed solution offers the possibility
to parameterise their behaviour and interface in a well-defined manner. The results of this work are
presented in Chapter 5. The novelty of this work lies in the extension of the SystemC AMS simulation
platform with new modelling capabilities that uniformly integrate all the aspects mentioned above. It
achieves the fusion of normally very opposing requirements: genericity to privilege reuse and precision
in the specification to privilege verification.

The next chapter will review the state of the art in the field of modelling and simulation methodologies
for heterogeneous systems, which motivated and influenced the presented research work.

6



2. State of the Art

Each new technology step speeds up the integration of more and more functionality into a SiP or
SoC. These advancements have supported the move from digital-only to heterogeneous mixed-signal
SoCs. The goal is to not only integrate the data-processing as much as possible but also to add the
sensing (e.g., Analogue-to-Digital Converters (ADCs), sensors) and actuating interfaces (Digital-to-
Analogue Converter (DAC), Power Amplifier (PA), switches) to the environment. Through the progress
in the microsystem technology [119], these mixed-signal components are not any more limited to the
electrical domain. Micromechanical, microfluidical, or microoptical components such as inertial sensors,
Surface Acoustic Wave (SAW) filters, inkjet heads, pressure sensors, Digital Mirror Devices (DMDs)
are just a few examples. These parts of a SoC are becoming increasingly expensive in terms of area and
power consumption as they cannot be scaled-down as much as digital parts. Additionally, design times are
larger due to limited reuse capabilities. Their design is still often treated with methods specialised to one
physical domain (e.g, FEM, MATLAB/Simulink, and SPICE-like simulators), often neglecting domain
interaction [115]. However, with the further downscaling of the devices due to technology advancements,
the domain interactions are increasing and cannot be neglected anymore even for “electrical-only” designs,
e.g., the thermal interaction between devices and the package due to self-heating [160]. One consequence
of these issues are attempts to shift analogue/RF functionality to digital hardware and software. One
example is the use of digital compensation techniques to handle analogue/RF non-idealities (e.g., limited
ranges, nonlinearities, noise) [134]. This increasingly tighter interconnection between different design
domains is becoming a distinguished aspect of today’s heterogeneous AMS SoC designs. Thus, as has
been noted in Chapter 1, the efficient modelling and simulation of such kind of systems get more and
more important.

2.1. Heterogeneous System Design Environments

One important effort to address heterogeneity in system design has been the development of the Ptolemy II
software environment [49]. The Ptolemy approach is based on the hierarchical composition of models,
each one being possibly modelled using a different Model of Computation (MoC). A MoC defines a
modelling formalism, i.e., a graphical or textual language with its syntactical elements, a set of syntax
rules and a set of computational rules that define the semantics of the model. Such models are also
called executable models as they can be used for simulation, synthesis, or formal proof. The Ptolemy II
environment supports several MoCs, among others:

Discrete Event (DE) MoC: is based on a discrete representation of time, which is suitable for mod-
elling the behaviour of digital and sampled systems. The computational rules for such MoCs are
formally defined in the form of an event-driven logic simulator.

Continuous-Time (CT) MoC: is based on a continuous representation of time, which is suitable for
modelling the behaviour of analogue/RF systems. The computational rules for such MoCs are
formally defined in the form of an equation solver or a circuit simulator.

7



2. State of the Art

Synchronous Data Flow (SDF) MoC: is an asynchronous message-passing MoC, in which First-In,
First-Out (FIFO) queues model the communication between processes. Processes encapsulate
sequential behaviours and possibly states. This MoC can be either un-timed (i.e., only the presence
of a input token or input data sample can trigger a process) or timed (i.e., process inputs and outputs
are streams of sampled data). This MoC is suitable for modelling signal processing applications.

The Ptolemy II environment has been extensively used for research purposes and inspired the development
of other system design frameworks such as Metropolis [13] or ForSyDe [157]. These latter frameworks
however deliberately limit their support to only one MoC, namely concurrent processes in Metropolis
and purely synchronous/reactive models in ForSyDe. The main advantage over the Ptolemy approach is
that they provide formal paths from abstract specifications to implementation through formal refinement,
or synthesis, steps. The Ptolemy framework is better suited for system-level simulation and a commercial
implementation is available from Agilent (formerly Hewlett Packard). The tool, called Agilent Ptolemy,
provides a way for co-simulating SDF applications with analogue RF circuits [145].

MASCOT [19] has been developed as a modelling technique that integrates MATLAB [112] and
Specification and Description Language (SDL) models in a co-simulation environment. It also supports
a modelling methodology, for which abstract specifications are decomposed into a set of processes
communicating through ideal, infinite-length, FIFOs. Processes are partitioned into control and data flow,
thus associating the former to SDL computation and the latter to MATLAB computation. The underlying
MoC is a variant of the SDF MoC called Composite Signal Flow MoC.

Wambacq et al. [178] describe the use of a data flow MoC and an appropriate representation of the
signals as compositions of complex low-pass equivalent representations of these signals as a mean to
efficiently model and simulate mixed-signal communication systems. The use of a data flow simulator
for the analogue/RF part allows easy coupling with a digital simulator such as Synopsys System Studio.

Gielen [63] provides an excellent review of methods and tools that have been developed over the
past 10 years at Katholieke Universiteit Leuven (KUL) for the design of mixed-signal/RF integrated
circuits and systems. It clearly shows the needs to have a rich library of behavioural models of basic
building blocks that support a large spectrum of abstraction levels and MoCs. It also discusses the current
lack of systematic methods to generate appropriate behavioural models of analogue/RF building blocks.
Automated methods have been developed for extracting/abstracting behavioural models from circuit
net lists [126]. Such approaches fit well with bottom-up verification as the generated behavioural models
have to more or less accurately represent real circuit behaviours. Although these models may also be used
for top-down architectural exploration, other specific modelling approaches implementing functional
behaviours with selected non-ideal effects such as phase noise or settling time can be used [44].

2.2. Application of Modelling Languages to Hardware Design

Parallel to the development of modelling representations (models of computation) and techniques to
generate behavioural models, a lot of work has been done on the development of modelling languages for
hardware design. In the 1980’s, gate-level or transistor-level net lists were mostly used for logic/circuit
simulation, timing and Layout-Vs.-Schematic (LVS) verification. In the 1990’s, Hardware Description
Language (HDL) such as VHDL [77] and Verilog [78] became the main design languages for digital hard-
ware. In the same time, analogue and mixed-signal extensions to these languages (i.e., VHDL-AMS [76]
and Verilog-AMS [2]) were developed. In the 2000’s, C-based HDLs such as SystemC [20, 66, 79, 124],
SpecC [57, 61], Handel-C [23, 118] started to become the main design languages as they enable the

8



2.2. Application of Modelling Languages to Hardware Design

Transistors

Gates

RTL

Test bench

Functional
verification

Behaviour

Hardware/
Software

Architecture

Requirements

VHDL
(-AMS)

VHDL
(-AMS)

Verilog
(-AMS)

System
Verilog

Vera
e

Sugar
PSL

SystemC
(-AMS)

SPICE

MATLAB
C/C++

Figure 2.1.: Usage of modelling and verification languages in the SoC design process [adapted from 20].

development of more abstract models of complex systems including embedded software. Figure 2.1
shows for which tasks popular modelling and verification languages are used in the SoC design process.

SystemC [20, 66, 124] is a C++-library of classes and methods that support the description and
simulation of digital Hard- and SoftWare (HW/SW) systems from functional down to register transfer
level by using the Discrete Event (DE) MoC. It has seen wide industry adoption over the past decade.
Its development and standardisation is coordinated by the Open SystemC Initiative (OSCI) [82]. Since
2006, it is an IEEE standard [79]. Its application domain is continuously broadening, as it is supporting
powerful modelling and simulation capabilities at system level (e.g. transaction level models [62, 133])
and it is being currently extended to better support (real-time) embedded software and AMS systems.
The open source and object-oriented characteristics of SystemC together with the clear separation of
computation and communication in it allow for adding support of various models of computation in
a layered approach [135]. For digital HW/SW systems modelling, several competing efforts provide
various untimed, synchronous, and timed MoCs such as Finite State Machine (FSM), Petri Net (PN),
Kahn Process Network (KPN), Synchronous Data Flow (SDF), Synchronous Reactive (SR), and Clocked
Synchronous (CS). Examples of such efforts are SystemC-H [137], HetSC [71], and UMoC++ [111].
All approaches impose additional rules on how to write modules to make use of one MoC. The
implementation of the MoCs themselves can greatly differ. Some are exclusively implemented as
channels that use regular SystemC events to coordinate their execution with the help of SystemC’s
discrete-event kernel. Some other use dedicated kernel extensions to speed up the execution of the MoCs.
Patel and Shukla [136] show how these different ingredients can be combined to a successful system
level design methodology for heterogeneous digital HW/SW systems.

In parallel to SystemC, SystemVerilog [80, 81] has established itself as a popular hardware description,
verification, and specification language. It is an object-oriented further development of the “classic”
Verilog [78] HDL to aid in the creation of complex system models on the RTL and on the architectural

9



2. State of the Art

level1 and facilitate their verification using simulation and formal assertion-based methods. It includes
design specification methods, an embedded assertions language, a test bench language including coverage
and an assertions Application Programming Interface (API) as well as a Direct Programming Interface
(DPI) to interface with IP written in foreign programming languages (using C-bindings). SystemVerilog
itself focusses on digital SoC design and does not yet offer AMS extensions comparable to Verilog-AMS2.
The Accellera Verilog Analog Mixed-Signal Group is currently discussing how to merge SystemVerilog
and Verilog-AMS [35]. In the meantime, vendor-specific co-simulation solutions are available to couple
SystemVerilog with Verilog-AMS models. Compared to SystemC, SystemVerilog is a more closed
environment, which hinders the integration of new MoCs into the language, which go beyond the
semantics of SystemVerilog itself.

In Pêcheux, Lallement, and Vachoux [140], the modelling of an airbag system has been used to
illustrate how the VHDL-AMS and the Verilog-AMS languages can be used to develop behavioural
models with the necessary accuracy to validate the system’s features while keeping the simulation time
reasonably low (with respect to a full transistor level simulation). In addition, it showed the behavioural
modelling of the chemical reaction, which inflates the airbag. This illustrated the capacity of modelling
and simulating physical behaviours other than purely electrical ones and, maybe most importantly, how a
multidisciplinary or multiphysical system might be modelled and simulated as a whole.

In Frevert, Haase, and Jancke [54], specific modelling and simulation methods for the design of
RF systems are described. System and circuit level descriptions of various RF components are considered
and combined to form system models. The presented models are written in VHDL-AMS or Verilog-A
and simulated with commercial tools. A mixed-signal design flow suitable for RF systems is presented.

In Lallement et al. [100], the capability of VHDL-AMS to describe compact semiconductor models is
demonstrated. A first study focuses on the EKV v2.6 MOSFET model taking into account the thermo-
electrical interactions and the extrinsic aspects. The EKV model uses linearisation with respect to surface
potential resulting in physically well based expressions for the whole model. A second study develops a
simplified version of the MM11 Philips model, which takes into account the quantum mechanical effects.
This compact MOSFET model is based on the formulation of the surface potential.

In Mähne et al. [108], the creation of virtual prototypes of complex micro-electro-mechanical transduc-
ers is presented. Creating these behavioural models can be partially automatised using a Reduced-Order
Modelling (ROM) method. It uses modal decomposition to represent the movement of flexible structures.
Shape functions model the energy conservation and full coupling between the different physical domains.
Both modal shapes and shape functions for strain energy and lumped capacitances of the structure can be
derived in a highly automated way from a detailed 3-D FE model, available from earlier design stages.
Separating the generation of the reduced-order models (ROM) from the same FE model but for different
operation directions circumvents current limitations of the used ROM method. These sub models are
integrated into a full model of the transducer. VHDL-AMS is used to describe additional strong coupling
effects between the different operation directions, which are not considered by the used ROM method
itself. The application of this methodology on a commercially-available yaw rate sensor, as an example
for a complex transducer, demonstrates the practical suitability of this approach.

1Efficient system modelling on the architectural level with SystemVerilog requires the use of extension libraries like the
ones developed as part of the Open Verification Methodology (OVM) [27, 28] or its successor the Universal Verification
Methodology (UVM) [3, 4]. These libraries provide building blocks for well structured and reusable verification components
and test environments. To this end, they also provide support for Transaction-Level Modelling (TLM).

2The Verilog-AMS language [2] is an extension of the digital Verilog language that is currently being standardised by
Accellera. Verilog-AMS bears similar features with VHDL-AMS, but is mostly oriented towards circuits design.

10



2.3. Overview of AMS extensions to SystemC

2.3. Overview of AMS extensions to SystemC

There have been several parallel efforts to extend SystemC with analogue and mixed-signal capabilities
to describe heterogeneous systems.

In Bonnerud, Hernes, and Ytterdal [22], a SystemC simulation framework has been developed that
defines analog signals as new SystemC objects. The simulation semantics is still event-driven, but so
called virtual clocks allow to optimise the simulation of analog and mixed-signal modules. Also, a
behavioural model library of analog and mixed-signal components allows for building structural models
of complex systems such as A/D converters. However, this approach has not been generalised to model
any kind of analogue and mixed-signal behaviour and the use of the event-driven formalism limits its
application to signal flow behaviours and fixed time step integration.

In Biagetti et al. [18], a methodology for writing models of analogue components using the SystemC
standard library and simulation kernel is described. Analogue modules are implemented as regular
SystemC modules with a specific architecture to handle an adaptive time step simulation. The simulation
of analogue or mixed-signal models is event-driven, but each analogue block is reactivated using its own
time step. Ordinary differential equations have to be manually discretised with a proper time step. This
approach primarily supports signal flow modelling.

The previous approach has been extended in Orcioni, Biagetti, and Conti [129] with the goal to
support the modelling of conservative systems, e.g., by including wire load effects. Their work called
SystemC-WMS allows the implementation of analogue modules that communicate with each other by
exchanging energy waves through wave channel interfaces. The wave channel interfaces are general
analogue interfaces, which can support different physical domains. They allow the interconnection of
modules that describe the component’s physical behaviour. As only the standard communication scheme3

of the SystemC kernel is used, no modification of the SystemC library itself is necessary. The wave chan-
nel interface simplifies also the interconnection of independently developed analogue modules, because
it avoids the interconnection problems commonly found in signal flow representations of conservative
blocks, where the input/output role of the across (e.g., voltage) and through quantities (e.g., current)
associated to the port have to be decided at implementation time of the module. This is too early because
the direction of the information flow is determined from the interconnection of the modules, which is
only known to the simulator at elaboration time. The wave channel methodology avoids this problem
since incident waves always have the input role and reflected waves the output role. Parallel and series
connection of modules can be accounted through appropriate channels, which dispatch the waves to the
modules they connect together. This is similar to the scattering junction of Wave Digital Filters (WDFs).
The response of a module to the incident waves is described through a, b parameters, which are part
of the WDF theory. The methodology can be extended to circuits with mildly nonlinear elements. A
half-bridge inverter was modelled as an application example using SystemC-WMS and simulated using
a fourth-order Adams-Bashforth Ordinary Differential Equation (ODE) solver. The simulation results
showed good correspondence to the ones obtained from an equivalent model created using MATLAB’s
Simulink Power toolbox and simulated using the ode15s stiff ODE solver. The simulation took about
five times longer in SystemC-WMS. This can be partly attributed to the different ODE solvers used.
Nevertheless the simulation performance of SystemC-WMS is limited to a good deal by the fact, that for
each integration time step several discrete events are scheduled, which invoke the SystemC simulation
kernel so that discrete and continuous parts cannot run independently from each other.

3Modules communicate in SystemC through the interface of a connected channel by invoking one of its member functions.
Events inside the channel can in turn activate other modules.

11



2. State of the Art

In Al-Junaid and Kazmierski [92], SystemC is extended to SystemC-A that supports analogue variables
and analogue components (e.g., SPICE-like primitives or user-defined components defining arbitrary
Differential Algebraic Equations (DAEs)). Each analogue component in a netlist contributes to the setup
of a Modified Nodal Analysis (MNA) system matrix by specifying the contributions of each conservative
terminal to the Jacobian and to the right hand side of the DAE system. The interconnection of analogue
and digital models is handled through specific interface models. Digital to analogue interaction is
realised by converting a digital signal into an analogue signal using Backward Euler integration with
very small time step. Analogue to digital interaction is realised by detecting the crossing of thresholds.
The SystemC simulation kernel is modified to include the execution of an analogue solver. Mixed-signal
timing synchronisation is achieved using a lock-step mechanism to avoid backtracking. In Al-Junaid,
Kazmierski, and Wang [91] SystemC-A is used to model an automotive seating vibration isolation system.
The case study showed good correspondence between the simulation results of two equivalent models of
the seating vibration isolation system, one written in SystemC-A and the other in VHDL-AMS. However,
the presented solution has the drawback that it required modifications to the standard SystemC kernel
itself to couple the analogue solver with the discrete-event solver instead of providing an abstraction
layer on top of SystemC to allow the parallel integration of various continuous time MoCs. Also, the
way of defining contributions to the system matrix is very close to circuit level and thus may not be an
appropriate approach for complex heterogeneous systems.

Vachoux, Grimm, and Einwich [169] define the context of the development of extensions to
the SystemC modelling framework to support the description and the simulation of analogue and
mixed-signal systems, called SystemC-AMS. In Vachoux, Grimm, and Einwich [170], the developed
SystemC-AMS prototype is presented in detail. It already proved to be useful in industrial projects
for the development of the specification and “golden” reference model for the implementation of a
voice codec chip used in Digital Subscriber Line (DSL) modems between the digital world and the
analogue Plain Old Telephone Service (POTS) [46]. Two formalisms, or MoCs, are implemented: a
timed variant of the Synchronous Data Flow (SDF) MoC is used to model signal processing dominated
behaviours as well as more general continuous-time behaviours using oversampled models and a lin-
ear network MoC provides a library of linear electrical primitives for describing linear macro models.
Both MoCs are synchronised with the discrete event SystemC simulation kernel through a synchronisa-
tion layer, thereby allowing mixed-signal and mixed-MoC simulation.

This early SystemC-AMS prototype has been evaluated towards its applicability to the modelling
of MEMS, which involve several physical domains under the rule of energy conservation laws. The
prototype was examined on a heterogeneous inertial navigation system with micromechanical sensors.
Two modelling approaches were reported. In the first one [109], the mechanical quantities were mapped
on electrical ones, so that the linear electrical network models like resistor, capacitor, and inductor
provided by SystemC-AMS could be used to represent the mechanical dampers, springs, and masses.
In the second approach [110], the mechanical system was modelled using a non-conservative block
diagram with feedback, which was simulated using the SDF MoC and had simulation performance
advantages over the first approach. The developed models showed good conformance to the results
obtained with VHDL-AMS reference models of the sensor. However, the development effort for the
SystemC-AMS models was higher due to the lack of dedicated modelling capabilities for multiphysical
systems. The work also showed a need to integrate such capabilities into SystemC-AMS, because the
considered system contained, besides the MEMS sensor and its analogue front-end, a tightly coupled
digital part with embedded software for the signal processing of the sensor signal and tuning of the sensor.
For modelling this digital HW/SW part, SystemC-AMS is better suited than VHDL-AMS yielding in a
considerable simulation performance advantage.

12



2.3. Overview of AMS extensions to SystemC

Similar findings are reported in Caluwaerts, Galayko, and Basset [30], where the modelling of an
electromechanical energy harvester consisting of a resonator, a variable capacitor, a charge pump and a
flyback circuit is presented. A combination of linear electrical primitives and user-defined SDF modules
is used to describe the system. The nonlinear behaviour of the involved diodes is modelled as a resistor,
which resistance value is controlled through an SDF module based on the sensed voltage across the
resistor. This very close feedback imposes very small time steps for the transient simulation due to
the required unit delay in the SDF feedback loop to keep the resulting error small. This clearly shows
SystemC-AMS’s current limitations regarding the modelling of physical systems due to the missing
nonlinear solver and dynamic time step capabilities.

In Herrera, Villar, and Grimm [72], it is shown how to couple SystemC-AMS [170] with HetSC [71] to
support in parallel a wide range of MoCs. This enables the use of SystemC for the complete specification
of increasingly heterogeneous embedded systems, which include software control parts, digital hardware
accelerators, analogue front-ends, etc. Semantical and syntactical issues for the cooperation of both
libraries on top of SystemC are discussed with a focus on the interfaces provided between the different
MoCs for their interaction during simulation. One possibility for the synchronisation of the MoCs from
the two libraries is to use the DE MoC of SystemC as an intermediate layer, as both libraries already offer
this synchronisation capability. The second possibility allows a direct coupling of specific HetSC MoCs
and SystemC-AMS MoCs using the concept of border channels in HetSC. The paper recognises the
need to standardise the synchronisation semantics between different MoCs.

A similar problem is addressed in Damm et al. [39], where it is shown how to couple
SystemC-AMS models with loosely-timed TLM 2.0 models using a temporal decoupling approach
with the focus on the SystemC-AMS side acting as a streaming data producer and/or consumer. Converter
elements between the SDF MoC and loosely timed TLM MoC have been implemented that exploit the
loosely timed coding style of TLM 2.0 to fit with SystemC-AMS’s timed SDF MoC in such a way that
the high simulation performance of both MoCs is preserved.

In Zaidi, Grimm, and Haase [181], it is shown how to couple the timed SDF MoC of SystemC-AMS
via the Verilog Procedural Interface (VPI) with an AMS simulator to do mixed-level co-simulation of
AMS systems, in which most parts of the system are modelled on the system level using SystemC(-AMS)
and selected blocks are replaced through more detailed behavioural (Verilog-AMS or VHDL-AMS) mod-
els or circuit level (SPICE) models.

All three efforts [39, 72, 181] show the advantages of the SystemC-AMS architecture, which facilitates
the integration of very different modelling formalisms and tools to an efficient simulation platform
supporting the specification, design, and verification of complex heterogeneous AMS SoCs.

In Zhu, Sander, and Jantsch [182], a formal heterogeneous model of computation framework for
SystemC is introduced that is called HetMoC. It complements the already presented approaches [71,
135, 170]. It is based on a very formal definition of the semantics for Continuous-Time (CT), Discrete
Event (DE), Synchronous Reactive (SR), untimed Data Flow (DF), and SDF model domains. A new
modelling style for the CT MoC is presented, which has pure CT dynamics. Based on it, the other
MoCs are derived by stepwise abstraction. In this framework, the target system is modelled as a
process network. Blocks are processes that specify computation and edges are signals to connect
processes. For each model domain the signals, domain interfaces, and processes are defined. The domain
interfaces are polymorphic allowing to combine models using different MoCs. The implementation of
the HetMoC framework in SystemC is inspired by a system level functional modelling style proposed
for untimed dataflow models in Grötker et al. [66]. All models are communicating through standard
SystemC sc_core::sc_fifo<T> channels. As an application example, an adaptive Amplitude-Shift
Keying (ASK) transceiver system is modelled with HetMoC and its simulation results/performance is

13



2. State of the Art

compared to a SystemC-AMS reference model. The results are promising even though SystemC-AMS
showed a clear performance advantage payed with a higher memory consumption due to its more
complex but optimised implementation. HetMoC’s implementation seems to rely for the moment purely
on SystemC’s DE kernel to control its model execution without doing any kernel extension to optimise its
model execution. This could be an explanation for the performance disadvantages over SystemC-AMS.
In the perspective of the standardisation of AMS extensions to SystemC, the presented framework is
interesting due to its sound formal base to integrate different modelling domains. These concepts could
contribute to the definition of a clean synchronisation layer between the different CT MoCs of the
AMS extensions and the DE MoC of SystemC. Also the integration of some of the described MoCs
could be interesting.

The development of the abovementioned SystemC-AMS prototype [170] was accompanied by the
SystemC-AMS study group [164] with the goal of generalising and standardising the concepts introduced
with SystemC-AMS. With support from the semiconductor industry (notably NXP and STMicroelectron-
ics), the study group promoted the creation of an official working group within the OSCI consortium [82]
that coordinates the development/standardisation of SystemC and related libraries. Since its foundation
in 2006, the charter of this OSCI AMS Working Group (AMSWG) [132] has been the development and
standardisation of AMS extensions to SystemC to foster their industry acceptance. Based on the collected
requirements and use cases [48], the AMSWG developed a Language Reference Manual (LRM) [130],
which became in March 2010 an official OSCI standard [131]. In parallel to the standard release, the
AMSWG published a user’s guide [14]. Fraunhofer IIS/EAS released also a conforming Proof of Con-
cept (PoC) implementation of the SystemC AMS extensions 1.0 [53] as a further development of its
former SystemC-AMS prototype. In their first version, the AMS extensions primarily address the needs
for describing the continuous-time behaviour of purely electrical AMS SoCs by proposing three MoCs,
which allow their description on different levels of abstraction using Timed Data Flow (TDF), Linear
Signal Flow (LSF), and Electrical Linear Network (ELN). This makes them well-suited for the design
of communication systems, which analogue front ends are tightly coupled to complex digital control [46],
and for the design of Digital Signal Processing (DSP) applications. However, their modelling capabilities
are not yet well suited to describe energy-conserving multiphysical system components with nonlinear
behaviour in a formal and consistent way at a high level of abstraction. Its requirements specification [48]
already mentions these needs to enable their usage, e.g., in the automotive sector. Addressing this issue
is one of the main topics of this thesis work. Therefore, the OSCI SystemC AMS extensions will be
introduced in more detail in Section 5.2.

First experiments were already done with the old SystemC-AMS prototype to extend it for the
modelling of conservative elements with nonlinear dynamic algebraic equations. The results have been
reported in Einwich et al. [47] using a micro relay as a multiphysical example. The newly proposed
nonlinear MoC defines a new module class, which provides callbacks that can be overloaded to describe
the module’s energy-conserving behaviour as contributions to the DAEs system of the nonlinear network
formed by the interconnected modules of this type. To this end, each module defines its contribution to
the through values (currents) of the nodes connected via the module’s ports in dependency of the across
values (voltages) and the derivation of the across values. Additional equations have to be described
in the form 0 = F(t, vports, ˙varsports, varsports, v̇ports). The proposed syntax resembles Verilog-AMS,
but in a way that it conforms to the syntax of C++. The advantage of the proposed approach is in
its modularity. The nonlinear MoC integrates itself into the infrastructure of SystemC-AMS without
requiring modifications to the latter. It uses the synchronisation layer of SystemC-AMS to seamlessly
interface with the SDF MoC of SystemC-AMS and the DE MoC of SystemC. Thus, large heterogeneous
systems can be simulated, which components have been modelled using different MoCs in parallel.

14



2.3. Overview of AMS extensions to SystemC

In Uhle and Einwich [168], it is reported how the previous approach has been refined and generalised.
Natures can now be declared like in VHDL-AMS to associate nodes, terminals, and branches to physical
domains. Thus, model assembly mistakes can be detected upon compile time. The implemented syntax
for describing the energy conserving behavioural has been improved to be more VHDL-AMS-like and
thus user-friendly. The proposed new language constructs have been aligned with the syntax of the
standardised OSCI SystemC AMS extensions. The implementation is founded on the SystemC-AMS
PoC implementation of this standard. The nonlinear solver can generate events based on threshold
crossing and is able to backtrack to react on events. Thus, if an NonLinear Network (NLN) model is solely
coupled to a DE model, the synchronisation semantics are equivalent with the VHDL-AMS simulation
cycle. If TDF models are additionally coupled to the NLN model, the synchronisation becomes more
complex, because synchronisation can only happen at the end of a TDF cluster period. The capabilities
of this NLN MoC are demonstrated on a complex electromechanical window lifter model coupling the
electrical, mechanical, and magnetical domains. For a pure NLN model, both approaches [47, 168]
cannot achieve considerable runtime advantages over an equivalent VHDL-AMS/Verilog-AMS model,
as the underlying DAE system and nonlinear solver algorithms are similar. However, in the nowadays
typical cases where the complexity of the digital HW/SW part dominates over the analogue part, the
system simulation clearly profits from the more abstract modelling capabilities offered by SystemC and
its AMS extensions.

In Hartmann et al. [70], the modelling of physical control systems with SystemC-AMS is described. A
model of a crane with embedded control is used, which has been already previously proposed as a system
modelling benchmark [122]. Due to numerical stability issues, an external 4th-order Runge-Kutta solver
is integrated into the simulation replacing the linear State Space (SS) solver provided by SystemC-AMS.
The approach is interesting, because the external solver is encapsulated in a way that it provides the same
interface as the original SS solver and thus requires only minimal modifications to the model itself.

Like in the “classical” AMS-HDLs (e.g., VHDL-AMS and Verilog-AMS) SystemC-AMS and
SystemC-A use a generalisation of the classical electrical network model to represent conservative
systems, in which modified Kirchoff’s voltage and current laws account for the energy conservation. The
generalised networks accurately represent the physical structure of the conservative system, but they
cannot visualise the computational structure4 of the system: Which quantities act as inputs, and which as
outputs? The relation between the across and through quantities at the terminals of each component are
described using ODEs or DAEs. One resulting problem is that the solvability of the implemented model
can usually only be insufficiently checked at model elaboration time: e.g., VHDL-AMS only checks that
the number of defined across and through equations matches, which is a necessary but not sufficient
condition. In Haase [67], the problem of the possible definition of syntactically correct simulation
problems without a solution is discussed from a mathematical point of view to give reasons and establish
rules that may help to avoid these difficulties.

An extensive bibliography of publications related to the initial SystemC-AMS prototype and its
standardised successor in form of the OSCI SystemC AMS extensions can be found on the homepage of
the SystemC-AMS study group [164]. It documents its growing popularity in the research and industrial
communities, who are applying both to a variety of application domains, e.g., RF systems [5, 174, 180],
control systems [70], test development [102], automotive components [10, 99, 150, 168], biological
labs on chip [141]. The SystemC AMS extensions have already proofed their capability as an integration
platform able to support very different modelling formalisms, which can interact with each other. The

4The order of model equation execution can be, e.g., easily derived from the signal flow diagram in the case of a non-
conservative system.

15



2. State of the Art

openness of the C++-based SystemC simulation framework allows an extensibility with 3rd party
libraries and tools, which cannot be matched by “classical” HDLs, as they do not give the user such
a deep access to the internals of the simulation mechanism. The standardisation of SystemC and its
AMS extensions is ongoing. For the AMS extensions, goals are to make the TDF MoC even more
flexible by supporting features such as the dynamic modification of the TDF time step or to trigger the
TDF cluster execution as a reaction to events. Long term goals are to define a standard API for plugging
in external solvers and the formalisation of the synchronisation layer between the CT and DE MoCs to
offer a standardised API for the integration of new MoCs.

2.4. Unified Description of Multiphysical Systems with Bond Graphs

One way to unify the description of multiphysical systems is the bond graph methodology [94], which
is more and more used in mechanical engineering, mechatronics, control theory, and to some extend
in power electronics [9, 17]. A good overview on the bond graph notation, history, and future trends
is given in Breedveld [24] together with an extensive bibliography. Bond graphs have been originally
introduced by Henry M. Paynter in 1959 with the introduction of the junctions [138, 139]. The bond graph
notation was refined by his students Dean C. Karnopp and Ronald C. Rosenberg [95, 96]. Rosenberg also
developed the first computer tool, called ENPORT, for bond graphs[154, 155]. Jan J. van Dixhoorn [172]
and Jean U. Thoma [165] introduced bond graphs in the 1970’s in Europe. These pioneers spread the
bond graph formalism world wide and applied it to different engineering domains [93]. Further resources
about bond graphs, related research, and supporting tools can be found, e.g., in Cellier [31], Filippo et al.
[52], and HighTech Consultants [74].

Using the bond graph formalism, each conservative system can be transformed from its domain-
specific representation (e.g., electrical circuit, mechanical multi-body system, rigid bodies, fluidic
networks, thermal networks) to an equivalent bond graph representing graphically the energy flow
between primitives modelling energy sources (S e, S f ), resistive/capacitive/inertial behaviour (R, C,
I), quantity transformations (TF, GY), and energy distribution through junctions (0, 1). All elements
can have nonlinear characteristic equations. One big advantage of bond graphs is that they can be
annotated in a systematic way with the causality for each bond (current-out or effort-out causality),
which visualises the computational structure of the bond graph and allows to sort the element equations
in the right order for a fast model execution. As an example, the transformation of a simple electrical
circuit to an equivalent bond graph, annotated with causality and then derived computational structure,
is shown in Figure 2.2. Additionally, the assigned causalities allow some further formal checks on the
model: the number of states and non-states in the system, the presence of algebraic loops during model
execution, or if it is an ill-posed model. The causality assignment also allows for a good integration
of bond graphs with signal flow graphs and their transformation in the latter. There are extensions to
classical bond graphs, which allow, e.g., hierarchical models with more abstract word bond graphs [24,
94] or the handling of discrete switching due to external signals in so called hybrid bond graphs [16, 123].
Very similar is the concept of switching elements described in Edström, Stromberg, and Top [45]. In
both cases, the challenge of local switching is the local causality change at the switched junction, which
needs to be propagated throughout the whole graph and also imposes a reinitialisation of the internal
states of the bond graph primitives. It is therefore still an on-going research topic how to implement
these switching concepts in an efficient way that limits the negative impact on simulation performance.

Besides specialised bond graph tools such as ENPORT [155], TUTSIM [86], MTT [59], CAMP-G [29,
64], HyBrSim [123], SYMBOLS Sonata™ [75], 20-sim [38] (reviews can be found, e.g., on HighTech

16



2.5. Conclusions

R1

C1

L1

R2

C2 U(t)

L2

(a) Simple electrical circuit

01

1

1R : R1

C : C1

I : L1

R : R2 C : C2

I : L2

S e : U(t)10

9

8
5

41
2

3

6 7

(b) Bond graph with annotated causality

U(t) q2 q7 p3 p9

e10 e2 e7 f3 f9

f1 f4 f8

e1 f5

f6

e6

e5

e8 e4

e9 = ṗ9 e3 = ṗ3 f2 = q̇2 f7 = q̇7 f10

(c) Dependency graph representing the compu-
tational structure of the bond graph

Figure 2.2.: Transformation of an electrical circuit to an equivalent bond graph annotated with causality
and then derived computational structure.

Consultants [74]), there are also efforts to integrate bond graph support in widely used mathematical
tools such as Matlab/Simulink (e.g., BG V2.1) [60, 112, 113] or Mathematica (e.g., Bond graph tool box
for Mathematica) [176, 179]. Another approach is to use the capabilities of an AMS-HDL to represent
bond graphs. In Cellier and McBride [33], it is described, how causal and acausal bond graphs are
implemented in Modelica/Dymola [11, 40] for the publicly available BondLib [32]. The bond graphs can
be drawn using the Graphical User Interface (GUI) of Dymola or input in a textual form. As application
examples the modelling of a hydraulic motor control system and the thermal budget of the Biosphere 2
are presented [34]. However, Modelica’s capabilities are weak on the discrete event side, which is one
reason why it is not used in the microelectronics community and thus not suitable for mixed-signal
SoC design. In Pêcheux et al. [142], it is shown that bond graphs can be represented in VHDL-AMS and
are used to model a Pb/Fe battery and a complex airbag SoC including MEMS accelerometer, digital
control, thermal network, laser diode, and the chemical reaction to inflate the cushion. The authors note
that the implementation of bond graphs is not very efficient because the support of VHDL-AMS for
continuous systems is limited to non-conservative signal flow description based on free quantities and
conservative generalised networks. Thus, from a bond graph point of view, effort and flow variables of
a port have to be referred from the across and through quantities defined between two terminals. The
guarantee of Kirchhoff’s voltage and current laws inside the generalised networks leads to the generation
of unnecessary duplicate equations in the case of bond graphs, where these laws are already taken into
account through the 0- and 1-junctions. Causality cannot be assigned to the bonds and thus not be
profited from. All three aspects have a negative impact on the simulation performance of the model. The
main focus of the paper is thus the coherence of VHDL-AMS with regards to bond graphs: to present a
way how to shift from a common system level description to a circuit level description suitable for the
mixed-signal simulators of common EDA frameworks.

2.5. Conclusions

The described properties of bond graphs make them attractive for the design and verification of heteroge-
neous AMS SoCs on the system level, since they unify and thus ease the description of multiphysical
system components and their interactions. The possibility of doing formal checks on the system model

17



2. State of the Art

using the causality analysis is interesting, as it allows to gain insight into the kind of physical interactions
of the system components and into the computational structure of the model. Their close relationship
with signal flow models promises interesting simulation performance advantages over the generalised
network formalism used by the classical AMS-HDLs, discussed in this chapter. As the review of
the tools/languages supporting bond graphs showed, the formalism is not yet well supported by any
tool/language popular for SoC design. Over the past years, the SystemC-AMS prototype and the from it
evolved and standardised successor OSCI SystemC AMS extensions have shown that they are able to
host different discrete-event/discrete-time/continuous-time modelling formalisms in parallel. Due to the
openness of these simulation frameworks, they are gaining popularity as the central specification/inte-
gration tool for heterogeneous SoC design. They have proved themselves to be very suitable for signal
processing dominated system designs, but lack frequently demanded modelling capabilities for nonlinear
multiphysical systems design. This triggered the initial motivation to integrate the bond graph formalism
into the OSCI SystemC AMS extensions as a new MoC, which will be presented as part of Chapter 5.

18



3. ModelLib: A Web-Based Platform for Collecting
Behavioural Models and Supporting the Design of
AMS Systems

This chapter describes ModelLib, a web-based platform for collecting models from different do-
mains (e.g., electrical, mechanical, or electromechanical) and levels of design abstraction (e.g., system,
circuit, or device level). Use cases for this tool are presented, which show how it can support the
design process of complex heterogeneous AMS systems through better reuse of existing models for tasks
like architecture exploration, system validation, and creation of more and more elaborated models of
the system. The implemented ModelLib prototype is described as well as how the meta information is
protected through a hierarchical access control mechanism. The discussion is concluded by presenting
the first steps towards a more modular prototype implementation.

3.1. Introduction

Chapters 1 and 2 described how under the increasing market pressure AMS design flows need to be
continuously optimised with the goal of reusing as much as possible internal or external designs for the
new projects. They underlined the importance of using various kind of models throughout the whole
design process and how challenging it is to write good models and reuse existing ones. Often, designers
reuse only their own models or those provided by the design environment for two important reasons that
need to be addressed. First, an exchange of the models between designers is complicated by the fact that
they are often not aware if and where a similar model is already existing. Second, the designer has to gain
trust in the validity of the model for his specific design task, which is more difficult to achieve for foreign
models because of the “Not Invented Here” syndrome. To overcome these problems, the models need
to be documented regarding their interface, implementation, extend of covered effects, how they were
verified, and other general properties. The designer needs to understand from this information the model
structure and its functionality as well as to judge if it is suitable for the design task at hand. It has to be
clear, which tools the model is expected to be compatible with. The Engineering Society For Advancing
Mobility Land Sea Air and Space International (SAE) covers the documentation issues in the SAE J2546
Model Specification Process Standard [156]. There are ongoing activities to develop collections of
verified models for different design languages like Modelica [11] and VHDL-AMS [73, 117]. Those
libraries are often available as archives from the Internet. They usually provide some documentation
besides the model source code, which can be, to some degree, automatically extracted from the model
sources using a documentation generator [51, 173].

There are also tool-specific library managers, e.g., the Library Manager in the Cadence™ IC Design
Environment or the Workspace in Mentor Graphics™ ModelSim, to handle the various models of a
project and the design kits. However, these tools cannot cope with the management of the models over the
tool boundaries, as it is required for heterogeneous AMS system designs. Static websites documenting
and linking to model archives are a solution, but can only partly address these issues and require a lot of
manual maintenance to stay up-to-date. In Rogin et al. [153], it is described how these documentation

19



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

maintenance issues are addressed for the automotive VHDL-AMS model library under development by
the VDA FAT-AK30 based on specific guidelines [68]. The model sources are centrally managed in a
Subversion repository and the documentation in HTML format is extracted automatically from specially
formatted comments contained in the model sources and is nightly updated. This effort is a good step
into the right direction.

The ModelLib project described in this chapter tries to further address the described reuse issues
through the development of a web-based platform with the following objectives:

• Creating a platform for collecting and distributing models from different domains (e.g., electrical,
mechanical, or electromechanical) and levels of design abstraction (e.g., system, circuit, or device
level) independently of the design tools;

• Improving the access to and reuse of model collections;

• Establishing a validation process for the collected models through collaborative review and
development;

• Organising the meta information about a model and allowing queries on it;

• Supporting the designer’s decision for the right model for each task (e.g., architecture exploration,
performance analysis, verification); and

• Realising this in an open source framework, but with appropriate Intellectual Property (IP) protec-
tion for the stored documentation and models.

Section 3.2 presents the basic use cases for a model library and how it can support the work of the
AMS designer. From these, requirements for the ModelLib platform are developed. The architecture of a
prototype implementation is described in Section 3.3. Section 3.4 presents the implementation of the
fine-grained tuple-wise access control mechanism to protect the IP constituted by the meta information
about the models stored in the library. Section 3.5 outlines the first steps towards a more modular
and feature-complete reimplementation of the ModelLib prototype using Java Platform, Enterprise
Edition (Java EE). Conclusions are given together with an outlook on possible further research directions
in Section 3.6.

3.2. Use Cases and Requirements for a Model Library

A model library like ModelLib can be set up on different organisational levels, like within a project
group, a company, or as a community portal on the Internet. The basic use cases (Figure 3.1) for
the AMS designer accessing the ModelLib server through a client on his computer for submitting,
retrieving, and collaboratively developing the models over the Internet remain the same, while the
demands for security and required detail of access control will rise with each level of broader access.
The communication between client and server needs to be done through an encrypted channel. Users
have to authenticate themselves in front of the model library so that the information stored in the library
can be selectively made available to the different users. This is needed to protect the IP of the authors
and to support the conformance to their license terms, under which they are making their work available
to the public or a restricted group of users.

The users of the model library can be categorised into five different roles. Each has a different profile
of allowed actions on the library (Figure 3.1). The guest is anonymous and has thus the minimum rights.

20



3.2. Use Cases and Requirements for a Model Library

System maintenance

Authentication

Configure accounts
and access control

Access control

Browse for
a model

Edit model class
hierarchy

Query for
meta information

Add/edit models,
testbenches, documents

Review submitted
models, testbenches,

documents

Add/edit information
about design languages

and design tools

Meta information database

Discuss models,
testbenches, documents

Wiki

Checkout files
or documents

Commit files
or documents

Repository

ModelLib

Guest

Authorised
user

EDA tool

System
administrator

Content
manager«follows»

«requires»

«includes»

«includes»

«includes»

«includes»

«includes»

«follows»

«includes»

«includes»

Figure 3.1.: Use cases of a model library.

21



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

He can only browse for a limited collection of public models, send queries about their meta information,
and retrieve their source code by checking it out from a public repository. By authenticating himself with
a valid user name and password, he can become an authorised user, who gains further rights dependent
on his membership in different groups. These groups grant or deny him access to the different parts of
the library (the different models, test benches, and documents themselves, as well as the supplementary
meta information about them). He can participate in the review process by discussing the models,
test benches, and documents stored in the library. He can also actively contribute to their development by
submitting new models, adding/editing of the meta information about them, and organising them into
different categories called model classes. EDA tools need also a direct access to the model library and are
a special form of an authorised user. There are two privileged roles. The content manager configures the
accounts and access rights of the users, reviews their submitted models, test benches, and documents, and
adds commonly used information about supported design languages and tools. The system administrator
is responsible for the maintenance and the further development of the model library platform.

In the following, the use cases for retrieving a model (through browsing or a more complex query) are
discussed in more detail, as they show which meta information needs to be stored in the library alongside
the models to support the designer’s decisions. Then follows the description of the remaining use cases
regarding the submission, the update, and the joint development of models.

One way to access the models in the library is to directly browse through the collection. For this,
the available models need to be sorted into a hierarchy of model classes. A model can be at the same
time member of different classes, e.g., to reflect that a model is part of some IP library and that it is
modelling effects from a particular physical domain. In SAE [156, Appendix A] a list of automotive
EE commodities structured into a hierarchy of EE Commodities, Class, Sub_Class I, and Sub_Class II
is given. It illustrates the diversity of automotive EE commodities that may be subject to modelling
and simulation. It could serve as a guide to structure the model library. After selecting a model, the
user is presented the meta information describing its properties, which can be detailed into structural
meta information describing “How the model is built?” and semantical meta information describing
“How the model can be used?”. The structural meta information describes the following aspects:

• Name and storage place of the model within the model class hierarchy;

• Interface including detailed information about all parameters and ports as well as the assertions
associated to it;

• One or more model implementations (architectures) in the form of behavioural description(s)
and/or structural description(s) along with the assertions associated to it/them;

• Design entities, each one gathering the interface and one model implementation using a partic-
ular design language (e.g., VHDL-AMS) and tested against particular tools (e.g., simulators or
synthesisers); and

• Test benches to validate some design entities. They are implemented using a particular design lan-
guage version and stored in a number of files, which are known to work together with some
design tool versions. Test data and expected results can be included.

To each of these aspects, an arbitrary number of references to external documents can be given. These
are information, which can be directly extracted from the model sources. To support the porting of
design entities and test benches to other design tools, it is required to store additional information about
the different versions of available design languages and design tools, as well as which tool versions

22



3.2. Use Cases and Requirements for a Model Library

support which language versions. Figures 3.4, 3.5, and 3.6 from the ModelLib prototype described in
Section 3.3 show one way of presenting the structural meta information to the user.

The semantical meta information further characterises a model regarding its fidelity and performance.
The SAE J2546 Model Specification Process Standard [156] discusses some of these aspects. It recognises
that models can be classified according to their sophistication, capability, and captured intelligence.
Additionally, the many dimensions of fidelity make the classification challenging, since they may be
sequential, parallel, independent, contradictory, and/or redundant. Properties of a model may be related
to the entire model, a particular feature it implements, or the way of its execution. The semantical
meta information includes for example:

Model refinement level: The SAE J2546 standard proposes a number of model refinement levels, of
which some are of interest in the context of a model library:

Pins: The model consists only of an interface with ports, parameters, and assertions. An instance
of the model can be created, but cannot be executed since the model does not implement any
internal feature.

Static: The model implements time-invariant, steady-state internal behaviour using some primary
quantitative properties suitable for DC or steady-state AC analysis. On this level, an amplifier
could be represented through a controlled source. A piezoresistive pressure sensor could be
simply represented by its stiffness, stress-free resistance, and piezoresistive coefficient.

Dynamic: The model implements time-varying behaviour, possibly including nonlinear character-
istics, but neglecting smaller second order effects to capture only the primary time-dependent
behaviour. For example, the amplifier model could include its limited bandwidth and a slew
rate. A pressure sensor model could include stress stiffening, inertia, and damping effects.

Precision: The model implements a significant amount of second order effects in addition to
the effects necessary to capture its primary time-varying behaviour. For an amplifier model,
this could mean that it includes noise and thermal effects like self-heating and temperature
dependent gain variation. A pressure sensor model could include cross-sensitivity to other
physical quantities like temperature as well as fatigue or hysteresis effects.

Vector: The model implements directional or spatial interfaces to its environment in contrast
to the previously one-dimensional lumped connection points. This could be achieved for
example through a distribution function or multiple connection points. Typical examples
are models with spatially distributed parameters, e.g., a MOSFET device model taking into
account its geometry and doping profiles or a 3-D FE model of a pressure sensor.

Model of Computation (MoC): on which the model is based. It may be a discrete MoC (DE, FSM,
Petri net, DF, etc.), continuous MoC (signal flow, conservative network, bond graph, FEM, etc.),
or an in some way synchronised mix of discrete and continuous MoCs.

Physical disciplines: the function of a modelled component is based on, e.g., electrical, mechanical,
thermic, hydraulic, optic, . . .

Validity of the model: describes under which assumptions and operating conditions a model is valid.

Suitability for design tasks: e.g., architecture exploration, area/power estimation, connectivity verifi-
cation, or bottom-up verification (using back-annotated or calibrated models).

Keywords: to index the model.

23



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

Feature properties: A model has individual features, each one capturing a different aspect of the
component with a varying level of detail: the nominal behaviour (e.g., amplification or signal
filtering) of the component, plus secondary behaviour (e.g., temperature dependency or noise)
caused by its interaction with the operation environment. A captured model feature can be mapped
on the internal variables of a model, e.g., via global variables or the parameters and ports of the
instantiated model.

A feature is often based on a physical effect, e.g., variation with T , manufacturing tolerances,
ageing, self inductance, or noise. It influences the performance criteria of a component, e.g., filter
characteristic, filter order, cut-off frequency, bandwidth, sample frequency, or the noise figure.

The feature refinement level describes how far a model feature is implemented (levels 0–7 in
SAE J2546): None (not included), Named (acknowledged but unimplemented), Fixed (adjustment
only through editing the model or a non-related parameter), Index (offers discrete choice of discrete
values or modes), Static (accepts parameter value prior simulation run), Dynamic (adapting to
internal conditions during simulation), Mutual (adapting to external influences during simulation),
Directional (adapting to directional external influences during simulation).

Execution capabilities: Depending on its implementation, a model is suitable for different types of
execution, notably simulation and synthesis. The results obtained from the model execution need
to be characterised.

A model can support for simulation different analysis types like Continuity and Loads Analysis,
Nominal Analyses (DC, transient, small signal, and stability analysis), Stress Analysis, Perturbation
or Sensitivity Analyses, Worst-Case Analyses, Failure Modes and Effects Analyses (FMEA), or
Sneak Circuit Analysis (SCA). For each analysis type, the model can give different results (e.g.,
current, voltage, temperature, force, power, failure), obtainable either dynamically during simula-
tion or only after its completion. Each result can be in a different form like Flag, Message, Scalar,
Waveform, or Relation (non-time series, describing in the form of, e.g., an equation or a table the
interaction of two or more variables).

Synthesis transforms a model through an algorithm into another model. During top-down design,
details are added in each synthesis step. For example, a programme implementing an algorithm (C,
MATLAB®, VHDL, etc.) can be transformed into an RTL description (VHDL, Verilog, etc.), then
into a gate level description (SPICE or Verilog netlist), and finally into a layout. During bottom-up
design, models can be simplified through reduced-order modelling methods to make them suitable
for simulation on higher levels of abstraction.

It is possible to include all this supplementary information into free-form description fields, but for
large model collections, like they are intended for ModelLib, it is better to structure them as far as
possible and to store them in an adapted data structure. This has to be done as general as possible because
not all properties, which a designer might want to store for a model, are known in advance. The ability to
store the semantical meta information in a structured way will enable the AMS designer to better manage
the models for different levels of design abstraction of the same physical component.

A large collection of models also requires a more efficient access to the models, besides browsing, to
support the designer in selecting the model with the right fidelity for reuse in the current design task at
hand (e.g., architecture exploration, detailed component characterisation, system validation). To do that,
the designer has to send queries to the model library. In simple cases, this means querying for a model
name, keywords, and full text search in the description fields of the interfaces, architectures, etc. If this is

24



3.3. Implementation of the ModelLib Prototype

not sufficient, more complex queries should be possible, e.g., for certain properties of the model to be in
a specific range (e.g., detail level, modelled effects, design language, component properties).

The use cases for browsing and querying of models showed which information has to be provided by
the developer when submitting a new model to the library. First, the files containing the source code,
test benches, test data, simulation results, and other documents of the model must be made accessible
through Uniform Resource Locators (URLs), preferably by submitting them to the repository of a
revision control system. This eases their further (cooperative) development by keeping track of the
modification history of each file and by helping to resolve conflicts between parallel contributions to
the same file. Then, the meta information about the model, test benches, etc., needs to be extracted
from these files and entered into the library using structured input forms. This process can be partially
automatised using similar techniques like the ones used by documentation generation tools [73, 153, 173].
During the further development of the model, the meta information needs to be continuously updated to
keep it in sync with the changes made. The library supports the development process by providing a
forum for discussing the model and jointly improving its implementation and documentation.

In the beginning, the newly submitted model is stored in one of the private model classes of the
model developer, for which he can specify the access rights. To publish the model to the other users
by including it into the official collection of the library, the developer has to contact one of the content
managers. They will do a first review to evaluate if the model has reached a level of quality to be
made public. This review includes checks if the model source code is following some suggested
coding rules (e.g., no syntax errors, well structured and commented code, consistent naming scheme,
. . . ) as well as if the supplied meta information and documentation is correct (consistent with the model
source code) and complete enough (permitting understanding and usage of the model by a third party).
The content manager gives feedback to the author until the requirements for the publication of the model
are met. The new model is then sorted into the appropriate public model classes and announced to
be available under certain license conditions. This formalised submission process shall insure a basic
quality standard of the available models in the library. Subsequently, other authorised users can comment
on the different parts of the model, can give a rating of the model, and can contribute to its further
development by providing patches and documentation. Rating charts of the models may be implemented
to motivate the developers through a sense of competition. The goal of these measures is to create an
active community of model developers, which help and motivate each other while constantly improving
the model collection.

3.3. Implementation of the ModelLib Prototype

Several software components have to be integrated to meet the requirements arising from the use cases
presented in Section 3.2. To store the meta information about the models, a database is a core component
of ModelLib. To manage the source files that contain the models and their accompanying document
and allow their collaborative development, a revision control system is required. To discuss the models
and collaborate on the improvement of their implementation and documentation, an open document
development platform like a wiki is needed.

A running prototype of ModelLib [104, 106] has been developed, which implements the basic features
of a model library. It uses several open source tools:

PostgreSQL [147]: to manage the database that stores the meta-information and wiki pages;

Subversion/WebSVN [7, 37, 166]: to handle the model repository;

25



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

source code
Model Testbenches

and their results
regarding models

languages, documents

Meta informationFile revisions

(Subversion)
repository database

(PostgreSQL)
database

(PostgreSQL)
backend
Storage

interface
User web

ModelLib

Subversion client Web browser Client

and tools

User created

Informal texts, e.g.,
discussions, HOWTOs

Meta information WikiFile

WebSVN YaWiki

ModelLib server HTTP/WebDAV

Aux. Documents

Figure 3.2.: Architecture of the ModelLib prototype depicting the communication links between its
different components.

YaWiki [87]: to discuss and jointly develop the documentation of the models;

PHP [143]: to implement the web interface; and

Apache 2 [8]: to serve out the web interfaces of ModelLib, Subversion/WebSVN, and YaWiki.

Figure 3.2 shows the architecture of the prototype and how its different components interact. The lower
part of the figure shows the different user-created documents managed by the ModelLib server. The
file revisions of the documents are stored in the repository. The meta information about models and
accompanying documents are stored in the meta information database. Informal texts, like discussions
and HOWTOs, are stored in the wiki database. The user interfaces are implemented on the server side
and provide the access to the data storages. This allows users to access ModelLib over the Internet using
a standard web browser. On the user side, the file revisions of the models and documents are managed by
the Subversion client. It provides the possibility to commit them to and update them from the repository.

The meta information describing the properties of the models is stored in a relational database.
Figure 3.3 shows the Entity-Relationship (ER) diagram of the database that has been designed for the
prototype. It currently considers the model class hierarchy, the information about referenced external
documents, the information about available design language and tool versions, and the meta information
about the interface, architectures, assertions, design entities, test benches, and files of the models. This
fully covers the structural meta information described in Section 3.2. The semantical meta information
is not yet implemented in the database structure and can be stored for the moment only as free-form
descriptions. The Relational Database Management System (RDBMS) PostgreSQL [147] has been
chosen to implement the database for the ModelLib project, among other reasons, because of its full
ACID compliance, good ISO SQL standard coverage, and implementation of foreign key constraints.

The ModelLib web interface provides access to the model collection over the Internet. It queries the

26



3.3. Implementation of the ModelLib Prototype

P
ar

en
tId

C
hi

ld
Id

D
ep

en
di

ng
E

nt
ity

Id

D
es

ig
nE

nt
ity

Id

A
ss

er
tio

n
In

te
rfa

ce
A

ss
er

tio
n

A
rc

hi
te

ct
ur

e

In
te

rfa
ce

M
od

el
C

la
ss

Fi
le

Te
st

be
nc

h

Te
st

be
nc

h

N
am

e

D
es

cr
ip

tio
n

Te
st

be
nc

hI
d

D
oc

um
en

t
A

rc
hi

te
ct

ur
e

D
es

ig
nT

oo
lV

er
si

on
Fi

le

D
es

ig
nL

an
gu

ag
eV

er
si

on
D

es
ig

nE
nt

ity

Fi
le

D
es

cr
ip

tio
n

Fi
le

Id
N

am
e

U
R

L

D
es

ig
nL

an
gu

ag
eV

er
si

on

D
es

ig
nL

an
gu

ag
eV

er
si

on
Id

Ve
rs

io
n

ex
is

ts
in

D
es

ig
nL

an
gu

ag
eV

er
si

on
D

es
ig

nT
oo

lV
er

si
on

P
ar

tia
lS

up
po

rt

D
es

ig
nT

oo
lV

er
si

on Ve
rs

io
n

D
es

ig
nT

oo
lV

er
si

on
Id

ex
is

ts
in

de
ve

lo
pe

d
by

be
lo

ng
s

to

be
lo

ng
s

to
P

ar
am

et
er

U
ni

t

S
iz

e

Ty
pe

D
es

cr
ip

tio
n

D
ef

au
ltV

al
ue

R
an

ge

N
am

e

P
ar

am
et

er
Id

In
te

rfa
ce

D
es

cr
ip

tio
n

N
am

e

In
te

rfa
ce

Id

H
ie

ra
rc

hy
M

od
el

C
la

ss
M

od
el

C
la

ss

Le
ve

l

N
am

e

M
od

el
C

la
ss

Id

K
ey

w
or

d
M

od
el

C
la

ss
K

ey
w

or
d

N
am

e

K
ey

w
or

dI
d

D
es

ig
nL

an
gu

ag
eV

er
si

on
Te

st
be

nc
h

D
oc

um
en

t
D

es
ig

nL
an

gu
ag

eV
er

si
on

Po
rt

K
ey

w
or

d
D

oc
um

en
t

D
oc

um
en

t
D

es
ig

nT
oo

lV
er

si
on

ha
s

a
Po

rt
D

ire
ct

io
n

N
am

e

Po
rt

D
ire

ct
io

nI
d

D
es

cr
ip

tio
n

D
oc

um
en

t
In

te
rfa

ce

ha
s

a
Po

rt
C

la
ss

N
am

e

Po
rt

C
la

ss
Id

S
iz

e

Ty
pe

N
am

e

Po
rt

Id

D
es

cr
ip

tio
n

A
ss

er
tio

n

ha
s

a

N
am

e

S
ev

er
ity

Id

S
ev

er
ity

C
on

di
tio

n
A

ss
er

tio
nI

d

D
oc

um
en

t
Te

st
be

nc
h

U
R

L

Ve
nd

or
Ve

nd
or

Id

N
am

e

D
es

ig
nL

an
gu

ag
e

D
es

ig
nL

an
gu

ag
eI

d

N
am

e
U

R
L

U
R

L

D
es

ig
nT

oo
l

D
es

ig
nT

oo
lId

N
am

e

D
oc

um
en

t

S
ub

je
ctD
es

cr
ip

tio
n

Ye
arU

R
L

Ti
tle

A
ut

ho
r

D
oc

um
en

tId

A
rc

hi
te

ct
ur

e
N

am
e

A
rc

hi
te

ct
ur

eI
d

D
es

cr
ip

tio
n

D
es

ig
nE

nt
ity

Te
st

be
nc

h

D
es

ig
nE

nt
ity

D
oc

um
en

t
D

es
ig

nE
nt

ity

Fi
le

D
es

ig
nE

nt
ity

D
es

cr
ip

tio
n

D
es

ig
nE

nt
ity

Id

D
ep

en
de

nc
y

D
es

ig
nE

nt
ity

ha
s

an
ha

s
an

Fi
gu

re
3.

3.
:E

nt
ity

-R
el

at
io

ns
hi

p
di

ag
ra

m
of

th
e

m
et

a
in

fo
rm

at
io

n
da

ta
ba

se
.

27



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

meta information about models, test benches, design languages, design tools, and document references
from the RDBMS and outputs it to a CSS formatted HTML page. In the prototype, it is implemented in the
server-side scripting language PHP using library packages from the public PEAR repository [144], which
ease the development of web applications. For example, the implementation uses DB and Text_Wiki to
access the database on the PostgreSQL server and format the HTML output of the free-form description
fields using a wiki-like syntax. Currently, the web interface implements the following features:

• Logging in as different database users;

• Browsing the model class hierarchy for a model;

• Displaying and editing all information related to the interface, architectures, design entities, and
test benches of a model (Figure 3.4);

• Displaying the information about the available design languages and their versions (Figure 3.5);

• Displaying the information about the available design tools and their versions (Figure 3.6); and

• Displaying/editing the document references.

The files containing the models, test benches, and accompanying documents are stored in a repos-
itory, which is managed by a revision control system to allow their collaborative development. The
meta information database refers to the files in the repository using URLs.

The Subversion system [7, 37] has been chosen for the ModelLib prototype because it has seen
widespread adoption since it start in 2000, replacing the previously popular CVS [148]. It overcomes
some of CVS’s known drawbacks by supporting, among others, versioned directories, renames, and
meta data; truly atomic commits; efficient handling of binary files; and more efficient handling of tags,
branches, and merging. At the same time, its command line interface remained simple and comfortable
GUI front ends and IDE integrations are available. Using the module mod_dav_svn.so from Subversion,
an Apache 2 web server makes the repository available to the clients via the WebDAV protocol [161],
which is an extension to the HTTP 1.1 protocol that adds versioned writing capabilities. This provides
key features like authentication, path-based authorisation, wire compression, and basic repository
browsing using a web browser or WebDAV client. The PHP-based web interface WebSVN [166]
considerably improves the browsing of the repository via a web browser with features like viewing
the file/directory logs; listing of all changed, added, or deleted files in a queried revision; log message
searching; blame support; Tar ball downloads; directory comparisons; and RSS feed support.

A wiki provides an open platform to discuss the models and to collaborate on their implementation
and documentation. An access rights management has to be established to control the read and write
access to the different models. YaWiki [87] was chosen for the ModelLib prototype because it adds
logical name spaces, Access Control Lists (ACLs), navigational elements, and more to a traditional wiki;
each wiki page can be instantly commented through a web form; it is written in PHP like the other parts
of the ModelLib web interface; its formatting engine Text_Wiki is a PEAR module, which is also used
in the ModelLib web interface to format the free-form description fields.

3.4. Fine-Grained Access Control Mechanism for the
Meta Information

One important aspect for the success of a model library is the management of the IP represented by the
models. A fine-grained access control mechanism is thus necessary to disclose selectively information

28



3.4. Fine-Grained Access Control Mechanism for the Meta Information

Figure 3.4.: Meta information about a selected model.

29



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

Figure 3.5.: Meta information about design languages.

Figure 3.6.: Meta information about design tools.

30



3.5. Towards a 3-Tier Reimplementation of ModelLib

to different user groups. For example, the public might only have access to high-level models of a
component or only the full interface information plus a compiled/encrypted model, whereas a customer
of the design company has full read access to the documentation and the model sources, and the model
developers themselves have full read/write access to all information.

Subversion and YaWiki already implement mechanisms to limit the access to files/wiki pages with
respect to the user and its group memberships using ACLs. However, the real key to the models in the
repository and the documents in the wiki is the meta information about the models stored in the relational
database and thus may contain sensitive information. The RDBMS PostgreSQL provides authentication
and access control mechanisms through its role concept and the grant/deny of privileges on tables, views,
and function execution. Each role can be member of other roles permitting the common definition of
privileges. Unfortunately, the definition of privileges on the table level is too coarse in the case of the
model library, because information common to all models, e.g., about the interface, are stored in the
same table. For this reason, a tuple-wise (per table row) access control mechanism has been implemented
within the database using only the features provided by the RDBMS in the scope of Thomas Böhm’s
master’s thesis [21] under supervision of the author of this Ph.D. thesis.

In the chosen approach, which is illustrated in Figure 3.7, the Select, Update, Delete, and Insert rights
on the tables are granted only to the administrators (members of role mladmin). To the authorised users
and guests (members of mluser and mlguest) is granted only the Select right on views, to which the
rows from the underlying tables are propagated selectively according to the entries in an additional
ACL table for the roles the database user is member of. The authorised users have also the Update,
Delete, and Insert rights granted on the views. The modification of the view data via Update, Insert, or
Delete actions are handled by rewriting rules [146]. These rules are triggered by the mentioned actions
and only propagate actions to the underlying tables that are permitted by the entries of the attached ACL.
Not permitted modifications are dropped.

The rights administration would be too tedious, if the rights were specified for each single tuple. That
is why a rights inheritance scheme (Figure 3.8) has been implemented into the view queries and rules
allowing to reuse the rights defined on entities higher in the hierarchy and permitting their overriding
through the local ACL. The tables with names in bold have an own ACL, which is merged with the
inherited rights definitions. The entities Documents and Files are not inheriting access rights from other
instances because they can be shared between several models.

The implementation on the database layer has the advantage that it simplifies the development of
the higher layers (application logic and presentation) and that it allows the reuse of the access control
implementation for different interfaces (e.g., web interface and EDA tool links).

3.5. Towards a 3-Tier Reimplementation of ModelLib

With the access control mechanism for the model meta information in place, the attention returned to the
ModelLib prototype itself. The first prototype had served well to demonstrate and validate the ideas for a
model library infrastructure. However, the experiences from its development had shown weaknesses in
its technological foundation, which would complicate the implementation of the remaining requirements,
especially the implementation of an API for EDA tools to access ModelLib and the consideration of
semantical meta information and complex queries on the meta information database. The usage of PHP
for the web interface development allowed a rapid prototyping of the ModelLib user interface, but did
not allow to cleanly separate the application logic from the presentation layer. Therefore, it was decided
to reimplement the web interface to improve the modularity of the data storage, application logic, and

31



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

ID A1 A2

1 42 7
2 6 13
3 18 31
4 9 40

Data

mladmin: SUID

USER REF GRANT

Bob 1 true
Bob 2 true
Bob 3 false
Jim 2 true
Jim 4 true

DataACL

mladmin: SUID

USER REF GRANT

Bob 1 true
Bob 2 true

ID A1 A2

1 42 7
2 6 13

DataView

mluser: SUID
mlguest: S

ID A1 A2 USER GRANT

1 42 7 Bob true
2 6 13 Bob true

1. Select tuples

of current user
where

GRANT=true

2. Join with
data

where ID=REF

3. Project attributes
of Data on view

Figure 3.7.: Implementation of the tuple-wise access control mechanism. Below each table, the access
rights to it for the different database roles are listed: (S)elect, (U)pdate, (I)nsert, and (D)elete.
Rewriting rules handle the Update, Insert, and Delete actions on the view by forwarding
permitted actions to the underlying table and dropping not permitted actions.

Model class

Interface

Architecture

Design entity

from parent

Architecture parameter

Architecture assertion

Interface port

Interface parameter

Interface assertion

FileDocument

Figure 3.8.: Access rights inheritance between the tables storing the model meta information. The tables
with names in bold have an own ACL, which is merged with the inherited rights definitions.
The entities Documents and Files are not inheriting from other instances because they can
be shared between several models.

32



3.5. Towards a 3-Tier Reimplementation of ModelLib

EJB

JSP/Servlets WikiWebSVN

ModelLib

Application Server

(GlassFish)

repository
(Subversion)

File
database

(PostgreSQL)

Meta information Wiki

database

(PostgreSQL)

Business

tier

Web browserSubversion client

Presentation

tier

EJB container

Web container

Data tier

HTTP(S) /WebDAV

Client

JDBC

Apache 2 with Tomcat connector

Figure 3.9.: Proposed architecture for the Java EE reimplementation of ModelLib [21].

presentation layers. Thus, a future API for EDA tools to directly access ModelLib would not require a
duplicated implementation of the ModelLib application logic. This work was started in the scope of two
master’s thesis projects [21, 177], which were supervised by the author of this Ph.D. thesis.

Thomas Böhm [21] evaluated the available technology options and proposed Java EE 5 [85] as the new
implementation platform for the next-generation ModelLib prototype. He made an initial proposal for a
3-tier architecture, which is shown in Figure 3.9. The PostgreSQL database and Subversion repository
would be kept as well as the Apache 2 web server, which would be augmented with a Tomcat connector
to interact with the added GlassFish application server. The new Java EE-based ModelLib application
would be deployed on the application server. Its business tier implementing the access to the meta
information database and the ModelLib application logic would run within an EJB container. The
application tier would run in an independent Web container and consist of JavaServer Pagess (JSPs) and
servlets implementing the web user interface of ModelLib. A future EDA API for ModelLib would run
in yet another container (not shown in Figure 3.9), which would directly interact with the application tier.
The YaWiki of the original prototype would be replaced by a Java-based pendant also running on the
application server.

Daniel von dem Knesebeck [177] refined this initial architecture proposal (Figure 3.10) and started
the implementation of the Java EE-based new ModelLib prototype. Within the time constraints for
his master’s project, he managed to implement the login/session management component for the web
interface, the user and access control management component for ModelLib, and the data persistence
layers, which is responsible for the object-relational mapping of the meta information database onto
corresponding Java objects. In Figure 3.10, these components are highlighted in grey. The implementation
of the data persistence layer was complicated due to a limitation of the used NetBeans Integrated

33



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

Figure 3.10.: Refined architecture for the Java EE reimplementation of ModelLib [177]. Only the com-
ponents highlighted in grey have been implemented in the cited work.

Development Environment (IDE), which could at that time automatically import tables but not views
from the PostgreSQL database. Therefore, the access to the views, which are central to the implemented
tuple-wise access control mechanism (Section 3.4), needed to be implemented manually. This also
meant that small changes to the meta information data model, which are normal in this early stage of the
project, required many additional changes in the access control and persistence layer to be taken into
account. Therefore, the application logic and user interface of the ModelLib application could not be
implemented anymore. The new Java EE architecture proved to be somewhat “heavy” in the light of the
incremental prototype development of ModelLib. To resolve these issues on the computer science side,
more development resources than were available for this project would have been needed. Since these
problems were clearly outside the scope of this Ph.D. thesis, it was decided to not pursue the ModelLib
development further than the described point.

3.6. Conclusions and Outlook

This chapter presented the concepts for a web-based platform to foster the reuse and collaborative
development of models in the AMS SoC Design Process, which provides central place to collect and
manage models and their associated meta information. The developed ModelLib prototype presented
in Section 3.3 implements the basic features of such a model library as described in Section 3.2. Its
web interface allows browsing for a model through the model class hierarchy. The meta information
about models, test benches, design languages, design tools, and external documents that are stored in
the meta information database can be displayed. New models can be added by committing them into
the repository and adding/editing their meta information in the meta information database using the

34



3.6. Conclusions and Outlook

web interface. A fine-grained access control mechanism has been implemented on the database layer to
allow the public usage of ModelLib over the Internet while keeping control on who has read and write
access to the different parts of the library. The querying of models is currently only supported through
direct SQL queries to the meta information database. This use case needs to be implemented into the
web interface, so that it will offer the designer elaborated query schemes to guide him/her in the selection
of a suitable model for the current design task at hand.

The presentation of the running ModelLib prototype in the scope of FDL 2006 [105] and
PRIME 2007 [107] yielded external interest in the project and gave input in the form of requirements to
consider additional kinds of meta information and to enable a tighter tool integration. One idea was to
automatise the import of models and their meta information using a modified documentation extraction
tool [153] and a meta information exchange format, which needs to be standardised. Another idea was
to augment the collected models with synthesis-related information to qualify them as soft-IP input for
the hierarchical synthesis of AMS systems [128]. Besides an extensible meta information model, this
would also require a refined API for the EDA tools. They would not only provide a user interface to the
model collection stored in ModelLib, but would autonomously select models with certain properties and
store models of firm-IP (i.e., qualified data points for a given technology and simulator) generated during
iterative synthesis processes.

These research perspectives and the identified unsatisfying separation of the application logic and
presentation aspects of the PHP-based ModelLib web interface led to the decision to start a reimplemen-
tation of the ModelLib application using the feature-rich Java EE platform. The goal was to improve the
modularity of the data storage, application logic, and presentation layers and to realise direct EDA tool
access through an API. This new technological foundation should have simplified the implementation of
usability improvements and of missing functionality in the web interface. It would have included work
towards a better integration of the three main components, i.e., repository, meta information database,
and wiki to offer the user a coherent interface. The usage of Java EE indeed allowed a better modu-
larisation of the ModelLib application, but unfortunately proved also to be a burden on the prototype
development. Java EE’s feature richness greatly simplifies the implementation of certain aspects (e.g.,
the implementation of the data persistence layer or login/web session management). However, it also
requires an evaluation/understanding of the many Java/web technologies and their interaction to make
the right choices for the ModelLib prototype development. Thus, only the login/web session, user/access
control management, and data persistence layer components could be finished with the limited available
development resources.

Another complication for the ModelLib prototype development was the evolving data model for the
model meta information. Even though the presented ER diagram for the meta information database
supports well the storage of the structural meta information about the model, the prototype development
and usage revealed smaller aspects, which needed to be improved. This usually implied only the
modification/addition of attributes to an entity. Unfortunately, each of these changes needed to be
manually propagated to the access control and data persistence layers of the ModelLib prototype due to a
lacking tool support for the import of database views by the used IDE at the time when the presented work
was done. This would have applied also to the further development of the ModelLib prototype, in which
the main task would have been to support the structured storage of the semantical meta information. As
with the abovementioned research perspectives, this would have implied serious extensions of the current
database scheme. Therefore, a way needs to be found to incrementally develop the ModelLib prototype
and the underlying meta information database to allow successive implementation of the different model
library use cases and the evaluation of new ideas. Ideally, the meta information data model should be
modularised and clearly defined in a kind of XML schema. The database schema, the configuration

35



3. ModelLib: A Web-Based Platform for Collecting Behavioural Models

of the access control mechanism, the object-relational mapping layer for the web application, and the
model meta information exchange file format could then be automatically derived from that data model
definition schema. However, the development of the required tools is outside the scope of this thesis and
was well beyond the available resources.

Still, the development of ModelLib was a valuable experience. The use cases developed for this
tool show how it can support the AMS SoC design process by fostering the reuse and collaborative
development of models for tasks like architecture exploration, system validation, and creation of more
and more elaborated models of the system. The experiences from the ModelLib development delivered
insight into which aspects need to be especially addressed throughout the development of models to
make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the
development of an efficient modelling methodology for the top-down design and bottom-up verification
of RF Systems based on the systematic usage of behavioural models which is described in the Chapter 4.

36



4. A VHDL-AMS-Based Methodology to Efficiently Model
RF Systems for their Design and Verification

This chapter presents a modelling methodology for the top-down/bottom-up design of RF systems
based on the systematic use of VHDL-AMS models. The model interfaces are parameterisable and
pin-accurate. The designer can choose to parameterise the models using performance specifications or
device parameters back-annotated from the transistor level implementation. The abstraction level used
for the description of the respective analogue/digital component behaviour has been chosen to achieve
a good trade-off between accuracy, fidelity, and simulation performance. These properties make the
models suitable for different design tasks such as architectural exploration or overall system validation.
This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to
meet very different target specifications. The achieved flexibility and systematic documentation of the
models facilitate their reuse in other design projects.

4.1. Introduction

Portable, battery-powered electronic devices (cell phones, PDAs, notebooks, mice, . . . ) nowadays rou-
tinely contain wireless functionality to communicate among each other using standards like Bluetooth™,
Wi-Fi™, or GSM™. This became possible due to the integration of full RF transceivers into a SoC, which
are built of these main parts (Figure 4.1):

Frequency synthesiser: based on a Phase-Locked Loop (PLL) consisting of Voltage Controlled
Oscillator (VCO), DIViders (DIVs), Phase/Frequency Detector (PFD), Charge Pump (CP), LooP
Filter (LPF), Quartz Oscillator (QO) for the reference frequency, Σ-∆ modulator for fractional
frequency division and Multi-stAge-noise-SHaping (MASH) to generate the RF carrier signal
required for modulation and demodulation.

Receiver (RX) chain: consisting of Channel Selector (CS), Low-Noise Amplifier (LNA), MIXer
(MIX), Intermediate Frequency Amplifier (IFA), Poly-Phase Filter (PPF), and DSP.

Transmitter (TX) part: modulating the Pulse-Shaped (PS) data bit stream on the RF carrier using direct
modulation via the fractional PLL and amplifying the RF signal with a PA.

POWer management (POW): including linear regulators and step-up converters.

Digital ConTRoL (CTRL) of the transceiver through some communication interface (e.g., Serial Pe-
ripheral Interface (SPI) or Inter-Integrated Circuit (I2C) bus) or any other digital system (e.g., a
microcontroller).

The design of such a complex system is highly demanding since its analogue/RF and digital parts
require different design flows, methodologies, and tools.

During the top-down design phase, the overall system specifications must be properly distributed and
assigned to the components defined by the selected architecture. Then, the result has to be evaluated and

37



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

POW

CTRL

LNA PPFIFA DSPMIX

PA LPFVCO

DIV

CP
PFD

Σ-∆

QO

data_out

data_inPS

RX

TX PLL

TX

ctrl CS

RX

Figure 4.1.: Architecture of an RF transceiver for frequency-modulated signals.

checked against constraints such as the feasibility with the selected technological process. The distributed
specifications will then be used for the detailed block design until their layout is obtained. While HDLs
such as VHDL or Verilog are routinely used for the design of digital parts, mathematical tools such as
MATLAB®/Simulink® or spreadsheets are still preferred for deriving analogue/RF specifications and
performing system level studies such as link budget analysis. However, mixed-signal HDLs such as
VHDL-AMS or Verilog-AMS offer additional capabilities that can support the top-down design and
more specifically the architectural exploration step. Anticipating the real component behaviours with
models at proper levels of abstraction using appropriate parameters is a considerable help in that phase.
Their reusability for evaluating various possible architectures is also an advantage [63].

During the bottom-up verification phase, the implemented components must be individually verified
and then assembled to form the complete system under design. Assuming that each component has
been successfully verified, a full top level verification is necessary for detecting interface issues such as
wrong signal behaviour or incorrect timing. As full system verification at transistor level is becoming
impracticable due to the huge amount of data to handle, models at proper levels of abstraction using
appropriate parameters again offer the required accuracy/verification performance trade-off [151].

This chapter reports on the development of a library of VHDL-AMS models called RF_TRX applying
a dedicated modelling methodology. The goal is to support both the top-down architectural exploration
and the bottom-up verification of complex RF systems such as the presented RF transceiver. The starting
point was an existing design of an FSK transmitter (indicated by the dashed line in Figure 4.1) provided
by the RF group of the Centre Suisse d’Électronique et de Microtechnique SA (CSEM). From its
circuit topology, behavioural VHDL-AMS models of each of its components have been abstracted.
The interfaces of each component model were generalised and their behaviour parameterised using a
particular modelling methodology, which is presented in Section 4.2. Special care has been taken to
model the proper non-idealities, while maintaining acceptable simulation performances, and to define
consistent parameter sets that support the top-down (specification) and bottom-up (back-annotation)
phases. Similar model libraries have been already presented, e.g., in Milet-Lewis et al. [120], Frevert,
Haase, and Jancke [54], and MGC [117], but they mostly focus on top-down design only.

The chapter is organised as follows. Section 4.2 presents the modelling methodology that has been
used for the modelling of the frequency synthesiser and its components described in Section 4.3. The
development of a model of the VCO is described in detail from the designer’s specification to the actual

38



4.2. Modelling Methodology

VHDL-AMS model as well as its validation using an elaborate test bench and transistor level reference
model. Other component models needed to model the frequency synthesiser are only outlined as they
have been specified and developed in the same way. Section 4.4 presents the usage of the developed
VHDL-AMS models for the architectural exploration of an FSK transmitter in two different design cases
using carrier frequencies of 868 MHz and 2.45 GHz. The section also shows how the developed structural
transmitter model can be reused during bottom-up verification of transistor level implementations of
individual components and how modelling decisions impact the simulation performance. Finally,
Section 4.5 draws some conclusions and gives an outlook on future steps.

4.2. Modelling Methodology

In this section, the modelling methodology is outlined. Its application is illustrated in Section 4.3 using
the frequency synthesiser and particularly its VCO component as an example.

The first step involves the definition of the requirements the model library shall meet. This includes:

• The definition of the components that will be modelled,

• The level(s) of detail, at which the component behaviours shall be described,

• The design tasks (e.g., top-down architecture exploration, bottom-up verification) that the compo-
nent model shall support,

• The parameters that shall be available to the model user (primary parameters), and

• The parameters that shall be derived internally (secondary parameters).

The definition of these two kinds of parameters has to be done carefully as the same model shall be
used for both top-down architecture exploration and bottom-up verification. In the top-down phase, the
interface parameters (in the context of VHDL-AMS also known as generic parameters or just generics)
are used as specifications and internal parameters are used as nominal values for the design of the
component at the transistor level. In the bottom-up phase, the interface parameters are back-annotated
with values from the transistor level implementation and internal parameters have in turn values that
correspond to extracted specifications. This also means that models shall be pin-accurate for easy
replacement with equivalent transistor level models, when required.

The second step involves the specification of the behaviours to model, their interfaces (signals
and parameters), and their internal parameters as discussed above. This depends largely on which
specifications need to be validated with the help of the (sub-)system model during the different design
tasks. It requires a preliminary understanding of the overall system function to derive the principal
component parameters that have an influence on the system performance. Only non-ideal behaviours
should be considered in the component models, which have a direct impact on the system design and
can be approximately quantified or described without retaining all the details of the transistor level
implementation. Otherwise, there will be no advantage of using a behavioural model rather than the
transistor level model of a component. The specification is largely prepared by the domain experts, i.e.,
in our case the RF designers, with feedback given by the model developers, e.g., asking for clarification
or restructuring of certain specifications.

Then, the agreed specifications have to be translated into legal VHDL-AMS models. In this step,
the capabilities offered by the modelling language and, unfortunately, the incomplete support of the

39



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

language in existing EDA tools, have to be balanced to achieve the intended accuracy, fidelity and
simulation performance. For example, applying event-driven modelling techniques when describing
analogue behaviours may make a model more robust and faster to simulate. For this work, it has been
decided to define only one entity per component with a given port interface. This entity includes all
specified primary parameters for the different design tasks. This facilitates the reuse of structural models
throughout the top-down/bottom-up design process. The model behaviour is implemented in one or more
architectures, each targeting certain design tasks with its specified level of detail. Each architecture
may use only a subset of the generic parameters specified by the entity and calculate from them its
internal parameters. The implemented behaviour is expressed in terms of the signals/quantities bound to
the entity’s ports/terminals, the internal signals/quantities, and the generic/internal parameters. If two
design tasks require the same level of detail (i.e., the same behaviour) but different generic parameter
sets (e.g., performance specifications for the top-down design or transistor level device parameters for
the bottom-up verification), it can be beneficial to derive from both generic parameter sets a common set
of internal parameters that are then exclusively used to express the model’s behaviour. Thus, the code
implementing the behaviour can be largely reused. Only the initialisation of the internal parameters in
the architecture will differ as well as maybe some architecture level assertions. Supplementary internal
parameters might also be calculated, which are unrelated to the primary behaviour of the model but are
valuable for the RF designer. For each entity, an identical component definition is available in a package.
The designer is encouraged to use exclusively these components in his structural models. Thus, he can
conveniently select for each component instance the architecture to be used during a simulation for a
certain design task by means of an external configuration.

Finally, the models shall be thoroughly tested using elaborate test benches that include as much
as possible the verification of assertions about the modelled components. If reference models or
measurements of these components exist, the new generalised model shall be validated against them.

As these steps imply a non-negligible implementation effort, the models and test benches shall be
as flexible and modular as possible to be reusable in other design projects. In this way, the design
process can be accelerated and optimised using an over time growing base of well documented and
individually reviewed/verified component models, in which validity other designers can trust. The
particular requirements for such a model library and an infrastructure supporting it have been described
in detail in Chapter 3. The model implementations need to be well documented for facilitating the
maintenance of the code and possible addition of further component effects. This also requires the
development of (automated) test benches allowing to check as far as possible that modifications don’t
break the model itself or dependent models.

4.3. Modelling the Frequency Synthesiser

4.3.1. Specification of the Frequency Synthesiser Behaviour

A frequency synthesiser [152] is a system that allows to enslave an oscillator at a specific frequency. It is
most of the time based on a PLL (Figure 4.1) that includes a VCO. For the RF application described
in this chapter, the VCO is designed to give a signal at high frequencies, like those specified for the
Industrial, Scientific, Medical (ISM) or Short Range Device (SRD) bands. Such oscillator should
moreover have a low phase noise, but this point will not be treated or modelled here (see Hajimiri and
Lee [69] for more informations on phase noise in oscillators). The frequency divider counts the edges of
the signal coming from the VCO and gives a digital rising edge to the PFD when the count has reached
the dividing value given by the Ndiv input. As long as the edges coming from the frequency divider

40



4.3. Modelling the Frequency Synthesiser

C1 C2

R2/2

R2/2

R3/2

R3/2

C3

Phase Detector
and

Charge Pump
KPD

VCO
fvco
Kvco

Dividers
Ndiv

Sigma-Delta
MASH 3rd order

NINTEG NFRACT

lo_p lo_m

R4/2

R4/2

C4

tune_m

tune_p

Quartz Osci
fREF,PLL

Loop Filter

ΦMARGIN, fCUT−OFF

NINTEG

Figure 4.2.: Global structure of the frequency synthesiser.

and the quartz oscillator are not in phase, the PFD will order the CP to increase or decrease the tuning
voltage, filtered by the LPF, at the input of the VCO. Thus, the frequency of the VCO will change until
its frequency, divided by the ratios of the frequency dividers, is exactly equal to the reference frequency
supplied by the quartz oscillator. The equation expressing the relation between VCO frequency fvco, the
division ratio Ndiv, and the quartz reference frequency fREF,PLL is:

fvco = fREF,PLL · Ndiv (4.1)

Please also note in this equation a convention used for the rest of this chapter: Variables, which stay
constant throughout the whole simulation, i.e., which are to be passed as generics or to be calculated
once during model initialisation, are denoted with indices in upper case. Variables changing over the
course of the simulation have lower-case indices. This convention helps later to decide which variables
need to be declared as constant and which as quantities or signals during the design and implementation
of the model.

As for every looped system, a stability problem occurs if the phase margin of the PLL open-loop gain
is too small. For calculating this open-loop gain, we need to define the principal parameters (Figure 4.2)
of each block:

VCO: Kvco in Hz/V, expresses the relationship between the effective input tuning voltage vtune,eff (in
Figure 4.2 the voltage over C4) and the output VCO frequency fvco:

fvco = Kvco · vtune,eff + fvco,0 (4.2)

with fvco,0 being the free running frequency of the VCO for vtune,eff = 0 V.

Frequency divider: Ndiv, modulated by the Σ-∆ modulator, is the division ratio between the VCO
and the quartz oscillator frequencies. In an implementation, Ndiv might be obtained by cascading
several (programmable) dividers and controlling their individual division ratios with a dedicated
control block.

41



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

PFD and CP: KPD in A/rad, expresses the gain between the phase error at the input of the PFD and the
instantaneous current flowing at the output of the CP.

LPF: C1, R2, C2, R3, and C3 are the circuit device parameters of the loop filter, which need to be adjusted
to achieve a proper phase margin ΦMARGIN for a specific cut-off frequency fCUT−OFF. Note that
a fourth order R4, C4 (impedance at the VCO input) may not be negligible and has therefore to
be taken into account. Depending on the VCO input impedance, also a loop filter of lower order
(omitting R3 and C3) might be sufficient.

Using these parameters, the open-loop transfer function of the PLL is given by the following equation:

H( jω) =

Kvco·KPD
NDIV· jω

· Z( jω)(︁
1 + jω · R3 ·

(︁
C3 +

C4
1+ jω·R4C4

)︁)︁
· (1 + jω · R4C4)

(4.3)

where Z( jω) is the impedance seen by the charge pump:

Z( jω) =
1

jω ·

⎛⎜⎜⎜⎜⎜⎝C1 +
C2

1+ jω·R2C2
+

C3+
C4

1+ jω·R4C4

1+ jω·R3·

(︂
C3+

C4
1+ jω·R4C4

)︂
⎞⎟⎟⎟⎟⎟⎠ (4.4)

By calculating the phase value, for which the magnitude of Eq. (4.3) is equal to one, the system phase
margin can be derived [97]. In the next section, the behaviour of the VCO is specified in more detail. For
all other component models, the same approach has been used.

4.3.2. Specification of the Voltage Controlled Oscillator Behaviour

The task of an oscillator is to generate a periodic signal at a certain frequency with well known properties.
Different implementations can be used to build the VCO by satisfying the gain and phase conditions
needed to ensure steady-state oscillation [101]. When used in a frequency synthesiser, the oscillator
has to cover a precise output frequency range determined by the target application. Thus it has to be
controlled somehow in an analogue way (e.g., by a voltage supplied to a varicap) and, optionally, in a
digital way (e.g., by using a switched capacitor bank). A tunable ideal oscillator with continuous output
phase and control voltage vtune,eff can be represented by the following equation:

vosc(t) = VAMP · cos
(︃
2π

(︃
Kvco

∫︁ t

−∞

vtune,eff dt + fvco,0 · t
)︃)︃

(4.5)

For this work, an LC oscillator (Figure 4.3) with band switching capabilities is modelled. It is composed
by an inductor LTANK and several capacitors, which fix together the oscillator frequency fvco, while some
active devices compensate for the losses in order to sustain the oscillation. The frequency tuning is
performed by adjusting the capacitance value using an analogue and a digital control in parallel. The
analogue control is achieved by means of a varicap Cv,tot(vtune,eff) allowing continuous frequency tuning
over a certain range. The digital control is realised as a bank of switchable capacitances Ctank(band),
which allows to shift the centre frequency fvco,0 of the range covered with the analogue control in a
discrete way. The final oscillation frequency is thus given by:

fvco =
1

2π ·
√︀

LTANK ·
(︀
Ctank(band) + Cv,tot(vtune,eff)

)︀ (4.6)

42



4.3. Modelling the Frequency Synthesiser

Ctank

lo_p

Cv,totCtrl: vtune,eff

LTANK

lo_m

Ctrl: band

Figure 4.3.: Resonant elements of the VCO.

lo_m lo_p

tune_m

tune_p

lo_com lo_com

CC CC

CP

CP

CP

CP

CC CC

CVCV

R4

R4 R4

R4

(a) Wiring of the varicap inside the VCO structure.

tune_m

tune_p

CPCC2Cv

R4
2

R4
2

(b) VCO input impedance
between lom and lop.

lo_m lo_p
CC CCCvCv

CP CP

R4 R4

(c) VCO output impedance between
tune_m and tune_p.

Figure 4.4.: Wiring of the varicap inside the VCO and resulting input/output impedances.

with LTANK the oscillator inductance, Ctank(band) the bank capacitance for the selected band,
Cv,tot(vtune,eff) the variable capacitance for the effective tuning voltage vtune,eff .

The previous equations show that the primary parameter needed for a correct VCO model is Kvco. It is
present in the time- and frequency-domain equations (by means of the variable capacitance) affecting not
only the VCO behaviour but also the PLL stability (Eq. (4.3)). The value of Kvco is directly related to the
characteristic of the varicap, which is the circuit element used to perform the frequency tuning. Therefore,
a detailed study of the varicap and its usage in the VCO circuit has to be done. Figure 4.4a depicts the
varicap configuration inside the VCO structure with biasing resistances R4, coupling capacitances CC ,
and parasitic capacitances CP. The equivalent capacitances seen from the filter (C4, Figure 4.4b) and
from the oscillator terminals (Vv,tot, Figure 4.4c) are:

C4 = 2Cv + CC + CP (4.7)

Cv,tot =

(︃
2

CC
+

2
Cv + CP

)︃−1

with
CP

CC
� 1 % (technology dependent) (4.8)

The nonlinear dependency of the varicap density Dcv from the effective tuning voltage vtune,eff at its
terminals can be accurately described using a hyperbolic tangent function:

Dcv(vtune,eff) = DCV,AMP · tanh

⎛⎜⎜⎜⎜⎜⎜⎜⎝
dDCV,0
dvtune,eff

DCV,AMP
·
(︀
vtune,eff − V0

)︀⎞⎟⎟⎟⎟⎟⎟⎟⎠ + DCV,0 (4.9)

43



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
vtune,eff / V

DCV,MAX −DCV,MIN = 2 ·DCV,AMP

= 6.0fFµm−2D
cv

/f
F

µm
−2

dD
cv

dv
tu

ne
,e

ff
/f

F
V

−1
µm

−2

V0 = 87mV

dDCV,0
dvtune,eff

=−9.3fFµm−2 V−1

DCV,0 = 6.2fFµm−2

Figure 4.5.: Fitting of the varicap density and its derivative to the TSMC 0.18 µm process using a
hyperbolic tangent function (Eqs. (4.9) and (4.10)).

with the following technology-dependent parameters (Figure 4.5):

V0 : Offset tuning voltage for the point with the steepest slope dDcv
dvtune,eff

of the measured
varicap density.

DCV,0 = Dcv(V0) : Varicap density measured for V0.

DCV,AMP : Varicap density modulation amplitude.

dDCV,0
dvtune,eff

= dDcv
dvtune,eff

⃒⃒⃒⃒
V0

: Slope of Dcv measured at V0.

By deriving the varicap density function with respect to the tuning voltage vtune,eff , we obtain:

dDcv

dvtune,eff

=
dDCV,0

dvtune,eff

·

⎛⎜⎜⎜⎜⎜⎝1 − (︃
Dcv(vtune,eff) − DCV,0

DCV,AMP

)︃2⎞⎟⎟⎟⎟⎟⎠ (4.10)

Then, by defining the area ACV of the varicap, it is possible to calculate its absolute value and derivative:

Cv = ACV · Dcv
dCv

dvtune,eff

= ACV ·
dDcv

dvtune,eff

(4.11)

To calculate Kvco, we also need the derivative dCv,tot
dvtune,eff

of the total equivalent varicap Cv,tot seen by the
VCO between the terminals lo_p and lo_m taking into account the coupling and parasitic capacitances
present in the circuit (Figure 4.4a):

dCv,tot

dvtune,eff

=
1
2
·

1(︁
1 +

Cv
CC

+
CP
CC

)︁2 ·
dCv

dvtune,eff

(4.12)

44



4.3. Modelling the Frequency Synthesiser

For a given area of the coupling capacitors and varicap, the optimum point can be calculated by searching
the maximum of Eq. (4.12). In the case of the TSMC 0.18 µm process, the density of the coupling
capacitance DCC is 0.8 fF/µm2 and the density of the varicap DCV,0 = Dcv(87 mV) = 6.2 fF/µm2 in
Figure 4.5. The optimum point appears for a ratio CC

CV,0
equal to:

CC

CV,0
=

1

2 · (1 +
CP
CC

)
·

⎛⎜⎜⎜⎜⎜⎜⎝1 +

√︃
1 + 8 ·

DCC

DCV,0
· (1 +

CP

CC
)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.13)

The resulting CC
CV,0

≈ 1.2 constitutes a lower limit for the choice of the ratio between the coupling
capacitance and varicap. However, in that case the kvco( fvco) curve (Figure 4.7d on page 57) won’t be
very symmetric around the VCO’s centre frequency. Therefore, CC

CV,0
needs to be increased reasonably

to keep the parasitic capacitance CP (which is coupled through a fixed ratio to CC in Eq. (4.8)) as low
as possible with respect to the varicap (Figure 4.4c). From experience, a CC

CV,0
= 4 constitutes a good

trade-off and has been used for the VCO in the design examples presented hereafter.
Using Eqs. (4.6) and (4.12), we can finally calculate Kvco:

Kvco =
d fvco

dvtune,eff

= 2π2 · f 3
vco · LTANK ·

(︃
−

dCv,tot

dvtune,eff

)︃
(4.14)

Using the technology constants introduced for the varicap density given by Eq. (4.9) and choosing the
ratios CC

CV,0
and CP

CC
for the capacitances, the varicap area ACV and its related capacitances CC and CP can

be calculated to optimise the VCO to have a maximal Kvco at a certain target frequency fVCO,OPT. This
optimal frequency is supposed to be at the inflection point of Dcv(vtune,eff) at V0. This maximal Kvco is
used for the PLL stability calculation with the help of Eqs. (4.3) and (4.4) described in Section 4.3.1.
For accurate simulation, the instantaneous value of Kvco is always used.

4.3.3. Design and Implementation of the Component Models

During the design and implementation phase, the functional specification of each component developed
together with the RF designer is translated into an executable model. Thanks to the expressiveness of
VHDL-AMS, which is close to the algorithmic and mathematical notation used to describe digital and
analogue behaviour, it is rather straightforward to model the specified behaviour. Common to all models
is the systematic usage of assertions to check for consistent parametrisation of the model and compliance
of the model state with the modelling assumptions. To facilitate code comprehension and maintenance, a
consistent coding style is enforced through peer-review establishing/encouraging for instance:

• A naming convention,

• Consistent commenting of each declared constant/quantity/signal regarding its purpose and physi-
cal unit,

• The usage of common coding patterns for digital behaviour,

• The implementation of each model effect as local and independent from each other as possible.

To facilitate the parallel development/usage/maintenance of the models, their sources, related documenta-
tion, and their simulation environment are managed by a revision control system, e.g., Subversion in the
case of the RF_TRX library.

45



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

Listing 4.1: Overall structure of the VHDL-AMS models developed for the RF_TRX library.

1 entity <model>
2 generic (
3 −− Pr imary parameters o f each a b s t r a c t i o n l e v e l
4 );
5 port (
6 −− Pin−accu ra te p o r t i n t e r f a c e
7 );
8 begin
9 −− I n t e r f a c e l e v e l a s s e r t i o n s

10 end;
11
12 architecture <abstraction_level >
13 −− C a l c u l a t i o n o f secondary parameters
14 −− Signa l , t e r m i n a l , and q u a n t i t y d e c l a r a t i o n s
15 begin
16 −− Debug code and a r c h i t e c t u r e l e v e l a s s e r t i o n s
17 −− Behav iou ra l d e s c r i p t i o n
18 −− Compute des ign data ( e . g . , per formance e s t i m a t e s )
19 end;

The VHDL-AMS models developed in this way for the RF_TRX library have all the same overall
structure, which is outlined in Listing 4.1. There is one common entity definition for the interface of
the component and one or more architectures implementing the behavioural or structural description
of the model on different abstraction levels or for different design tasks (e.g., for top-down design and
bottom-up verification). The entity defines the pin-accurate port interface of the component model so
that structural model descriptions can be mostly reused throughout the whole design process. To this end,
structural models usually do not instantiate directly an entity with an architecture, but use an identical
component declaration from a package. A configuration can then specify during elaboration which
entity/architecture pair shall be used for the simulation at hand. Moreover, multi-level simulations with
transistor level models replacing behavioural model of certain components during bottom-up validation
are facilitated by this approach (Sections 4.3.4 and 4.4.3). If during the design process the interface
changes, the developed models can be usually easily adapted by adding a thin wrapper instantiating the
model and mapping the generics and ports from the new to the old interface.

The entity definition contains the generic parameters for all architectures. Each architecture doc-
uments which subset of these primary parameters it uses for the calculation of its internal secondary
parameters. Only after the calculation of the secondary parameters, the architecture declares its internal
signals, terminals, and quantities. The architecture body contains first debug code and architecture level
assertions to check the calculated secondary parameters against fundamental model assumptions and
to monitor the state of the model. Assumptions that can be already checked on the interface level, e.g.,
the consistency of the supplied generic parameters or the value range for port signals, are implemented
in form of assertions in the body of the entity. Each architecture implementation can rely on these
guarantees and must, as a consequence, fulfil its part of the contract concerning the allowed value
ranges of the output signals. Then follows the behavioural implementation itself. In the last part of the
architecture body, some design data, e.g., performance estimates, are calculated, which do not contribute
to the component’s behaviour but give the designer insight into its state, functioning, and performance.

46



4.3. Modelling the Frequency Synthesiser

In the RF_TRX library, the PFD, CP, dividers, and Σ-∆ modulator models have a single architecture,
which satisfies the needs for the top-down design and bottom-up verification phases. Their top-down
design parameters are also used during the bottom-up phase, which provides additional details like delays
or mismatches. The Phase/Frequency Detector (PFD) model is implemented as a digital behaviour
description (two D-flip-flops and one AND-gate) augmented by generics to specify the propagation
delays of the gates, which are back-annotated during the bottom-up phase. The differential charge pump
model is implemented as ideally switched current sources with internal resistance. Their values are
determined as a multiple of a measured input bias current, as they are implemented as current mirrors on
transistor level. Mismatches can be specified for the bottom-up verification. This level of precision is
sufficient. For a more detailed study of the charge pump’s impact on the PLL performance (especially
due to the switching effects from the transistors), its SPICE component model can be integrated into the
system level VHDL-AMS model and then simulated (Section 4.4.3). Even though it is not standardised,
this approach is nowadays supported by many simulators. As a general strategy for the implementation of
the RF_TRX library, component models consider only those non-ideal effects, which have a direct impact
on the system design and can be approximately quantified/described without retaining all the details of
the transistor level implementation. Effects, which cannot be easily quantified or which behaviour cannot
be abstracted away from the transistor level implementation, are left unconsidered in the behavioural
models. Their impact is only evaluated after the transistor level implementation during the bottom-up
verification phase using selectively the transistor level models in the behavioural system model.

The implementation of the differential loop filter model is a bit more complex. The stability analysis
of the PLL (Section 4.3.1) shows that the model needs to describe the electrical RC network. That is
why it has been implemented using branch equations instead of a SPICE-like structural description.
This allows to use simultaneous if-statements to implement the filter orders 1, 2, and 3 in the same
model (Listing 4.2). The capacitors’ behaviour is described in its integral form (using ’integ) instead of
its differential form (’dot), as this showed better numerical behaviour in simulation. For the top-down
design phase, the RF designer can specify in the generics, besides the filter cut-off frequency fCUT−OFF
and its order, the phase margin ΦMARGIN to be realised for the PLL characterised by the charge pump
sensibility KPD, the VCO frequency sensibility KVCO, and the frequency division factor NDIV. This
information is used in the top-down architecture to calculate the R and C values of the filter taking into
account the device ratios R3

R2
and C3

C1
as well as the (possibly back-annotated) VCO input impedance

defined by R4 and C4. The bottom-up architecture allows to directly specify the R and C values.
The VCO model constitutes to date the most complex model of the RF_TRX library. Five different

interfaces (i.e., entities) model the RF output signal at various levels of abstraction (Figure 4.6):

Instantaneous frequency: is directly calculated using Eq. (4.6) and thus suppresses the RF effects in
simulation. As a consequence, the integration step size of the analogue solver can be increased
up to one order of magnitude below the time constant of the PLL, which considerably acceler-
ates transient simulation. In combination with other base-band modelling approaches [36], this
abstraction allows to use the VCO output for up- and down-conversion in the frequency domain.

Single-ended and differential digital signals: are completely generated in the Discrete Event
(DE) domain by sampling fvco at the state change of the digital signal lo and calculating from it
the delay till the next state change:

lo⇐ lo after
1

| fvco(t)|
fvco ≫ fREF,PLL (4.15)

47



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

Listing 4.2: Architecture implementing the differential loop filter behaviour of filter orders 1, 2, and 3.

1 architecture td_detailed of loop_filter_diff is
2 −− I n i t i a l i s e the C1 , R2 , C2 , R3 , and C3 c o n s t a n t s f rom the g e n e r i c s . . .
3
4 −− D e c l a r a t i o n o f the v o l t a g e [ V ] and c u r r e n t [ A ] branch q u a n t i t i e s .
5 quantity v_c1 across i_c1 through tune_p_in to tune_m_in;
6 quantity v_2 across i_2 through tune_p_in to tune_m_in;
7 quantity v_r3_1 across i_r3_1 through tune_p_in to tune_p_out;
8 quantity v_r3_2 across i_r3_2 through tune_m_out to tune_m_in;
9 quantity v_c3 across i_c3 through tune_p_out to tune_m_out;

10 begin −− a r c h i t e c t u r e t d _ d e t a i l e d
11 −− Debug code . . .
12
13 −− Behav iour imp lemen ta t i on :
14 v_c1 == (1.0 / C1) * i_c1’integ;
15 if order >= 2 use
16 v_2 == R2 * i_2 + (1.0 / C2) * i_2’integ;
17 else
18 i_2 == 0.0;
19 end use;
20 if order >= 3 use
21 v_r3_1 == 0.5 * R3 * i_r3_1;
22 v_r3_2 == 0.5 * R3 * i_r3_2;
23 v_c3 == (1.0 / C3) * i_c3’integ;
24 else
25 v_r3_1 == 0.0;
26 v_r3_2 == 0.0;
27 i_c3 == 0.0;
28 end use;
29 end architecture td_detailed;

48



4.3. Modelling the Frequency Synthesiser

vco_digi_out

lofreq_to_digif_intune_p

tune_m

vco_freq_out

power

ground

freq_out

band

(a) Single-ended digital output.

vco_diff_digi_out

tune_p

tune_m

vco_freq_out

power

ground

freq_out

band

lo_p

lo_m

freq_to_diff_digi

f_in

(b) Differential digital output.

vco_sine_out

lofreq_to_sinef_intune_p

tune_m

vco_freq_out

power

ground

freq_out

band

(c) Sinusoidal quantity output.

vco_diff_sine_out

tune_p

tune_m

vco_freq_out

power

ground

freq_out

band

lo_p

lo_m

freq_to_diff_sine

f_in

ground

power

(d) Differential voltage output.

Figure 4.6.: VCO models with transient outputs.

This decoupling of the analogue and discrete solvers allows the analogue solver to increase its
integration step size. This abstraction is useful if the VCO output is fed directly into digital blocks.

Sinusoidal quantity or differential voltage signals: are generated from the specified amplitude and
the current value of the phase, which is calculated by integrating the instantaneous fvco over time:

ϕvco(t) = 2π
∫︁ t

0 s
fvco(t′) dt′ + ϕ0 (4.16)

vlo(t) = VLO,AMP · sinϕvco(t) (4.17)

This generation of the RF signal in the Continuous-Time (CT) domain considerably slows down
the analogue solver, which integration step size needs to stay one order of magnitude below fvco.
Nevertheless, it is more efficient than using a full LC oscillator model. This detailed abstraction
may be necessary to interface analogue blocks operating at RF and to do spectral analysis.

All five interfaces use the instantaneous frequency fvco (Eq. (4.6)). That is why it was decided to reuse
the VCO model with frequency output inside the models with digital or sinusoidal output (Figure 4.6).
The frequency to digital and frequency to sinusoidal conversions have been factorised into separate
models, which can be reused independently. To this end, the frequency to digital converters provide two
architectures. One implements the previously described discrete conversion. The other implements an
ideal conversion based on the integration of the input frequency like the frequency to sinusoidal converter
does (Eqs. (4.16) and (4.17)). This is necessary to avoid phase errors in cases, for which the input signal
cannot be considered as quasi-steady compared to the output signal.

The VCO model with instantaneous frequency output is thus the single place for implementing the
functional specification from Section 4.3.1 on three abstraction levels corresponding to three architectures.

49



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

Listing 4.3: Entity declaration of the VCO with frequency output model.

1 entity vco_freq_out is
2 generic ( −− Pr imary parameters o f each a b s t r a c t i o n l e v e l
3 F_OPT : real := 830.0e6; −− Centre f requency t o be o p t i m i s e d [ Hz ]
4 K_OPT : real := 60.0e6; −− Frequency s e n s i b i l i t y [ Hz / V ]
5 F_MIN : real := 750.0e6; −− Minimum c e n t r e f requency [ Hz ]
6 F_MAX : real := 890.0e6; −− Maximum c e n t r e f requency [ Hz ]
7 N_BITS : positive := 3; −− Number o f b i t s f o r band s e l e c t i o n [ 1 ]
8 N_BANDS : positive := 8; −− Number o f bands
9 RATIO_CC_CV0 : real := 4.0; −− Ra t i o o f C_C and C_VO [ 1 ]

10 RATIO_CP_CC : real := 0.01; −− Ra t i o o f C_P and C_C [ 1 ]
11 L_TANK : real := 5.0e-9; −− Tank induc tance [H ]
12 R_IN : real := 20.0e3; −− I n p u t r e s i s t a n c e [Ohm]
13 −− Technology c o n s t a n t s o f the v a r i c a p
14 V_0 : real := 0.087; −− O f f s e t v o l t a g e [ V ]
15 D_CV0 : real := 6.2e-3; −− Var i cap cap . d e n s i t y a t V_0 [ F /m* * 2 ]
16 DDCV0_DV : real := -9.3e-3; −− Slope o f D_CV a t V_0 [ F / (m* * 2 * V) ]
17 D_CV_AMP : real := 3.0e-3; −− Cap . d e n s i t y modu la t i on amp . [ F /m* * 2 ]
18 −− Component parameters from r e a l des ign f o r bottom−up v e r i f i c a t i o n
19 S_CV_DESIGN : real := 3.63e-10; −− Var i cap s u r f a c e [m* * 2 ]
20 C_TANK_MIN_DESIGN : real := 5.47e-12; −− Minimum tank capac i t ance [ F ]
21 C_TANK_MAX_DESIGN : real := 8.08e-12; −− Maximum tank capac i t ance [ F ]
22 −− Power supp ly v o l t a g e range
23 V_POWER_MIN : real := 0.9; −− Minimum supp ly v o l t a g e [ V ]
24 V_POWER_MAX : real := 1.8; −− Maximum supp ly v o l t a g e [ V ]
25 DEBUG : boolean := false); −− Debug i n s t a n c e
26 port ( −− Pin−accu ra te
27 signal band : in std_logic_vector(N_BITS -1 downto 0)
28 := std_logic_vector(to_unsigned(0, N_BITS)); −− Band s e l e c t o r
29 terminal power, ground : electrical; −− Power supp ly t e r m i n a l s
30 terminal tune_p, tune_m : electrical; −− Tuning t e r m i n a l s
31 quantity f_out : out real); −− VCO f requency [ Hz ]
32 begin
33 −− I n t e r f a c e l e v e l a s s e r t i o n s . . .
34 end entity vco_freq_out;

Its entity definition is given in Listing 4.3 showing all available generics and ports. Table 4.1 gives an
overview on the three architectures, their purpose, implemented behaviours, used generic parameters,
derived internal constants, and calculated transient values. The ideal architecture implements the band
switching capability and uses a constant frequency sensitivity KVCO. No input impedance is considered
at the tuning terminals. Two detailed architectures (one for top-down design, the other for bottom-up
verification) implement the full nonlinear behaviour of the VCO, as specified in Section 4.3.2, including
band switching, nonlinear varicap, nonlinear input impedance depending on vtune,eff , and calculation of
the instantaneous Kvco. The top-down variant uses a subset of the generics defined in the entity, which
represent the component specification (e.g., number of bands, frequency range, KVCO,OPT at fVCO,OPT)
and the target technology (fitting parameters of Eq. (4.9)) to calculate the internal (secondary) device
parameters (e.g., ACV, CC, CP, and the parameters of the tank capacitance bank). The bottom-up variant
directly uses the device parameters passed through the generics. Listing 4.4 shows how the nonlinear
behaviour of the VCO is implemented in the td_detailed architecture. The behavioural description in
the bu_detailed architecture does not differ, only the secondary parameters are initialised differently.

50



4.3. Modelling the Frequency Synthesiser
Ta

bl
e

4.
1.

:O
ve

rv
ie

w
on

th
e

ar
ch

ite
ct

ur
es

of
th

e
V

C
O

m
od

el
w

ith
ba

nd
sw

itc
hi

ng
ca

pa
bi

lit
y

an
d

in
st

an
ta

ne
ou

sf
re

qu
en

cy
ou

tp
ut

(v
c
o
_
f
r
e
q
_
o
u
t

).

A
rc

hi
te

ct
ur

e
i
d
e
a
l

t
d
_
d
e
t
a
i
l
e
d

b
u
_
d
e
t
a
i
l
e
d

U
se

ca
se

•
To

as
se

ss
ea

rl
y

sy
st

em
sp

ec
ifi

ca
tio

ns
.

•
To

as
se

ss
no

nl
in

ea
rt

ra
ns

ie
nt

be
ha

vi
ou

ra
nd

de
riv

e
V

C
O

im
pl

em
en

ta
tio

n
sp

ec
ifi

ca
tio

ns
.

•
To

as
se

ss
im

pa
ct

of
V

C
O

im
pl

em
en

ta
tio

n
on

th
e

sy
st

em
le

ve
l.

M
od

el
fe

at
ur

es
•

B
an

d
sw

itc
hi

ng
•

C
on

st
an

tk
vc

o
=

k O
PT

•
N

o
in

pu
tl

oa
d

•
C

he
ck

s
su

pp
ly

vo
lta

ge
,b

ut
dr

aw
s

no
po

w
er

•
B

an
d

sw
itc

hi
ng

•
N

on
lin

ea
rk

vc
o

•
N

on
lin

ea
ri

np
ut

lo
ad

•
C

he
ck

s
su

pp
ly

vo
lta

ge
,b

ut
dr

aw
s

no
po

w
er

•
B

an
d

sw
itc

hi
ng

•
N

on
lin

ea
rk

vc
o

•
N

on
lin

ea
ri

np
ut

lo
ad

•
C

he
ck

s
su

pp
ly

vo
lta

ge
,b

ut
dr

aw
s

no
po

w
er

U
se

d
ge

ne
ri

cs
•

C
on

st
an

tK
V

C
O

(K
_
O
P
T

)
•

C
en

tr
e

fr
eq

ue
nc

ie
s

ra
ng

e
f M

IN
(F
_
M
I
N

)t
o

f M
A

X
(F
_
M
A
X

)
•

N
um

be
ro

fb
an

ds
(N
_
B
A
N
D
S

,N
_
B
I
T
S

)
•

Su
pp

ly
vo

lta
ge

ra
ng

e
(V
_
P
O
W
E
R
_
M
I
N

,
V
_
P
O
W
E
R
_
M
A
X

)

•
Ta

rg
et

K
V

C
O

(K
_
O
P
T

)a
tc

en
tr

e
f V

C
O

(F
_
O
P
T

)
•

C
en

tr
e

fr
eq

ue
nc

ie
s

ra
ng

e
f M

IN
(F
_
M
I
N

)t
o

f M
A

X
(F
_
M
A
X

)
•

N
um

be
ro

fb
an

ds
(N
_
B
A
N
D
S

,N
_
B
I
T
S

)
•

R
at

io
s

C
C
/C

V
,0

(R
A
T
I
O
_
C
C
_
C
V
0

)a
nd

C
P
/C

C
(R
A
T
I
O
_
C
P
_
C
C

)
•

E
xt

er
na

lt
an

k
in

du
ct

an
ce

L T
A

N
K

(L
_
T
A
N
K

)
•

In
pu

tr
es

is
ta

nc
e

R
4

(R
_
I
N

)
•

V
ar

ic
ap

te
ch

no
lo

gy
pa

ra
m

et
er

s
V

0
(V
_
0

),
D

C
V
,0

(D
_
C
V
0

),
dD

C
V
,0

dv
tu

ne
,e

ff
(D
D
C
V
0
_
D
V

),
D

C
V
,A

M
P

(D
_
C
V
_
A
M
P

)
•

Su
pp

ly
vo

lta
ge

ra
ng

e
(V
_
P
O
W
E
R
_
M
I
N

,
V
_
P
O
W
E
R
_
M
A
X

)

•
N

um
be

ro
fb

an
ds

(N
_
B
A
N
D
S

,N
_
B
I
T
S

)
•

R
at

io
s

C
C
/C

V
,0

(R
A
T
I
O
_
C
C
_
C
V
0

)a
nd

C
P
/C

C
(R
A
T
I
O
_
C
P
_
C
C

)
•

E
xt

er
na

lt
an

k
in

du
ct

an
ce

L T
A

N
K

(L
_
T
A
N
K

)
•

In
pu

tr
es

is
ta

nc
e

R
4

(R
_
I
N

)
•

V
ar

ic
ap

te
ch

no
lo

gy
pa

ra
m

et
er

s
V

0
(V
_
0

),
D

C
V
,0

(D
_
C
V
0

),
dD

C
V
,0

dv
tu

ne
,e

ff
(D
D
C
V
0
_
D
V

),
D

C
V
,A

M
P

(D
_
C
V
_
A
M
P

)
•

V
ar

ic
ap

ar
ea

A
C

V
(S
_
C
V
_
D
E
S
I
G
N

)
•

Ta
nk

ca
pa

ci
ta

nc
e

ra
ng

e
C

TA
N

K
(b

an
d)

(C
_
T
A
N
K
_
M
I
N
_
D
E
S
I
G
N

,
C
_
T
A
N
K
_
M
A
X
_
D
E
S
I
G
N

)
•

Su
pp

ly
vo

lta
ge

ra
ng

e
(V
_
P
O
W
E
R
_
M
I
N

,
V
_
P
O
W
E
R
_
M
A
X

)

D
er

iv
ed

co
ns

ta
nt

s
•

C
en

tr
e

fr
eq

ue
nc

ie
s

di
st

an
ce

(F
_
S
T
E
P

)
•

V
ar

ic
ap

pa
ra

m
et

er
s

A
C

V
(S
_
C
V

),
C

v(
V

0)
(C
_
V
0

),
dC

v
dv

tu
ne
,e

ff

⃒⃒⃒⃒ V
0

(D
C
V
0
_
D
V

)

•
C

ou
pl

in
g

ca
pa

ci
ta

nc
e

C
C

(C
_
C

)
•

Pa
ra

si
tic

ca
pa

ci
ta

nc
e

C
P

(C
_
P

)
•

In
pu

tc
ap

ac
ita

nc
e

C
4(

V
0)

(C
_
I
N
0

)
•

To
ta

lv
ar

ic
ap

ca
pa

ci
ta

nc
e

C
v,

to
t(V

0)
(C
_
V
0
T
O
T

),
dC

v,
to

t
dv

tu
ne
,e

ff

⃒⃒⃒⃒ V
0

(D
C
V
0
T
O
T
_
D
V

)

•
Ta

nk
ca

pa
ci

ta
nc

e
ra

ng
e

(C
_
T
A
N
K
_
D
E
S
I
G
N

,
C
_
T
A
N
K
_
M
A
X

,C
_
T
A
N
K
_
S
T
E
P

)

•
V

ar
ic

ap
pa

ra
m

et
er

s
C

v(
V

0)
(C
_
V
0

),
dC

v
dv

tu
ne
,e

ff

⃒⃒⃒⃒ V
0

(D
C
V
0
_
D
V

)

•
C

ou
pl

in
g

ca
pa

ci
ta

nc
e

C
C

(C
_
C

)
•

Pa
ra

si
tic

ca
pa

ci
ta

nc
e

C
P

(C
_
P

)
•

In
pu

tc
ap

ac
ita

nc
e

C
4(

V
0)

(C
_
I
N
0

)
•

To
ta

lv
ar

ic
ap

ca
pa

ci
ta

nc
e

C
v,

to
t(V

0)
(C
_
V
0
T
O
T

),
dC

v,
to

t
dv

tu
ne
,e

ff

⃒⃒⃒⃒ V
0

(D
C
V
0
T
O
T
_
D
V

)

•
Ta

nk
ca

pa
ci

ta
nc

e
st

ep
si

ze
C
_
T
A
N
K
_
S
T
E
P

•
C

en
tr

e
fr

eq
ue

nc
ie

s
ra

ng
e

(F
_
M
I
N
_
D
E
S
I
G
N

,
F
_
M
A
X
_
D
E
S
I
G
N

,F
_
S
T
E
P
_
D
E
S
I
G
N

)

C
al

cu
la

te
d

tr
an

si
en

ts
•

In
st

an
ta

ne
ou

s
f v

co
=

f V
C

O
,0

(b
an

d)
+

K
V

C
O
·
v t

un
e

•
In

st
an

ta
ne

ou
s

K
vc

o,
f v

co
•

In
st

an
ta

ne
ou

s
K

vc
o,

f v
co

51



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

Listing 4.4: Top-down detailed architecture of the VCO with frequency output model.

1 architecture td_detailed of vco_freq_out is
2 −− D e f i n i t i o n o f suppo r t f u n c t i o n s . . .
3 −− C a l c u l a t i o n o f secondary parameters . . .
4 −− Q u a n t i t y and S i g n a l s d e c l a r a t i o n . . .
5 begin
6 −− Debug code and a r c h i t e c t u r e l e v e l a s s e r t i o n s . . .
7
8 −− Behav iour imp lemen ta t i on :
9 −− Power supp ly

10 i_power == 0.0;
11 −− l oad a t i n p u t
12 c_in == 2.0 * c_v + C_P + C_C;
13 v_tune_eff == (1.0 / c_in) * i_tune’integ;
14 v_tune == R_IN * i_tune + v_tune_eff;
15 −− Band s w i t c h i n g
16 c_tank <= C_TANK_MAX - real(to_integer(unsigned(band))) * C_TANK_STEP;
17 break on c_tank;
18 −− Var i cap capac i t ance
19 d_cv == D_CV_AMP * tanh((DDCV0_DV / D_CV_AMP) * (v_tune_eff - V_0)) + D_CV0;
20 c_v == S_CV * d_cv;
21 dcv_dvtuneeff == S_CV * (1.0 - ((d_cv - D_CV0) / D_CV_AMP)**2) * DDCV0_DV;
22 c_vtot == 1.0 / (2.0 / C_C + 2.0 / (c_v + C_P));
23 dcvtot_dvtuneeff == 0.5 * (C_C / (c_v + C_P + C_C))**2 * dcv_dvtuneeff;
24 −− Output f requency
25 f_out == 1.0 / (MATH_2_PI * sqrt(L_TANK * (c_tank + c_vtot)));
26
27 −− Compute des ign data ( e . g . per formance e s t i m a t e s ) :
28 −− Vo l tage s e n s i t i v i t y o f VCO f requency
29 k_vco == 2.0 * MATH_PI**2 * f_out**3 * L_TANK * (-dcvtot_dvtuneeff);
30 end architecture td_detailed;

52



4.3. Modelling the Frequency Synthesiser

Several programmable divider models have been implemented [15] with a focus on a flexible inter-
face (size of control word, digital input or instantaneous frequency input) and parameterisable digital
behaviour (e.g., minimal/maximal division ratio, control word treated as absolute division ratio or offset
to minimal division ratio). For a two-stage divider architecture, a divider model with integrated control
logic for a prescaler has been implemented.

For fractional division ratio control and noise shaping, a Σ-∆ modulator model has been developed [15].
It describes a MASH structure [152] of 1st to 3rd order on RTL using generate statements. The number
of bits representing the integer and fractional part can be adjusted to change the modulator resolution
during architecture exploration in order to meet the frequency synthesiser specification and be able to
reuse it in other projects.

The divider and Σ-∆ modulator models are primarily targeted to be used during the top-down design
phase. During bottom-up verification, they can be replaced by the gate level HDL models with detailed
annotated delays exported by the synthesis and place & route tools.

To summarise, Table 4.2 gives an overview on the models currently available in the RF_TRX library.
For some components, several models are available offering different interfaces. Depending on the
model, several architectures may be available to adapt the model to the design task at hand. The power
consumption of these components is not yet explicitly modelled as it was not identified to be a relevant
use case for the current state of development of the RF_TRX library. However, the power supply terminals
are included in each model, which test that the applied supply voltage has the correct polarity and remains
in the specified range. This is important to facilitate the bottom-up verification of the connectivity.

4.3.4. Validation of the Frequency Synthesiser Component Models

Each component model has a dedicated test bench instantiating the model through a component declara-
tion and providing configurations to bind each architecture to the component. Thus, all architectures can
be validated with the same test bench. When realisable with reasonable effort, the test benches implement
automated measurements and checks to validate the model behaviour. This can be done, e.g., in form of
processes, which calculate performance figures or monitor output signals by comparing them to some
kind of reference signals or expected envelope. Assertions can be used to check for fundamental model
assumptions. Simulation control scripts and waveform display setups for each configuration ensure the
reproducibility of simulation runs. Compilation and simulation of all models and test benches is handled
through a common build system implemented for Mentor Graphics ADVance MS™ (ADMS) effectively
putting an automated unit testing system in place. This drastically reduces the modification/simulation
turn-around times easing the evaluation of the impact of code modifications. This lowers the risk that
revisions committed to the Subversion repository contain code modifications that break the model or on
it depending models.

As an example for such an elaborate component test bench setup, the validation of the band switch-
ing VCO model with differential digital output is discussed in the following. The VCO is tested by
instantiating it inside the test bench and connecting it to the power supply. The VCO internally checks
that the power supply has the correct polarity and that it is in the specified range. The test bench
applies a saw tooth voltage vtune to the VCO’s tune input. Each saw tooth period, the band is switched
by incrementing the control word band. Thus all frequencies that can be generated by the VCO are
successively scanned through. Figure 4.7 shows the simulation results of the VCO test bench after an
automated transient analysis for 80 µs and loading the simulation results with the supplied waveform
display setup in the waveform viewer. The VCO used in this simulation has 8 bands to cover a frequency
range from 750 MHz to 890 MHz. Its parametrisation corresponds to the default values for the entity’s

53



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems
Ta

bl
e

4.
2.

:O
ve

rv
ie

w
on

th
e
R
F
_
T
R
X

m
od

el
lib

ra
ry

.

C
om

po
ne

nt
E

nt
ity

A
rc

hi
te

ct
ur

es
Ty

pe
D

es
cr

ip
tio

n

PF
D

p
d
f
_
d
i
g
i
_
d
i
f
f

r
t
l

R
T

L
D

ig
ita

lP
FD

co
ns

id
er

in
g

de
la

ys
of

fli
p-

flo
ps

an
d

re
se

t.

C
ha

rg
e

pu
m

p
c
h
a
r
g
e
_
p
u
m
p
_
d
i
f
f

d
e
t
a
i
l
e
d

A
M

S
C

om
m

ut
in

g
cu

rr
en

ts
ou

rc
es

w
ith

sw
itc

h
re

si
st

an
ce

s,
m

is
m

at
ch

es
,a

nd
sl

ew
ra

te
.

L
oo

p
fil

te
r

l
o
o
p
_
f
i
l
t
e
r
_
d
i
f
f

t
d
_
d
e
t
a
i
l
e
d

,b
u
_
d
e
t
a
i
l
e
d

A
RC

ne
tw

or
k

di
ff

er
en

tia
lfi

lte
ro

fo
rd

er
1,

2,
or

3.

V
C

O
v
c
o
_
f
r
e
q
_
o
u
t

i
d
e
a
l

,t
d
_
d
e
t
a
i
l
e
d

,b
u
_
d
e
t
a
i
l
e
d

A
B

an
d

sw
itc

hi
ng

V
C

O
w

ith
in

st
an

ta
ne

ou
s

fr
eq

ue
nc

y
ou

tp
ut

an
d

no
nl

in
ea

ri
np

ut
im

pe
da

nc
e,

f v
co

(C
v(

v t
un

e,
eff

))
fo

rd
et

ai
le

d
ar

ch
ite

ct
ur

es
.

v
c
o
_
d
i
g
i
_
o
u
t

,v
c
o
_
d
i
f
f
_
d
i
g
i
_
o
u
t

i
d
e
a
l

,i
d
e
a
l
_
d
i
s
c
r
e
t
e

,
t
d
_
d
e
t
a
i
l
e
d

,t
d
_
d
e
t
a
i
l
e
d
_
d
i
s
c
r
e
t
e

,
b
u
_
d
e
t
a
i
l
e
d

,b
u
_
d
e
t
a
i
l
e
d
_
d
i
s
c
r
e
t
e

A
M

S
B

an
d

sw
itc

hi
ng

V
C

O
w

ith
di

gi
ta

lo
ut

pu
ta

nd
no

nl
in

ea
ri

np
ut

im
pe

da
nc

e,
f v

co
(C

v(
v t

un
e,

eff
))

fo
r

de
ta

ile
d

ar
ch

ite
ct

ur
es

.

v
c
o
_
s
i
n
e
_
o
u
t

,v
c
o
_
d
i
f
f
_
s
i
n
e
_
o
u
t

i
d
e
a
l

,t
d
_
d
e
t
a
i
l
e
d

,b
u
_
d
e
t
a
i
l
e
d

A
B

an
d

sw
itc

hi
ng

V
C

O
w

ith
si

nu
so

id
al

ou
tp

ut
an

d
no

nl
in

ea
ri

np
ut

im
pe

da
nc

e,
f v

co
(C

v(
v t

un
e,

eff
))

fo
r

de
ta

ile
d

ar
ch

ite
ct

ur
es

.

f
→

tc
on

ve
rt

er
s

f
r
e
q
_
t
o
_
d
i
g
i

,f
r
e
q
_
t
o
_
d
i
f
f
_
d
i
g
i

i
d
e
a
l

,d
i
s
c
r
e
t
e

A
M

S
In

st
an

ta
ne

ou
s

fr
eq

ue
nc

y
to

di
gi

ta
ls

ig
na

l.

f
r
e
q
_
t
o
_
s
i
n
e

,f
r
e
q
_
t
o
_
d
i
f
f
_
s
i
n
e

i
d
e
a
l

A
In

st
an

ta
ne

ou
s

fr
eq

ue
nc

y
to

si
ne

w
av

e.

D
iv

id
er

s
d
i
v
i
d
e
r
_
p
r
o
g
_
d
i
g
i

i
d
e
a
l

D
Pr

og
ra

m
m

ab
le

di
gi

ta
ld

iv
id

er
.

d
i
v
i
d
e
r
_
p
r
o
g
_
f
r
e
q
_
d
i
g
i

i
d
e
a
l

A
M

S
Pr

og
ra

m
m

ab
le

di
gi

ta
ld

iv
id

er
w

ith
in

st
an

ta
ne

ou
s

fr
eq

ue
nc

y
in

pu
t.

d
i
v
i
d
e
r
_
p
r
o
g
_
p
r
e
s
c
_
c
t
r
l

d
u
a
l
_
m
o
d
u
l
u
s

D
Pr

og
ra

m
m

ab
le

di
vi

de
rw

ith
co

nt
ro

ll
og

ic
fo

r
du

al
-m

od
ul

us
pr

es
ca

le
r.

Σ
-∆

m
od

ul
at

or
s
i
g
m
a
_
d
e
l
t
a
_
m
a
s
h

r
t
l

R
T

L
M

A
SH

of
or

de
r1

,2
,o

r3
.

Pu
ls

e
sh

ap
er

b
i
t
_
s
t
r
e
a
m
_
m
o
d
u
l
a
t
o
r

d
i
s
c
r
e
t
e

,r
a
m
p
e
d

,r
a
i
s
e
d
_
c
o
s
i
n
e

D
Sh

ap
in

g
in

pu
tb

it
st

re
am

to
ha

ve
di

sc
re

te
,r

am
pe

d,
or

ra
is

ed
co

si
ne

pu
ls

e
sh

ap
e.

A
:

A
na

lo
gu

e
m

od
el

.
A

M
S

:
M

ix
ed

-s
ig

na
lm

od
el

.
D

:
D

ig
ita

lm
od

el
.

R
TL

:
Sy

nt
he

si
sa

bl
e

di
gi

ta
lm

od
el

.
id

ea
l:

Id
ea

l(
us

ua
lly

lin
ea

r)
be

ha
vi

ou
r.

di
sc

re
te

:
D

is
cr

et
e

be
ha

vi
ou

rb
as

ed
on

sa
m

pl
in

g
of

co
nt

in
uo

us
-t

im
e

si
gn

al
s.

de
ta

ile
d:

D
et

ai
le

d
be

ha
vi

ou
r(

e.
g.

,c
on

si
de

ri
ng

de
la

ys
an

d
im

po
rt

an
tn

on
lin

ea
re

ff
ec

ts
).

td
:

“T
op

-d
ow

n”
m

od
el

fo
ra

rc
hi

te
ct

ur
e

ex
pl

or
at

io
n.

bu
:

“B
ot

to
m

-u
p”

m
od

el
fo

rv
er

ifi
ca

tio
n

of
tr

an
si

st
or

le
ve

li
m

pl
em

en
ta

tio
n.

54



4.3. Modelling the Frequency Synthesiser

Table 4.3.: Comparison of the simulation performances between the different architecture and output
options for the VCO model. Each VCO model configuration underwent a transient analy-
sis (tstop = 80 µs, eps = 10−6, cf. Figure 4.7) with ADMS 2008.2 on an Intel Core 2 Quad
2.66 GHz CPU, 4 MB cache, 4 GB RAM running Linux 2.6.9 x86_64. For each configuration,
the chosen maximum integration step size hmax and the kind of frequency to transient signal
conversion method are given.

Architecture ideal td_detailed bu_detailed

vco_freq_out CPU time 290 ms 630 ms 630 ms
(hmax = 10 ns) Steps 8025 8029 8029

vco_diff_digi_out CPU time 20 780 ms 26 250 ms 26 180 ms
(hmax = 200 ps, ideal f → d) Steps 483 495 488 828 489 202

vco_diff_digi_out CPU time 620 ms 1060 ms 1020 ms
(hmax = 10 ns, discrete f → d) Steps 8050 8048 8048

vco_diff_sine_out CPU time 52 930 ms 81 780 ms 81 360 ms
(hmax = 200 ps, ideal f → sin) Steps 1 193 872 1 178 317 1 178 086

generic parameters already shown in Listing 4.3. Besides the transient signals (Figure 4.7a), additional
graphs visualise the nonlinear dependency of the VCO’s output frequency fvco(vtune,eff) and frequency
sensitivity kvco(vtune,eff) from the tuning voltage vtune,eff stemming from the varicap. For the design
of a VCO, the nonlinear relation of kvco( fvco) is especially important and thus made available by the
waveform display setup (Figure 4.7d). It allows the designer to ensure that the output frequency range of
the VCO is able to cover the frequency bands imposed by the RF application without gaps as well as
with a sufficiently high and symmetrical kvco( fvco) curve for a stable frequency synthesis.

The simulation of the VCO models with different architectures and outputs in the described test bench
is very fast, as shown by the simulation performance measurements summarised in Table 4.3. The
parameterisation of the test bench is the same as the one used for the simulation results already presented
in Figure 4.7. Especially, the VCO models with instantaneous frequency output and discrete frequency
to digital output signal conversion simulate in only about a second. Even the VCO models with ideal
frequency to digital and sinusoidal signal conversion simulate within less than 0.5 min and 1.5 min,
respectively. The results also show the expected simulation speed advantage for the ideal architecture
variants with linear behaviour. However, the td_detailed and bu_detailed architecture variants,
which include all major nonlinear effects, do only extend the required CPU time by a factor of 2.17 in
the worst case (vco_freq_out) and 1.55 for the best case (vco_diff_sine_out). In the latter case
the frequency to sinusoidal conversion becomes the dominant factor limiting the simulation speed. The
number of solution steps is more or less independent from the architecture choice, as it is governed by
the choice of the integration step size hmax, which has been chosen to correctly sample all analogue
signals. Thus, the presented test bench allows not only the validation of the behavioural VCO models,
but gives the RF designer an efficient tool at hand to design a VCO for a given specification. He can
directly supply the specification as parameters to the top-down architecture (td_detailed) of the
VCO model (preferably vco_freq_out or vco_diff_digi_out) as described in Section 4.3.3. The
model internally calculates suitable parameters for the varicap as well as the coupling and tank capacitors,
which the designer can use as a starting point for the transistor level implementation.

55



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

(a) Transient signals.

(b) fvco(vtune,eff).

Figure 4.7.: Simulation results of the test bench for the VCO model with differential digital output
(vco_diff_digi_out_tb).

56



4.3. Modelling the Frequency Synthesiser

(c) kvco(vtune,eff).

(d) kvco( fvco).

Figure 4.7.: Simulation results of the test bench for the VCO model with differential digital output
(vco_diff_digi_out_tb) (continued).

57



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

The presented simulation results for the VCO model match very well the behaviour specified in
Section 4.3.2. However, to increase further the confidence in the correctness of the developed models,
they have been validated against a transistor level model of an existing VCO design made available
by the CSEM RF group in form of an ELDO (circuit) netlist. A thin VHDL-AMS wrapper has been
implemented, which instantiates the ELDO netlist within one architecture and the vco_diff_sine_out
behavioural model calibrated to match the specifications of the reference model in another architecture.
This wrapper has been integrated in the already described VCO test bench and simulated for both
architectures. The resulting kvco( fvco) curves have been superimposed in Figure 4.8. Additionally,
the figure also contains the results of an equivalent steady-state analysis of the ELDO netlist. All
three curves match well each other concerning the shape. They are only slightly shifted, but within
an acceptable tolerance. The simulation performances summarised in the table below the figure show
the huge advantage of the behavioural model with respect to the transistor level ELDO model. The
simulation takes only about 6 min instead of nearly 2 h, respectively. The behavioural model simulates
about 26 times faster than the ELDO model with about the same number of solution steps and dynamic
behaviour. The table also shows that the steady-state analysis can deliver the kvco( fvco) relationship in
even less time than the behavioural model. However, this is only the case for the behavioural VCO model
with sinusoidal output that matches the output of the ELDO model. If an equivalent VCO model with
discrete digital or frequency output had been used, they would give the same result in a few seconds
(compare with the simulation performances presented in Table 4.3 for a similar but not identical case).
Moreover, a steady state analysis does not capture the dynamic behaviour of a model, as the transient
analysis does. Again, the presented approach is not only interesting for the pure validation of the
behavioural model. The same approach can be used by a designer for the bottom-up verification of his
transistor level implementation with the help of the test bench and behavioural model he already used
during the top-down design phase to evaluate and refine the specification of the component.

4.4. Application of the RF_TRX Library to the Design of a Binary
FSK Transmitter

The binary FSK transmitter used in this section as an example is based on the frequency synthesiser
architecture depicted in Figure 4.2 with direct modulation done at the Σ-∆ modulator input. The Σ-
∆ control words are generated by a bit-stream modulator model based on the bit stream sampled at its
input, to which it can apply a pulse-shaping technique (none, ramped, or raised-cosine) [15]. The PA is
not modelled in this example, as the focus is on the evaluation of the modulation process.

4.4.1. Implementation of the FSK Transmitter Model

The transmitter model is realised as a structural model (Figure 4.9) instantiating the necessary
RF_TRX models not directly, but through component declarations provided in a package. All generic
parameters of the component instances are forwarded through the generic declaration of the transmitter
model. This allows the parameterisation of the whole model hierarchy from the test bench. The constants
used for this purpose are declared in a separate package for each design case (i.e., target specification to
implement). This has several advantages. The consistency during the evaluation of different architecture
options is ensured, since constants, common to all architectures, are declared only once. Architecture-
specific constants can be declared in the same package and may be based on the common ones. The
constants for the back-annotated component parameters from transistor level are declared in this package,

58



4.4. Application of the RF_TRX Library to the Design of a Binary FSK Transmitter

Test bench VCO model Analysis type CPU time Steps

VHDL-AMS VHDL-AMS transient 00:05:35.990 5 237 162
VHDL-AMS ELDO transient 01:58:04.020 5 233 272
ELDO ELDO steady-state 00:01:59.970 384

Figure 4.8.: Validation of the behavioural VCO model with differential sinusoidal output against its
circuit level implementation in form of an ELDO netlist by comparing the simulated
kvco(fvco) curves. For the ELDO netlist, the kvco(fvco) curve can be obtained from a steady
state analysis (number of considered harmonics nharm = 5). The dynamic behaviour of the
VHDL-AMS and ELDO models of the VCO has been validated with a common test bench
sweeping the tuning voltage for each band during a transient analysis (hmax = 50 ps,
tstop = 250 µs, eps = 10−6). All simulations were done using ADMS 2008.2 on an In-
tel Core 2 Quad 2.66 GHz CPU, 4 MB cache, 4 GB RAM running Linux 2.6.9 x86_64.

59



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

IBIAS = 50µA

VPOWER = 1.8V

fcutoff = 100kHz

ϕmargin = 62deg

order = 3

fopt = 868MHz

kopt = 68Hz/V

fVCO,out = 868.0MHz±0.2MHz

clock_sampling

data_in

reset_b

enable

Divider parameters:

divmin = 2

divmax = 511

nBITS,DIV

nBITS,INTEG

+nBITS,FRACT

3rd order MASH parameters:

nBITS,INTEG = 9

nBITS,FRACT = 10

nBITS,DIV = 9

freq

delta_freq

fREF = 26MHz

power

bias_cp

Bit stream modulator parameters:

α = 0.3

nSYMBOLS = 5

nSAMPLES = 41

ground

band nBITS,BAND

ref

syn

power

ground

up

down

down

up

pfd_digi_diff charge_pump_diff
up

down

down

up
tune_p

tune_m

power

ground

bias

tune_p_in

tune_m_in

tune_p_out

tune_m_out

loop_filter_diff

tune_p

tune_m

vco_diff_digi_out

power

ground

lo_p

lo_m

band

power

ground

divider_prog_digi

div_in

div_ratio

div_out

reset

enable

bit_stream_modulator

freq_ctrl

data_in

clock

reset

enable

delta_freq

freq sda_outfreq_ctrl

sigma_delta_mash

clock

reset

enable

Figure 4.9.: Structure of the binary FSK transmitter model with differential digital VCO output.
The schematic is annotated with the component parameters for the first design case
( fc = 868 MHz, MI = 2, DR = 100 kbit/s) described in Section 4.4.2.

too. The stimuli generation (in our case pseudo-random bit-stream, reset, clock, and power supply) is
factorised into an own model and parameterised in the test bench by the design case constants package.

It is therefore very simple to create a test bench for each design case and architecture to be evaluated.
The test bench just needs to include the constants package for the design case, to declare all signals
to interconnect the instances of the stimuli generator and of the transmitter architecture models, and
to carry out the constants mapping to the generic parameters. Finally, the mapping of the components
instances is done in a configuration for the test bench. This allows to reuse the same structural model
during the top-down design and bottom-up verification phases by selecting the appropriate architectures
of the component models. As for the component test benches, the transmitter model is integrated into the
automated build system with simulation control scripts and waveform display setups for each design case
model configuration. This careful model organisation (Figure 4.10) achieves a full orthogonalisation of
the model structure, parametrisation, and abstraction selection aspects avoiding code duplication as well
as simplifying the addition of new design cases and model configurations.

4.4.2. Top-Down Design Exploration for Different Target Specifications

Three different design cases have been chosen to validate the FSK transmitter model and to show its
flexibility. The first two examples represent possible wireless sensor network applications. The targeted
output frequency (868 MHz) is in the SRD activity band and the chosen modulator data rate (100 kbit/s)
allows to reach the duty cycle requirement (< 1 %) for a low data rate application, e.g., a sensor data
transfer. The two simulations differ in the modulation index, set respectively to 2 (Figure 4.9) and 1, to
analyse the influence of a frequency shift modification on modulation. The third design case targets a

60



4.4. Application of the RF_TRX Library to the Design of a Binary FSK Transmitter

Abstraction level configuration
fsk_tx_<digi|freq|sine>_raised_cosine_bottom_up_cfg

fsk_tx_sine

lo_m

lo_p

fVCO(t)

fsk_tx_<digi|freq|sine>_*_tb

clock_sampling

data_in

reset_b

enable

freq

delta_freq

band

clock_bit_stream

ground

bias_cppower

fsk_tx_stimuli
freq_out

fsk_tx_freq
powerbias_cp

fsk_tx_digi
data_in

clock_sampling

reset

enable

delta_freq

freq

band

lo_m

lo_p

ground

Abstraction level configuration

fsk_tx_<digi|freq|sine>_raised_cosine_top_down_cfg

Design case parameters package

fsk_tx_fc2450meghz_mi05_dr1meghz_pkg

Design case parameters package

fsk_tx_fc868meghz_mi1_dr100khz_pkg

Design case parameters package

fsk_tx_fc868meghz_mi2_dr100khz_pkg

fsk_tx_<digi|freq|sine>_<design_case>_tb_<abstraction_level>_cfg

Simulation
results

Figure 4.10.: Organisation of the FSK transmitter test benches.

transmission in the ISM band, for a compliant Bluetooth™ or Wibree™ application. The chosen carrier
frequency and data rate are 2.45 GHz and 1 Mbit/s, respectively, suitable for applications like audio
streaming. For this scenario, a modulation index of 0.5 has been used.

Figure 4.11 shows the simulation results for the transient analysis of the first design case (Figure 4.9)
using ADMS 2008.2. It shows how the random bit stream (data at clock_bit_stream rate) is oversampled
by the bit modulator to transform it into a fractional division rate (freq_ctrl_real) of raised cosine
pulse form, which in turn is translated by the Σ-∆ modulator into the integer division ratio (sda_out)
used by the divider of the PLL. The latter divides the VCO output signal (lo_p and lo_m) into the
signal div_out, which is compared with the reference signal of the quartz oscillator (ref) by the PFD.
The charge pump is controlled by the PFD via the signals up, up_b, down, and down_b. Its operation
yields the unfiltered tuning voltage (v_c1) for the VCO at the charge pump output over the capacitor C1
of the loop filter. The unfiltered tuning voltage v_c1 shows a lot of noise due to the fast switching integer
division ratio ordered by the Σ-∆ modulator. The filtered tuning voltage at the VCO input (v_c3) and
the resulting effective tuning voltage over the varicap (v_tune_eff) show much less noise because the
loop filter averages the input signal. The tuning voltage (v_tune_eff) and the resulting VCO output
frequency (f_vco) follow well the shape of the random bit stream—a qualitative sign that the FSK modula-
tion works. The VCO output frequency (f_vco) is correctly positioned around the centre frequency (freq)
of the selected band (band) with the frequency difference (delta_freq) added and subtracted from the
centre frequency to realise the FSK modulation of the bit stream.

In order to have indications on the modulation quality, the signal spectrum and the eye diagram are
evaluated. Depending on the targeted band (SRD, Bluetooth), different requirements have to be fulfilled
in order to verify that the transmitted signal respects the standard specification and does not perturb
adjacent channels. For this reason, the modulated signal spectrum has to be compared to the spectral

61



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

Figure 4.11.: Transient analysis of the binary FSK transmitter model with differential digital VCO out-
put for the first design case ( fc = 868 MHz, MI = 2, DR = 100 kbit/s). The simulation
performance is indicated in Table 4.4a.

mask, verifying that it never overcomes this reference curve. In the presented simulations (Figure 4.12),
only the contributions coming from the ideal PLL modulation determine the final signal spectrum.
The noise generated by the PLL blocks and the PA nonlinearities are thus not taken into account.
Nevertheless the modulated signal at the output of the VCO already gives a fair indication of the
occupied spectrum highlighting possible problems in the modulation process or in the PLL design. By
applying an ideal demodulation on the same VCO signal and processing the result, the eye diagram
can be built (Figure 4.13). The study of the eye diagram allows to gather useful information on the
transmitted signal and on the demodulation requirements. An example is the choice of the optimum
sampling instant to minimise inter-symbol interference. Concerning the top-down design methodology,
this analysis shows mainly the impact of the Σ-∆ quantisation noise on the signal integrity, giving
indications on the trade-offs between the reference, the carrier, and the filter cut-off frequencies. For the
bottom-up verification phase, it is very convenient that the RF_TRX models can be also parameterised
with the back-annotated device parameters—especially because the device parameters calculated by the
top-down architectures usually cannot be exactly implemented on the transistor level due to design rules
limitations and other constraints.

Table 4.4 summarises the simulation performances obtained for the three design cases of the FSK trans-
mitter. It can be seen that, as expected, the 1st and 2nd design cases have very similar simulation
performances, as their specifications only differ slightly in the modulation index. Three transmitter
model variants were developed, in order to investigate the impact of the different VCO output modelling
approaches on the transmitter model simulation performance. As expected, the variant with digital
VCO output performs better than those with frequency output (variant “frequential”) and with sinusoidal

62



4.4. Application of the RF_TRX Library to the Design of a Binary FSK Transmitter

(a) fc = 868 MHz, MI = {2, 1}, DR = 100kbit/s.

(b) fc = 2.45 GHz, MI = 0.5, DR = 1MHz.

Figure 4.12.: Frequency spectrum of the FSK transmitter output signal.

63



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

(a) fc = 868 MHz, MI = {2, 1}, DR = 100kbit/s.

(b) fc = 2.45 GHz, MI = 0.5, DR = 1Mbit/s.

Figure 4.13.: Eye diagram of the FSK transmitter output frequency.

64



4.4. Application of the RF_TRX Library to the Design of a Binary FSK Transmitter

Table 4.4.: Comparison of the simulation performances among the FSK transmitter model variants. All
simulations were done with ADMS 2008.2 [116] (eps = 10−6) on an Intel Core 2 Quad
2.66 GHz CPU, 4 MB cache, 4 GB RAM running Linux 2.6.9 x86_64.

(a) fc = 868 MHz, MI = 2, DR = 100 kbit/s, tstop = 4 ms.

VCO output hmax CPU time Steps Events

digital 1 µs 00:03:50.970 2 637 297 44 173 736
frequential 4 ns 00:04:41.240 3 795 161 6 154 945
sine 100 ps 01:16:38.380 42 086 453 30 285 926

(b) fc = 868 MHz, MI = 1, DR = 100 kbit/s, tstop = 4 ms.

VCO output hmax CPU time Steps Events

digital 1 µs 00:03:49.970 2 634 484 44 164 783
frequential 4 ns 00:04:47.050 3 789 144 6 152 387
sine 100 ps 01:17:03.080 42 087 532 30 276 913

(c) fc = 2.45 GHz, MI = 0.5, DR = 1 Mbit/s., tstop = 400 µs.

VCO output hmax CPU time Steps Events

digital 100 ns 00:01:58.550 911 153 14 935 101
frequential 500 ps 00:02:24.410 1 889 599 4 145 715
sine 40 ps 00:20:32.120 11 417 132 11 016 978

differential voltage output (variant “sinusoidal”), even though in this case a larger number of discrete
events need to be processed by the digital simulator. The reason is that the latter two variants require
a much smaller maximum integration step size hmax to correctly sample all analogue signals. The
presented simulation results (Figures 4.11, 4.12, and 4.13) were obtained with the variant “digital”. The
“sinusoidal” variant is more precise, but much slower with respect to the “digital” variant (e.g., more than
an hour of simulation time compared to ca. four minutes for case (a) in Table 4.4), while its spectra and
eye diagrams are very close to those of the “digital” variant. This sufficient precision and high simulation
performance makes the RF_TRX library models very useful for the top-down architecture exploration and
bottom-up verification phases.

4.4.3. Bottom-Up Verification of a Design Case Implementation

As described in Section 4.4.1, the structural model of the FSK transmitter used for the top-down
architecture exploration can be reused for its bottom-up verification. The configuration just needs to
be switched to use the architectures of the component models targeted for the bottom-up phase and
the component parameters from the transistor level implementation need to be back-annotated into the
design case’s parameter package. The simulation performances for the purely behavioural system won’t
dramatically differ between the top-down and bottom-up variants, as long as the implemented dynamic
behaviour does not differ but only the way of the initialisation of the secondary parameters during the
elaboration phase. This has been already shown in the case of the VCO model in Table 4.3.

65



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

However, the bottom-up verification can be taken a step further by verifying the transistor level
implementation of individual components in the system context using mixed-level simulations. The
approach is the same as the one used for the validation of the behavioural VCO models against a
transistor level reference model described in Section 4.3.4. The transistor level implementation in form
of an ELDO netlist and the corresponding behavioural model of the component are instantiated in two
separate architectures of a thin wrapper, which adapts the netlist’s interface to the interface expected by
the system model and calibrates the behavioural model of the component to match the behaviour of the
component’s transistor level implementation. To verify the calibration of the behavioural component
model, the test benches available for each individual component can be reused. The wrapper is then
integrated into the system model and the configurations and parameter package for the design case are
adapted. Then, the system model can be simulated either using exclusively the behavioural models or
using the transistor level models for selected components by simply switching the architecture of the
corresponding wrapper in the configuration of the system model.

For the first design case of the FSK transmitter ( fc = 868 MHz, MI = 2, DR = 100 kbit/s, cf. Sec-
tion 4.4.2), this mixed-level bottom-up verification has been performed for the two key components of
its PLL: the CP and the VCO. Figure 4.14 shows the influence of the different CP and VCO wrapper
architectures (either behavioural or ELDO) on the FSK transmitter output spectrum calculated from
the VCO’s sinusoidal output signal after a transient analysis for 4 ms using ADMS 2008.2. It can be
seen that the principal characteristics (overall shape, position and amplitude of the harmonic peaks, etc.)
of the FSK output spectrum are correct for all four presented variants especially within the frequency
range defined by the second-order harmonic peaks (867.8 MHz to 868.2 MHz). Outside this frequency
band, the two variants using the ELDO netlist model of the VCO show a higher noise level. This is
no surprise, as the ELDO models contain much more details. It is interesting to note that using also
the ELDO architecture for the CP model lowers the noise floor compared to the variant, in which all
components, except the VCO, are represented by behavioural models. The transistor level simulation
of the CP model inside the FSK transmitter also showed how important it is to implement the primary
non-idealities into the behavioural component models of the RF_TRX library. Wouldn’t the PFD model
offer a parameter to specify the reset delay of its two D-flip-flops to match the delay of the switching
transistors in the CP imposed by the technology, the PLL of the FSK transmitter would show a stability
problem: The steering pulses at the CP’s control inputs would become too short for the switching
transistors to correctly react. The outcome would be the rejection of the transistor level implementation
due to an unacceptable noise level in the FSK modulation, even though it is correct and just because the
behavioural models used in the bottom-up verification were too ideal.

To conclude, let us have a look on the simulation performances of the four mixed-level simulation
variants presented in the table below the output spectra in Figure 4.14. The fully behavioural system
model of the FSK transmitter simulates within only about 1.5 h. Please remember that we had to
choose the VCO model with sinusoidal differential voltage output in order to match the interface of the
ELDO netlist of the VCO implementation. Using a behavioural VCO model with differential digital
output for this design case would yield a simulation time of only about 4 min (Table 4.4a), i.e., nearly
24 times faster! Once the CP is represented by its ELDO netlist, the simulation takes already half a
day. Replacing only the VCO model with its ELDO netlist slows down the simulation to take nearly a
full day. Finally, using the ELDO netlist for both components requires the designer to wait two days
for the simulation results. These simulation times are still acceptable for a sign-off verification of the
transistor level implementation of a component during the bottom-up design phase. To put these figures
further into perspective, a transistor level simulation of the whole PLL (without Σ-∆, bit stream modulator,
and quartz oscillator blocks) has been tried. For only a 10 µs transient simulation, the overall elapsed

66



4.5. Conclusions and Outlook

CPU time exceeded 24 h and after termination it was not possible to access the simulation results. This
impressively shows that transistor level verification of an RF system design is not practical, at least with
today’s available workstations. It demonstrates again the importance of abstracting away the details,
which do not have a major impact on the system level behaviour, in order to considerably speed up
system level simulations.

4.5. Conclusions and Outlook

This chapter presented a methodology for modelling a complex RF system, namely the frequency
synthesiser and the modulation for the transmitter part of a binary FSK transceiver. In a first step, the
behaviour of the principal system components has been specified. Then, the corresponding models have
been individually designed, implemented, and tested. It has been demonstrated how the different needs
(especially concerning parameterisation) of the top-down and bottom-up design phases can be captured
in the same VHDL-AMS model by means of a common pin-accurate interface (entity) and dedicated
architectures for the different implemented abstraction levels. The systematic usage of component
instantiation and configurations for structural models ensures their reusability throughout the design
process and assures consistency when simulating different abstraction levels of the same model. The key
component models have been validated against transistor level reference models. It has been shown how
the elaborate test benches developed for the behavioural component models in the RF_TRX library can
be reused by the RF designer for the top-down design and bottom-up verification of the transistor level
implementation of a component to meet a concrete specification.

Finally, the full system model of the FSK transmitter has been assembled, thoroughly tested, and the
simulation results presented. Its careful organisation allowed to achieve a full orthogonalisation of the
model structure, parametrisation, and abstraction selection aspects avoiding code duplication as well
as simplifying the addition of new design cases and model configurations for top-down architecture
exploration. It can serve as a template for the implementation of other complex system level test benches.
A systematic approach for the individual validation of transistor level component implementations in
the system context has been presented, which achieves considerable gains in simulation performance
compared to a full transistor level verification of the system.

The development of the VHDL-AMS model library RF_TRX helped to establish best practices regard-
ing the communication between model developers and RF designers as well as the organisation and
documentation of the models. Their application ensures a maximum flexibility, reusability, validity, and
maintainability of the models. This approach shows that a complex RF system can be simulated rapidly
and precisely by making the right abstraction choices. The results demonstrate impressively that such
VHDL-AMS system simulations can provide the RF designer essential information, e.g., related to the
spectral density or the eye diagram that transistor level simulations cannot give in such a short time
without sacrificing too much precision.

Future working directions include the consideration of different noise forms and the modelling
of power consumption in the models as well as the development of new component models for the
library to increase its coverage in the long term on the whole transceiver chain. However, for a
complex heterogeneous SoC, the transceiver will constitute a single component. Therefore, even the
behavioural modelling approach demonstrated in this chapter will show its limitations in terms of
simulation performance and modelling capabilities of “classical” HDLs. New modelling formalisms
supporting higher levels of abstractions are needed, which are discussed in the next chapter.

67



4. A VHDL-AMS-Based Methodology to Efficiently Model RF Systems

CP model VCO model CPU time Steps

VHDL-AMS VHDL-AMS 01:34:41.080 47 430 482
ELDO VHDL-AMS 12:11:33.250 51 190 531
VHDL-AMS ELDO 23:24:22:100 47 338 198
ELDO ELDO 38:44:06.970 51 243 167

Figure 4.14.: Bottom-up verification of the CP and VCO circuit level implementations selectively inte-
grated into the FSK transmitter model with differential sinusoidal VCO output. For each
case, the frequency spectrum of the FSK transmitter output signal has been calculated from
a transient analysis (hmax = 100 ps, tstop = 4 ms, eps = 10−6) with ADMS 2008.2 on an
Intel Core 2 Quad 2.66 GHz CPU, 4 MB cache, 4 GB RAM running Linux 2.6.9 x86_64.
The simulation performances are compared for the CP and VCO being modelled either
with VHDL-AMS or ELDO.

68



5. Enhancing the OSCI SystemC AMS extensions for
Efficient Multiphysical Systems Modelling

This chapter introduces new modelling capabilities on top of the recently standardised OSCI SystemC
AMS extensions to describe energy conserving multiphysical systems in a formal and consistent way at
a high level of abstraction. In a first step, a technique is presented to integrate the measurement units
associated to variables and parameters as an integral part of their quantity data type. This enforces correct
model assembly through strict interfaces and coherent formulas describing the analogue behaviour by
means of dimensional analysis implemented by these quantity datatypes. To ensure the reusability of
models using these new quantity datatypes, their interfaces need to become parameterisable by applying
special coding techniques. This has been demonstrated on a library of block diagram modules for the
TDF MoC. Using all these techniques, a completely new Bond Graph (BG) MoC has been integrated into
the SystemC-AMS PoC simulator. It implements the bond graph formalism to describe multiphysical
systems in a more adapted and generic way than it is currently possible with the standard MoCs of
SystemC-AMS. With the help of causality analysis, bond graph models are transformed at elaboration
time into an equivalent signal flow model to achieve a high simulation performance at system level.
Therefore, the BG MoC can support as a side product block diagram descriptions in parallel to bond
graphs. An extensive library of basic bond graph and block diagram primitives is proposed and can be
augmented by user-defined primitives. The causality analysis of the bond graph models at elaboration
time gives the designer insight into the computational structure of his models and enables other formal
checks, which provide him with hints regarding modelling problems such as algebraic loops, multiple
drivers, and ill-formed models.

5.1. Introduction

The previous chapter showed that “classical” AMS HDLs reach their limits in terms of simulation
performance and modelling capabilities for complex heterogeneous systems. Their design requires the
cooperation of different domain experts, who employ different modelling formalisms and tools. However,
to understand the functional interaction of the different system parts involving potentially different
physical domains and thus to be able to refine the system architecture and to derive consistent component
specifications, a system model needs to be created early on in the design process and continuously refined
from functional to architectural abstraction levels. Thus, an executable specification is created, which
later helps to verify the correct integration of the individually designed components to a system. The
need for such a “golden” system model is rising with the system’s heterogeneity. A single person is
no more able to grasp all the system’s details and their impact on its global behaviour. The challenge
moves thus from the design of the individual components, which is nowadays within one engineering
discipline usually well understood and supported by tools, to the integration of the individually validated
components into a complete system on the so-called Electronic System Level (ESL).

A successful integration of heterogeneous parts requires a strict specification of the interfaces between
the system components, which should be expressible in the system model. This includes not only the
data type (storage format) of the value of a quantity exchanged through ports or used to parameterise

69



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

the component, but also the semantical information on how the value is to be interpreted. The latter is
expressed by the measurement unit, which itself expresses the abstract dimension of measure and the
actual system of units used to measure the amount of the quantity. Their usage is common practice in
any natural science and engineering field for hand calculations and written documentation. It permits
to check the coherency of the equations used to describe the system by means of dimensional analysis.
However, most common modelling and programming languages permit only to specify the data type
of the value and not of the whole quantity during the declaration of constants, variables, ports, and
parameters. They primarily provide means to manage the complexity of a system by structuring the
system and the treated information in a hierarchy and to express their processing in terms of control
structures and computations. This is less a problem in single domain systems designed primarily by one
engineering discipline, as the correct interpretation of the data as a quantity can be supported by using
a consistent naming scheme based on established symbols or acronyms and by using always the same
measurement unit for a dimension and annotating its usage in the comments. Manual consistency checks
are then facilitated. These measures lower the risk of interconnecting wrongly the system components
and implementing incoherent equations describing the system behaviour, which lack, e.g., a conversion
factor or accidentally sum up quantities of different dimensions.

However, in multiphysical systems the risk for misinterpreting a quantity just based on its identifier
is rising due to partially conflicting standards for quantity symbols (e.g., v for voltage and speed) in
different engineering disciplines and different common practices regarding the units (e.g., feet and meter
for a distance) and scale factors (e.g., µm) to measure them. This can lead to very hard to spot problems,
which may stay undiscovered as the simulation results seem to be meaningful and in the expected order of
magnitude. This is especially true when integrating IPs from different sources and reusing legacy models
with potentially diverting specifications requiring an adaption of the interfaces. For example, one of the
root causes for the loss of NASA’s Mars Climate Orbiter in 1999 during the orbit entering manoeuvre
was a forgotten unit conversion between imperial and SI units between different programmes used for
the course corrections [127]. The consistent usage of a single system of units might have prevented this.

However, the parallel usage of different systems of units in a single model might be necessary for good
reasons. This can be, e.g., illustrated with the VHDL-AMS model of a micromechanical yaw rate sensor
system presented in Mähne et al. [108]. The reduced-order model of the sensor was extracted from an
FEM model of the micromechanical structure, which used for numerical reasons the µMKSV system
of units (displacements in µm, forces in µN, etc.). The electrical part of the system model responsible
for the control of the mechanical structure’s movements used the SI system of units. Therefore, unit
converters at the subsystem boundaries had to be inserted. Although VHDL-AMS allows to identify
different disciplines by declaring proper natures, the quantities related to such natures are still subtypes
of real. Thus, the unit converters risked to be incorrectly implemented without the compiler noticing it.

AMS hardware description languages such as VHDL-AMS [76] or Verilog-AMS [2] have limitations
regarding the support of dimensional analysis. For example, VHDL-AMS only offers a way to annotate
quantities with their units for presentation purposes:

1 subtype VELOCITY is REAL tolerance "DEFAULT_VELOCITY";
2 attribute UNIT OF VELOCITY : subtype is "meter/second";
3 attribute SYMBOL OF VELOCITY : subtype is "m/s";

The full support of dimensional analysis was considered during language design, but rejected as the
required changes to the type system would have rendered it incompatible with VHDL [12].

Modelica [121] allows to annotate the type Real with its dimension and SI measurement unit but
unfortunately not the numeric constant assigned to it:

70



5.1. Introduction

1 Real(unit="m.s-1") v = 2.0;

It depends on the tool if this information is used to check for dimensional and unit consistency, e.g.,
Dymola [40] and SimulationX [83]. Broman, Aronsson, and Fritzson [25] describes an extension of the
Modelica language and a prototype implementation for improved dimensional inference, unit checking,
and declaration of new (non-SI) units.

In the proprietary Simscape™ language [114], introduced by The MathWorks, Inc., in 2008 for
multidomain physical systems modelling on their MATLAB/Simulink products, declaration members
such as parameters, variables, inputs, and outputs are represented as a value with associated unit:

1 variables
2 w = { 0, ’rad/s’ };
3 end

The unit is represented as a string. The individual units need to be defined in the unit registry either as
the fundamental unit of a new dimension or as a scalar or affine conversion of another unit:

1 pm_adddimension(’length’, ’m’);
2 pm_addunit(’cm’, 0.01, ’m’);
3 pm_addunit(’N’, 1, ’kg*m/s^2’);
4 pm_addunit(’Fh’, [5/9 -32*5/9], ’C’);

Based on this information, the Simscape unit manager is capable to do and check unit conversions at
run-time imposing a certain performance penalty.

The functional programming language F# [98] makes units declaration and dimensional analysis
integral part of the language:

1 [<Measure >] type kg
2 [<Measure >] type N = kg m/s^2
3 let gravity = 9.808<m/s^2>
4 let metresToFeet (l:float<m>) = l * 3.28084<ft/m>

It checks all expressions using units for consistency at compile time without causing any run-time penalty.
One limitation is that it does not support dimensions (classes of units, e.g., mass).

The three approaches [98, 114, 121] make units part of their language syntax and implement dedicated
support for dimensional analysis in the compilers and other development tools facilitating improved
error detection and reporting. However, the mentioned languages have their limitations in the modelling
of the software/hardware interaction, in the support of dedicated MoCs for heterogeneous system
modelling, and in the reuse of legacy code and models, which require the usage of a very flexible
and extensible simulation framework. This is the strength of the C++-based open source simulation
framework SystemC [20, 66, 124], which classes and methods support the description and simulation of
digital hardware/software systems from functional down to register transfer level by using the Discrete
Event (DE) Model of Computation (MoC). It has seen wide industry adoption over the past decade.
Its development and standardisation is coordinated by the OSCI consortium. Since 2006, it is an
IEEE standard [79]. The openness of this environment facilitates the integration of other libraries and
legacy code and allows the implementation of new modelling formalisms based on dedicated MoCs,
e.g., Synchronous Data Flow (SDF) or Finite State Machine (FSM) [137]. The increasing integration
of AMS components into embedded HW/SW thus lead naturally to several parallel research efforts
to augment SystemC with new MoCs implementing continuous-time modelling capabilities, namely
SystemC-AMS [170], SystemC-A [91], and SystemC-WMS [129]. The individual properties of these
different approaches have been already discussed in Section 2.3.

71



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

In the scope of the presented research work, the author of this thesis actively contributed as member
of the Open SystemC Initiative (OSCI) AMS Working Group (AMSWG) [132] to the standardisation
of AMS extensions to SystemC to foster their industry acceptance. This continuing effort founded on
initial work by the SystemC-AMS study group [164]. Based on the collected requirements and use
cases [48], the AMSWG developed a Language Reference Manual (LRM) [130], which became in
March 2010 an official OSCI standard [131]. In parallel to the standard release, the AMSWG published
a user’s guide [14] and Fraunhofer IIS/EAS, as one of its members, a PoC implementation of the
SystemC AMS extensions 1.0. In their first version, they primarily address the needs for describing
the continuous-time behaviour of purely electrical AMS SoCs by proposing three MoCs, which allow
their description on different levels of abstraction using Timed Data Flow (TDF), Linear Signal
Flow (LSF), and Electrical Linear Network (ELN). This makes them well-suited for the design of
communication systems, which analogue front ends are tightly coupled to complex digital control [46],
and for DSP applications. However, their modelling capabilities are not yet well suited to describe
energy-conserving multiphysical system components with nonlinear behaviour in a formal and consistent
way at a high level of abstraction. Its requirements specification [48] already mentions these needs to
enable their usage, e.g., in the automotive sector.

This thesis work proposes new modelling capabilities to the OSCI SystemC AMS extensions to
address these requirements. This chapter presents the results. First an overview on the standardised
SystemC AMS extensions will be given in Section 5.2 to show its central concepts, its modelling
capabilities, and implementation philosophy. Then, Section 5.3 discusses how a multiphysical system
can be modelled on successively higher abstraction levels. It shows how the loss of semantic information
due to the usage of more abstract and generic modelling primitives can be compensated by conserving
the link to the physical domain through the annotation of the model’s signals and parameters with their
measurement units. The section presents more extensively the bond graph formalism as an interesting
compromise between energy-conserving domain-specific modelling and generic non-conservative block
diagram modelling. Bond graphs enable the unified description of the energy conserving parts of
heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical
domain. The resulting models have a simulation performance comparable to an equivalent signal flow
model. Section 5.4 describes how quantity types and dimensional analysis can be integrated with the
SystemC AMS extensions to achieve the stated goal. The proposed implementation is based on the
Boost.Units library, which employs template metaprogramming techniques. Thus, the C++ compiler can
check the correct assembly of the components and the coherency of the equations by means of dimensional
analysis. A dedicated filter for the measurement units data types has been implemented to simplify the
compiler messages and thus facilitate the localisation and interpretation of unit errors and is described
in Section 5.4.2. The stricter model interfaces imposed by the dimensional analysis require new ways
to write reusable models. Not only their behaviour but also their interface needs to be parameterisable
in a well-defined manner. The enabling implementation techniques are proposed by the author in form
of the developed SystemC AMS extensions eXperiments (SCAX) library. Its implementation builds
on top of Fraunhofer’s SystemC-AMS PoC implementation. The structure of the SCAX library is
presented in Section 5.5. This is followed in Section 5.6 by the description of the implementation of a
library of generic block diagram component models for the TDF MoC of the SystemC AMS extensions,
which apply these techniques. As an application example, an electromechanical transducer driving a
micromechanical resonator is modelled using this library in Section 5.6.2. The example illustrates well
the limitations of the currently in SystemC-AMS available MoCs for multiphysical system modelling.
Building on these experiences, Section 5.7 then presents how a completely new Bond Graph (BG) MoC
has been implemented as part of the SCAX library and how it tightly integrates with the other MoCs

72



5.2. Overview on the OSCI SystemC AMS extensions

of SystemC-AMS. This new MoC implements the bond graph formalism to describe multiphysical
systems in a more adapted and generic way than it is currently possible with the standard MoCs of
SystemC-AMS. Its energy conserving modelling primitives can be parameterised to user-defined physical
domains (Section 5.7.3.2). With the help of causality analysis, bond graph models are transformed
at elaboration time into an equivalent signal flow model to achieve a high simulation performance on
system level (Section 5.7.4). Therefore, the BG MoC can support block diagram descriptions in parallel
to bond graphs. An extensive library of basic bond graph and block diagram primitives is proposed
and can be augmented by user-defined primitives (Section 5.7.3.3). Several application examples are
presented in Section 5.7.5 together with their simulation results to illustrate the usage of the BG MoC.
The electromechanical transducer example is remodelled in Section 5.7.5.1 using the new BG MoC
to show its advantages over the TDF MoC for multiphysical modelling. Section 5.7.5.2 shows how
tightly the new BG MoC can interact with the DE MoC and TDF MoC of SystemC-AMS using a simple
velocity sensor model for a mechanical resonator as an example. The causality analysis of the bond graph
models at elaboration time gives the designer insight into the computational structure of his models and
enables other formal checks, which provide him with hints regarding modelling problems. It is topic of
Section 5.7.5.3. Finally, some conclusions are drawn and an outlook is given in Section 5.8.

5.2. Overview on the OSCI SystemC AMS extensions

The main goal of the SystemC AMS extensions [14, 48, 131] is to support the design of complex
heterogeneous HW/SW systems by providing means to efficiently evaluate different architecture options
with an executable system model of the specification. During the V-shaped top-down/bottom-up design
process, the system model is continuously refined to derive and later validate the specifications for the
different system components and study their interaction. In this context, the AMS extensions intend
to bridge the gap between system level functional tools such as Simulink[113] or Ptolemy II [49] and
mixed-signal hardware description languages such as VHDL-AMS [76] or Verilog-AMS [2]. To that end,
they consider three modelling formalisms with different semantics:

Signal flow models define the behaviour of continuous-time systems as mathematical relations be-
tween quantities that represent real-valued functions of an independent variable, usually the time.
The directed graph constitutes the underlying principle of signal flow modelling. Each edge
represents a quantity and each vertex represents a relation. Relations may take the form of implicit
or explicit equations. Thus, the simulation of signal flow models requires the resolution of DAEs.
Signal flow models are non-conservative and thus do not model the conservation of energy, which
is one main characteristic of physical continuous-time systems. Still, they provide an appropriate
level of abstraction for AMS architecture modelling.

Dataflow models define the behaviour of data processing systems as processes communicating through
(un)bounded buffers. Data is represented as streams of tokens that processes consume as inputs and
produce as outputs. Dataflow models are untimed and can have different semantics. For example,
synchronous dataflow semantics supports the modelling of single-rate and multi-rate behaviours
of most data processing functions (e.g., adders, multipliers, decimators, interpolators, decoders)
and allow to statically determine the order of execution of processes. It is possible to add time
semantics to synchronous dataflow models to make them discrete-time models. Such modified
synchronous dataflow semantics is called timed dataflow semantics in the context of the SystemC

73



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Timed Data Flow
(TDF)

• Custom modules
• Ports
• Signals

Electrical Linear
Networks (ELN)
• Primitives
• Terminals
• Nodes

SchedulerLinear DAE solver

Synchronisation layer

SystemC
methodology-

specific
elements

• Transaction Level
Modelling (TLM)

• Cycle/bit accurate
modelling

• SystemC Verification
Library (SCV)

• etc.

Linear Signal
Flow (LSF)

• Primitives
• Ports
• Signals

OSCI SystemC 2.2 language standard (IEEE Std. 1666-2005) and simulation kernel

User-defined
AMS extensions

• Modules
• Ports
• Signals
(e.g., additional MoCs,
simulator couplings)

AMS methodology-specific elements
Elements for AMS design refinement, etc.

Semantics defined in OSCI SystemC AMS extensions LRM 1.0
Envisioned
extensions

In
te

rfa
ce

s
st

an
da

rd
is

ed
Im

pl
em

en
ta

tio
n-

de
fin

ed

Figure 5.1.: Architecture of the OSCI SystemC AMS extensions 1.0 standard [131]. The white paper [65]
and requirements specification [48] for the OSCI SystemC AMS extensions envision the
future definition of a standardised API to the synchronisation layer to integrate user-defined
MoCs and solvers as well as AMS methodology-specific elements in form of libraries, which
will build upon the interfaces defined in the standard.

AMS extensions. Furthermore, it is possible to interpret the tokens as real-valued data samples
making such models abstractions of the above defined continuous-time signal flow models.

Electrical linear networks define the behaviour of conservative continuous-time systems, such as
loads, protection circuits, and buses at high frequencies, as linear network macro models based on
simple electrical resistor, inductor, capacitor, and controlled source primitives. The simulation of
electrical linear networks requires the resolution of DAEs in the same way as in electrical circuit
simulators. However, the restriction to simple linear primitives allows to significantly reduce the
demand in computing resources.

Figure 5.1 shows how these three formalisms are seamlessly integrated with the discrete event
modelling formalism of SystemC by implementing the AMS extensions in a layered architecture on
top of the standard SystemC kernel. Each formalism requires its own execution layer that implements
the formalism’s underlying Model of Computation (MoC). For the Linear Signal Flow (LSF) and
Electrical Linear Network (ELN) MoCs, a linear DAE solver is required and for the multi-rate Timed
Data Flow (TDF) MoC, a scheduler. A synchronisation layer coordinates the parallel execution of the
different continuous-time MoCs and offers to them a common interface to interact with each other and
with the DE simulation kernel of SystemC. Thus, the simulation of heterogeneous SystemC models
is possible, which employ in parallel different MoCs. The LRM of the AMS extensions just defines
the user interfaces to the three offered MoCs in form of the proposed modelling primitives and their
semantics. It also specifies the exact synchronisation semantics between the different MoCs. The
interfaces to the model execution and synchronisation layer are not standardised and can thus vary
between different implementations of the standard. At the time of the writing of this thesis, one
Proof of Concept (PoC) implementation of the OSCI SystemC AMS extensions is available from
Fraunhofer IIS/EAS as open source under the Apache license and is called SystemC-AMS [53].

74



5.2. Overview on the OSCI SystemC AMS extensions

mxr_sig lp_sig

mixer lp_filter_{ltf|lsf|eln} ad_converter

dig_sig
LPF× ADC

rf_front_end

DSP
rf_sig

osc_sig Tm: Ts
RRF

Tp:Ts

fc,H0

Tm:Ts

D:Dq
R:RRF

Tp: Ts
RRF

Tp: Ts
RRF

Tp: Ts
RRF

Tm: Ts
RRF

ϕRF
inmin
inmax

mxr_1 lpf_1 adc_1

Figure 5.2.: TDF model of a simple RF front end connected to a DSP. The parameters of the modules,
e.g., the cut-off frequency fc and the gain H0 of the low-pass filter, are denoted in red
italics. At elaboration, the module time step (Tm) assigned to the ADC is propagated to
all connected TDF modules via the TDF ports, which is indicated by the seagreen dotted
arrows. The ratios of the port rates (R) influences the assigned port time steps (Tp) and
module time steps (Tm). The output port of the ADC has a delay (D) assigned. The graphical
notation is further detailed in Table A.3 on page 153

5.2.1. Timed Data Flow Model of Computation

Timed Data Flow (TDF) models consist of a set of interconnected TDF modules. A TDF module is a
primitive module defining some elementary signal processing behaviour by reading one (single-rate)
or more (multi-rate) data samples from its input port(s) and writing one or more data samples to its
output port(s). The number (rate) of read/written data samples for each port per module activation is
constant and needs to be configured during the elaboration of the model. Each data sample is tagged
with a time stamp using a fixed time step and taking the port’s configured data rate into account.

TDF modules are connected via TDF signals through TDF ports. Interconnected TDF modules form a
TDF cluster. A complete AMS model may include several TDF clusters. TDF modules can interact with
SystemC’s discrete-event signals via special converter ports. A loop of interconnected TDF modules
must specify a delay of one or more data samples at one port to achieve causality so that the cluster can
become executable. The modules in a TDF cluster can be statically scheduled prior to simulation and are
executed using a fixed time step during the first delta phase of the SystemC simulation cycle [79].

To illustrate the use of the TDF MoC and its multi-rate capabilities, the simple RF front end depicted
in Figure 5.2 will serve as an example. The RF chain consists of a mixer, a low-pass filter, and an ADC,
which digitises the downconverted RF signal for further treatment by a DSP block.

The mixer block is modelled as a single-rate TDF module. Its implementation is given in List-
ing 5.1 and shows the principal elements of a TDF module. The new language constructs introduced
by the SystemC AMS extensions can be recognised by their sca_ prefix. All constructs specific to
the TDF MoC are defined in the namespace sca_tdf. A new TDF module is defined by publicly
inhering from sca_tdf::sca_module. Its input and output ports are constituted by public member
variables of type sca_tdf::sca_in<T> and sca_tdf::sca_out<T>, respectively. With the tem-
plate argument T of the ports, the data type of the signal is specified. The ports can be only bound
to an sca_tdf::sca_signal<T> channel of matching data type T. Each TDF signal requires to be
bound to one driving output port and zero to n reading input ports. Like in SystemC, a constructor
needs to be defined for each TDF module, which has always as first argument the module name of type
sc_core::sc_module_name. It is good practice to initialise the base name of each of its ports in the con-
structor to facilitate later debugging. The processing() member function of sca_tdf::sca_module
needs to be always overloaded to define the behaviour. In the case of the mixer, the input value read from
each of the two input ports are multiplied with each other and the result is written to the output port.

75



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.1: TDF model of the mixer.

1 class mixer : public sca_tdf::sca_module {
2 public:
3 sca_tdf::sca_in<double> in1, in2; / / I n p u t s .
4 sca_tdf::sca_out<double> out; / / Output .
5
6 / / C o n s t r u c t mixer and name i t s p o r t s .
7 mixer(sc_core::sc_module_name nm)
8 : in1("in1"), in2("in2"), out("out")
9 {}

10
11 protected:
12 / / M u l t i p l y i n p u t samples and w r i t e r e s u l t t o the ou t p o r t .
13 void processing() {
14 out.write(in1.read() * in2.read());
15 }
16 };

The low-pass filter block is also modelled as a single-rate TDF module. Its implementation shown
in Listing 5.2 is slightly more complicated, as the filter’s cut-off frequency fc and the gain H0 can
be parameterised by passing them as arguments to the module’s constructor. The filter behaviour is
implemented using an embedded linear dynamic equation described by a Laplace Transfer Function (LTF)
in numerator-denominator form. TDF modules may also embed LTFs in zero-pole form or state-space
equations. The coefficients of the LTF’s numerator num_ and denominator den_ are stored as member
variables and are initialised in the module’s constructor using fc. The filter gain is also stored in a member
variable (H0_). The solution of the LTF is handled by an object of type sca_tdf::sca_ltf_nd, which
has to be created as a member variable of the module, as it needs to keep track of its internal state
between the calls to the processing member function, in which the newly read input sample is handed
over to it and the filtered result is calculated.

The ADC is modelled as a multi-rate TDF module. Its implementation shown in Listing 5.3 is
a bit more complex due to its various parameters and the support for multi-rate. It is implemented
as a template class so that the size NBITS of the output word, which will be read by the DSP, can
be configured at module instantiation. The output word is written to a TDF converter port of type
sca_tdf::sca_de::sca_out<T>. This port can be bound to a regular sc_core::sc_signal<T>
to interface a TDF module with a regular SystemC module. Likewise, a TDF converter port of type
sca_tdf::sca_de::sca_in<T> is available to read values from connected SystemC modules. This
shows the general concept of synchronisation in the SystemC AMS extensions: Each MoC implements
dedicated converter ports or modules as communication interfaces to the other continuous-time MoCs
and the DE MoC of the SystemC kernel. The input range inmin ≤ in ≤ inmax, which can be quantised
by the ADC is specified by the constructor parameters inmin and inmax. The remaining parameters
of the ADC are related to the configuration of its multi-rate behaviour, which has to be done for each
TDF module in its set_attributes() member function, which is called by the TDF MoC during
elaboration to configure the TDF parameters of the cluster. In this callback, each module can specify:

• The time step of the activation of its processing() member function using the set_timestep()
member function of the module.

• The time step between individual samples read from a port using the set_timestep() member

76



5.2. Overview on the OSCI SystemC AMS extensions

Listing 5.2: TDF model of the low-pass filter using a Laplace transfer function.

1 class lp_filter_ltf : public sca_tdf::sca_module {
2 public:
3 sca_tdf::sca_in<double> in; / / I n p u t .
4 sca_tdf::sca_out<double> out; / / Output .
5
6 / / C o n s t r u c t f i l t e r hav ing the s p e c i f i e d cut − o f f f requency f c and ga in H0 .
7 lp_filter_ltf(sc_core::sc_module_name nm, double fc, double H0 = 1.0)
8 : in("in"), out("out"), H0_(H0), ltf_(), num_(), den_()
9 {

10 / / I n i t i a l i s e LTF numerator and denominator .
11 num_(0) = 1.0;
12 den_(0) = 1.0; den_(1) = 1.0/(2.0 * M_PI * fc);
13 }
14
15 protected:
16 / / Apply LTF t o read i n p u t samples and w r i t e r e s u l t t o ou t p o r t .
17 void processing() {
18 out.write(ltf_(num_, den_, in.read(), H0_));
19 }
20 private:
21 double H0_; / / F i l t e r ga in .
22 sca_tdf::sca_ltf_nd ltf_; / / Lap lace t r a n s f e r f u n c t i o n o b j e c t .
23 sca_util::sca_vector <double> num_, den_; / / Numerator and denominator o f LTF .
24 };

function of the port.

• How many samples it wants to read/write from/to a port per activation of its processing()
member function using the set_rate() member function of the port.

• By how many discrete port time steps a read/written sample will be delayed using the set_delay()
member function of the port.

By default, the rate of a port is one and its delay is zero. Therefore, the set_attributes() mem-
ber function did not need to be implemented for the mixer and low-pass filter modules. At least one
time step needs to be assigned per TDF cluster. It will be propagated throughout the cluster taking the
set port rates into account. Figure 5.2 illustrates this process for our RF front end model. The source of
the time step propagation is in this case the ADC, which specifies its module time step (Tm) based on
the sampling period Ts (Ts) of the baseband signal written to the DSP block. Of course, the RF signal
needs to be sampled at a much higher rate than the base band signal. This ratio is configured through the
parameter RRF (Rrf) that is used to specify the rate (R) of the ADC’s input port. The resulting port time
step (Tp) is Ts

RRF
. As the mixer and filter operate at single-rate, their port and module time steps will be

after time step propagation also equal to Ts
RRF

. The parameter ϕRF (phirf) specifies which sample out of
RRF samples of the down-converted and filtered RF input signal is quantised by the ADC. To model the
time that the ADC needs for the quantisation, a delay of Dq sampling periods is set on its output port.
The initial samples of delayed ports must be initialised before the simulation starts. This has to be done
in a separate callback of the TDF module, which is called initialize(), so that the TDF MoC can
finish first its port elaboration after the set_attributes() callbacks of all TDF modules have been
executed. The ADC model initialises its output samples to zero.

77



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.3: TDF model of the ADC.

1 template <int NBITS>
2 class ad_converter : public sca_tdf::sca_module {
3 public:
4 sca_tdf::sca_in<double> in;
5 sca_tdf::sca_de::sca_out<sc_dt::sc_uint<NBITS> > out; / / Conver te r p o r t TDF−>DE.
6
7 ad_converter(sc_core::sc_module_name nm, sca_core::sca_time Ts,
8 double inmin, double inmax,
9 unsigned long Dq, unsigned long Rrf, unsigned long phirf)

10 : in("in"), out("out"), Ts_(Ts), inmin_(inmin), inmax_(inmax),
11 Dq_(Dq), Rrf_(Rrf), phirf_(phirf)
12 {
13 sc_assert(phirf < Rrf); / / Check parameters f o r c o n s i s t e n c y .
14 sc_assert(inmin < inmax);
15 }
16
17 protected:
18 / / S p e c i f y the module and p o r t a t t r i b u t e s .
19 void set_attributes() {
20 this->set_timestep(Ts_); / / Module t ime s tep .
21 in.set_rate(Rrf_); / / I n p u t r a t e .
22 out.set_delay(Dq_); / / Output de lay .
23 }
24
25 / / I n i t i a l i s e de layed o u t p u t samples .
26 void initialize() {
27 for (unsigned long i = 0; i < out.get_rate(); ++i) {
28 out.initialize(0);
29 }
30 }
31
32 void processing() {
33 double val = in.read(phirf_); / / Read RF sample a t index p h i r f _ .
34 / / Quant ise read sample and w r i t e i t t o the de layed o u t p u t p o r t .
35 if (val < inmin_) {
36 out.write(0);
37 } else if (val > inmax_) {
38 out.write((1 << NBITS) - 1);
39 } else {
40 sc_dt::sc_uint<NBITS>
41 q_val = ((val - inmin_) / (inmax_ - inmin_) * ((1 << NBITS) - 1));
42 out.write(q_val);
43 }
44 }
45
46 private:
47 sca_core::sca_time Ts_; / / Output sample p e r i o d o f ADC.
48 double inmin_, inmax_; / / I n p u t va lue range t o be quan t i sed .
49 unsigned long Dq_; / / Output de lay due t o q u a n t i s a t i o n process .
50 unsigned long Rrf_; / / I n p u t r a t e t o oversample RF s i g n a l .
51 unsigned long phirf_; / / Index t o i n p u t sample t o be quan t i sed .
52 };

78



5.2. Overview on the OSCI SystemC AMS extensions

Listing 5.4: Structural model of the RF front end.

1 template <int NBITS = 8>
2 class rf_front_end : public sc_core::sc_module {
3 public:
4 / / Po r t s .
5 sca_tdf::sca_in<double> rf_in, osc_in;
6 sc_core::sc_out<sc_dt::sc_uint<NBITS> > dig_out;
7
8 / / I n t e r n a l components .
9 mixer mxr_1;

10 lp_filter_lsf lpf_1;
11 ad_converter <NBITS> adc_1;
12
13 / / I n t e r n a l s i g n a l s .
14 sca_tdf::sca_signal <double> mxr_sig, lp_sig;
15
16 / / C o n s t r u c t RF f r o n t end us ing the passed parameters f o r the components .
17 rf_front_end(sc_core::sc_module_name nm,
18 sca_core::sca_time Ts, double inmin, double inmax,
19 unsigned long Dq = NBITS/2, unsigned long Rrf = 1000000,
20 unsigned long phirf = 0, double fc = 200.0e3, double H0 = 1.0)
21 : mxr_1("mxr_1"), lpf_1("lpf_1", fc, H0),
22 adc_1("adc_1", Ts, inmin, inmax, Dq, Rrf, phirf)
23 {
24 / / S p e c i f y c o n n e c t i v i t y .
25 mxr_1.in1(rf_in);
26 mxr_1.in2(osc_in);
27 mxr_1.out(mxr_sig);
28
29 lpf_1.in(mxr_sig);
30 lpf_1.out(lp_sig);
31
32 adc_1.in(lp_sig);
33 adc_1.out(dig_out);
34 }
35 };

The structural assembly of these three TDF modules to the RF front end model has to be done in a reg-
ular SystemC module that inherits from sc_core::sc_module and not from sca_tdf::sca_module.
The RF front end module (Listing 5.4) specifies its ports, internal signals, and internal modules as
member variables. These are initialised in the initialisation list of the constructor, which passes the
relevant parameters from its arguments to the constructor of the individual member variables. Finally, it
specifies the connectivity by binding the ports of its internal modules to the defined signals or ports.

To illustrate the possible interaction between SystemC’s discrete-event simulation kernel and the
TDF MoC, let us consider a modification of the low-pass filter model as shown in Listing 5.5.
The ctrl port allows the control of the output amplification. It is intended to be bound to an
sc_core::sc_signal<bool> channel. The value of this port is sampled at the fixed time steps
used to activate the TDF module.

The TDF MoC supports further architecture level exploration through, e.g., the addition of non-ideal
behaviours (e.g., noise and distortion in the mixer), the refinement of data representation (e.g., different

79



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.5: Event-controlled low-pass filter model with switchable gain.

1 class lp_filter_ltf_ctrl : public sca_tdf::sca_module {
2 public:
3 sca_tdf::sca_in<double> in; / / I n p u t .
4 sca_tdf::sca_de::sca_in<bool> ctrl; / / Gain c o n t r o l i n p u t .
5 sca_tdf::sca_out<double> out; / / Output .
6
7 / / C o n s t r u c t f i l t e r hav ing the s p e c i f i e d cut − o f f f requency f c and ga ins H0 , H1 .
8 lp_filter_ltf_ctrl(sc_core::sc_module_name nm, double fc,
9 double H0 = 1.0, double H1 = 2.0)

10 : in("in"), ctrl("ctrl"), out("out"), H0_(H0), H1_(H1), ltf_(), num_(), den_()
11 { / * . . . * / }
12
13 protected:
14 / / Apply LTF t o read i n p u t samples and w r i t e r e s u l t t o ou t p o r t .
15 void processing() {
16 double h = ctrl.read() ? H1_ : H0_; / / Set ga in acco rd ing t o c o n t r o l s i g n a l .
17 out.write(ltf_(num_, den_, in.read(), h));
18 }
19 private:
20 double H0_, H1_; / / F i l t e r ga ins .
21 sca_tdf::sca_ltf_nd ltf_; / / Lap lace t r a n s f e r f u n c t i o n o b j e c t .
22 sca_util::sca_vector <double> num_, den_; / / Numerator and denominator o f LTF .
23 };

bit widths) or structural refinement. Signal processing applications can also benefit from the TDF MoC
by exploring the impacts of more specific parameters such as delays or data rates. The key to such
systematic architectural studies are parameterisable models as they have been presented in this section.

5.2.2. Structural refinement using the Linear Signal Flow and Electrical Linear
Network Models of Computation

The SystemC AMS extensions also support the Linear Signal Flow (LSF) and Electrical Linear Net-
work (ELN) MoCs. As described in Section 5.2, the first allows the description of non-conservative
linear dynamic behaviour and the latter the description of conservative linear behaviour. Both MoCs
are similar in their usage, as they only allow the structural description of an LSF/ELN model using
predefined primitive LSF/ELN modules. To this end, the SystemC AMS extensions offer a fixed
set of typical signal flow modules (e.g., adder, gain, and integrator blocks) and electrical primi-
tives (e.g., resistor, inductor, capacitor, and (controlled) voltage/current sources). These primitives
can be parameterised and interconnected to macro models in a regular SystemC module using in
the case of the LSF MoC signals (of type sca_lsf::sca_signal) bound to input and output ports
(sca_lsf::sca_in and sca_lsf::sca_out, respectively) and in the case of the ELN MoC using
nodes and reference nodes (sca_eln::sca_node and sca_eln::sca_node_ref, respectively) bound
to terminals (sca_eln::sca_terminal). Both, the LSF MoC and ELN MoC, provide converter mod-
ules to interface with the TDF MoC and DE MoC. Thus, the SystemC AMS extensions do not only
support the structural refinement within one MoC, but also across different MoCs. As an example, let
us refine the low-pass filter model from Listing 5.2. Figure 5.3 shows the schematic of the equivalent
LSF model. Listing 5.6 shows its implementation as a SystemC module containing the structural de-

80



5.2. Overview on the OSCI SystemC AMS extensions

lp_filter_lsf

in out

tdf2lsf_1 lsf2tdf_1

dot_1

LSF

TDF

TDF

LSF
−

x_sig y_sig

sub_1

z_sig

H0

1
2π fc

· d
dt

Figure 5.3.: LSF model of a first-order low-pass filter with LSF converter modules to connect the module
via its TDF ports to other TDF modules.

lp_filter_eln

+

−

vp,n

+

−

vp,n

C1

R1

in out

tdf2v_1 v2tdf_1

R_1

C_1

H0

Figure 5.4.: ELN model of a first-order low-pass filter with ELN converter modules to connect the
module via its TDF ports to other TDF modules.

scription. Due to the instantiation of the appropriate converter modules, its port interface is identical to
the one of the TDF module lp_filter_ltf. Also their module parameters are identical, so that they
can be interchanged in the RF front end module (Listing 5.4) by just changing the type of the member
variable lpf_1 to lp_filter_lsf. Similarly, an equivalent ELN model of the low-pass filter can be
developed (Figure 5.4, Listing 5.7). Again, the port interface stayed compatible to lp_filter_ltf
through the insertion of appropriate converter modules. However, the constructor now proposes R1
and C1 as parameters instead of fc, which requires a small modification in the parameterisation of the
lpf_1 module when swapping the TDF module with the ELN module in the RF front end module.

5.2.3. Conclusions about the OSCI SystemC AMS extensions

The Timed Data Flow (TDF) MoC, as defined in the OSCI SystemC AMS extensions, provides a high
level of abstraction for modelling continuous-time behaviours using discrete-time semantics and mixing
them with discrete-event models of hardware and even untimed models of software (e.g., using mixed
Transaction Level/AMS models). If required, refined models can be created using the Linear Signal
Flow (LSF) and Electrical Linear Network (ELN) MoCs, which use continuous-time semantics and
which are also defined as part of the SystemC AMS extensions. However, it has to be clearly stated
that their flexibility is reduced compared to TDF models, as they only allow the creation of macro
models using interconnected predefined primitive LSF/ELN modules with purely linear behaviour.
This is the sacrifice to be made to obtain satisfying simulation performances at the system level. To
some degree, this limitation can be leveraged by embedding the LSF/ELN models into TDF models or
discrete-event SystemC models, which control them via one of the several proposed primitives with
DE/TDF control inputs for their component parameter. More detailed information about the usage of the

81



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.6: LSF model of the lowpass filter.

1 class lp_filter_lsf : public sc_core::sc_module {
2 public:
3 sca_tdf::sca_in<double> in; / / I n p u t .
4 sca_tdf::sca_out<double> out; / / Output .
5
6 sca_lsf::sca_signal x_sig, y_sig, z_sig; / / I n t e r n a l LSF s i g n a l s .
7
8 / / I n t e r n a l LSF p r i m i t i v e s .
9 sca_lsf::sca_tdf::sca_source tdf2lsf_1; / / Conver te r TDF −> LSF i n p u t .

10 sca_lsf::sca_sub sub_1; / / S u b t r a c t o r .
11 sca_lsf::sca_dot dot_1; / / D i f f e r e n t i a t o r .
12 sca_lsf::sca_tdf::sca_sink lsf2tdf_1; / / Conver te r LSF −> TDF o u t p u t .
13
14 / / C o n s t r u c t f i l t e r hav ing the s p e c i f i e d cut − o f f f requency and ga in .
15 lp_filter_lsf(sc_core::sc_module_name nm, double fc, double H0 = 1.0)
16 : in("in"), out("out"), x_sig("x_sig"), y_sig("y_sig"), z_sig("z_sig"),
17 tdf2lsf_1("tdf2lsf_1"), sub_1("sub_1", H0),
18 dot_1("dot_1", 1.0 / (2.0 * M_PI * fc)), lsf2tdf_1("lsf2tdf_1")
19 {
20 / / S p e c i f y c o n n e c t i v i t y .
21 tdf2lsf_1.inp(in); tdf2lsf_1.y(x_sig);
22
23 sub_1.x1(x_sig); sub_1.x2(z_sig);
24 sub_1.y(y_sig);
25
26 dot_1.x(y_sig); dot_1.y(z_sig);
27
28 lsf2tdf_1.x(y_sig); lsf2tdf_1.outp(out);
29 }
30 };

82



5.2. Overview on the OSCI SystemC AMS extensions

Listing 5.7: ELN model of the lowpass filter.

1 class lp_filter_eln : public sc_core::sc_module {
2 public:
3 sca_tdf::sca_in<double> in; / / I n p u t .
4 sca_tdf::sca_out<double> out; / / Output .
5
6 sca_eln::sca_node n1, n2; / / E l e c t r i c a l nodes .
7 sca_eln::sca_node_ref gnd; / / E l e c t r i c a l r e f e r e n c e node .
8
9 / / I n t e r n a l ELN p r i m i t i v e s .

10 sca_eln::sca_tdf::sca_vsource tdf2v_1; / / Conver te r TDF −> v o l t a g e .
11 sca_eln::sca_r R_1; / / R e s i s t o r .
12 sca_eln::sca_c C_1; / / C a p a c i t o r .
13 sca_eln::sca_tdf::sca_vsink v2tdf_1; / / Conver te r v o l t a g e −> TDF .
14
15 / / C o n s t r u c t f i l t e r hav ing the s p e c i f i e d cut − o f f f requency and ga in .
16 lp_filter_eln(sc_core::sc_module_name nm, double R1, double C1, double H0 = 1.0)
17 : in("in"), out("out"), n1("n1"), n2("n2"), gnd("gnd"),
18 tdf2v_1("tdf2v_1"), R_1("R_1", R1), C_1("C_1", C1), v2tdf_1("v2tdf_1", H0)
19 {
20 / / S p e c i f y c o n n e c t i v i t y .
21 tdf2v_1.inp(in);
22 tdf2v_1.p(n1); tdf2v_1.n(gnd);
23
24 R_1.p(n1); R_1.n(n2);
25
26 C_1.p(n2); C_1.n(gnd);
27
28 v2tdf_1.p(n2); v2tdf_1.n(gnd);
29 v2tdf_1.outp(out);
30 }
31 };

83



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

SystemC AMS extensions can be found in the user’s guide [14] accompanying its LRM [131].
The demonstrated RF front end example shows that the SystemC AMS extensions are in their first

standardised version well-suited for the design of electrical AMS SoCs, especially for communication
systems [46] and for DSP applications. Their limitations concerning the description of digitally assisted
analogue and multiphysical components with nonlinear behaviour are recognised. Therefore, efforts are
underway, e.g., to integrate a nonlinear network MoC into the AMS extensions with capabilities similar
to VHDL-AMS or Verilog-AMS [168]. However, as the complexity of the resulting DAE system will
not differ from an equivalent VHDL-AMS or Verilog-AMS model, no considerable gains in terms of
simulation performance can be expected, as the underlying solver algorithms are expected to be the same.

The simulation of nonlinear conservative models is just one side of the problem. The other is the
definition of a user-friendly syntax for the authoring of these nonlinear models, which is constrained
by the syntax of the C++ language. Furthermore, the verification of the correct assembly of such
heterogeneous models and of the coherency of the implemented equations gets even more important for
multiphysical systems. Therefore, this Ph.D. thesis work elaborated another way to describe energy-
conserving multiphysical system components with nonlinear behaviour in a formal and consistent way
at a higher level of abstraction. To this end, the next section reviews the modelling of multiphysical
systems on different levels of abstraction.

5.3. Modelling Multiphysical Systems on Different Abstraction Levels

In this section, it will be shown how to derive a SystemC AMS extensions compatible model of a
multiphysical system by successively rising the abstraction level without losing the link to the physical
domain. We will use an electromechanical transducer (electrostatic comb-drive actuator) linked to a
micromechanical resonator as an example (Figure 5.5).

5.3.1. Using Domain-Specific Modelling Primitives

In a first step, the system can be modelled using domain-specific primitives, in our case (Figure 5.5a):
voltage source, resistor for the electrical domain and mass, spring, damper for the mechanical domain.
The comb drive actuator is part of both domains and acts electrically as a capacitor, which capaci-
tance Ctrans(x) depends on the current displacement x, and mechanically as a force source Ftrans(q, x),
which value depends on the electrical charge q, stored on the capacitor, and on the displacement x.
The resulting model accurately represents the physical structure of the system. However, this approach
requires a simulator to provide model implementations for each primitive of each supported physical do-
main. This implies an overhead as there exist analogies between the primitives of different domains (e.g.,
resistor/damper, capacitor/spring, inductor/mass). This has been exploited regularly to, e.g., simulate
mechanical resonators using an electrical simulator such as SPICE. However, this approach sacrifices
clarity, which easily leads to modelling mistakes. Furthermore, the SystemC AMS extensions currently
only offer (linear) electrical primitives on this abstraction level.

5.3.2. Using Generic Bond Graph Primitives

The bond graph formalism [94] is taking advantage of these analogies to unify the description of
multiphysical systems through a reduced set of generic primitives. The domain-specific description (e.g.,
electrical circuit, mechanical multibody system, rigid bodies, fluidic networks, thermal networks) is
mapped in a systematic way on a graph (Figures 5.5b and 5.5c) describing the energy flow through the

84



5.3. Modelling Multiphysical Systems on Different Abstraction Levels

R1

m

d

k

x

Ctrans(x), Ftrans(q,x)

vdrive(t)

iR1

(a) Domain-specific model.

1 C

e3(q3,q4)
e4(q3,q4)

: 1

R : R2

I : I1

C : C1

Se : e1(t)

R : R1

f2e2

e1 e3

f3f1

e4

f4

e5

e6

f6

e7

f5

f7

(b) Equivalent acausal generic bond graph model.

1 C

Ctrans(x)[C]
Ftrans(q,x)[N]

: 1

R : d[Ns/m]

I : m[kg]

C : 1
k [m/N]

Se : vdrive(t)[V]

R : R1[Ω]

iR1 [A]vR1 [V]

vdrive[V] vtrans[V]

iR1 [A]iR1 [A]

Ftrans[N]

vm[m/s]

Fd [N]

Fm[N]

vm[m/s]

Fk[N]

vm[m/s]

vm[m/s]

(c) Equivalent causal bond graph model with renamed vari-
ables/parameters and annotated measurement units.

g4

s1(t)

s3

s2

s5 s7

s11

s8

s10

Fk

−
f1(x,y) f2(x,y)

s4 s6

g1 g3

g2

s12

s9

s3(t)

−−
−

+ +

∫ ∫

∫

∫

s3 s10

(d) Derived generic block diagram model.

k

vdrive(t)[V]

iR1 [A]

vR1 [V]

vtrans,out[V] Ftrans,out[N]

Fd [N]

Fm[N]

vm[m/s]

Fk[N]

− q
C(x) F(q,x)

q[C] x[m]

1
R1 d

1
m

xm[m]

pm[Ns]

idrive(t)[A]

−−
−

Electrostatic transducer

+ +

∫ ∫

∫

∫

itrans,in[A] vtrans,in[m/s]

[N/m]

[kg−1]

[Ns/m]

[N][C/F]

[S]

(e) Derived block diagram with renamed variables/parameters and annotated measurement units.
Conflicting naming conventions are resolved by the annotated measurement units.

Figure 5.5.: Equivalent models of an electromechanical transducer linked to a micromechanical resonator.

85



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

multiphysical system. The energy link between the ports of two primitives Pri and Prk is represented
with an half-arrow-shaped bond: Pri

e
f

Prk. Associated to each bond are an effort e and a flow f

variable. They are called power variables because their product is the power P:

P(t) = e(t) · f (t) (5.1)

By definition, the half arrow points into the direction, in which the power flows for positive e and f .
For the description of dynamic systems, two other variable types are important, which belong to the

class of energy variables: The (generalised) momentum p(t) is defined as the time integral of an effort:

p(t) =

∫︁ t
e(t′) dt′ = p0 +

∫︁ t

t0
e(t′) dt′ (5.2)

The (generalised) displacement q(t) is defined as the time integral of a flow:

q(t) =

∫︁ t
f (t′) dt′ = q0 +

∫︁ t

t0
f (t′) dt′ (5.3)

with p0 and q0 the initial values of p and q, respectively, at the time t0. Both equations can also be written
in differential form:

dp(t)
dt

= e(t) dp = e dt (5.2a)

dq(t)
dt

= f (t) dq = f dt (5.3a)

The energy E(t) is defined as the time integral of the power P(t):

E(t) =

∫︁ t
P(t′) dt′ =

∫︁ t
e(t′) f (t′) dt′ (5.4)

The energy can be also expressed in terms of the energy variables by inserting (5.2a) and (5.3a) in (5.4):

E(t) =

∫︁ t
e(t′) dq(t′) =

∫︁ t
f (t′) dp(t′) (5.5)

E(q) =

∫︁ q
e(q′) dq′ (5.5a)

E(p) =

∫︁ p
f (p′) dp′ (5.5b)

The relation between the power and energy variables can be visualised in the so-called tetrahedron of
state shown in Figure 5.6. The definition for the generalised power and energy variables is independent
of a particular physical domain. Table 5.1 summarises their meaning in the context of different domains.

The energy exchange through a bond can be also interpreted as a bilateral signal flow, since the
subsystems at each end act as each others load and thus cause the effort and flow variables to act in
opposite directions. This can be used to determine the computational direction, which is indicated
by a perpendicular stroke at one end of the bond. This causal stroke states that at this side the effort
variable e is known (it acts as an input) and f can be calculated as a function f := Φ−1

k (e). Consequently,
the flow f is known on the other side of the bond and acts as an input to a function to calculate the
effort e := Φi( f ). Figure 5.7 illustrates this relation. The equations describing the primitive’s behaviour

86



5.3. Modelling Multiphysical Systems on Different Abstraction Levels

R

C

I

e

f

p q

∫︀
dt

ṗ ≡ e

∫︀
dt
q̇ ≡ f

Figure 5.6.: The tetrahedron of state visualises how the power and energy variables are related through
the three basic 1-port primitives R, C, and I [adapted from 94].

Table 5.1.: Power and energy variables for different physical domains.

Physical
domain

Effort e(t) Flow f (t) (Generalised)
momentum p(t)

(Generalised)
displacement q(t)

Electrical Voltage,
[v] = V

Current,
[i] = A

Flux linkage variable,
[λ] = V s

Charge,
[q] = A s

Mechanical
translational

Force,
[F] = N

Velocity,
[v] = m/s

Momentum,
[p] = N s

Displacement,
[x] = m

Mechanical
rotational

Torque,
[τ] = N m

Angular velocity,
[ω] = rad/s

Angular momentum,
[pτ] = N m s

Angle,
[θ] = rad

Hydraulic Pressure,
[p] = Pa

Volume flow rate,
[Q] = m3/s

Pressure momentum,
[pp] = N s/m2

Volume,
[V] = m3

87



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

impose a required, preferred (e.g., due to numerical reasons), or free causality (effort-in or effort-out)
on the primitive’s ports. The causalities assigned to one port need to be propagated as constraints to
all related ports. Methods like the Sequential Causality Assignment Procedure (SCAP) [94] exist to
systematically complete the causality of a bond graph, which is one of their main advantages together
with the compact visualisation of the energy flow and of the computational structure. The assigned
causalities allow to sort the primitives’ equations in the right order for model execution and to do some
further formal checks on the model: the number of states and non-states in the system, the presence of
algebraic loops during model execution, or if it is an ill-posed model.

Three generalised 1-port primitives represent the resistive R, inertial I, and capacitive C behaviour
independent of the considered physical domain. Energy sources are modelled as effort source S e and
flow source S f primitives. Quantity transformations (also across domain boundaries) are represented
through the transformer TF and gyrator GY 2-port primitives, which ensure the conservation of energy.
Multi-port junction primitives represent explicitly the interconnection of primitives, which are exposed
to a common effort (0-junction) or a common flow (1-junction). All primitives can have nonlinear
characteristic equations. Transformer, gyrator, and sources can be modulated by an external signal.
Table 5.2 summarises the basic primitives of a bond graph with the permitted causality assignments
and their defining equations. Please note that the bond direction is not imposed by the bond graph
primitives. However, their parameter definition assumes the indicated bond directions. Additionally,
special multiport versions of R, I, C primitives can be used to describe distributed component behaviours
of, e.g., a beam, fields, or in our case the electromechanical transducer (Figure 5.5c). Due to the generic
names for the primitives, variables, and parameters and partially overlapping standards for quantity
symbols (e.g., v for voltage and velocity), the link to the physical domain is not anymore forcibly kept
through their name, but rather through the quantity type (measurement unit) associated to the variables
and parameters (Figures 5.5b and 5.5c). Therefore, extra precaution has to be taken when dealing with
variable and parameter names and their associated quantity type. For this reason support for dimensional
analysis has been developed for the SystemC AMS extensions, as presented in Section 5.4.

Complex systems such as heterogeneous AMS SoCs require a hierarchical description of their structure.
This can be achieved by using the more abstract word bond graphs [94], which add the usage of “macros”
to the classic bond graph modelling to represent a multiport component of the overall system. Such
systems are also often characterised through the presence of digital units, which control the continuous-
time parts through feedback and switching of energy flows due to digital signals. The switching
can be modelled using idealised controlled junctions (Table 5.3). Their presence indicate a hybrid
bond graph [16]. An active junction constrains the causality of attached bonds like a normal junction.
When it gets inactive, it imposes a zero on the power variable, which is common to all attached bonds,
leading to a causality change. In electrical terms this means that a parallel connection modelled by a
0-junction is “short-circuited” and a series connection modelled by a 1-junction is “left open”. The
causality change needs to be propagated into the graph and requires a solver reinitialisation imposing a
simulation performance penalty.

The standardised SystemC AMS extensions [131] do not support the bond graph formalism. Adding
this support in form of a new MoC has been a principal goal of this Ph.D. thesis work. The results are
presented in Section 5.7.

5.3.3. Using a Block Diagram

The causality assignment allows for a natural integration of bond graphs with block diagrams and their
transformation in the latter (Figures 5.5c to 5.5e). The block diagram formalism does not guarantee

88



5.3. Modelling Multiphysical Systems on Different Abstraction Levels

Table 5.2.: Basic primitives of a bond graph with their legal causality assignments.

Defining relation Examples from electrical, mechanical,

Name Symbol General case Linear case and hydraulic domains

Effort source S e
e
f

e(t) given, f (t) arbitrary • Voltage, force, pressure sources

Modulated
effort source

e(t)
S e

e
f

e(t) given through signal,
f (t) arbitrary

Flow source S f
e
f

f (t) given, e(t) arbitrary • Current, velocity, volume flow rate
sources

Modulated
flow source

f (t)
S f

e
f

f (t) given through signal,
e(t) arbitrary

(Generalised)
resistor

e
f

R

e
f

R

e = ΦR( f )

f = Φ−1
R (e)

e = R f

f = 1
R e

• Electrical resistor
• Translational/rotational damper
• Hydraulic throttle

(Generalised)
capacitor

e
f = q̇

C

e
f = q̇

C

q = ΦC(e)

e = Φ−1
C (q)

q = Ce

e = 1
C q

• Electrical capacitor
• Spring, torsion bar
• Gravity tank

(Generalised)
inertia

e = ṗ
f

I

e = ṗ
f

I

p = ΦI( f )

f = Φ−1
I (p)

p = I f

f = 1
I p

• Electric inductor
• Mass, rotating disk
• Fluid-filled pipe section

(Generalised)
transformer

e1

f1
TF

e2

f2
e1

f1
TF

e2

f2

e1 = me2, f2 = m f1

e2 = 1
m e1, f1 = 1

m f2

• Electrical transformer
• Ideal rigid lever, gear pair
• Hydraulic ram

Modulated
(generalised)
transformer

MTF
e1

f1

e2

f2

m(t) e1 = m(t)e2, f2 = m(t) f1 • Autotransformer with wiper
• Geometric transformations

(Generalised)
gyrator

e1

f1
GY

e2

f2
e1

f1
GY

e2

f2

e1 = r f2, e2 = r f1

f2 = 1
r e1, f1 = 1

r e2

• Electrical gyrator
• Gyroscope
• Voice coil transducer

Modulated
(generalised)
gyrator

MGY
e1

f1

e2

f2

r(t) e1 = r(t) f2, e2 = r(t) f1 • Gyroscope with variable rotor speed
• Voice coil with variable transduction

coefficient

Flow junction,
0-junction,
common effort
junction

0
e1

f1
ei fi

e j

f j

en fn e1 = . . . = ei = . . . = en

fi = −
(︁∑︀n

j=1, j,i f j

)︁ • Electrical parallel connexion
• Situation with a single force and

n velocities summing up to zero
• Hydraulic parallel connexion

Effort junction,
1-junction,
common flow
junction

1
e1

f1
ei fi

e j

f j

en fn f1 = . . . = fi = . . . = fn

ei = −
(︁∑︀n

j=1, j,i e j

)︁ • Electrical series connexion
• Dynamic equilibrium of n forces

associated with a single velocity
• Hydraulic series connexion

89



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Pri Prk
e
f

V Pri Prk
e

f
V

f := Φ−1
k (e)

e := Φi( f )

Pri Prk
e
f

V Pri Prk
e

f
V

f := Φ−1
i (e)

e := Φk( f )

Figure 5.7.: Interpretation of a bond as a bilateral signal flow.

Table 5.3.: Controlled junctions in hybrid bond graphs for modelling discrete switching of energy flows.

Name Symbol On-state Off-state

Controlled 0-junction 0
sw(t)

0S f : 0 0S e : 0

Controlled 1-junction 1
sw(t)

1S e : 0 1S f : 0

itself the conservation of energy in the system. It is emulated by the way the block diagram primitives
are interconnected. The block diagram primitives (scaler, integrator, summer, etc.) are so generic that
they do not establish a direct link to the modelled physical effect (Figure 5.5d). That’s why it becomes
paramount to annotate each signal and parameter with its quantity type to reestablish the link and to
be able to check the system model on the structural and equation level for consistency (Figure 5.5e).
Otherwise, partially overlapping symbol names for different kinds of quantities (e.g., in Figure 5.5e
vtrans,in for the velocity input and vtrans,out for the voltage output of the transducer sub-model) could result
in hard to spot interconnection mistakes during the model creation by the designer.

The close relationship between causal bond graphs and block diagrams also allows to mix them in
a single model. An example is given in Figure 5.8 in form of a car wheel model of an electronically
controlled suspension system incorporating a semi-active damper and a fast load-leveller [94]. Both ways
of representing the systems are given: the “classic” domain-specific way and the way using bond graphs
for the energy conservation part and block diagrams for the signal processing part. The blocks in the
signal flow graph can take the calculated power or energy variables as input and can modulate the sources
or element parameters of the bond graph.

Block diagram models of physical components are in general hard to reuse as all physical quantities
have already been assigned their input/output roles till the interface of the component. This seriously
limits the interconnection options with other physical components (e.g., only series connection or only
parallel connection). However, they are entirely causal, which allows for a procedural and thus very
efficient model execution, e.g., with the TDF MoC of the SystemC AMS extensions (Section 5.2.1).

90



5.4. Integrating Dimensional Analysis with SystemC AMS extensions

F0(t)

Fc

vc

vb, pb

vw, pw

kb,c

kw,0xw,0

xb,w

Fc = Bẋb,w −BAvb

vc =−hvb −g(xc − xb,w)

xc(t)

ẋb,w

vb

S f

v0(t)

Body

Wheel mw

mb

d b
,w F

U

ẋ
U

Controller
SoC

ẋ
U

. . .

(a) “Classic” domain-specific system representation.

S f

0

1

C : kw,0

I : mw
ṗw

vw

ẋw,0

0

1

Se

F0(t)

v0(t)

I : mb
ṗb

vb

1

C : kb,c

0 S f

R : db,w

xc(t)
xb,w

vb

Fc

vc

ẋb,w
q̇b,c g

+

+
−

−

+

BA

B

−

h

−

ADCẋ
U

F
U

ẋ
U ADC

DAC

DAC

∫

Controller SoC

(b) Representation coupling a bond graph for the energy conserva-
tion part with a block diagram for the signal processing part.

Figure 5.8.: Car wheel model of an electronically controlled suspension system incorporating a semi-
active damper and a fast load-leveller [94].

5.4. Integrating Dimensional Analysis with SystemC AMS extensions

Sections 5.1 and 5.3 showed the importance of annotating parameters and variables in multiphysical
system models with their measurement unit as part of their quantity data type to not lose the link to
physical domain when using more abstract modelling formalisms like bond graphs and block diagrams.
It was also shown that current HDLs insufficiently support the concept of quantity data types. Therefore,
automated checks of the model assembly and equation coherency using dimensional analysis are often not
available in the simulation tools supporting these HDLs. The openness of the SystemC AMS simulation
framework and the powerful C++ programming language makes the definition of quantity data types
supporting dimensional analysis and their integration with the SystemC AMS extensions possible.

The integration of dimensional analysis with the SystemC AMS extensions requires several steps:

1. Implement a quantity data type with unit annotation and dimensional analysis in C++ without
prohibitive runtime penalty.

2. Facilitate the debugging of compiler errors related to the quantity data type.

3. Facilitate the consistent usage of this quantity data type in SystemC models of multiphysical
systems by offering a library that helps to reduce code overhead due to the reimplementation of
very similar behaviours for different quantity types.

In this section, the focus will be on the first two steps, as they lay the foundation for using quantity
types and dimensional analysis in SystemC models. Facilitating the usage of the quantity types will be
addressed in separate sections for the TDF MoC (Section 5.6) of the standard SystemC AMS extensions
and for the new Bond Graph (BG) MoC (Section 5.7) proposed by this Ph.D. thesis work.

91



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

5.4.1. Compile-time dimensional analysis with Boost.Units

For the first step, a mature implementation is available in form of the peer-reviewed Boost.Units li-
brary [158], which has been used in this work. It implements dimensional analysis for arbitrary systems
of units at compile-time as part of the static type checking phase without requiring modifications to the
compiler or an additional tool. This is possible due to C++’s flexible type system offering templates and
the on it building template metaprogramming technique [1], which allows to algorithmically transform
and derive new types during compilation.

The library represents an arbitrary composite unit with the help of the template class
unit<Dim, System>1. Its two template arguments encode in static type lists the dimension as a
reduced ordered set of base dimensions raised to a rational power and the associated system of units that
defines the set of base dimensions and their respective measures. For example, the energy is represented
through [M]1[L]2[T]−2 using the base dimensions mass [M], length [L], and time [T], which is in
SI units: kg m2 s−2 = N m = J. The compile-time derivation of new units due to arithmetical operations
with units, i.e., the dimensional analysis, is done through traits classes2. The unit type U and value
type V (by default double, but maybe, e.g., std::complex<T>) form a unique type quantity<U, V>,
which overloads only the legal arithmetic and assignment operators. Thus, the compiler issues a “missing
overload” error for illegal operations, e.g., the sum of two quantities with different units or the assignment
between incompatible quantities. Numerical constants are annotated in the source code by multiplying
them with their measurement unit, e.g.:

1 quantity <si::energy> E = 1.5 * si::newton * si::meter;

where si::newton is a static constant of type unit<force_dimension, si::system> and
si::meter is a static constant of type unit<length_dimension, si::system>. Their mul-
tiplication with a double value yields the correct type quantity<si::energy, double> for
the assignment to the variable E. The type si::energy is itself a convenience typedef for
unit<energy_dimension, si::system>, which is proposed by the Boost.Units library as part of
the definition for the SI system of units. Let us now look on a more complex example involving three
quantities of different dimension and different value type:

1 / / Cu r ren t q u a n t i t y w i t h double va lue .
2 quantity <si::current> i = 0.1 * si::ampere;
3 / / Complex impedance q u a n t i t y .
4 quantity <si::resistance , complex<double> >
5 Z = complex<double >(4.0, 3.0) * si::ohm;
6 / / The p roduc t y i e l d s a complex v o l t a g e q u a n t i t y :
7 quantity <si::electric_potential , complex<double> >
8 v = Z * i;

The multiplication of the scalar current quantity variable i with the complex impedance quantity
variable Z yields a complex voltage quantity, which is assigned to the variable v of the correct type.

1All types and functions of Boost.Units are defined in the namespace boost::units. Each system of units is implemented
in an own namespace, e.g., boost::units::si for the SI system of units.

2Traits are a generic programming technique to associate additional information to a type by creating a template class,
which is specialised for each type it provides information about. This is done in form of typedefs, static constants, and
static member functions, which have in each specialisation of the class the same name. A generic algorithm can thus
deduce any information it needs about a type for its operation from the traits class. The C++ standard provides, e.g.,
the std::numeric_limits<T> and std::character_traits<T> traits [163]. The Boost.TypeTraits library is another
example [6]. More information about traits can be, e.g., found in Adobe Systems Inc. Et al. [6], Maddock and Cleary [103],
Myers [125], Veldhuizen [175], and Frogley [56].

92



5.4. Integrating Dimensional Analysis with SystemC AMS extensions

Boost.Units also overloads all standard mathematical functions defined in <cmath> for the new quantity
type taking into account any unit transformations by the functions. Thus it is possible to write, e.g.:

1 quantity <si::dimensionless >
2 sin_half_pi_rad = sin(0.5 * M_PI * si::radian); / / == 1 .0
3 double sin_90_deg = sin(90.0 * degree::degree); / / == 1 .0

The result for both assignments will be sin(π2 · rad) = sin(90°) = 1. This shows that the trigonometric
functions are able to distinguish the different units of the quantity constants passed as function arguments.
Both quantity constants have the dimension of a plane angle, which is the dimension the sine function
requires as argument. The sine function returns a dimensionless quantity, which is the only quantity
type that can be implicitly converted to its value type (usually double). All three examples will compile
without warning/error and give the expected results.

As the unit is encoded into the quantity only as part of its type and not as a member variable, modern
C++ compiler can optimise this information away after the type checking phase. This optimisation
leaves behind an object with the same memory layout as the value type. Thus, no runtime penalty is
caused by doing arithmetics with quantities. Only the compile time is increased.

Now, let us have a look on the compiler errors resulting from illegal mathematical operations involving
quantity types. In a first example, two variables with similar names, but completely different meaning,
are summed:

1 quantity <si::electric_potential > v_1 = 5.0 * si::volt;
2 quantity <si::velocity > v_2 = 3.0 * si::meter / si::second;
3 / / Th is won ’ t compi le :
4 quantity <si::electric_potential > v_tot = v_1 + v_2;

The compiler will refuse to compile the last statement and give an error3 like this:
1 fail_units_examples.cpp:16: error: no match for ‘operator+’ in ‘v_1 + v_2’

This clearly points us to the error, as it is not allowed to sum a voltage quantity v_1 and a speed
quantity v_2. Especially in multiphysical models, it is common to meet such kind of errors, as different
engineering domains have partially overlapping symbol standards, like in our case for voltage and
velocity. Unfortunately, the generated compiler errors involving the Boost.Units quantity are not always
so clear and compact. To give an example, let us implement an incorrect Ohm’s law:

1 quantity <si::resistance > R = 5.0e3 * si::ohm;
2 quantity <si::electric_potential > v = 10.0 * si::volt;
3 / / Th is won ’ t compi le :
4 quantity <si::current> i = R * v;

This simple mistake gives the incomprehensible compiler error message shown in Listing 5.8. The
message can be made more comprehensible by removing the boost::units:: namespace qualifiers
and correctly indenting the mentioned template types, as shown in Listing 5.9. In it, the compiler states
that it cannot convert from [ΩV] = [m4 kg2 s−6 A−3] to [A]. Passing a value of the wrong quantity
type as an argument to a function will cause similar type conversion error messages or no matching
function call error messages.

The given code examples show that the complex infrastructure of types encoding all properties of a
quantity (dimension, system of units, value type) is mostly hidden from the user while he is writing his
code. The syntax for writing equations using quantity variables and quantity constants is equivalent to
the mathematical one. Only the identifiers for the measurement units are longer. The typing overhead
compared to normal C++ code using only double as type for the variables is negligible, as comments

3The given examples of compiler messages were generated by GNU g++ 4.2.1.

93



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.8: Unformatted compiler error message for “quantity<si::current> i = R * v;”.

1 fail_units_examples.cpp:10: error: conversion from ‘boost::units::quantity < boost↵
::units::unit<boost::units::list<boost::units::dim< boost::units::↵
length_base_dimension , boost::units::static_rational <4l, 1l> >, boost::units::↵
list<boost::units::dim<boost::units::mass_base_dimension , boost::units::↵
static_rational <2l, 1l> >, boost::units::list<boost::units::dim<boost::units::↵
time_base_dimension , boost::units::static_rational <-0x00000000000000006l , 1l> ↵
>, boost::units::list<boost::units::dim<boost::units::current_base_dimension , ↵
boost::units::static_rational <-0x00000000000000003l , 1l> >, boost::units::↵
dimensionless_type > > > >, boost::units::homogeneous_system <boost::units::list↵
<boost::units::si::meter_base_unit , boost::units::list<boost::units::↵
scaled_base_unit <boost::units::cgs::gram_base_unit , boost::units::scale <10l, ↵
boost::units::static_rational <3l, 1l> > >, boost::units::list<boost::units::si↵
::second_base_unit , boost::units::list<boost::units::si::ampere_base_unit , ↵
boost::units::list<boost::units::si::kelvin_base_unit , boost::units::list<↵
boost::units::si::mole_base_unit , boost::units::list<boost::units::si::↵
candela_base_unit , boost::units::list<boost::units::angle::radian_base_unit , ↵
boost::units::list<boost::units::angle::steradian_base_unit , boost::units::↵
dimensionless_type > > > > > > > > > >, void>, double>’ to non-scalar type ‘↵
boost::units::quantity<boost::units::unit<boost::units::list<boost::units::dim↵
<boost::units::current_base_dimension , boost::units::static_rational <1l, 1l> ↵
>, boost::units::dimensionless_type >, boost::units::homogeneous_system <boost::↵
units::list<boost::units::si::meter_base_unit , boost::units::list<boost::units↵
::scaled_base_unit <boost::units::cgs::gram_base_unit , boost::units::scale <10l,↵
boost::units::static_rational <3l, 1l> > >, boost::units::list<boost::units::↵

si::second_base_unit , boost::units::list<boost::units::si::ampere_base_unit , ↵
boost::units::list<boost::units::si::kelvin_base_unit , boost::units::list<↵
boost::units::si::mole_base_unit , boost::units::list<boost::units::si::↵
candela_base_unit , boost::units::list<boost::units::angle::radian_base_unit , ↵
boost::units::list<boost::units::angle::steradian_base_unit , boost::units::↵
dimensionless_type > > > > > > > > > >, void>, double>’ requested

Listing 5.9: Simplified compiler error message for “quantity<si::current> i = R * v;”.

1 fail_units_examples.cpp:10: error: conversion from
2 ‘quantity <unit<list<dim<length_base_dimension , static_rational <4l, 1l> >,
3 list<dim<mass_base_dimension , static_rational <2l, 1l> >,
4 list<dim<time_base_dimension ,
5 static_rational <-6l, 1l> >,
6 list<dim<current_base_dimension ,
7 static_rational <-3l, 1l> >,
8 dimensionless_type > > > >,
9 si::system, void>,

10 double>’
11 to non-scalar type ‘quantity <si::current, double>’ requested

94



5.4. Integrating Dimensional Analysis with SystemC AMS extensions

clarifying the involved units can be avoided when using the new quantity type. However, compiler errors
can get very cryptic, because they usually state the fully expanded type names. This is a grave usability
problem, which will hinder the acceptance of the proposed quantity types in the AMS design community.
Therefore, it needs to be addressed.

5.4.2. Facilitating the Debugging of Errors Related to Quantity Types

The problem of incomprehensible compiler messages due to long template type names is known in the
C++ community since the advent of generic libraries (e.g., the Standard Template Library (STL) [163]).
To alleviate the problem, filters have been developed, which parse and simplify the error messages output
by the C++ compiler. One example is STLfilt [183, 184]. It performs basic substitutions (using regular
expressions) for all the standard STL components. It has been adapted to different compilers so that
certain versions of it go further with respect to message ordering, line wrapping, library header error
treatment, etc. Another example is TextFilt [55], which also applies regular expressions to the read in
compiler output to do substitutions. It is a bit more generic than STLfilt, as the substitution process is
controlled by a set of user-defined rules. However, both tools will yield in the best case a result close to
the hand-formatted error message shown in Listing 5.9, as they lack an understanding of the information
encoded into the quantity type.

As can be seen in the example error message, it is the boost::units::unit<Dim, System> type,
which contributes to most of the “noise” in the message, but also contains the essential information
to resolve the error in the user’s code. Therefore, to achieve even better results than the abovemen-
tioned generic tools, the boost::units::unit<Dim, System> types appearing in the compiler error
messages need to be properly parsed to transform the contained information into a human-readable
format. This has been realised in the bufilt (Boost.Units filter) utility implemented by the author
of this Ph.D. thesis. Figure 5.9 depicts its architecture. The main component controlling the process
is the C++ template type filter, which task it is to read the compiler log from the standard input and
localise in it all occurrences of boost::units::unit<...>, to reformat them before they are written
to the standard output. All text not belonging to the searched type is directly forwarded to the standard
output. Thus, the parser of the reformatter is not disturbed by unexpected input. To this end, the filter
successively reads, controlled by a Finite State Machine (FSM), characters from the standard input
and stores them in a FIFO character buffer. For each read character c, the FSM decides if it is part of
the searched template type boost::units::unit<...> or not. In the latter case, it flushes the buffer
directly to the standard output. Once the whole searched type with all its template argument has been
read into the character buffer, the filter applies the reformat unit action to it, which can be configured by
the user through a command line argument that specifies the format for the output unit. Afterwards, the
transformed type string is flushed to the standard output.

The reformatting of the unit type requires two steps. First, the unit type parser analyses, with the
help of a grammar for the unit template type, the string in the character buffer to decompose it into
an unit object. This object hierarchically contains all the information that have been encoded into the
boost::units::unit<...> template type as a one-to-one mapping. Figure 5.10 shows the data model
of this unit object. In it, the measurement unit is represented as a dimension and a system of units. The
dimension is represented as a list of base dimensions raised to a rational power. The system of units
can be either homogeneous or heterogeneous. In a homogeneous system of units, there is a one to one
mapping between the base dimensions and the scaled base units. In a heterogeneous system of units,
at least for one base dimension two or more different scaled base units have been specified. Therefore,
the heterogeneous system has to directly encode the measurement unit representing the dimension of

95



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Compiler
output log

c

flush buffer

std::cin char std::cout

Reformat unit action

C++ template type filter matching boost::units::unit<...>

Reformat buffer std::string std::string

FSM to control the filter process based on the read character c:
• Decide if c is part of the searched template type boost::units::unit<...> and put it into the buffer.
• Parse and reformat buffer once the searched template type and its arguments have been read in.
• Flush buffer to output after reformatting or if c does not belong to the searched template type.

look up type std::string std::string result

bufilt

Reformatter for bufilt::unit

type format

long format

short format

compact format
Boost.Spirit.Karma
generator grammar

Filtered
compiler

output log

std::ifstream

Parser for boost::units::unit<...>

boost::units::unit<...> type

Boost.Spirit.Qi
parser grammar

bufilt::unit

• Base dimensions
• Base units
• Scale factors
• Scaled base units

• Base dimension →
scaled base unit

• System of units

Boost.Units dictionary:

FIFO character buffer

Figure 5.9.: Architecture of the bufilt utility.

the unit. This is done as a list of scaled base units raised to a rational power via the intermediate type
heterogeneous_system_dim. Scaled base units and heterogeneous systems can have an associated
scale factor of an integer base raised to a rational power. This complex data model is necessary to
represent arbitrary measurement units in arbitrary systems of units. It explains the complexity of the unit
template types, which is further complicated by the fact that the various lists need to be represented as
recursive template type instances.

In the second step, the unit object returned by the parser is transformed back into a string by the
reformatter. It uses a generator grammar with attached actions for the configured output format to
transform the individual attributes of the unit object into strings and arranging them to the reformatted
unit type. Currently, four output formats (“compact”, “short”, “long”, and “type”) for the unit are
provided and will be explained below together with the usage of the tool. This reformatting process is
supported by the Boost.Units dictionary. In it, the reformatter can look up the names and symbols of base
dimensions, base units, scale factors, and scaled base units based on the passed type name. Additionally,
this dictionary contains the mapping of base dimensions to scaled base units and allows to identify
common system of units (e.g., SI) based on the supplied list of scaled base units defining it. Currently,
the dictionary contains all the information about the base dimensions, base units, systems of units, etc.,
which are predefined in the Boost.Units 1.1.0 library [158]. This covers the SI and Centimetre Gram
Second (CGS) systems of units as well as many common astronomical, imperial, temperature, and angle
units. In the relatively infrequent case that a user defines his own base dimensions, base units, system of

96



5.4. Integrating Dimensional Analysis with SystemC AMS extensions

<<vector>>

homogeneous_system

<<struct>>

dim

+ base_dimension
+ exponent

<<struct>>

heterogeneous_system_dim

+ exponent

<<struct>>

unit

+ enable

<<struct>>

scaled_base_unit

+ base_unit

<<struct>>

scale_factor

+ base
+ exponent

<<struct>>

heterogeneous_system

<<variant>>

system_of_units

bufilt

1

1..*

<<vector>>

dimension

unit

1..* 1..*scale
unit

dimension
1..* 1

system

1..*
<<vector>>

scale

1..*

0..1

<<vector>>

<<vector>>
<<vector>>

<<vector>>

0..1

Figure 5.10.: Class diagram of bufilt’s data model to represent a unit.

units, etc., he will have to add the information about them to the source file of the Boost.Units dictionary
and recompile bufilt. This decision has been deliberately taken to provide a simple tool in form of a
stand-alone executable that does not depend on any external files to function.

The implementation of bufilt in C++ makes only use of the C++ standard library and Boost li-
braries [41]. Therefore, it does not impose additional dependencies than already set by the usage of the
Boost.Units library for dimensional analysis. The C++ template type filter is implemented as a filtering
input/output stream using Boost.Iostreams [167]. The parser and generator of the reformat unit action
have been implemented using Boost.Spirit [43], which is an object-oriented, recursive-descent parser and
output generation library for C++. It allows to write grammars and format descriptions using a syntax
similar to the Extended Backus-Naur Form (EBNF) [88] directly in C++. These inline grammar specifi-
cations can directly include C++ code to specify actions. Thus, it is relatively easy to build and handle the
hierarchical data structure of the unit object discussed above. The Boost.Program_options library [149]
has been used to implement the handling of the bufilt command line options.

The bufilt utility can either read log files generated by the C++ compiler or become part of a
command line pipe to directly process the compiler output. In the latter case, it is important to redirect
first stderr to stdout using 2>&1 (bash syntax), before piping it into the bufilt utility. The bufilt
utility supports the following command line options:

-f [ --format ] arg (=compact) : Select the unit output format ("compact", "long", "short",
"type").

-h [ --help ] : Show the help message.
-v [ --version ] : Show the program version.

97



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

On the command line, it can be executed in the following ways:
$ bufilt [-h]
$ bufilt [-v]
$ bufilt [-f arg] file [file ...] [> output_file]
$ bufilt [-f arg] < input_file [> output_file]
$ c++ ... 2>&1 | bufilt [-f arg] [> output_file]

To show the effect of the four different unit output formats, the compiler error message caused by the
wrong implementation of Ohm’s law will be used again (Listing 5.8). The type format is the closest
to the original output. All type names encoding base dimensions or base units are conserved. Only the
types encoding the type lists, scale factors, and powers are replaced by a more readable notation:

1 fail_units_examples.cpp:10: error: conversion from ‘boost::units::quantity <boost::↵
units::unit<{boost::units::length_base_dimension^4, boost::units::↵
mass_base_dimension^2, boost::units::time_base_dimension^-6, boost::units::↵
current_base_dimension^-3, boost::units::dimensionless_type}, boost::units::si↵
::system>, double>’ to non-scalar type ‘boost::units::quantity <boost::units::↵
unit<{boost::units::current_base_dimension , boost::units::dimensionless_type},↵
boost::units::si::system>, double>’ requested

Additionally, bufilt tries to identify the system of units based on the scaled base units list of ho-
mogeneous systems and to replace the lengthy list with the corresponding typedef provided by the
Boost.Units library. As this format does not involve any look-up in the Boost.Units dictionary, it will
always work even in the presence of user-defined base units and base dimensions.

The long format additionally replaces the type names representing base dimensions, scaled base units,
and system of units with their regular name:

1 fail_units_examples.cpp:10: error: conversion from ‘boost::units::quantity <boost::↵
units::unit<{length^4, mass^2, time^-6, (electric current)^-3, dimensionless},↵
SI>, double>’ to non-scalar type ‘boost::units::quantity<boost::units::unit<{↵

electric current, dimensionless}, SI>, double>’ requested

The short format is very similar. It replaces the type names by their corresponding symbols:
1 fail_units_examples.cpp:10: error: conversion from ‘boost::units::quantity <boost::↵

units::unit<{[L]^4, [M]^2, [T]^-6, [I]^-3, [1]}, SI>, double>’ to non-scalar ↵
type ‘boost::units::quantity <boost::units::unit<{[I], [1]}, SI>, double>’ ↵
requested

This format is already quite readable and still conserves all the information encoded into the unit type.
Finally, the (default) compact format goes even one step further. It maps the base dimensions

on their corresponding base units and formats the measurement unit and system of units as compact
human-readable strings:

1 fail_units_examples.cpp:10: error: conversion from ‘boost::units::quantity <boost::↵
units::unit<"m^4 kg^2 s^-6 A^-3", "SI">, double>’ to non-scalar type ‘boost::↵
units::quantity<boost::units::unit<"A", "SI">, double>’ requested

This format makes it most easy to the user to understand the compiler error messages and, therefore, is
most suitable for day-to-day use.

The bufilt utility implements a full parser for the boost::units::unit<Dim, System> type,
which accepts spaces and line breaks at the same places as they are permitted in C++. However, it has
been only tested with error messages generated by GNU’s C++ compiler g++ in version 4.2.1. Therefore,
it might fail to reformat messages generated by other compilers—especially, if these compilers substitute
on their side already parts of the boost::units::unit<...> type instantiations.

98



5.4. Integrating Dimensional Analysis with SystemC AMS extensions

With the presented bufilt utility at hand, using the Boost.Units library in real-world projects becomes
more practical. Its usage will have a positive impact on the code quality, as the designer/programmer
can specify much more precisely the interfaces and computations in his model/programme, which
involve physical quantities. The compiler can check the coherency of the connected interfaces and
implemented equations. Thus, many problems can be localised and fixed before the first execution of
the model/programme. This gives the designer/programmer more time to test the important behavioural
aspects of his model/programme.

5.4.3. Using Quantity Types in SystemC Models

The basic integration of the Boost.Units library with SystemC and its AMS extensions is relatively
easy. The Boost.Units quantity types can be directly used for computations inside any SystemC module.
To use them in the modules’ port interfaces and as a data type for the signals bound to the ports, the
requirements to the data type for usage in signals set forth by the SystemC LRM [79, clause 6.4.3] and
the AMS extension LRM [131, clause 4.1.1.3.3] have to be satisfied.

The Boost.Units quantity type directly satisfies the essential requirements: it implements
the equality operator==, the output stream operator<<, the assignment operator=, and
the default constructor. Therefore, it can be directly used as data type for DE signals (e.g.,
sc_core::sc_signal<T>) and DE ports (e.g., sc_core::sc_in<T> or sc_core::sc_out<T>)
as well as for TDF signals (sca_tdf::sca_signal<T>) and TDF ports (e.g., sca_tdf::sca_in<T>,
sca_tdf::sca_out<T>).

Only the tracing mechanisms of SystemC and its AMS extensions need to be customised to en-
able the tracing of quantity ports and signals. For SystemC, this is possible in a straightforward way
by providing the necessary overload of the sc_core::sc_trace() function for a constant reference
to a quantity value. Please note that only the value part of the quantity should be written to the
trace file and not the measurement unit. To this end, the quantity type offers the member function
boost::units::quantity<U,T>::value(), which returns the required reference. For the AMS ex-
tensions, there is a slight complication: they impose the usage of the output stream operator for the writing
of trace values in time-domain simulations [131, clause 4.1.1.3.3]. However, this also causes the measure-
ment units to appear in the trace file for each written value instead of only in the header of the VCD and
of the tabular trace files. This breaks the defined file format so that the files cannot be opened anymore by
the waveform viewers. It is not sensible to locally patch the implementation of the Boost.Units library for
this special purpose. Unfortunately, the System AMS extensions 1.0 LRM does not define a type-specific
customisation mechanism allowing to reformat the trace values. Therefore, a vendor-specific solution for
the used Fraunhofer SystemC-AMS library had to be found. Fortunately, this did not require patching
the SystemC-AMS library itself. It sufficed to partially specialise two internal template classes for the
boost::units::quantity<U, T> type, which are defined in the sca_util::sca_implementation
namespace: sca_trace_value_handler<T> and sca_type_explorer<T>. This can be done in an
external header that is included additionally to the "systemc-ams" header file in the programme. Un-
fortunately, this does not present a good solution for standardisation: too many implementation details of
SystemC-AMS had to be copied into this new header file, which are unrelated to the reformatting of the
quantity type (e.g., in the case of sca_trace_value_handler<T>, ca. 120 lines of internal code had
to be copied to modify one single line). This solution is still better than the only standard-conforming
solution of implementing a wrapper class for the boost::units::quantity<U,T> type for the sole
purpose of redefining its output stream operator<<. The latter would have been heavier without any
added benefit for the user. He usually wants to have the quantity value and measurement unit output

99



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

together when printing a single quantity value.
With this implementation-specific customisation in place, there are no more noticeable differences

between boost::units::quantity<U,T> and standard C++ or SystemC data types like double or
sc_dt::sc_int<N> when writing SystemC (AMS) models.

This tracing customisation problem does not only concern the quantity data type, but also other
user-defined data types, which require different output formats for single values and tabulated values. The
SystemC solution of providing an overload to sc_core::sc_trace() is in the opinion of the author
not generic enough: It only allows the decomposition of structs of standard C++ or SystemC data
types into individual traces. It does not allow the “on-the-fly” transformation of a user-defined data type
into a data type supported by SystemC or the AMS extensions for tracing. This limitation requires the
user to add artificial data members or ports to his modules, which he needs to keep in sync with the
actual data for the sole purpose of tracing. One solution could be to encapsulate all information (e.g.,
data type size, equivalent data type in the trace file, measurement unit) and operations (e.g., to write a
correctly formatted value into the trace file) needed by the tracing mechanisms about/on a data type into
a traits class4, which could be specialised for each data type to be traced. The std::char_traits<T>
class of C++ is an example for such a mechanism, which encapsulates all character-specific information
and operations required by the std::basic_string<T> for the implementation of strings of different
character bit width [163]. It would be nice if the tracing customisation problem were addressed in one of
the next standard releases of the AMS extensions.

5.5. SystemC AMS extensions eXperiments Library

The described integration of the Boost.Units library with the SystemC AMS extensions (Section 5.2) has
been the starting point for the development of the SystemC AMS extensions eXperiments (SCAX) library.
Its mission, within the SystemC AMS simulation framework, is to facilitate the modelling of heteroge-
neous multiphysical systems in a formal and consistent way on high levels of abstraction. To this end, it
supports the bond graph formalism (Section 5.3.2) for the description of conservative (energy conserving)
behaviour and the block diagram formalism (Section 5.3.3) for the description of non-conservative (ana-
logue signal processing) behaviour. Both formalisms can be mixed using the new Bond Graph (BG) MoC,
which can directly interact with the DE and TDF MoCs of the SystemC AMS extensions. It has been
shown in Sections 5.3.2 and 5.3.3 that the expressiveness of these two formalisms stems from their
generic modelling primitives, which behaviour can be highly parameterised. Both sections also showed
how important it is to be able to precisely specify the physical domain or quantities at the primitives’
ports to ensure the correct assembly of the models for the targeted multiphysical system. In order to
not loose these advantages, the SCAX library provides for each primitive a generic module, which port
interface and behaviour can be parameterised in a well-defined way. To achieve this flexibility, the library
design has been inspired by the generic and functional programming techniques used in the STL [89,
163] and Boost libraries [42].

The library offers its functionality in three thematic headers:

scax_utility: Utilities for the SystemC AMS extensions, which are not linked to a specific MoC but
facilitate the development of generic modules (cf. to Section 5.6), which can seamlessly use the
C++ standard data types, SystemC data types, and Boost.Units quantity data types. This includes:

4See footnote 2 on page 92 for an explanation of the traits technique.

100



5.5. SystemC AMS extensions eXperiments Library

• Cast functions to uniformly convert (back and forth) between the SystemC AMS extensions’
time types (sc_core::sc_time and sca_core::sca_time) and a user-specified data
type T (e.g., double or quantity<si::time>).

• Data type traits to deduce from a (quantity) type, the type of its value, unit, and system of
units as well as a compatible time type.

• Waveform functors5 (cf. to Table A.2 on page 152) to generate standard continuous-time stim-
uli like constant, exponential, pulse, sinusoidal signals.

• Functors for testing data sequences against a condition (e.g., threshold crossing) and reacting
on a change of the condition result.

• Lazily evaluated function wrappers for the mathematical functions defined in <cmath>
and <boost/units/cmath.hpp> to facilitate their usage in functors created with the
Boost.Lambda library [84].

All utilities are implemented in the namespace scax_util.

scax_tdf: A library of generic block diagram modules (cf. to Section 5.6 and Table A.4 on page 154)
for the TDF MoC, which port data types and behaviour can be parameterised. All modules are
implemented in the namespace scax_tdf.

scax_bond_graph: A new Bond Graph (BG) MoC (cf. to Section 5.7), which supports mixed
bond graph (conservative) / block diagram (non-conservative) models of heterogeneous mul-
tiphysical systems. It provides a library of predefined generic bond graph and block diagram
primitive modules (cf. to Tables A.5 and A.6 on pages 156 and 157, respectively). The user
can implement his own bond graph and block diagram modules. The BG MoC implements
synchronisation with the TDF and DE MoCs. It is implemented in the namespace scax_bg.

More details on selected aspects of the library will be given in the following sections. Appendix A
provides the reader with a short reference of the SCAX library. The SCAX library itself is fully
documented using Doxygen [173].

To be portable, its implementation tries to rely as much as possible on the functionality provided
by the C++, SystemC, and AMS extensions standards [79, 89, 131]. However, the already described
integration with the Boost.Units library (Section 5.4.3) and the integration of the BG MoC via the
synchronisation layer into the SystemC AMS extensions (Figure 5.1 on page 74), required the use of
several implementation-specific APIs due to a lack of standardisation of these aspects. This currently
links the SCAX library to the OSCI SystemC 2.2 reference implementation [82] and the Fraunhofer
SystemC-AMS PoC implementation [53] of the abovementioned IEEE/OSCI standards. Besides these
two libraries, the SCAX library implementation makes use of several Boost libraries [42], which does
not affect the portability, as they purely use features of the ISO/IEC C++ standard [89]. All development
and testing has been carried out on Linux (Debian Lenny, Linux kernel 2.6.32, GNU C++ compiler
g++ 4.4.5) and Mac OS X (versions 10.5 and 10.6, GNU C++ compiler g++ 4.2.1) on the i386 and
x86_64 processor platforms.

5Functor is the common term for a function object, i.e., an object of a class that overloads the function call operator(). The
advantage of functors over ordinary functions is that they can carry over state from one function call to another.

101



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

5.6. Generic TDF Modules for Common Block Diagram Primitives

In a first step towards the modelling of heterogeneous multiphysical systems (Section 5.3) with the Sys-
temC AMS extensions (Section 5.2), the block diagram formalism has been used with the TDF MoC (Sec-
tion 5.2.1). At a first glance, the ELN and LSF MoCs (Section 5.2.2) might seem to be more appropriate
choices. However, they are limited to the description of purely linear conservative and non-conservative
behaviour and therefore not well suited for the description of the nonlinear behaviour of multiphysical
systems such as the electromechanical transducer example discussed in Section 5.3. Additionally, only
the DE and TDF MoCs allow us to parameterise their ports and signals to use the Boost.Units quantity
type presented in Section 5.4. This is important for a precise specification of the module interfaces
that keeps the link with the physical domain despite the high level of abstraction of the block diagram
formalism (Section 5.3.3). The usage of the quantity types enables the compiler to check the correct
assembly of the model and the coherency of the implemented computations.

However, there is currently no standard library of TDF modules for the block diagram primitives
available, which fulfils the needs of parameterisable ports and behaviour described in the previous section.
For this reason models with quite similar generic behaviour (e.g., sources, amplifiers, functional blocks)
are often reimplemented to cope with small differences in the involved data types or behaviour, which is
against the model reuse idea. This situation is aggravated by the introduction of quantity types, which
purposely tie a model even further to a specific application. This motivated the development of the
scax_tdf part of the SCAX library, which offers a set of generic TDF modules for common block
diagram primitives like source, sink, summer, multiplier, function, integrator, and differentiator blocks.

5.6.1. Implementation

Table A.4 in Appendix A summarises all available modules. As the function carried out by each
block diagram primitive is orthogonal to the actual type of the inputs and outputs, each TDF mod-
ule is implemented as a template class, which allows to parameterise its port and parameter types
upon instantiation. Dependencies between these types, due to the computations implemented by the
module, are either automatically satisfied or at least checked for consistency using traits classes or
static assertions, respectively. These new TDF modules are not constrained to work exclusively with
boost::units::quantity<U, V> types, but can also be parameterised for other types such as double.
This ensures interoperability with other user-created TDF modules. To render the library even more
flexible, some modules, such as the source module and the various function modules, take a function as
argument upon instantiation. Thus the user can specify, e.g., the waveform to be generated by the source
instance or the function to be applied to the read input samples to transform them to an output sample by
the function block instance.

The time-dependent function module with two inputs (scax_func2t<T1, T2, T3, TimeType>)
serves as a good example to show how such generic TDF modules are implemented. Its implementation is
given in Listing 5.10. The user can specify, via the template parameters, the data types of the input (T1, T2)
and output (T3) ports as well as the data type to represent the time (TimeType). Usually, the TimeType
can be derived from the port data types (in our case T1). This is done via its default value, which is the
traits class scax_util::scax_data_type_traits<T1>) that implements the transformation of T1 to
a compatible time data type. For example, if T1 = double, then the traits will return also double as
the time type. If T1 is a quantity using the SI system of units (e.g., T1 = quantity<si::current>),
then the traits will return the matching quantity time type quantity<si::time>. Part of the public
interface of each implemented TDF module are typedefs for the data types of each port, parameter, and

102



5.6. Generic TDF Modules for Common Block Diagram Primitives

function wrapper, which are subject to change due to the template parameterisation of the module. This
allows to reference these derived data types inside and outside the module via a unique identifier, e.g.,
to declare the interfacing signals in the code instantiating the module or to calculate the parameters for
the module instance, even if their exact types are yet to be fixed by the compiler based on the template
parameters. The class constructor scax_func2t() initialises, upon module instantiation, the ports
with their instance names and the function wrapper f_ with the user-supplied sample transformation
function f. The function wrapper of type std::tr1::function<...> can accept any free function
or functor matching the specified interface of argument and return types and is thus more flexible than
classical function pointers [90]. The set_attributes()member function, as defined in the standardised
SystemC AMS extensions, specifies at elaboration that at each simulated time step one sample is read
from each input port and one sample is produced at the output port. Finally, the processing() member
function implements the module’s behaviour by reading samples from the input ports, applying the
transformation function, and writing the returned result to the output port each time it is called by the
SystemC AMS extensions for a new time step.

This example showed all principle elements of a generic TDF module, which ports and behaviour can
be parameterised. The typedefs at the beginning of the module implementation are the central place to
construct new types based on the template arguments by passing them as arguments to other template
classes or traits. Thus, all dependencies between the types, due to the computations implemented in the
model, can be expressed. The rest of the module implementation is very similar to the TDF modules
already presented in Section 5.2.1. All other generic TDF modules from the scax_tdf library follow
the same structure.

5.6.2. Application Example

As an application example, the block diagram model of the electromechanical transducer linked to a
micromechanical resonator (Section 5.3.3, Figure 5.5e) has been implemented using the developed
scax_tdf library. Figure 5.11a shows the schematic of the equivalent TDF model. The topological
loops in the block diagram need to be broken for the TDF model by assigning a one step delay to the
integrator outputs.

The transducer is encapsulated in the SystemC module elmech_transducer, which is derived from
class sc_core::sc_module (Listing 5.11). The transducer module can be parameterised upon in-
stantiation with the voltage and force transfer functions (v_func corresponding to q

C(x) and F_func
corresponding to F(q, x) in Figure 5.11a, respectively) by passing them along with the initial conditions
as constructor arguments. Compared to the purely computational data type double, the usage of quantity
types strengthens the signature of the argument list. In this way, the compiler can detect if parameters
are accidentally passed in the wrong order, e.g., for the initial charge q_0 and displacement x_0 of the
transducer. As the transducer model is entirely structural, it contains only block diagram component
instances and specifies their interconnection by binding their ports to signals in the constructor. Typedefs
are used to facilitate the usage of the different quantity<U, V> types (in our case, e.g., voltage_type,
force_type). The specification of the quantity type for the ports v_out and v_in make them recognis-
able as a voltage output and speed input, respectively, despite the overlapping symbols and without the
need of comments. The compiler detects any binding of incompatible quantity signals to ports. This
would not be the case if only the computational data type double would have been used for the signals
and for the ports.

Listing 5.12 shows code extracts from the test bench for the transducer and resonator. Being also
a structural model, it follows the same approach as the elmech_transducer model. What is new is

103



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.10: Time-dependent function module with two inputs from the scax_tdf library.

1 #ifndef SCAX_TDF_SCAX_FUNC2T_H
2 #define SCAX_TDF_SCAX_FUNC2T_H
3 #include <functional >
4 #include "systemc-ams"
5 #include "scax_tdf_common.h"
6 namespace scax_tdf {
7
8 / / Gener ic TDF f u n c t i o n module w i t h two i n p u t p o r t s .
9 / /

10 / / The module processes the read i n p u t samples t o the o u t p u t samples us ing a
11 / / user s u p p l i e d t ime−dependent f u n c t i o n T3 f ( T1 , T2 , TimeType ) .
12 template <typename T1, typename T2, typename T3,
13 typename TimeType =
14 typename scax_util::scax_data_type_traits <T1>::time_type >
15 class scax_func2t : public sca_tdf::sca_module {
16 public:
17 / / Typedefs f o r each temp la te parameter .
18 typedef T1 in1_data_type; / / F i r s t i n p u t p o r t data type .
19 / / . . .
20 / / Type o f the f u n c t i o n wrapper t r a n s f o r m i n g the i n p u t t o the o u t p u t samples .
21 typedef std::tr1::function<T3 (const T1&, const T2&, const TimeType&)>
22 function_type;
23
24 sca_tdf::sca_in<in1_data_type > in1; / / F i r s t i n p u t p o r t .
25 sca_tdf::sca_in<in2_data_type > in2; / / Second i n p u t p o r t .
26 sca_tdf::sca_out<out_data_type > out; / / Output p o r t .
27
28 / / I n i t i a l i s e s the g e n e r i c TDF f u n c t i o n module w i t h a module name and
29 / / s i g n a l p rocess ing f u n c t i o n .
30 explicit scax_func2t(const sc_core::sc_module_name& name,
31 const function_type& f)
32 : in1("in1"), in2("in2"), out("out"), f_(f)
33 {}
34 / / . . .
35 protected:
36 / / Sets the p o r t r a t e s t o one .
37 virtual void set_attributes() {
38 in1.set_rate(1); in2.set_rate(1);
39 out.set_rate(1);
40 }
41
42 / / Processes the i n p u t samples th rough the s t o r e d f u n c t i o n and w r i t e s the
43 / / r e s u l t t o the o u t p u t p o r t .
44 virtual void processing() {
45 out.write(f_(in1.read(), in2.read(),
46 scax_util::sca_time_cast <TimeType >(in1.get_time())));
47 }
48 private:
49 / / Func t i on wrapper f o r the t r a n s f o r m a t i o n o f the i n p u t t o the o u t p u t samples .
50 function_type f_;
51 }; / / c l a s s scax_ func2 t <T>
52
53 } / / namespace s c a x _ t d f
54 #endif / / SCAX_TDF_SCAX_FUNC2T_H

104



5.6. Generic TDF Modules for Common Block Diagram Primitives

k

vdrive(t)[V]

iR1 [A]

vR1 [V]

vtrans,out[V] Ftrans,out[N]

Fd [N]

Fm[N]

vm[m/s]

Fk[N]

− q
C(x) F(q,x)

q[C] x[m]

1
R1 d

1
m

xm[m]

pm[Ns]

idrive(t)[A]

−
−
−

Electrostatic transducer

∫ ∫

∫

∫

itrans,in[A] vtrans,in[m/s]

[N/m]

[kg−1]

[Ns/m]

[N][C/F]

[S]

+ +

D:1 D:1

D:1

D:1

Tm:10ns

(a) Schematic of the TDF block diagram model.

  -2

   0

   2

   4

   6

v
 /

 V

vdrive

  -4

  -2

   0

   2

   4

v
 /

 V

vR1

vtrans

 -40

   0

  40

  80

 120

 160

F
 /

 µ
N

Ftrans

-800

-400

   0

 400

 800

F
 /

 µ
N

Fd

Fk

Fm

  -8

  -4

   0

   4

   8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
 /

 µ
m

t / ms

xm

(b) Simulation results.

Figure 5.11.: Schematic and simulation results of the electromechanical transducer block diagram model
for the TDF MoC. The topological loops need to be broken with unit delays at the integrator
outputs. To reduce the numeric error during simulation to an acceptable level, the module
time step needs to be reduced to 10 ns for the chosen parameterisation. The simulation
performance is indicated in Table 5.4 on page 134.

105



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.11: Electromechanical transducer module using the scax_tdf library.

1 using namespace std; using namespace std::tr1;
2 using namespace boost::units; namespace si = boost::units::si;
3 using namespace scax_tdf;
4
5 / / B lock diagram model o f an e l e t r o m e c h a n i c a l t r a n s d u c e r .
6 class elmech_transducer : public sc_core::sc_module {
7 public:
8 / / Typedefs f o r e l e c t r i c a l and mechanica l q u a n t i t y t ypes .
9 typedef quantity <si::electric_potential > voltage_type;

10 typedef quantity <si::force> force_type;
11 / / . . .
12
13 / / E l e c t r i c a l and mechanica l p o r t s .
14 sca_tdf::sca_in<current_type > i_in;
15 sca_tdf::sca_out<voltage_type > v_out;
16 sca_tdf::sca_in<velocity_type > v_in;
17 sca_tdf::sca_out<force_type > F_out;
18
19 / / C o n s t r u c t s t r u c t u r a l model o f the t r a n s d u c e r and i n i t i a l i s e the f o r c e
20 / / and v o l t a g e f u n c t i o n s as w e l l as the s e t the i n i t i a l c o n d i t i o n s .
21 elmech_transducer(
22 const sc_core::sc_module_name& name,
23 function <voltage_type (charge_type , displacement_type)> v_func,
24 function <force_type (charge_type , displacement_type)> F_func,
25 charge_type q_0 = 0.0 * si::coulomb,
26 displacement_type x_0 = 0.0 * si::meter)
27 : i_in("i_in"), v_out("v_out"), v_in("v_in"), F_out("F_out"),
28 q_sig("q_sig"), x_sig("x_sig"),
29 i_integ(new scax_integ_trapez <current_type >("i_integ", q_0)),
30 v_integ(new scax_integ_trapez <velocity_type >("v_integ", x_0)),
31 v_func2(new scax_func2 <charge_type , displacement_type ,
32 voltage_type >("v_func2", v_func)),
33 F_func2(new scax_func2 <charge_type , displacement_type ,
34 force_type >("F_func2", F_func))
35 {
36 / / C o n n e c t i v i t y .
37 i_integ->in(i_in); i_integ->out(q_sig);
38 v_integ->in(v_in); v_integ->out(x_sig);
39 v_func2->in1(q_sig); v_func2->in2(x_sig); v_func2->out(v_out);
40 F_func2->in1(q_sig); F_func2->in2(x_sig); F_func2->out(F_out);
41 }
42
43 private:
44 / / I n t e r n a l s i g n a l s .
45 sca_tdf::sca_signal <charge_type > q_sig;
46 sca_tdf::sca_signal <displacement_type > x_sig;
47
48 / / I n t e r n a l TDF modules .
49 auto_ptr <scax_integ_trapez <current_type > > i_integ;
50 auto_ptr <scax_integ_trapez <velocity_type > > v_integ;
51 auto_ptr <scax_func2 <charge_type , displacement_type , voltage_type > > v_func2;
52 auto_ptr <scax_func2 <charge_type , displacement_type , force_type > > F_func2;
53 }; / / c l a s s e lmech_t ransducer

106



5.6. Generic TDF Modules for Common Block Diagram Primitives

the definition of quantity constants, which are used as instance parameters (e.g., R_1, k). The usage
of quantity types prevents any accidental assignment of a quantity constant of the right dimension
but wrong system of units without proper conversion, e.g., the usage of pound instead of kilogram
for the mass m. The transfer functions of the transducer module instance are realised as functors,
which interfaces (types of arguments and return value) are defined in the template arguments of the
function wrappers (v_trans_func, F_trans_func) [90]. The functors are defined in-place with the
placeholders _1 and _2 representing the two arguments. This compact notation is made possible by the
Boost.Lambda library [84]. The interface code between it and Boost.Units [158] was developed by the
author of this Ph.D. thesis as part of the SCAX project and has become in the meantime official part
of the Boost.Units library. Due to the usage of quantity types in the function interface, a contract is
formed, which fulfilment by the user-supplied implementation can be checked by the compiler. Mixing
up the order of the quantity arguments or forgetting a term in the implemented functions is detected
in most cases due to the dimensional analysis, as it will usually lead to a conflict either on the level of
mathematical operations or on the result type due to incompatible units. The waveform of the driving
voltage source v_drive_src is specified slightly differently by passing a functor instance of type
scax_util::scax_pulse<T> parameterised with the return type voltage_type and the parameters
of the pulse waveform. Calling the functor with a time value as argument will return the waveform value
at that point in time. scax_util::scax_pulse<T> is one of the several waveform generators available
in the scax_utility library (Table A.2 on page 152).

Figure 5.11b shows the simulation results of the developed SystemC AMS model. The pulsed input
voltage vdrive excites the sinusoidal oscillation of the mechanical resonator. Frequencies other than its
natural resonance frequency are filtered out due to its high quality factor. The common mode of the
driving voltage shows up in the resulting electrostatic force and displacement of the resonator. A variant
of the model using double instead of quantity<U, V> yields, as expected, numerically the same
results, however its code required much more explanatory comments to compensate for the semantical
loss of quantity types and units. Reference models for the example developed in VHDL-AMS, once using
branch quantities to describe it in form of a generalised network and once using free quantities to describe
it in form of a block diagram, showed the same dynamic behaviour as the SystemC AMS models. This
demonstrates the successful simulation of all major effects of this small system. Table 5.4 on page 134
compares the compile and execution times for the quantity<U, V> and double TDF model variants
with the VHDL-AMS reference models and with the equivalent models using the bond graph and block
diagram primitives of the new BG MoC presented in the next section. It can be seen that the usage
of Boost.Units significantly increases the compile time, but hardly affects the simulation time. This
is the price to pay for the achieved stronger checking of the model interfaces and equations. For the
same simulation time step size of 10 ns, the TDF MoC outperforms the VHDL-AMS reference models
(and BG MoC models). However, this comparison is not really fair, as the other models are able to
converge reliably already with a maximum simulation time step size of 2 µs and still yield a very similar
precision in the simulation results. At this time step size, the VHDL-AMS (and BG MoC models)
clearly outperformed the TDF models. With the same time step size, the TDF model did not yield
any reasonable results: the oscillation amplitude grew exponentially and did not saturate. This is not
surprising, because the TDF MoC purposely omits any error control and convergence iterations in favour
of a higher simulation performance. Only by limiting the time step size to 10 ns, the simulation results
were accurate enough to conform with the reference models.

The presented application example demonstrated the flexibility of the developed block diagram
primitives library for the TDF MoC introducing dimensional analysis. The systematic usage of quantity
types instead of double in the model leads to a more precise description of the system adding important

107



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.12: Test bench for the electromechanical transducer and the mechanical resonator.

1 #include "systemc-ams"
2 / / . . . D e f i n i t i o n o f the e lmech_t ransducer module . . .
3
4 int sc_main(int argc, char* argv[]) {
5 / / Using and namespace a l i a s e s d e c l a r a t i o n s , convenience typede fs , e t c .
6 / / . . .
7 / / D e r i v a t i o n o f new u n i t s .
8 typedef divide_typeof_helper <si::force, si::length >::type stiffness;
9 typedef divide_typeof_helper <si::force, si::velocity >::type viscous_damping;

10 / / E l e c t r i c a l component c o n s t a n t s .
11 const quantity <si::resistance > R_1 = 50.0e3 * si::ohm;
12 const quantity <si::capacitance > C_trans_0 = 500.0e-12 * si::farad;
13 const quantity <si::length> overlap = 20.0e-6 * si::meter;
14 / / Mechanica l component c o n s t a n t s .
15 const quantity <si::mass> m = 10.0e-9 * si::kilogram;
16 const quantity <stiffness > k = 100.0 * si::newton/si::meter;
17 const quantity <viscous_damping > d = 50.0e-6 * si::newton*si::second/si::meter;
18
19 / / Transducer capac i t ance fo rmu la v _ t r a n s ( q , x ) .
20 function <voltage_type (charge_type , displacement_type)>
21 v_trans_func = _1 / (C_trans_0 * (1.0 - (_2 / overlap)));
22 / / Transducer f o r c e fo rmu la F_ t rans ( q , x ) .
23 function <force_type (charge_type , displacement_type)>
24 F_trans_func = (_1 * _1 * overlap)
25 / (2.0 * C_trans_0 * (overlap - _2) * (overlap - _2));
26
27 / / I n i t i a l c o n d i t i o n s and s t i m u l i .
28 / / . . .
29 / / S i g n a l s .
30 sca_tdf::sca_signal <voltage_type > v_drive("v_drive"), v_trans("v_trans");
31 / / . . .
32 sca_tdf::sca_signal <momentum_type > p_m("p_m");
33 sca_tdf::sca_signal <displacement_type > x_m("x_m");
34 / / E l e c t r i c a l d r i v i n g c i r c u i t .
35 scax_source <voltage_type >
36 v_drive_src("v_drive_src",
37 scax_pulse <voltage_type >(V_drive_0 , V_drive_1 , t_drive_delay ,
38 t_drive_rise , t_drive_fall , t_drive_pulse , t_drive_period));
39 v_drive_src.out(v_drive);
40 / / . . .
41 / / Transducer .
42 elmech_transducer transducer("transducer", v_trans_func , F_trans_func ,
43 q_trans_0 , x_m_0);
44 transducer.i_in(i_R_1); transducer.v_out(v_trans);
45 transducer.v_in(v_m); transducer.F_out(F_trans);
46 / / Mechanica l r e s o n a t o r .
47 / / . . .
48 / / T rac ing and s i m u l a t i o n .
49 / / . . .
50 v_drive_src.set_timestep(t_step);
51 try { sc_start(t_sim); } catch (const exception& e) { cerr<<e.what()<<endl; }
52 / / . . .
53 return sc_core::sc_report_handler::get_count(sc_core::SC_ERROR);
54 }

108



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

semantical information about the used measurement units in a compact notation that the compiler can use
for consistency checks. The simulation performance of the example also showed that the C++ compiler
is able to optimise the computations involving quantity types so that their usage has no impact on the
runtime performance. The simulation results clearly show the restrictions of the TDF MoC concerning
the simulation of block diagram models of physical systems. The fast execution of data flow models is
achieved by avoiding any control of the numerical error and the absence of convergence iterations and
dynamic time stepping features. A more physical-aware MoC is needed, which offers a similar flexibility
in describing the abstract behaviour of modules, but causes less numerical problems during simulation.

5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

This section describes how the bond graph formalism presented in Section 5.3.2 can be implemented as a
new MoC for the SystemC AMS extensions. As the OSCI SystemC AMS extensions 1.0 LRM [131]
does not standardise the synchronisation layer, the implementation of the BG MoC in the SCAX library
is based on the internal details of the Fraunhofer SystemC-AMS PoC library implementation [53].

5.7.1. Requirements for the BG MoC

The new MoC needs to fulfil several requirements to successfully conserve the unique properties
of the bond graph formalism and to integrate them into the modular architecture of the SystemC
AMS extensions. To be able to describe a wide range of the CT behaviour found in heterogeneous
multiphysical systems, it needs to support at the same time the description of conservative and non-
conservative behaviour, i.e., mixed bond graph / block diagram models. The structure of these models,
which is usually given as a graphical schema, needs to be expressed in form of a textual description. The
natural approach is to provide it in the form of a netlist, which instantiates predefined primitives and
links their ports via directed signals and bonds, similar to the LSF and ELN models already supported by
the SystemC AMS extensions. To manage complexity, it must be possible to hierarchically describe the
structure of the bond graph / block diagram models (i.e., the concept of word bond graphs [94]) with the
help of user-defined (structural) macro models, which can be instantiated in parallel to the primitives in a
structural description.

The BG MoC needs to offer the user a set of common bond graph and block diagram primitives (cf. to
Tables 5.2 and A.4 on pages 89 and 154, respectively, for examples). These primitives need to be as
flexible in their parameterisation as the block diagram primitives implemented for the TDF MoC in
Section 5.6. This especially concerns the possibility to specify the quantity type or physical domain used
by ports, directed signals, and bonds. The primitives shall use quantity parameters and quantity variables
to describe their internal behaviour. These two requirements enable the checking of the coherency of
the assembled model by means of static dimensional analysis during the compilation of the model. The
user shall be able to add his own user-defined bond graph and block diagram primitives, which can use
all capabilities of the BG MoC that are used by the predefined primitives. The effort in writing such
user-defined primitives shall be comparable to writing a primitive TDF module.

The BG MoC needs to be able to analyse the structure of the assembled bond graph / block diagram
model during elaboration. This includes the automatic assignment of causality to the bonds of the
model based on constraints assigned by the primitives connected to the bond. The BG MoC shall
report problems detected during the causality assignment, such as causality constraint conflicts and
arbitrarily assigned causality. The latter hints to the presence of algebraic loops in the model. Based

109



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

on the assigned causality, the BG MoC shall execute the model in a procedural way (similar to the
TDF MoC) by executing in the right order processing methods doing the necessary computations, which
are registered by the bond graph and block diagram primitives based on the assigned causality. Contrary
to the TDF MoC, the BG MoC shall use a dynamic time step and check for convergence of the solution
after each iteration to decide whether it is possible to advance the solution by a time step. This means that
the BG MoC shall not set up a global DAE system for the model, which is solved by a numerical solver.
Instead algebraic constraints imposed by the presence of algebraic loops shall be solved locally. In a
first step, fixed-point iterations [26, 162] can be used for this purpose. Future versions of the BG MoC
may implement more elaborate numerical root-finding algorithms (e.g., Newton-Raphson or secant
methods) to guarantee convergence of the solution under less stringent conditions than the fixed-point
iterations algorithm imposes6. The goal of these measures is to optimise the simulation performance
by avoiding the solution of a complex equation system and to use instead the assigned causalities to
order the individual equations describing the CT behaviour for a sequential execution. This requires the
BG MoC to perform a dependency analysis between the CT variables and the computations done with
them in order to extract the computational structure. The BG MoC shall report any problems, e.g.:

• Variables which are not driven by any or are driven by multiple processing methods.

• Algebraic loops formed by variables and processing methods.

This will allow the user to not only gain insight into the physical structure of the modelled system but
also into the computational structure of its model. This can reveal structural problems of the model and
too ideal modelling assumptions with respect to the physical reality.

The BG MoC shall support the tracing of bonds, signals, and ports as well as the tracing of individual
variables of bonds, ports, and modules (i.e., their internal state) during transient simulation by supporting
the sca_trace() mechanism of the SystemC AMS extensions.

The new MoC shall integrate itself naturally into the architecture of the SystemC AMS extensions. The
added language constructs shall follow the naming scheme used by SystemC and the AMS extensions.
Concepts, which can be found similarly in other MoCs, shall not expose “surprising” behaviour to a
user, who is familiar with the other MoCs. The BG MoC shall implement synchronisation with the other
MoCs via the synchronisation layer of the AMS extensions. Following the example of the MoCs defined
by the AMS extensions, this means that the BG MoC has to define converter ports and converter modules
towards the TDF and DE MoCs. Thus, Continuous-Time (CT) non-conservative and conservative
behavioural descriptions can be combined with Discrete-Time (DT) and Discrete Event (DE) behavioural
descriptions to a model of a heterogeneous multiphysical system. Ideally this would also include the
support for switching events in the bond graph and block diagram models. This requires the support
of controlled junctions to define hybrid bond graphs (Section 5.3.2, Beers et al. [16]). However, the
caused dynamic causality changes during the transient simulation would complicate the synchronisation
semantics and the implementation of a first prototype of the BG MoC. Therefore, switching is not yet
addressed in this work.

5.7.2. Architecture of the BG MoC

Figure 5.12 shows how the requirements for the BG MoC are translated into a general architecture that is
integrated with the Fraunhofer SystemC-AMS PoC implementation. The BG MoC is implemented in

6The treatment of algebraic loops and resulting convergence problems in the context of the BG MoC is topic of Section 5.7.5.3.

110



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Timed Data Flow
(TDF)

• Custom modules
• Ports
• Signals

Electrical Linear
Networks (ELN)
• Primitives
• Terminals
• Nodes

Static schedulerLinear DAE solver

SystemC
methodology-

specific
elements

• Transaction Level
Modelling (TLM)

• Cycle/bit accurate
modelling

• SystemC Verification
Library (SCV)

• etc.

Linear Signal
Flow (LSF)

• Primitives
• Ports
• Signals

OSCI SystemC 2.2 language standard (IEEE Std. 1666-2005) and simulation kernel

Bond Graph (BG)
• BG/BD primitives
• Custom modules
• Power & in/out ports
• Bonds, signals

AMS methodology-specific elements
Quantity/units specification, dimensional analysis, generic Block Diagram (BD) TDF modules

This work’s (SCAX) extensions to Fraunhofer’s SystemC-AMS PoC implementation

Causality analyser
and BG solver

Module
• BG/BD primitives
• Custom modules
• Power & in/out ports
• Bonds, signals

View
• Initialize BG MoC
• Cluster BG modules
• Create solver for cluster

Solver
• Assign causalities
• Create processing

methods schedule
• Execute BG cluster

Synchronisation layer
• Execute BG cluster as

part of surrounding
TDF cluster

BG MoC layers

Synchronisation layer with TDF semantics

Figure 5.12.: Integration of the SCAX library into the architecture of Fraunhofer’s SystemC-AMS
PoC implementation. The SCAX library primarily uses the standardised APIs for Sys-
temC [79] and its AMS extensions [131]. To integrate its BG MoC, it uses the inter-
nal synchronisation layer API of the Fraunhofer’s SystemC-AMS PoC implementation,
which is based on the TDF semantics. This allows the different Discrete-Time (DT) and
Continuous-Time (CT) MoCs to synchronise every TDF module time step.

three architectural layers on top of the synchronisation layer of SystemC-AMS, which is also used by the
ELN, LSF, and TDF MoCs of SystemC-AMS itself.

The module layer provides the user interface to the BG MoC. A new BG module class is the base
for all predefined and user-defined bond graph and block diagram primitives. Each module can have
instances of directed signal input or output ports as well as power ports for bonds. Additionally, the
module may contain converter ports (a.k.a. synchronisation ports) to other MoCs (i.e., TDF and DE).
Two channel classes implement the concept of a directed signal and of a power bond. The directed
signals and bonds can be used to interconnect the BG modules inside an ordinary SystemC model to
a macro model. The latter can contain instances of the directed signals and power ports to facilitate
the hierarchical description of a mixed bond graph / block diagram model. The physical domain or
quantity type of bonds, directed signals, and ports can be specified during instantiation. For the user’s
convenience, the BG MoC already proposes a set of predefined BG modules of common bond graph and
block diagram primitives. The module layer is described in detail in Section 5.7.3.

The view layer handles the initialisation of the BG MoC. It is automatically constructed by the first
instantiated BG module and every new BG module is registered with the view layer. During elaboration,
after SystemC has carried out the hierarchy flattening and finished the binding of the ports to the channels,
SystemC-AMS activates the view layer to do MoC-specific elaboration steps. To this end, the view layer
clusters together all BG modules interconnected by directed signals or bonds. During this process, it
also collects information about the converter ports instantiated by the BG modules. For each cluster, the
view layer creates a BG solver instance and assigns the modules, bonds, directed signals, and converter
ports forming the cluster to this BG solver. Its final responsibility is to elaborate the synchronisation
time step of each BG solver with the other MoCs based on the module time steps assigned by the user to
the BG module instances.

The solver layer is formed by the BG solver instances created during elaboration by the view layer.

111



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

After the view layers have finished their elaboration for the different MoCs, SystemC-AMS activates
the initialisation routine of each solver. The BG solver then registers itself with the synchronisation
layer via the global SystemC-AMS simulation context as the responsible solver object for the BG cluster.
At this occasion, it specifies a cluster initialisation method to be called before the start of simulation
and a cluster processing method to be called during transient simulation to advance the solution of
the BG cluster from one synchronisation point in time to the next one. Once SystemC-AMS activates
the cluster initialisation method before the start of simulation, the BG solver asks each BG module of
the cluster to specify its causality constraints on the bonds bound to its bond ports. Based on these
constraints, the BG solver assigns, according to the priority of the set constraints, the causality to the
bonds of the cluster and checks the result. Then, the BG solver asks each of its associated BG modules to
register their processing methods for the transient simulation based on the causality assigned to its ports
and to specify for each processing method its external input and output variables, which are accessed
via the BG module’s ports. Based on this information, the BG solver creates a dependency graph of
the variables and processing methods to derive a schedule for the ordered execution of the processing
methods during transient simulation. Finally, the BG solver calls each BG module to initialise their
internal state. During transient simulation, the BG solver’s registered cluster processing method is
activated by the synchronisation layer once for every synchronisation point in time. The BG solver then
advances the solution of the cluster from the last synchronisation point in time to the new one doing
one or more variable time steps. For each time step, it executes the registered processing methods of
the BG modules in the determined order. After each iteration, it checks for convergence of the solution.
In case of non-convergence, it repeats the execution of the processing methods to perform fixed-point
iterations until the solution can be accepted. If the number of fixed-point iterations crosses a certain
threshold, the solver rejects the current time step and tries with a smaller one. Once the BG solver
has advanced the cluster solution till the current synchronisation point in time, it returns control back
to the synchronisation layer. The elaboration and simulation of BG models is described in detail in
Section 5.7.4.

The synchronisation layer coordinates the parallel execution of the different continuous-time MoCs
and offers to them a common interface to interact with each other and with the DE simulation kernel
of SystemC. The OSCI SystemC AMS extensions standard [131] leaves the synchronisation layer
implementation-defined. In the Fraunhofer SystemC-AMS PoC implementation of the standard, this
layer uses the TDF semantics to synchronise the execution of the different Continuous-Time (CT) MoCs.
Clusters of connected modules belonging to non-TDF CT MoCs (e.g., the standard ELN and LSF MoCs,
but also the new BG MoC) are encapsulated into a synchronisation object, which contains the solver for
the associated MoC. This synchronisation object has the same semantics and properties as an ordinary
TDF module7 and is incorporated into the surrounding cluster of interconnected TDF modules and
executed by the synchronisation layer during transient simulation. As a consequence, TDF ports and
TDF converter ports can be used inside the modules of non-TDF CT MoCs to serve as synchronisation
ports towards the TDF and DE MoCs.

5.7.3. Module Layer of the BG MoC

The module layer of the BG MoC is implemented by the classes shown in Figure 5.13, which are all
defined in the namespace scax_bg. These classes form the base for the implementation of all predefined
and user-defined bond graph and block diagram primitives presented later in this section. In the following,

7In fact, each TDF module is mapped on exactly one synchronisation object during elaboration.

112



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

the functionality of these classes will be presented as well as how physical domains are defined.

5.7.3.1. Overview on the Classes implementing the Module Layer

The first important element is the class scax_variable<T>, which implements a CT variable of
data type T. This means that it actually stores two values: the current value and the last value at which
the solution converged at the last time step. Like the later discussed signal, bond, and module classes,
it implements the scax_simulation_cycle_if, which allows the BG solver to accept (update())
its current value as a converged solution (and thus, making the current value also the last converged
one) or to reject (reset()) it (making the last converged value the new current value). Due to this
property, objects of type scax_variable<T> are used to represent the internal state of directed signals,
bonds, and modules. The latter implement the scax_simulation_cycle_if by forwarding calls to it to
their internal scax_variable<T> instances. The class scax_variable<T> supports all mathematical
operations of T and can be transparently used in calculations involving the data type T.

The class scax_traceable_cref<T> provides in the public interface of a class a named constant
reference to a private member variable of data type T. This reference can be traced with the help of
the sca_trace() mechanism of the SystemC AMS extensions. Thus, the internal state of a class is
accessible for read-only tracing during simulation and, at the same time, efficiently protected against
external manipulations bypassing the member functions of the class.

Two channel classes are provided for the BG MoC to represent directed signals and power bonds.
The class scax_signal<T> implements a directed CT signal of data type T. It implements the
scax_signal_inout_if<T>, which can be bound to the directed signal input port scax_in<T> and out-
put port scax_out<T>. For the input port exists a multiport variant scax_multiin<T, Attribute>,
to which an arbitrary number of signals can be bound8, e.g., to implement a summing module with
arbitrary input number. For each bound signal, scax_multiin<T, Attribute> allows to store the
value of an arbitrary Attribute type. This can be, e.g., a flag that the bound input signal shall be
negated. The directed signal gives via its interface access to its current value and the last value, at which
the solution converged for the previous time step. The directed signal and related ports can be traced
with the help of the sca_trace() mechanism.

The class scax_bond<Domain> implements a bidirectional power bond for a physical domain
specified through the template parameter Domain. The BG MoC provides several predefined phys-
ical domains in the namespace scax_bg::domain in form of template classes, e.g., electrical<>,
translational<>, rotational<>, and hydraulic<>. The Value and System arguments of
these physical domain classes allow to specify the value type (default: double) and the system
of units (default: SI), respectively, to be used in the calculations. Based on this physical domain
type, the quantity types of the effort_ and flow_ variables of the bond are derived with the
help of the scax_domain_traits<Domain> class. The definition of physical domains and auto-
matic derivation of related quantity types for calculations will be discussed in more detail in Sec-
tion 5.7.3.2. The power bond class provides an interface to specify the causality constraints (in form
of a scax_causality_constraint_type enum value) on the bond and assign a causality (in form
of a scax_causality_type enum value) to it. The corresponding power ports (a.k.a. bond ports)
implemented by the class scax_port<Domain> cannot be bound directly to the bond, but have to be
bound either to its head or tail, which implement the scax_bond_if<Domain>. The bond side, to

8Multiports are normally supported by sc_core::sc_port<IF>, but, unfortunately, the SystemC AMS extensions 1.0
standard defines that AMS ports derived from sca_core::sca_port<T> need to be bound to exactly one channel [131,
clause 3.2.4].

113



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Fi
gu

re
5.

13
.:

D
ia

gr
am

of
th

e
cl

as
se

s
co

ns
tit

ut
in

g
th

e
m

od
ul

e
la

ye
ro

fS
C

A
X

’s
B

on
d

G
ra

ph
(B

G
)M

oC
fo

rF
ra

un
ho

fe
r’

s
Sy

st
em

C
-A

M
S.

114



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

which a bond is bound, determines the sign of the effort and flow variables as well as the causality seen
from the port, as the bond represents a directed energy flow. Again, a multiport variant of the power
port is available in form of the scax_multiport<Domain> class. The power bond and power ports as
well as the individual effort and flow variables support the tracing via the sca_trace() mechanism.
The internal structure of the scax_bond<Domain> class is illustrated in Figure 5.14 as part of a simple
BG model illustrating the creation, elaboration, and simulation phases of BG models using the BG MoC.

The class scax_module is the base class of all primitive BG modules. It provides the user ac-
cess to the current time, the point in time when the solution last converged, the current time step,
and the fixed-point iteration count. This information is provided by the BG solver, to which
any BG module is automatically registered. A BG module can instantiate as part of its in-
terface ports of type scax_in<T>, scax_out<T>, scax_port<Domain>, sca_tdf::sca_in<T>,
sca_tdf::sca_out<T>, sca_tdf::sca_de::sca_in<T>, sca_tdf::sca_de::sca_out<T>. Its
internal state is represented by variables of type scax_variable<T>. The internal state can be made
accessible for tracing via public instances of type scax_traceable_cref<T>. The class scax_module
defines the interface for the BG solver to elaborate and simulate a BG module. This is done in the
form of several virtual member functions, which need to be overloaded by deriving BG modules to
implement its behaviour. These member functions (a.k.a. callbacks) are called by the BG solver at
distinct points during the elaboration and the simulation cycle. The concept is very similar to the
elaboration and simulation callbacks of TDF modules (Section 5.2.1)—only additional callbacks are
defined to cope with the more complex elaboration and simulation cycle. First, the set_attributes()
member function is called during elaboration by the BG solver. In this member function, the BG solver
needs to specify the causality constraints on its power ports (of type scax_port<Domain>). During
causality assignment, the BG solver calls the propagate_causality() member function each time,
it assigned a causality to one of the power ports of the BG module. The BG module needs to overload
this member function to implement the causal constraints between its power ports. It checks the as-
signed causalities against its constraints and, based on the results, sets causalities on other power ports.
After causality assignment, the member function after_causality_assignment() is called by the
BG solver. This member function needs to be overloaded by every BG module to register one or more
of its processing member functions based on the assigned causalities. For each registered processing
member functions, the external input and output variables need to be specified, which are accessed via
the module’s ports. Being able to register more than one processing member function per BG module is
the biggest difference with respect to the TDF MoC, which only supports a single processing member
function per TDF module. The initialize() member function is called just before the start of the
transient simulation to give the BG module the possibility to initialise its internal state and write the
initial values of its output variables to its ports. During simulation, the registered processing member
functions are called for each solution iteration. They implement the transient behaviour of the BG module
in a very similar way to the processing() member functions of TDF modules. At the end of each
fixed-point iteration, the unconverged() member function is called by the BG solver to determine
if the internal state of the BG module did converge. Based on this information, the BG solver may
continue with fixed-point iterations or accept or reject the current the solution by respectively calling
the update() or reset() member functions of the BG module, which forward this call to its internal
state variables of type scax_variable<T>. A BG module has the possibility to request the BG solver
to insert an additional solution point between the last point in time, at which the solution converged, and
the current point in time via the request_solution_point() member function. Similarly, it can ask
the BG solver to limit the next solution time step to the value passed to the limit_next_timestep()
member function.

115



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Finally, the scax_solver_configuration class implements a singleton object, which stores all
configuration settings of the BG solver. The user can gain access to it in the test bench using its static
instance() member function. Then, he can configure the different settings related to the variable
time stepping, the fixed-point iterations, and the convergence criteria: type-independent relative and
type-dependent absolute tolerances9 and variances10.

Based on the presented classes, the BG MoC offers a library of pre-defined non-conservative block
diagram and conservative bond graph primitives. They are summarised in the Tables A.5 and A.6 of
Appendix A, respectively. Their implementation will be discussed in Section 5.7.3.3. The user can define
in the same way his own primitive BG modules. An example is given in Section 5.7.5.1.

5.7.3.2. Definition of Physical Domains

The physical domain in the BG MoC is primarily defined by the dimension of the effort and flow
quantity types. The user might also want to specify the value type (default: double) and the system of
units (default: SI) to be used by the quantity types. For each physical domain, this information can be
implemented in a straightforward way as a templatised struct. For, example the electrical physical
domain is defined as follows:

1 template <typename Value = double,
2 typename System = si::system>
3 struct electrical {
4 typedef quantity <unit<electric_potential_dimension , System>,
5 Value> effort_type;
6 typedef quantity <unit<current_dimension , System>,
7 Value> flow_type;
8 };

The template arguments of the struct specify the value type and system of units. These two arguments
are combined with the corresponding dimension via typedefs to the effort and flow type in the struct
body. Just for comparison, this definition is equivalent to the definition of a nature in VHDL-AMS:

1 subtype VOLTAGE is REAL tolerance "DEFAULT_VOLTAGE";
2 subtype CURRENT is REAL tolerance "DEFAULT_CURRENT";
3 nature ELECTRICAL is VOLTAGE across
4 CURRENT through ELECTRICAL_REF reference;

The physical domain definition for the BG MoC is just missing the specification of a reference node.
This concept of generalised networks has no equivalence in the bond graph formalism.

Using the described technique, The BG MoC defines in the namespace scax_bg::domain several
basic physical domains: electrical<>, translational<>, rotational<>, and hydraulic<>. The
user can define in the same way his own physical domains.

All other quantity types (e.g., to represent time, momentum, displacement, power, and energy) needed
for the description of the energy conserving behaviour can be derived from the effort and flow types using
the typedefs defined in the traits class11 scax_bg::scax_domain_traits<Domain> (Listing 5.13).
All generic bond graph primitives implemented by the BG MoC rely only on the types defined by this
traits class. Thus, they become independent of the exact definition of the type describing the physical

9Allowed relative/absolute difference between the current value and previous value of a variable during fixed-point iterations
for the current point in time.

10Allowed relative/absolute difference between the current value of a variable and its last accepted value from the previous
time step.

11See footnote 2 on page 92 for an explanation of the traits technique.

116



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Listing 5.13: Physical domain traits class.

1 template <typename Domain>
2 class scax_domain_traits {
3 public:
4 / / E f f o r t and f l o w type d e f i n e d i n the Domain s t r u c t .
5 typedef typename Domain::effort_type effort_type;
6 typedef typename Domain::flow_type flow_type;
7 / / Type o f the va lue p a r t o f the q u a n t i t i e s .
8 typedef typename effort_type::value_type value_type;
9 / / System o f u n i t s o f the q u a n t i t i e s .

10 typedef typename effort_type::unit_type::system_type system_type;
11 / / Time type w i t h the same va lue and system type as the e f f o r t and f l o w types .
12 typedef typename quantity <unit<time_dimension , system_type >,
13 value_type > time_type;
14 / / Genera l i sed momentum and d isp lacemen t types .
15 typedef typename multiply_typeof_helper <
16 effort_type , time_type >::type momentum_type;
17 typedef typename multiply_typeof_helper <
18 flow_type , time_type >::type displacement_type;
19 / / Power and energy types .
20 typedef typename multiply_typeof_helper <
21 effort_type , flow_type >::type power_type;
22 typedef typename multiply_typeof_helper <
23 power_type , time_type >::type energy_type;
24 / / S t a t i c a s s e r t i o n s check ing the c o n s i s t e n c y o f the type d e f i n i t i o n s
25 / / ( same u n d e r l y i n g va lue type , t ime type , and system o f u n i t s ) .
26 / / . . .
27 };

domain. The traits class implementation assumes that Boost.Units quantity types are used to annotate the
measure and thus keep the link to the physical domain. If a value-only type shall be used, a specialisation,
for this traits class, needs to be provided with appropriate typedefs. SCAX provides these specialisations
for float, double, long double, and std::complex<T> for users, who absolutely want to avoid
the additional safety net provided by the dimensional analysis in favour of reduced compile times.
However, their usage is strongly discouraged in the context of bond graph modelling, as it becomes
impossible to distinguish the physical domains and to assert the bond graph properties such as energy
conservation (cf. to Figures 5.5b and 5.5c on page 85).

5.7.3.3. Implementation of Non-Conservative and Conservative BG Modules

Based on the classes of the module layer presented in Section 5.7.3.1, BG modules with non-conservative
and conservative behaviour can be defined.

As an example how to implement a module with non-conservative behaviour, Listing 5.14 shows the
relevant code extracts from the implementation of the trapezoidal integrator block diagram primitive,
which is part of the scax_bond_graph library and is defined in the namespace scax_bg. The integrator
module is derived from the scax_module base class like any other BG module. In the beginning of
the module definition, two typedefs derive with the help of the scax_data_type_traits<T> and
boost::units::multiply_typeof_helper<...> traits the time data type and, based on it, the out-
put data type. The port declaration of the input and output port uses the directed signal port classes

117



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

of the BG MoC. The line “SCAX_BG_HAS_METHOD(scax_integ_trapez);” specifies that the class
scax_integ_trapez will register processing member functions. A similar SCAX_BG_HAS_METHOD()
statement with the current class name as argument needs to be added to every class body defining a
BG module. It contains some definition, which will be later used by the macro SCAX_BG_METHOD()
to register with a convenient syntax the processing member function12. The constructor names the
module’s port and initialises the internal state variable. Since the integrator block has a purely non-
conservative behaviour and no power ports, it does not need to overload the set_attributes()
and propagate_causality() member functions. It just needs to register processing member func-
tions in the after_causality_assignment() member functions. This is done with the help of the
SCAX_BG_METHOD() macro, to which the name of the processing member function is passed13. Once
a processing member function is registered, its external input and output variables accessed via the
module’s ports have to be specified. This is done with the help of the data member method_io of
class scax_module. An input variable is specified with operator<< and an output variable is specified
with operator>>14. To understand the syntax, just imagine the method_io to be a placeholder for a
block diagram primitive. Then, “<<” and “>>” connect its input and output signals, respectively. The
behaviour of the integrator is implemented in two processing member functions. Member function
integrate_in() just reads from the port in and updates the internal state of the integrator using the
trapezoidal rule. The member function write_state_to_out() does for the first iteration an initial
estimation of the new state value by doing a forward Euler step and then writes the integrator state to the
port out. This implements Heun’s method [162], a common predictor-corrector method, which tries
to improve with each fixed-point iteration the result of the integration for the current point in time. In
the dependency graph of the processing member functions and their input and output variables, these
two processing member functions act as sink and source, respectively. Therefore, the insertion of an
integrator into a signal path breaks an eventual algebraic loop. The initialize() member function
initialises the output signal with the initial value of the integrator’s state variable before the start of
transient simulation. The unconverged(), update(), and reset() member functions just forward the
call to the respective member functions of the internal state variable.

The implementation of a BG module implementing the conservative behaviour of a bond graph primi-
tive follows the same structure. As an example, Listing 5.15 shows the relevant code extracts of the mod-
ulated 2-port transformer primitive with TDF input port defined by the scax_bond_graph library in the
namespace scax_bg. In the beginning of the BG module definition are again typedefs. They derive with
the help of the scax_domain_traits<Domain> class the data type of the effort and flow variables of the
power ports bp1 and bp2. Based on these types, the data type parameter_type of the TDF input port
is derived, which will modulate the transformer modulus. The TDF port of type sca_tdf::sca_in<T>
acts as a converter port to the TDF MoC in BG modules. Similarly, a TDF converter port of type
sca_tdf::sca_de::sca_in<T> can act as a converter port to the DE MoC of SystemC inside a
BG module. The same holds true for the corresponding output ports sca_tdf::sca_out<T> and
sca_tdf::sca_de::sca_out<T>. With SCAX_BG_HAS_METHOD(), the BG module scax_tdf_MTF
announces that it will register processing member functions. In the set_attributes() member
function, the BG module specifies that it puts no particular causality constraints on its individual
bond ports. However, the causalities of ports bp1 and bp2 are linked to each other as can be seen

12SystemC defines a similar macro SC_HAS_PROCESS(), which enables the convenient syntax for the registration of
SC_METHODs and SC_THREADs [79, clause 5.2.8].

13This is very similar to the registration of a method process instance or thread process instance using SC_METHOD() or
SC_THREAD() in SystemC [79, clause 5.2.9].

14SystemC uses a similar syntax to specify the static sensitivity of an unspawned process [79, clause 5.2.13].

118



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Listing 5.14: Trapezoidal integrator block diagram module for the BG MoC.

1 template <typename T>
2 class scax_integ_trapez : public scax_module {
3 public:
4 / / Typedefs f o r the po r t − r e l a t e d q u a n t i t y t ypes .
5 typedef T in_data_type;
6 typedef typename scax_util::scax_data_type_traits <T>::time_type time_type;
7 typedef typename boost::units::multiply_typeof_helper <T, time_type >::type
8 out_data_type;
9

10 scax_in<in_data_type > in; / / I n p u t p o r t .
11 scax_out<out_data_type > out; / / Output p o r t .
12
13 SCAX_BG_HAS_METHOD(scax_integ_trapez); / / Module r e g i s t e r s p rocess ing methods .
14 / / C on s t r u c t s a t r a p e z o i d a l i n t e g r a t o r o f the passed name and i n i t i a l va lue .
15 explicit scax_integ_trapez(const sc_core::sc_module_name& name,
16 const out_data_type& initial_value = out_data_type())
17 : in("in"), out("out"), state_(initial_state) {}
18 / / . . .
19 / / Returns the number o f unconverged v a r i a b l e s f o r the c u r r e n t i t e r a t i o n .
20 virtual int unconverged() const { return state_.unconverged(); }
21 protected:
22 / / R e g i s t e r s the p rocess ing member f u n c t i o n s .
23 virtual void after_causality_assignment() {
24 SCAX_BG_METHOD(integrate_in);
25 method_io << in; / / S p e c i f y t h a t i n t e g r a t e _ i n ( ) reads from p o r t " i n " .
26 SCAX_BG_METHOD(write_state_to_out);
27 method_io >> out; / / S p e c i f y t h a t w r i t e _ s t a t e _ t o _ o u t ( ) w r i t e s t o p o r t " ou t " .
28 }
29 / / Wr i t es the i n i t i a l va lue t o the ouput p o r t .
30 virtual void initialize() { out.initialize(state_); }
31 / / Use t r a p e z o i d a l method t o improve the i n i t i a l Eu le r guess o f s t a t e _ .
32 virtual void integrate_in() {
33 using scax_util::sca_time_cast;
34 time_type h = sca_time_cast <time_type >(this->get_timestep());
35 state_ = state_.read_last() + 0.5 * h * (in.read_last() + in.read());
36 }
37 / / Wr i t e the c u r r e n t s t a t e _ t o the o u t p u t .
38 virtual void write_state_to_out() {
39 using scax_util::sca_time_cast;
40 if (!get_iteration()) { / / 1 s t i t e r a t i o n : Es t ima te s t a t e _ w i t h Eu le r s tep .
41 time_type h = sca_time_cast <time_type >(this->get_timestep());
42 state_ = state_.read_last() + h * in.read_last();
43 }
44 out.write(state_);
45 }
46 / / Accept the c u r r e n t va lue o f the i n t e g r a t o r ’ s s t a t e v a r i a b l e .
47 virtual void update() { state_.update(); }
48 / / Re jec t the c u r r e n t va lue o f the i n t e g r a t o r ’ s s t a t e v a r i a b l e .
49 virtual void reset() { state_.reset(); }
50 private:
51 scax_variable <out_data_type > state_; / / I n t e r n a l s t a t e v a r i a b l e .
52 };

119



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

in Table 5.2 on page 89. The assignment of a causality to one of the transformer’s power ports
forces the opposite causality on the other power port. This inter-port causality constraint is imple-
mented in the propagate_causality() member function. Based on the assigned causalities, the
after_causality_assignment() member function registers two out of a set of four processing
member functions with the help of the SCAX_BG_METHOD() macro and specifies its inputs and outputs
with method_io. One processing member function scales the effort variable read from the port with
effort-in causality and writes the result to the effort variable of the other power port. The other processing
member function does the same for the flow variable. The scale factor is determined by the transformer
modulus read from the TDF port in. This selective processing member function registration after the
causality assignment allows BG modules to optimise their internal calculations according to the assigned
causalities. This means that bond graphs are virtually transformed by the BG MoC into an equivalent
signal flow model during elaboration.

5.7.4. Elaboration and Simulation Cycle of the Bond Graph Model of Computation

Figure 5.14 summarises the steps for creating, elaborating, and simulating a BG model with the help of
the BG MoC using a very simple example of just one effort source connected via a bond to a resistor. The
bond graph is translated into a netlist, which uses the classes from the module layer (Section 5.7.3) to
instantiate the BG model. After the control is handed over to the SystemC kernel using sc_start(), the
model has to be elaborated by the BG MoC in several steps before its simulation. Section 5.7.2 outlined
how the BG-MoC-specific part of the elaboration is handled by its view layer and solver layer, and how
its solver layer executes the BG model for transient simulation under the control of the synchronisation
layer of SystemC-AMS. Figure 5.15 shows the classes, which interact together on the view layer and
solver layer to handle the elaboration and simulation. The next two subsections give insight into how
the central classes scax_bg::scax_view and scax_bg::scax_solver perform the individual steps
under the control of SystemC-AMS.

5.7.4.1. Elaboration of BG Models

After the construction of the module hierarchy representing the model in sc_main(), the control is
handed over to the SystemC kernel with the call to sc_start(). It then performs the following steps
related to the elaboration of a BG model15:

1. The SystemC kernel calls the before_end_of_elaboration() member function of all instances
of sc_module, sc_port, sc_export, and sc_prim_channel.

2. It elaborates the ports and modules to flatten the hierarchy. All ports are bound to a channel after
this phase.

3. It calls the end_of_elaboration() member function of all instances of sc_module, sc_port,
sc_export, and sc_prim_channel. With the first executed end_of_elaboration() call-
back executed of an AMS module, SystemC-AMS takes over the elaboration of all instantiated
AMS modules:

a) The view layer of each AMS-MoC, for which corresponding AMS modules have been
instantiated, are activated with a call to sca_view_base::setup_equations(), in

15The full elaboration and simulation semantics of SystemC and its AMS extensions are defined in IEEE CS [79, clause 4] and
OSCI AMSWG [131, clauses 4.1.3, 4.2.3, 4.3.3, and 5].

120



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Listing 5.15: Modulated 2-port transformer bond graph module with TDF input for the BG MoC.

1 template <typename Domain1, typename Domain2>
2 class scax_tdf_MTF : public scax_module {
3 public:
4 / / Typedefs f o r the q u a n t i t i e s r e l a t e d t o the two bond p o r t s bp1 and bp2 . . .
5 typedef typename scax_domain_traits <Domain1 >::effort_type bp1_effort_type;
6 typedef typename scax_domain_traits <Domain2 >::effort_type bp2_effort_type;
7 / / . . .
8 / / L i n e a r parameter data type .
9 typedef typename boost::units::divide_typeof_helper <

10 bp1_effort_type , bp2_effort_type >::type parameter_type;
11 / / . . .
12 sca_tdf::sca_in<parameter_type > in; / / I n p u t p o r t .
13 scax_port <Domain1> bp1; / / F i r s t bond p o r t .
14 scax_port <Domain2> bp2; / / Second bond p o r t .
15
16 SCAX_BG_HAS_METHOD(scax_tdf_MTF); / / Module r e g i s t e r s p rocess ing methods .
17 / / C o n s t r u c t a modulated 2− p o r t t r a n s f o r m e r w i t h the passed name .
18 explicit scax_tdf_MTF(const sc_core::sc_module_name& nm)
19 : scax_module(nm), in("in"), bp1("bp1"), bp2("bp2") {} / / . . .
20 protected:
21 / / Set c a u s a l i t y c o n s t r a i n t s .
22 virtual void set_attributes() {
23 bp1.set_causality_constraint(FREE_CAUSALITY);
24 bp2.set_causality_constraint(FREE_CAUSALITY);
25 }
26 / / Implement c a u s a l i t y c o n s t r a i n t s between bond p o r t s .
27 virtual bool propagate_causality() {
28 / / Safe c u r r e n t l y ass igned c a u s a l i t i e s .
29 scax_causality_type bp1_causality = bp1.get_causality();
30 scax_causality_type bp2_causality = bp2.get_causality();
31 / / Propagate ass igned c a u s a l i t i e s f rom one bond p o r t t o the o t h e r .
32 if (bp1_causality != UNASSIGNED_CAUSALITY) {
33 bp2.set_causality(opposite_causality(bp1_causality)); }
34 if (bp2_causality != UNASSIGNED_CAUSALITY) { / * . . . * / }
35 / / Return t r u e i f a t l e a s t one o f the c a u s a l i t i e s changed .
36 if ((bp1.get_causality() != bp1_causality)
37 || (bp2.get_causality() != bp2_causality)) { return true; }
38 return false;
39 }
40 / / Based on the ass igned c a u s a l i t i e s , r e g i s t e r the p rocess ing member f u n c t i o n s .
41 virtual void after_causality_assignment() {
42 if (bp1.get_causality()==EFFORT_IN && bp2.get_causality()==EFFORT_OUT) {
43 SCAX_BG_METHOD(scale_e1_to_e2);
44 method_io << in << bp1.effort >> bp2.effort;
45 SCAX_BG_METHOD(scale_f2_to_f1);
46 method_io << in << bp2.flow >> bp1.flow;
47 } else if (bp1.get_causality()==FLOW_IN && bp2.get_causality()==FLOW_OUT) {
48 / / . . .
49 } else { SC_REPORT_ERROR("/SCAX/bond_graph", "Unexpected␣causalities."); }
50 }
51 / / P rocess ing member f u n c t i o n s .
52 void scale_e1_to_e2() { bp2.write_effort((-1.0/in.read())*bp1.read_effort()); }
53 void scale_f2_to_f1() { bp1.write_flow((-1.0/in.read())*bp2.read_flow()); }
54 / / . . . two more s i m i l a r p rocess ing f u n c t i o n s f o r the second c a u s a l i t y case . . .
55 };

121



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

scax_port<D> scax_port<D>
bond_side<BOND_TAIL>

scax_port<D>
bond_side<BOND_HEAD>

scax_traceable_cref<effort_type>

scax_variable<effort_type>

scax_traceable_cref<flow_type>

scax_port<D>

scax_bond<D> b1
scax_R<D> R1scax_Se<D> Se1

Se Rbp
effort

flow

tail
effort

flow

bp
effort

flow

tail
effort

flow

e1
f1

effort_
effort

flow_

flow

Port to port binding Port to channel binding

ge
ne

ra
te

_e
process_linearly_e_to_fscax_variable<flow_type>

(a) bp.write_effort() (b) bp.read_effort()

(c) bp.write_flow()

scax_simulation_cycle_if

Se : 2V
e1

f1
R : 100Ω

tail_ head_

sca_traceable_object

scax_bg_solver_0

detail::scax_solver

(1) Se1.generate_e() (2) R1.process_linearly_e_to_f()

(3) Se1.unconverged()

(4) b1.update() or b1.reset() (4) R1.update() or R1.reset()

(5) b1.flow.trace()

#include <scax_bond_graph>

int sc_main(int argc, char∗ argv[]) {
namespace si = boost::units::si;
using namespace sc_core;
using namespace scax_bg;
typedef scax_bg::domain::electrical<> D;

scax_bond<D> b1("b1");
scax_Se<D> Se1("Se1", 2.0 ∗ si::volt);

Se1.set_timestep(10.0, SC_MS);
Se1.bp(b1.tail);

scax_R<D> R1("R1", 100.0 ∗ si::ohm);
R1.bp(b1.head);

// ...
sca_trace(tfp, b1.flow, "b1.flow");
sc_start(20.0, SC_MS);
// ...

}

Simulation cycle for the instantiated and elaborated model:

Modelling, elaboration, and simulation phases:

Se : 2V
e1

f1
R : 100Ω

1. Compilation

2. Port elaboration. . .

4. Causality assignment:

5. Scheduling:

6. Simulation. . .

(4) Se1.update() or Se1.reset()

(3) b1.unconverged() (3) R1.unconverged()

3. Clustering. . .

(1) Se1.generate_e

(2) R1.process_linearly_e_to_f

bp1.effort

bp1.flow

Tm:10ms

Figure 5.14.: Overview on the modelling, elaboration, and simulation phases for a bond graph model
using SCAX’s BG MoC for SystemC-AMS. The lower part shows the structure of the
instantiated objects, which represent the bond graph model described in sc_main(). The
red arrows denote, together with their labels, the order of member function calls performed
by the BG solver to the individual objects of the model during one iteration. The blue
arrows denote the order of access to the effort and flow variables of the bond from within
the processing member functions of the effort source and resistor module instances.

122



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Fi
gu

re
5.

15
.:

D
ia

gr
am

of
th

e
cl

as
se

s
re

la
te

d
to

th
e

vi
ew

la
ye

ra
nd

th
e

so
lv

er
la

ye
ro

fS
C

A
X

’s
B

G
M

oC
fo

rF
ra

un
ho

fe
r’

s
Sy

st
em

C
-A

M
S.

123



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

order to cluster connected AMS modules of the same kind and to set up the de-
scribing equation systems. The BG MoC implements its view layer with the class
scax_bg::scax_view, which inherits from sca_view_base. It performs the following
steps in scax_bg::scax_view::setup_equations:

i. Based on its list of all instantiated BG modules, it starts from one BG module and
traverses the module hierarchy with a depth first search [159] by following all directed
(BG) signals and power bonds connected to its port to visit the adjacent modules. On its
way through the module hierarchy, it records all:

• Visited BG modules,

• Followed directed signals and bonds,

• Found converter ports of type sca_tdf::sca_in<T>, sca_tdf::sca_out<T>,
sca_tdf::sca_de::sca_in<T>, sca_tdf::sca_de::sca_out<T> instanti-
ated within a BG module.

These elements form together a BG cluster. The clustering process is repeated until all
BG modules have been associated to a BG cluster.

ii. For each BG cluster, a BG solver object of type scax_bg::scax_solver is instantiated
and the control over the cluster is handed over to it. The solver is initialised by its
constructor with some additional support coming from the view:

A. The constructor of the BG solver initialises its internal state and saves the informa-
tion about the associated BG cluster.

B. The view checks if TDF synchronisation module time steps have been assigned
to any BG module of the BG cluster. If that is the case, they must have all the
same value, as from the perspective of the TDF-based synchronisation layer of
SystemC-AMS, the BG MoC constitutes a single rate cluster. This value is set as
TDF synchronisation time step of the BG solver. If no module time step was speci-
fied, SystemC-AMS will try to propagate a synchronisation time step to the solver
from a possibly instantiated surrounding TDF cluster. SystemC-AMS enforces the
existence of such a synchronisation time step and will abort the elaboration with an
error if none has been assigned.

C. The view registers each converter port found, which is part of the BG cluster, with
BG solver specifying its direction (input, output) and kind (from/to TDF MoC or
from/to DE MoC).

b) After the different views have terminated their clustering and constructed all solvers, SystemC-
AMS calls sca_solver_base::initialize() on each solver to continue with the elabo-
ration at the cluster level. For the BG MoC, this means the execution of the initialize()
member function of each BG solver instance, which performs the following steps:

i. The BG solver registers itself and the associated converter ports with the synchronisation
layer via the global SystemC-AMS simulation context. The synchronisation layer
assumes the BG solver as owner of the converter ports and treats it in the following
like an ordinary TDF module that fully encapsulates the BG cluster and has just the
registered converter ports for communication with the outside world. This TDF module
will be executed as part of the surrounding TDF cluster.

124



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

ii. The BG solver registers the cluster initialisation callback (init_cluster()), clus-
ter processing callback (process_cluster()), and post-processing callbacks16

(post_cluster()) with the synchronisation layer, which correspond semantically to
the initialize(), processing(), and end_of_simulation() of a TDF module.

c) SystemC-AMS proceeds by calling the set_attributes() member function of all instan-
tiated TDF modules. The latter will then configure the TDF attributes of itself (module
time step) and of its TDF (converter) ports (rate, delay, time step; cf. to Section 5.2.1).

d) Based on the set TDF attributes, the synchronisation layer of SystemC-AMS creates the static
schedule for the execution of each TDF cluster of connected TDF modules and encapsulated
solver objects of other AMS MoCs, which will be used during transient simulation. Based on
the port rates and assigned port and module time step, it calculates and assigns the missing
port and module TDF time steps. At this moment, all TDF attributes are elaborated and the
synchronisation (TDF) time steps are propagated throughout the TDF cluster.

e) SystemC-AMS proceeds by calling the initialize() callback of each TDF module and
registered cluster initialisation callback of each instantiated solver. This initialises the internal
state of each module and solver for time t = 0 s. This will execute the init_cluster()
member function of each scax_bg::scax_solver object, which does the following steps:

i. Call the set_attributes() member function of each BG module so that it specifies
its causality constraints on the power ports.

ii. Assign causality to the bonds of the cluster using a generalised Sequential Causality
Assignment Procedure (SCAP) adapted from Karnopp, Margolis, and Rosenberg [94]
and implemented in scax_solver::assign_causality():

A. Sort list of bonds with unassigned causality by priority of the causality constraints:
first all bonds with required causality, then all bonds with preferred causality, and
finally all bonds with free causality.

B. Process each bond in the list according to the priority:

• Assign causality to the first bond in the list according to its causality constraint
and move it to the end of the processed bond list. If this bond had no causality
constraint assigned (free causality), then issue a warning that the bond graph
contains an algebraic loop.

• Activate the propagate_causality() member function on the two adjacent
BG modules so that the BG modules verify their inter-port causality constraints
and can assign additional causalities to connected bonds via their power ports.
Bonds issue an error in form of a causality exception if the assigned causality
does not matches a previously set required causality constraint. They issue a
warning if the assigned causality does not match a preferred causality constraint.
If this causes a causality exception, the causality assignment will be rolled back
to the last causality assigned directly by the SCAP. This causality will then be
reversed and the algorithm will activate again the propagate_causality()
member function on the two adjacent BG modules to propagate the newly set

16The post-processing member functions are a relict from the old SystemC-AMS prototype [170]. They are not part of the
SystemC AMS extensions 1.0 standard [131].

125



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

causality. If there is a causality exception thrown and no rollback point is left, the
algorithm terminates with an error.

• Search the list of bonds, for bonds, which got a causality assigned in consequence
of the calls to the propagate_causality() member function of BG mod-
ules, move them to the end of the processed bonds list. Activate in turn the
propagate_causality() member function on the adjacent BG modules of
each bond found. If there are no more bonds with assigned causality in the list,
start again to assign causality to the first bond in the unprocessed bonds list.

iii. Check the causality assignment, report statistics on the assigned causalities (taking into
account the causality constraints), and report any problems (causality conflicts with
assigned causality constraint, bond has no assigned causality). The check of the assigned
causalities is implemented in scax_solver::check_causality_assignment().

iv. Call the after_causality_assignment() member function of each BG module so
that they register their processing member functions and specify their external input/out-
put variables accessed via the module’s ports.

v. Create a schedule for the ordered execution of the modules’ registered processing
member functions (cf. to scax_solver::create_schedule()). The implementation
relies on the Boost.Graph library [159]:

A. Create dependency graph (directed graph) between processing member
functions and their input/output variables (cf. to the member function
create_dependency_graph() of class scax_bg::scax_solver):

• Each variable and processing member function (identified by their unique hierar-
chical name) constitutes a vertex of the graph.

• An input variable of a processing member function adds a directed edge from the
variable to the processing member function.

• An output variable of a processing member function adds a directed edge from
the processing member function to the variable.

B. Check the dependency graph for any problems (cf. to the member function
check_dependency_graph() of class scax_bg::scax_solver):

• Report a warning if a registered processing member function has no input or
output variables at all.

• Report an error if any variable has no in-edge (no driver).

• Report an error if any variable has more than one in-edge (multiple drivers)
connecting it to multiple processing member functions.

C. Do a topological sort of the dependency graph to establish the schedule:

• Do a depth first search on the graph and record the order of the finished vertices by
the algorithm. Also mark the back edges encountered during the graph traversal,
as they mark an algebraic loop with the adjacent vertices being the head and tail
of the loop.

• The reverse order of the finished vertices, which represent a processing member
function, constitutes the schedule.

126



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

D. Report the schedule.

E. Report the breaking of algebraic loops at the back edges detected by the depth first
search. Mark all edges belonging to the algebraic loop (intersection of the set of
edges reachable from the loop head and the set of edges, from which the loop tail
can be reached).

vi. Call the initialize() member function of each BG module so that they can initialise
their internal state and write initial values to the output variables of their ports.

4. The SystemC kernel finishes its part of the elaboration and proceeds to the transient simulation.

5.7.4.2. Simulation of BG Models

SystemC executes the following steps to perform the transient simulation:

1. The SystemC kernel calls for all instances of sc_module, sc_port, sc_export, and
sc_prim_channel their start_of_simulation() member function.

2. The SystemC kernel starts its evaluation, update, notification cycle to execute all processes until
the SystemC time tSC > tend:

a) SystemC-AMS evaluates each TDF cluster always at the first δ cycle of the synchronisation
point in time with SystemC:

i. Process the TDF cluster schedule by executing the registered processing member func-
tion of each TDF module and AMS solver object ahead of the SystemC time. For this
purpose, SystemC-AMS manages its own time (accessible via the get_time() mem-
ber function of sca_core::sca_module()). The cluster execution will also activate
the process_cluster() member function of any BG solver object that is part of the
TDF cluster:

A. Get current solver time tsolver from synchronisation layer.

B. Get current solver period ∆tsolver from synchronisation layer, for which the solution
of the BG cluster needs to be advanced.

C. tsolver,end := tsolver + ∆tsolver

D. Get minimum and maximum allowed time steps (tstep,min, tstep,max) from the
scax_solver_configuration singleton object.

E. Last point in time the solution converged: tlast := tsolver

F. Current solution time: tsolution := tsolver

G. Next time step: tnext,step := tstep,max or if limited time step tstep,limit has been requested
previously: tnext,step := tstep,limit

H. Get minimum and maximum number of allowed fixed-point iterations (niter,min,
niter,max) from the scax_solver_configuration singleton object.

I. Get fraction ft,step for reducing the time step in case of non-convergence from the
scax_solver_configuration singleton object.

J. Progress the solution of the BG cluster until the end of the solver period: While
tlast < tsolver,end do:

127



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

• Update the current point in time tsolution by either setting it to a requested solution
point in time trequested or adding the next time step tnext,step to tsolution. Limit tsolution
to the end of the solver period tsolver,end.

• Solution time step tstep,solution := tsolution − tlast

• Try to converge a solution by doing fixed-point iterations.
For i := 0 to niter,max − 1 do:

– Call each processing member function registered by the BG modules according
to the schedule determined during the elaboration.

– Sum up the number of unconverged variables of BG modules, power bonds,
and directed (BG) signals (for each of them call their unconverged() member
function and sum up the return value).

– Break the iteration if there are no more unconverged variables.

• If an additional solution point has been requested or there are still unconverged
variables and tstep,solution > tstep,min, then:

– Reject the current solution by calling the reset() member function of all
BG modules, bonds, and directed (BG) signals.

– If the solution has been rejected due to unconverged variables, then reduce
the next time step to either tstep,next := max( ft,step · tstep,next, tstep,min) (no limited
time step requested) or tstep,next := max(min(tstep,limit, ft,step · tstep,next), tstep,min)
(limited time step requested).

– If a solution point has been requested and lies beyond the next solution point
calculated with the reduced time step, then ignore the request.

• Else:

– If there are still unconverged variables, then the solution did not converge.
Issue a warning and try to advance with the minimum configured time step.

– Accept the current solution by calling the update() member function of all
BG modules, bonds, and directed (BG) signals.

– Activate the trace() member function of all traceable objects registered to
the BG solver through the sca_trace() mechanism of SystemC-AMS.

– Last converged solution: tlast := tsolution

– Minimum time step: tstep,min := min(tstep,min, tsolver,end − tlast)

– If the number of convergence iterations i ≤ niter,min, then double the next
time step tstep,next := 2 · tstep,next

– If a limited time step has been requested, then limit the next time step to it.

ii. After one cluster schedule period, the SystemC-AMS synchronisation layer suspends to
SystemC so that it can catch up with the time.

b) SystemC scheduler runs until the next synchronisation point in time:

i. Evaluate phase: Select all runnable processes and resume their execution.

ii. Execute all pending updates from the previous evaluate phase.

128



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

iii. If δ notifications, then do a new evaluate/update cycle.

iv. If there are timed notifications, then advance the SystemC time tSC to the next discrete
event.

c) The synchronisation layer of SystemC-AMS samples all DE inputs from SystemC read by
the AMS modules through their converter ports.

3. The SystemC kernel calls for all instances of sc_module, sc_port, sc_export, and
sc_prim_channel their end_of_simulation() member function. SystemC-AMS calls all
post-processing member functions17 registered by its instantiated AMS modules and AMS solvers.
The BG MoC uses this mechanism to output simulation statistics for each BG cluster.

4. The module hierarchy is destructed.

5.7.5. Application Examples

This section presents several application examples to demonstrate the usage of the BG MoC, to show its
interaction with other MoCs, and to discuss its advantages and limitations.

5.7.5.1. Electromechanical Transducer with Linked Micromechanical Resonator

For the first application example, the electromechanical transducer example from Section 5.3 is revisited.
Its block diagram model for the TDF MoC has been already presented in Section 5.6.2. Two models
of the transducer have been developed for the new BG MoC (Figure 5.16). One is a straightforward
reimplementation of the block diagram model using, this time, the block diagram primitives from the
scax_bond_graph library (Table A.5 on page 156) instead of the ones from the scax_tdf library (Ta-
ble A.4 on page 154). As the source code of the resulting BG model is very similar (just different
namespace prefixes and signal types) to the source code of the TDF model (Listings 5.11 and 5.12 on
pages 106 and 108, respectively), it will not be presented. Much more interesting is the implementation
of the BG model (Figure 5.16a), which uses the bond graph primitives of the scax_bond_graph li-
brary (Table A.6 on page 157).

The transducer example has one bond graph primitive, which is not available as a predefined
primitive in scax_bond_graph. It is the 2-port C-field [94], which represents the electromechan-
ical transducer itself. Its implementation, in form of a user-defined BG module C2_transducer,
is shown in Listing 5.16 on page 133. The implementation closely follows the presented structure
for BG modules, as presented in Section 5.7.3.3. The transducer’s two ports bp1 and bp2 can be
parameterised with the template parameters Domain1 and Domain2 to different physical domains.
The 2-port C-field has two internal state variables q1_ and q2_, which are traceable via the con-
stant references displacement1 and displacement2. Like the TDF model of the transducer (List-
ing 5.11), the C2_transducer<Domain1, Domain2> can be parameterised via its constructor upon
instantiation with two transfer functions, which link the output efforts to the internal state variables
(e1 = f1(q1, q2) and e2 = f2(q1, q2) described by the function wrappers function_q1_q2_to_e1_ and
function_q1_q2_to_e2_, respectively). Additionally, initial conditions can be specified. To reduce the
complexity of the example, only a restricted form of the primitive has been implemented, which requires
the optimum flow-in causality on its two power ports (cf. to C2_transducer<>::set_attributes()).

17See footnote 16 on page 125.

129



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

1 C

Ctrans(x)
Ftrans(q,x)

: 1

R : d

I : m

C : 1
k

Se : vdrive(t)

R : R1

iR1
vR1

vdrive vtrans

iR1iR1

Ftrans

vm

Fd

Fm

vm

Fk

vm

vm

Tm:2µs

(a) Bond graph model.

k

vdrive(t)[V]

iR1 [A]

vR1 [V]

vtrans,out[V] Ftrans,out[N]

Fd [N]

Fm[N]

vm[m/s]

Fk[N]

− q
C(x) F(q,x)

q[C] x[m]

1
R1 d

1
m

xm[m]

pm[Ns]

idrive(t)[A]

−
−
−

Electrostatic transducer

∫ ∫

∫

∫

itrans,in[A] vtrans,in[m/s]

[N/m]

[kg−1]

[Ns/m]

[N][C/F]

[S]

+ +
Tm:2µs

(b) Equivalent BG block diagram model.

  -2

   0

   2

   4

   6

v
 /

 V

vdrive

  -4

  -2

   0

   2

   4

v
 /

 V

vR1

vtrans

 -40

   0

  40

  80

 120

 160

F
 /

 µ
N

Ftrans

-800

-400

   0

 400

 800

F
 /

 µ
N

Fd

Fk

Fm

  -8

  -4

   0

   4

   8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
 /

 µ
m

t / ms

xm

(c) Simulation results.

Figure 5.16.: Schematics and simulation results of the electromechanical transducer example using the
BG MoC. Please refer to Table A.3 on page 153 for an explanation of the graphical con-
vention used in the schematics. Both, the bond graph and equivalent block diagram model,
yield the same behaviour and have no need to insert artificial delays. Due to the BG MoC’s
capability to perform convergence iterations, a module time step of 2 µs instead of 10 ns is
sufficient to yield the same simulation results as the equivalent TDF model (Figure 5.11).
The simulation performance is indicated in Table 5.4.

130



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

Supporting preferred causality constraints on both ports, like it is the case for the 1-port C primi-
tive (scax_bg::scax_C<Domain>, Table A.6 on page 157), would require the implementation of more
processing member functions to cope with all four possible causality combinations on the two ports
and, consequently, would require more transfer function parameters in the constructor. The imple-
mented optimum flow-in causality for the two bond ports causes the integration of the flow variables
to the displacement state variables. The effort variables are calculated from the displacements using
the transfer functions f1(q1, q2) and f2(q1, q2). The description of this behaviour is distributed on
four independent processing member functions integrate_f1_to_q1(), integrate_f1_to_q1(),
process_q1_q2_to_e1(), and process_q1_q2_to_e1(). The two integrations are implemented
again using Heun’s method [162], which has been already used by the integrator block diagram primi-
tive (Listing 5.14) discussed in Section 5.7.3.3. The processing member functions are registered in the
after_causality_assignment() callback, together with their respective input/output variables.

The test bench instantiating the C2_transducer<Domain1, Domain2> class as part of the
bond graph describing the electromechanical transducer with linked micromechanical resonator is
shown in Listing 5.17 on page 136. The initialisation of all the model parameter constants in the
beginning of the sc_main() function is not shown, as it is identical to the corresponding section of
the TDF model shown in Listing 5.12 on page 108. Instead, the focus lies on the instantiation of the
bond graph primitives and their interconnection with bonds. It can be seen that it is very similar to the
structural descriptions of a regular SystemC model. The only major difference is that a power port cannot
be directly bound to a bond, but has to be bound either to the head or tail of the bond. Before the start of
simulation, the variables to be traced are registered via sca_trace() calls. In the code extract given
in Listing 5.17, the effort variable of bond b_e1 and the displacement variable of capacitor C_m1 are
traced. After the configuration of the TDF synchronisation time step (2 µs) and the minimum simulation
time step (10 ns), the transient simulation is started for 2.4 ms.

One distinct feature of the BG MoC, which is not present in any other MoC of SystemC-AMS, is the
capability of its BG solver to export the dependency graph between the processing member functions
and variables of its associated BG cluster, generated during elaboration, in the Graphviz format [50,
58]. This can be done after the simulation, by accessing the BG solver associated to a BG module
and call its export_dependency_graph() member function. This graph visualises the computational
structure of the model and can be helpful, e.g., to localise the origin of convergence problems due to
algebraic loops (Section 5.7.5.3). The bond graph and block diagram models of the electromechanical
transducer example do not have any algebraic loops, as can be seen in Figure 5.17. The graphs show that
the bond graph variant registers only 15 processing methods, whereas the block diagram variant registers
17 processing methods. The difference simply comes from the fact that less bond graph primitives
than block diagram primitives need to be instantiated in the respective models to describe the same
behaviour. Despite the slightly different looking graphs, the computational structure of both model
variants is equivalent. Just the hierarchical names differ and the dependency graph for the bond graph
does not show the internal state variables of the C-field transducer (q_sig and x_sig in the transducer
block diagram model, Figure 5.16b). This is due to the fact that only external input/output variables need
to be specified for processing methods during their registration with the BG solver.

Figure 5.16c shows the simulation results of the implemented bond graph model. The pulsed input
voltage vdrive excites the sinusoidal oscillation of the mechanical resonator at its natural resonance
frequency. The common mode of the driving voltage shows up in the resulting electrostatic force and
displacement of the resonator. The simulation results of the equivalent block diagram BG model are not
given, as they are numerically identical due to the model’s equivalent computational structure. The two
models show the same behaviour as the equivalent block diagram TDF model presented in Section 5.6.2

131



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

(15) C2_em1.integrate_f1_to_q1

b_e3.flow

(14) C2_em1.integrate_f2_to_q2

b_m1.flow

(10) C2_em1.process_q1_q2_to_e1

b_e3.effort

(11) J1_e1.sum_up_e

(7) C2_em1.process_q1_q2_to_e2

b_m1.effort

(8) J1_m1.sum_up_e(13) J1_e1.propagate_f

b_e1.flow

b_e2.flow

b_e2.effort

b_e1.effort

(12) R_e1.process_linearly_e_to_f

(6) Se_e1.generate_e

(3) J1_m1.propagate_f

b_m2.flow b_m3.flow

b_m4.flow

(5) R_m1.process_linearly_f_to_e (4) C_m1.integrate_f_to_q

b_m4.effort

b_m2.effortb_m3.effort

(9) I_m1.integrate_e_to_p

(2) C_m1.process_linearly_q_to_e

(1) I_m1.process_linearly_p_to_f

(a) Dependency graph of the bond graph model using the BG MoC.

(17) transducer.i_integ.integrate_in

i_R_1

(10) transducer.i_integ.write_state_to_out

transducer.q_sig

(14) transducer.v_func2.processing (11) transducer.F_func2.processing

(16) R_1_scale.processing

v_R_1

(15) v_sum.processing

v_drivev_trans

(9) v_drive_src.processing

transducer.x_sig

F_trans

(12) F_sum.processing

(8) transducer.v_integ.integrate_in

v_m

(7) v_integ.integrate_in(6) d_scale.processing

(5) transducer.v_integ.write_state_to_out (4) m_scale.processing

p_m

(13) m_integ.integrate_in

F_m

(3) m_integ.write_state_to_out

F_dF_k

(2) k_scale.processing

x_m

(1) v_integ.write_state_to_out

(b) Dependency graph of the block diagram model using the BG MoC.

Figure 5.17.: Equivalent dependency graphs of the bond graph and block diagram models of the elec-
tromechanical transducer example generated by SCAX’s BG MoC.

132



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

and the developed reference models in VHDL-AMS. This demonstrates the successful simulation of all
major effects of this small system. Table 5.4 compares the compile and execution times for all the different
VHDL-AMS, TDF, and BG model variants. It can be seen that the compilation of the SystemC models
takes significantly longer than the compilation of the VDHL-AMS models due to the extensive usage
of templates. Especially the usage of the Boost.Units library for the quantity types and compile-time
dimensional analysis raises the effort for the compiler. However, the usage of quantity types instead of
double has no negative impact on the simulation performance. With the same configured maximum
time step tstep, all four SystemC models simulate faster than the two VHDL-AMS models. Contrary to
the TDF model, which did not converge with a tstep = 2 µs, the BG models reliably converge with this
time step like the VHDL-AMS models do. The BG MoC requires a slightly higher average number of
convergence iterations per time step iterations

steps compared to the VHDL-AMS models. Due to the better
error control algorithm implemented in ADMS, more steps are calculated during the simulation of the
VHDL-AMS than by the BG models, which explains the lower number of iterations

steps . In fact, the BG MoC
currently implements variable time stepping for transient simulation (Section 5.7.4.2), but its primitives,
which numerically integrate or differentiate quantities over time, do not yet implement an estimation of
the numerical error and thus, do not yet use the provided time stepping control mechanism. Despite the
similar number of accepted steps and average number of iterations per time step, the SystemC-AMS
finishes the simulation of the BG models with a tstep = 2 µs nearly 16 times faster than ADMS does for the
VHDL-AMS models. However, it needs to be considered that ADMS is optimised for the simulation of
much more complex models. Therefore, the loading of the more complex simulator and the more complex
preprocessing of the models has a non-negligible impact on the time needed for small simulations like the
presented example. It can be already observed in the presented results for a simulation with tstep = 10 ns
that the simulation performance of BG models and VHDL-AMS models can get very similar if the
equation system rapidly converges within a few iterations. Still, the considerable observed simulation
performance advantage for BG models of multiphysical systems is very interesting—especially within the
SystemC-AMS simulation framework. The TDF MoC is lacking any checking for the convergence of the
solution, which makes it very sensitive to the choice of the simulation time step. The TDF MoC simulates
about two times faster than the BG MoC at tstep = 10 ns because it blindly does only one iteration per
time step instead of an average of two convergence iterations for the BG MoC. However, by increasing
the simulation time step to tstep = 2 µs, which is sufficient to obtain the same precision, the BG model
simulates nearly 50 times faster than the TDF model. Interestingly, the bond graph model shows a
slight performance advantage over the equivalent block diagram model using the BG MoC, because it
requires the registration of only 15 processing methods instead of 17 processing methods, respectively, to
describe the same behaviour. So the usage of bond graph primitives instead of block diagram primitives
can have advantages for the simulation performances. Additionally, as it has been already discussed
in Section 5.7.3.3, the usage of bond graph primitives for models simplifies their reuse, since their
causality is only fixed at elaboration time, and not already during the writing of the block diagram
model, leaving more interconnection options with other physical component models. These results show
that the BG MoC is much better suited for the simulation of nonlinear conservative/non-conservative
CT behaviour than the TDF MoC in conjunction with the ELN and LSF MoCs.

Listing 5.16: Generic 2-port C-field transducer module.

1 #include "scax_bond_graph"
2 / / . . .
3 / / Gener ic 2− p o r t C− f i e l d t r a n s d u c e r module w i t h f i x e d e f f o r t ou t c a u s a l i t y .
4 template <typename Domain1, typename Domain2>

133



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Table 5.4.: Comparison of the model compilation/execution performance of the electromechanical trans-
ducer example realised in different modelling languages and using different modelling ca-
pabilities. Each model variant underwent a transient analysis with the same parameters
(hmax = tstep, tstop = 2.4 ms, eps = 10−6). The simulations were all done on a PC with
3 GHz Intel Pentium 4 Hyper-Threading CPU and 2 GiB RAM running Debian Lenny with a
Linux 2.6.32 kernel. The TDF block diagram models did not converge for a 2 µs time step.

stepsLanguage and
simulator Used features tcompile/s texecute/s tstep/ns accepted rejected

iterations
steps

VHDL-AMS,
Mentor Graph-
ics Questa
ADMS 2009.2a

free quantity
0.954 26.006 10 240 323 70 1.862

3.990 2000 1526 70 3.170

branch quantity
0.864 26.184 10 240 653 212 1.003

3.650 2000 2198 320 3.374

SCAX 0.12.0,
SystemC-AMS
1.0b2pre,
SystemC 2.2.0 ,
g++ 4.4.5 (-O2)

scax_tdf, double
9.544 11.052 10 240 001 0 1.000

2000 incorrect results

scax_tdf,
quantity<U, V>

18.130 11.410 10 240 001 0 1.000
2000 incorrect results

scax_bg, block
diagram primitives

23.026 25.850 10 240 001 0 1.919
23.008 0.280 2000 1201 0 4.974

scax_bg, bond
graph primitives

18.786 23.668 10 240 001 0 1.919
18.756 0.230 2000 1201 0 4.974

134



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

5 class C2_transducer : public scax_bg::scax_module {
6 public:
7 / / Typedefs f o r the q u a n t i t i e s r e l a t e d t o the two bond p o r t s bp1 and bp2 . . .
8 typedef typename scax_bg::scax_domain_traits <Domain1 >::effort_type
9 bp1_effort_type;

10 typedef typename scax_bg::scax_domain_traits <Domain1 >::displacement_type
11 bp1_displacement_type;
12 / / . . .
13 typedef typename scax_bg::scax_domain_traits <Domain2 >::effort_type
14 bp2_effort_type;
15 / / . . .
16 / / Func t i on wrapper types .
17 typedef std::tr1::function<bp1_effort_type (bp1_displacement_type ,
18 bp2_displacement_type)> function_q1_q2_to_e1_type;
19 typedef std::tr1::function<bp2_effort_type (bp1_displacement_type ,
20 bp2_displacement_type)> function_q1_q2_to_e2_type;
21
22 scax_bg::scax_port <Domain1> bp1; / / F i r s t bond p o r t .
23 scax_bg::scax_port <Domain2> bp2; / / Second bond p o r t .
24
25 SCAX_BG_HAS_METHOD(C2_transducer); / / Module r e g i s t e r s p rocess ing methods .
26 / / C o n s t r u c t the 2− p o r t C− f i e l d t r a n s d u c e r model .
27 C2_transducer(const sc_core::sc_module_name& nm,
28 function_q1_q2_to_e1_type function_q1_q2_to_e1 ,
29 function_q1_q2_to_e2_type function_q1_q2_to_e2 ,
30 bp1_displacement_type q1_0 = bp1_displacement_type(),
31 bp2_displacement_type q2_0 = bp2_displacement_type())
32 : scax_bg::scax_module(nm), bp1("bp1"), bp2("bp2"),
33 function_q1_q2_to_e1_(function_q1_q2_to_e1),
34 function_q1_q2_to_e2_(function_q1_q2_to_e2),
35 q1_(q1_0), q2_(q2_0),
36 displacement1("displacement1", q1_), displacement2("displacement2", q2_)
37 {}
38 / / . . .
39 / / Returns the number o f unconverged v a r i a b l e s f o r the c u r r e n t i t e r a t i o n .
40 virtual int unconverged() const {
41 return q1_.unconverged() + q2_.unconverged(); }
42 protected:
43 / / Set c a u s a l i t y c o n s t r a i n t s .
44 void set_attributes() {
45 bp1.set_causality_constraint(scax_bg::REQUIRED_FLOW_IN);
46 bp2.set_causality_constraint(scax_bg::REQUIRED_FLOW_IN);
47 }
48
49 / / R e g i s t e r the p rocess ing member f u n c t i o n s depending on the ass igned c a u s a l i t y .
50 void after_causality_assignment() {
51 sc_assert(bp1.get_causality() == scax_bg::FLOW_IN);
52 sc_assert(bp2.get_causality() == scax_bg::FLOW_IN);
53 SCAX_BG_METHOD(integrate_f1_to_q1);
54 method_io << bp1.flow;
55 SCAX_BG_METHOD(integrate_f2_to_q2);
56 method_io << bp2.flow;
57 SCAX_BG_METHOD(process_q1_q2_to_e1);
58 method_io >> bp1.effort;
59 SCAX_BG_METHOD(process_q1_q2_to_e2);
60 method_io >> bp2.effort;

135



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

61 }
62
63 void update() { q1_.update(); q2_.update(); } / / Accept the c u r r e n t s o l u t i o n .
64 void reset() { q1_.reset(); q2_.reset(); } / / Re jec t the c u r r e n t s o l u t i o n .
65 private:
66 void process_q1_q2_to_e1() {
67 if (!get_iteration()) {
68 / / For 1 s t i t e r a t i o n use an Eu le r s tep t o e s t i m a t e q1_ and q2_ .
69 time_type h = scax_util::sca_time_cast <time_type >(get_timestep());
70 q1_ = q1_.read_last() + h * bp1.read_last_flow();
71 q2_ = q2_.read_last() + h * bp2.read_last_flow();
72 }
73 / / For a l l succeedent i t e r a t i o n s , q1_ and q2_ have been a l r e a d y updated .
74 bp1.write_effort(function_q1_q2_to_e1_(q1_, q2_));
75 }
76
77 void process_q1_q2_to_e2() { / * S i m i l a r t o process_q1_q2_to_e1 ( ) . * / }
78
79 void integrate_f1_to_q1() {
80 using scax_util::sca_time_cast;
81 / / Use t r a p e z o i d a l method t o improve the i n i t i a l Eu le r guess o f q1_ .
82 time_type h = sca_time_cast <time_type >(get_timestep());
83 q1_ = q1_.read_last() + 0.5 * h * (bp1.read_last_flow() + bp1.read_flow());
84 }
85
86 void integrate_f2_to_q2() { / * S i m i l a r t o i n t e g r a t e _ f 1 _ t o _ q 1 ( ) . * / }
87
88 / / Func t i ons t o d e s c r i b e the r e l a t i o n e1_ := f ( q1_ , q2_ ) and e2_ := f ( q1_ , q2_ ) .
89 function_q1_q2_to_e1_type function_q1_q2_to_e1_;
90 function_q1_q2_to_e2_type function_q1_q2_to_e2_;
91
92 / / Genera l i sed d isp lacemen t s t a t e v a r i a b l e s f o r bp1 and bp2 .
93 scax_bg::scax_variable <bp1_displacement_type > q1_;
94 scax_bg::scax_variable <bp2_displacement_type > q2_;
95 public:
96 / / T raceab le c o n s t a n t r e f e r e n c e s t o the s t a t e v a r i a b l e s q1_ and q2_ .
97 scax_bg::scax_traceable_cref <bp1_displacement_type > displacement1;
98 scax_bg::scax_traceable_cref <bp2_displacement_type > displacement2;
99 }; / / c l a s s C2_transducer <Domain1 , Domain2>

Listing 5.17: Test bench of the bond graph model of the electromechanical transducer example.

1 #include "scax_bond_graph" / / . . .
2 / / D e f i n i t i o n o f C2_transducer <Domain1 , Domain2 > .
3 / / . . .
4 int sc_main(int argc, char* argv[]) {
5 / / Using d e c l a r a t i o n s and convenience t y p d e f s .
6 using namespace scax_bg; using scax_bg::domain::electrical;
7 / / . . .
8 typedef divide_typeof_helper <si::force, si::velocity >::type viscous_damping;
9 / / E l e c t r i c a l and mechanica l component c o n s t a n t s as w e l l as s t i m u l i c o n s t a n t s .

10 const quantity <si::resistance > R_1 = 50.0e3 * si::ohm;
11 / / . . .
12 const sc_time t_sim(2.4, SC_MS); / / S i m u l a t i o n t ime .
13 const sc_time t_step(2.0, SC_US); / / TDF s y n c h r o n i s a t i o n t ime s tep .
14

136



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

15 / / Bond graph d e f i n i t i o n .
16 scax_bond <electrical <> > b_e1("b_e1"), b_e2("b_e2"), b_e3("b_e3");
17 scax_bond <translational <> >
18 b_m1("b_m1"), b_m2("b_m2"), b_m3("b_m3"), b_m4("b_m4");
19 / / E l e c t r i c a l d r i v i n g c i r c u i t .
20 scax_Se<electrical <> >
21 Se_e1("Se_e1", scax_pulse <voltage_type >(
22 V_drive_0 , V_drive_1 , t_drive_delay ,
23 t_drive_rise , t_drive_fall , t_drive_pulse , t_drive_period));
24 Se_e1.bp(b_e1.tail);
25 scax_J1<electrical <> > J1_e1("J1_e1");
26 J1_e1.bp(b_e1.head); J1_e1.bp(b_e2.tail); J1_e1.bp(b_e3.tail);
27 scax_R<electrical <> > R_e1("R_e1", R_1);
28 R_e1.bp(b_e2.head);
29 / / Transducer .
30 C2_transducer <electrical <>, translational <> >
31 C2_em1("C2_em1", v_trans_func , F_trans_func , q_trans_0 , x_m_0);
32 C2_em1.bp1(b_e3.head); C2_em1.bp2(b_m1.head);
33 / / Mechanica l r e s o n a t o r .
34 scax_J1<translational <> > J1_m1("J1_m1");
35 J1_m1.bp(b_m1.tail); J1_m1.bp(b_m2.tail);
36 J1_m1.bp(b_m3.tail); J1_m1.bp(b_m4.tail);
37 scax_R<translational <> > R_m1("R_m1", d);
38 R_m1.bp(b_m2.head);
39 scax_C<translational <> > C_m1("C_m1", 1.0 / k, x_m_0);
40 C_m1.bp(b_m3.head);
41 scax_I<translational <> > I_m1("I_m1", m, p_m_0);
42 I_m1.bp(b_m4.head);
43
44 / / T rac ing .
45 sca_trace_file *tfp = sca_create_tabular_trace_file("elmech_transducer_bg");
46 sca_trace(tfp, b_e1.effort, "v_drive"); / / . . .
47 sca_trace(tfp, C_m1.displacement , "x_m");
48 / / S i m u l a t i o n .
49 Se_e1.set_timestep(t_step); / / Always r e q u i r e d TDF s y n c h r o n i s a t i o n t ime s tep .
50 / / O p t i o n a l l y , s e t BG s o l v e r parameters l i k e minimum s o l u t i o n t ime step , e t c .
51 scax_solver_configuration::instance().set_min_timestep(10.0, SC_NS);
52 try { sc_start(t_sim); } catch (const exception& e) { cerr<<e.what()<<endl; }
53 sca_close_tabular_trace_file(tfp);
54 Se_e1.get_solver()->export_dependency_graph("elmech_transducer_bg.dot");
55 sc_stop(); / / End s i m u l a t i o n t o p r i n t s i m u l a t i o n s t a t i s t i c s .
56 return sc_report_handler::get_count(SC_ERROR);
57 }

5.7.5.2. Interaction of the BG, TDF, and DE Models of Computation

After the discussion of writing and simulating pure BG models, this section focuses on the integration
of BG models into a system using also other MoCs. The synchronised interaction of the BG MoC with
other MoCs of SystemC and its AMS extensions has been an important requirement for the design
and implementation of the BG MoC (Section 5.7.1). To this end, every BG module can instanti-
ate the SystemC-AMS synchronisation ports of type sca_tdf::sca_in<T>, sca_tdf::sca_out<T>,
sca_tdf::sca_de::sca_in<T>, sca_tdf::sca_de::sca_out<T> to interact with TDF modules
or “classical” SystemC DE modules (Section 5.7.3.1). As each BG cluster is executed as part of the

137



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

surrounding TDF cluster, the synchronisation with the other MoCs is ensured (Section 5.7.4).
To facilitate the interconnection of BG, TDF, and DE models, several converter primitives are offered

for the BG MoC by the scax_bond_graph library. For the block diagram formalism, these are source
primitives, which are controlled by either a TDF or DE signal, and sink primitives, which convert a
directed BG signal into a sampled TDF or DE signal (Table A.5 on page 156). Similarly for the bond
graph formalism, dedicated modulated source, transformer, and gyrator primitives are offered as well as
effort and flow detector primitives. Each of these primitives exist in three variants with either a directed
BG signal port, TDF port or TDF to DE converter port (Table A.6 on page 157).

To demonstrate the resulting capabilities for writing heterogeneous system models involving different
modelling formalisms and MoCs, a simple model of a sensor with electrical front end to measure the
velocity of an externally excited mechanical resonator has been developed. Its schematic is shown in
Figure 5.18a. The reader can refer to Table A.3 on page 153 for a summary on the used graphical
convention to distinguish the different signal and port types. Bond graph and block diagram descriptions
are combined in a single model. The mechanical resonator is described as a bond graph as well as is the
electrical output circuit, which converts the output voltage of the amplifier into an output current. The
velocity sensor is represented by a gyrator. Its electrical output signal (voltage vtrans) undergoes analogue
signal processing modelled with a block diagram model. To this end, the voltage vtrans is converted into
a directed signal and amplified by a gain block, controlled by the digital gain controller. The output
saturates if it exceeds a given voltage range. The output of the gain block is connected to a modulated
effort source, which converts the directed BG signal back into the energy conserving domain. The two
bond graphs with the interconnecting block diagram form a single BG cluster. The mechanical resonator
is excited by a modulated effort source, which is controlled by the TDF signal FTDF coming from the
force generator TDF module. The output current signal of the electrical front end is converted by a flow
detector primitive to the TDF signal iTDF. Just by replacing this detector with the right variant, it would
be possible to obtain a sampled DE signal at the output.

This model can be assembled mostly from the primitives available in the scax_tdf and
scax_bond_graph libraries (Tables A.5 and A.6 on pages 156 and 157, respectively). The only
exception is the digital gain controller module, which needs to be hand-coded. This is not difficult, as it
just steps the kDE between different values and waits in between for a certain time. Therefore, no code
examples are given, as they would not provide any significantly new insights into the writing of structural
BG models.

Figure 5.18b shows the obtained simulation results. For the mechanical resonator part, the behaviour
is similar to the previous electromechanical transducer example (Section 5.7.5.1). The pulsed force
signal FTDF excites the oscillation of the resonator (displacement xm, velocity vm) at its natural frequency.
The velocity sensor’s output voltage is amplified and converted into a current iTDF. On this output signal,
the saturation of the amplifier can be observed when the gain control block sets a too high gain kDE. This
model demonstrates how tightly the BG, TDF, and DE MoCs can interact to simulate heterogeneous
system models. However, one limitation of the current BG MoC implementation is the missing support
for controlled junctions to describe hybrid bond graphs that show switching behaviour (Sections 5.3.2
and 5.7.1).

5.7.5.3. Treatment of Algebraic Loops

Algebraic loops can easily appear in physical models due to algebraic constraints between some of the
model’s variables. Their presence signifies that the modelled system cannot be described through a set of
ODEs, but through a set of DAEs. This complicates the procedural solution of the equation system by

138



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

1 GY: 1

R : d

I : m

C : 1
k

MSe

vmFd

Fm

Ftrans

vtrans

vm vtrans

itransFk vm

Tm:2µs

De MSek
vMSe

iMSe

Force
generator

Gain
controller

iTDF

FTDF

kDE

Velocity
sensor

Electrical sensor front end
Mechanical resonator

R : R1

D f

r
vR1 iR1

vD f

iD f

BG
DE

(a) Schematic of the sensor model using TDF, DE, and BG modules.

-200

   0

 200

 400

 600

F
 /

 µ
N

FTDF

-1.6

-0.8

   0

 0.8

 1.6

F
 /

 m
N

Fd

Fk

Fm

 -10

   0

  10

  20

x
 /

 µ
m

xm

-1.6

-0.8

   0

 0.8

 1.6

v
 /

 m
/s

vm

   0

 500

1000

1500

2000

2500

g
a

in

kDE

 -40

 -20

   0

  20

  40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

i 
/ 

m
A

t / ms

iTDF

(b) Simulation results.

Figure 5.18.: Simple model of a sensor with electrical front end to measure the velocity of an externally
excited mechanical resonator. The resonator is excited by a driving force, which is generated
by a TDF source. The voltage gain of the electrical sensor front-end is controlled by a
digital control block modelled using the DE MoC of SystemC. The amplifier limits it output
to the power supply range. The model demonstrates that bond graph and block diagram
models handled by the BG MoC can tightly interact with DE and TDF modules.

139



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

ordering the system’s equations according to the dependencies between the variables so that the source
nodes of the yielded dependency graph are representing only those variables, which values are known at
the solution point in time (i.e., state variables and variables, which depend through a known function
only from the time t). All other variables are calculated through pure assignment from calculations
with known variables. An algebraic loop is formed once a variable x is at the same time source and
sink in the dependency graph (it is adjacent to a back edge of the directed graph) so that a constraint
x = f (x) needs to be fulfilled, where f (x) is defined by the path through the dependency graph, which
closes the loop. In a procedural solution, this requires fixed-point iterations, which are not guaranteed to
converge. The Banach fixed-point theorem needs to be fulfilled [162], which requires f (x) to fulfil the
Lipschitz condition to guarantee convergence:

| f (x2) − f (x1)| ≤ L · |x2 − x1| with L < 1 for all x1, x2 ∈ R (5.6)

If this condition is not fulfilled, a numerical root-finding algorithm needs to be used, like the Newton-
Raphson method or the secant method.

The BG MoC currently does not implement such a root-finding algorithm. It relies solely on fixed-
point iterations for convergence, which makes it sensitive to the kind of models simulated. For example,
models involving resistive networks often have convergence problems due to algebraic loops. Two very
simple electrical examples are given in Figures 5.19 and 5.20. The bond graph model in Figure 5.19b
does converge with the indicated (automatically assigned) causality, when using the resistance values
R11 = 1 kΩ and R12 = 10 kΩ. However, just by switching the resistance values, the solution does
not converge. Similarly, the bond graph in Figure 5.20b does neither converge with the indicated
(automatically assigned) causality, when using the resistance values R31 = R33 = 1 kΩ and R32 = R34 =

10 kΩ, nor when using the resistance values R31 = R33 = 10 kΩ and R32 = R34 = 1 kΩ. The resonator
models presented in Sections 5.7.5.1 and 5.7.5.2 showed good convergence, because they do not contain
any algebraic loops.

To overcome convergence problems, several approaches are possible. One possibility is to review
the modelling assumptions to see which energy storing parasitics were neglected and to progressively
add them until the causality can be completed without algebraic loops [94]. This increases of course
the order of the ODE and will usually lead to a slow-down in simulation—especially if the equation
system gets stiff with differences in its characteristic time constants of several orders of magnitudes.
Another possibility is to analyse the bond graph and simplify it for simulation [94]. Connected junctions
of the same type can be joined without changing the dynamic behaviour. Linear elements of the same
type (R, C, or I), which are connected to the same junction or linked through a transformer or gyrator
element, can be merged in a way, which is not changing the dynamic behaviour. This can lead to a
reduction in the number of states/non-states and number of remaining algebraic loops. The BG MoC
can, unfortunately, not help with these simplifications, as it does not have knowledge about the exact
behaviour of each BG primitive required for the implementation of such simplification rules. This
choice has been deliberate, because support for automatic simplification of bond graphs would require to
significantly restrict the set of modelling primitives available to the user—in the simplest case to just
primitives with linear dynamic behaviour. However, the BG MoC offers the user much more flexibility
by giving him the possibility to write his own bond graph and block diagram primitives.

To help the user to diagnose convergence problems and solve them with the approaches just described,
the BG MoC implements some features, which are not commonly found in other dynamic simulators. The
BG MoC already detects the presence of algebraic loops during causality assignment (Section 5.7.4.1).
When the implemented Sequential Causality Assignment Procedure (SCAP) does not terminate after

140



5.7. SCAX Bond Graph (BG) MoC for the SystemC AMS extensions

vR11

vR12R12

R11

vSe,11(t)

iR11

(a) Electrical circuit.

1Se : vSe,11(t)

R : R11

Tm:5µs
R : R12

b12

b11 b13

(b) Equivalent bond graph.

(2) R_12.process_linearly_e_to_f

b_13.flow

b_13.effort

(3) J1_11.propagate_f

b_11.flowb_12.flow

(4) R_11.process_linearly_f_to_e

(5) J1_11.sum_up_e

b_11.effortb_12.effort

(1) Se_11.generate_e

(c) Dependency graph of the processing methods and
their I/O variables.

Figure 5.19.: Simple electrical example yielding a bond graph containing an algebraic loop: series
connection of two resistors connected to a voltage source.

141



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

vR31

vR32R32

R31

vSe,31(t)

iR31

vR34R34

iR33

iR32

vR33

R33

(a) Electrical circuit.

1Se : vSe,31(t)

R : R31

iR31
vR31

vSe,31

iSe,31Tm:5µs
0

R : R32

iR32
vR32

R : R341

R : R33

iR33

vR34

iR34

vR33

(b) Equivalent bond graph.

(2) R_34.process_linearly_e_to_f

b_37.flow

b_37.effort

(3) J1_32.propagate_f

b_35.flow

b_36.flow (5) J0_31.sum_up_f

(4) R_33.process_linearly_f_to_e

(8) J1_32.sum_up_e

b_35.effort

b_36.effort

(7) J0_31.propagate_e

b_33.effort

b_34.effort

(9) J1_31.sum_up_e

b_34.flow

b_33.flow

(6) R_32.process_linearly_f_to_e

(11) J1_31.propagate_f

b_31.flow

b_32.flow

b_32.effort

b_31.effort

(10) R_31.process_linearly_e_to_f

(1) Se_31.generate_e

(c) Dependency graph of the processing methods and their I/O variables.

Figure 5.20.: Simple electrical example yielding a bond graph with multiple algebraic loops: series and
parallel connection of four resistors connected to a voltage source.

142



5.8. Conclusions and Outlook

assigning causality to each bond with required or preferred causality constraints, it issues a warning that
the model contains algebraic loops due to the unconstrained assignment of a causality to a bond. For
example, it issues the report shown in Listing 5.18 after the automatic causality assignment to the bond
graph shown in Figure 5.20b. Once the BG solver performs the dependency analysis of the registered
processing member functions and their input/output variables, it can issue more precise warnings, which
are shown in Listing 5.19.

As described in Section 5.7.5.1, the user can export the dependency graph generated by the BG solver
into the Graphviz format to further diagnose the problem by getting insight into the computational
structure of the model. Figure 5.20c depicts the dependency graph generated from the bond graph shown
in Figure 5.20b. It can be seen that the BG solver marks the back edges, which close the algebraic
loop with a dashed line, as these edges are not considered during the scheduling. The BG solver also
marks with a distinct colour the edges, which are part of the respective algebraic loop, as they can be
reached from the loop head (vertex of which the back edge is an in edge) and, at the same time, the
loop tail (vertex of which the back edge is an out edge) is reachable from these edges. In the example
given, two loops are marked, which are overlapping each other’s “influence area”. The dependency
graph contains other important information: the hierarchical name of each registered processing member
function and input/output variable as well as the order, in which the processing member functions will be
executed during each convergence iteration. This information can help the user to find suitable places to
add missing energy storing parasitics to enhance the convergence of the model or to find a starting point
for simplifying the BG model with the same goal. A future version of the BG MoC may implement
a root-finding algorithm locally into the bonds and signals, which can be selectively activated by the
BG solver for the variables adjacent to a back edge in the dependency graph to help with the convergence
of the model.

5.8. Conclusions and Outlook

This chapter presented the new modelling capabilities introduced with the SCAX library by the author
of this Ph.D. thesis for the recently standardised OSCI SystemC AMS extensions. They enable the
formal description and efficient simulation of heterogeneous multiphysical systems at high levels of
abstraction. To this end, the chapter showed the strong relevance of dimensional analysis to ensure
consistent model equations and proper assembly of models for multiphysical systems. It presented the
capabilities of the OSCI SystemC AMS extensions as a C++-based multi-MoC simulation framework for
the efficient HW/SW co-design of heterogeneous systems with a current focus on electrical AMS SoCs
for communication and signal processing applications. In the scope of the presented Ph.D. thesis work, the
author actively contributed to their recent standardisation as member of the OSCI AMS Working Group.
The current limitations of the SystemC AMS extensions concerning the modelling of digitally assisted
analogue and multiphysical components of heterogeneous SoCs were recognised and systematically
addressed. Two suitable modelling formalisms were identified to describe their conservative and non-
conservative behaviour at high levels of abstractions: bond graphs and block diagrams, respectively.
The generic nature of their modelling primitives over “classical” domain-specific modelling primitives
make them more universally applicable. However, their usage requires a more precise specification of
the model component interfaces and their calculations, to not lose the link to the physical domain, and
a more careful assembly of the structural system model, to avoid interconnection errors especially at
physical domain boundaries. This can be achieved through the systematic usage of physical quantity
types instead of purely computational data types (e.g., double) for the variables, parameters, ports, and

143



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

Listing 5.18: Causality assignment results for the bond graph depicted in Figure 5.20b.

1 Info: /SCAX/bond_graph: Bond graph cluster ‘scax_bg_solver_1 ’ is constituted of:
2 8 modules (e.g., ‘R_34’)
3 7 bonds (e.g., ‘b_37’)
4
5 Info: /SCAX/bond_graph: Bond causality assignment priority order in cluster ↵

‘scax_bg_solver_1 ’: ‘b_31’ (unassigned constraint), ‘b_37’ (unassigned ↵
constraint), ‘b_32’ (unassigned constraint), ‘b_34’ (unassigned constraint), ↵
‘b_36’ (unassigned constraint), ‘b_35’ (unassigned constraint), ‘b_33’ ↵
(unassigned constraint).

6
7 Info: /SCAX/bond_graph: Assigned causality to 7/7 bonds of cluster ↵

‘scax_bg_solver_1 ’ in 7 iterations.
8
9 Warning: /SCAX/bond_graph: Some causalities have been assigned arbitrarily to ↵

bonds in cluster ‘scax_bg_solver_1 ’ without any imposed constraints. This is ↵
a hint for the presence of algebraic loops in the model.

10 In file: (...)/scax/src/scax/bond_graph/detail/scax_solver.cpp:801
11 In process: b_11.sca_implementation_0.cluster_process_1 @ 0 s
12
13 Info: /SCAX/bond_graph: Summary of the causality assignment to the 7 bonds in ↵

cluster ‘scax_bg_solver_1 ’:
14
15 --------------- ----------- ----------- ----------- ----------- -----------
16 Causality Required Preferred Unpreferred Free Total
17 --------------- ----------- ----------- ----------- ----------- -----------
18 Effort in --\| 1 0 0 3 4
19 Flow in |--\ 0 0 0 3 3
20 --------------- ----------- ----------- ----------- ----------- -----------
21 Total 1 0 0 6 7
22 --------------- ----------- ----------- ----------- ----------- -----------

Listing 5.19: Dependency graph analysis results for the bond graph depicted in Figure 5.20b.

1 Info: /SCAX/bond_graph: Dependency graph for bond graph cluster ↵
‘scax_bg_solver_1 ’ has 25 vertices (11 processing methods, 14 variables) and ↵
27 edges.

2
3 Info: /SCAX/bond_graph: Schedule for bond graph cluster ‘scax_bg_solver_1 ’: ↵

‘Se_31.generate_e ’, ‘R_34.process_linearly_e_to_f ’, ‘J1_32.propagate_f ’, ↵
‘R_33.process_linearly_f_to_e ’, ‘J0_31.sum_up_f ’, ↵
‘R_32.process_linearly_f_to_e ’, ‘J0_31.propagate_e ’, ‘J1_32.sum_up_e ’, ↵
‘J1_31.sum_up_e ’, ‘R_31.process_linearly_e_to_f ’, ‘J1_31.propagate_f ’.

4
5 Warning: /SCAX/bond_graph: Algebraic loop broken between ‘b_33.flow’ and ↵

‘J0_31.sum_up_f ’ in bond graph cluster ‘scax_bg_solver_1 ’.
6 In file: (...)/scax/src/scax/bond_graph/detail/scax_solver.cpp:1242
7 In process: b_11.sca_implementation_0.cluster_process_1 @ 0 s
8
9 Warning: /SCAX/bond_graph: Algebraic loop broken between ‘b_37.effort’ and ↵

‘R_34.process_linearly_e_to_f ’ in bond graph cluster ‘scax_bg_solver_1 ’.
10 In file: (...)/scax/src/scax/bond_graph/detail/scax_solver.cpp:1242
11 In process: b_11.sca_implementation_0.cluster_process_1 @ 0 s

144



5.8. Conclusions and Outlook

signals of their models. In this way, the physical dimension and measurement unit are associated in a
machine-readable form to the values used in computations and communication, which allows the model
compiler to perform automated consistency checks on the calculations and structural model assembly.

The presented implementation in form of the seamless integration of the Boost.Units library with
the SystemC AMS extensions achieves this goal without imposing a simulation performance penalty.
The declaration of quantity ports, signals, variables, and parameters as well as the definition of numeric
quantity constants with their measurement unit is compact, conforming to the C++ syntax, and close to
the mathematical notation. The C++ compiler is performing the dimensional analysis for the mentioned
consistency checks as part of the static type checking phase and optimises away all computational
overhead for the model execution, which increases the compile time. The internal complexity of the
quantity types is only exposed to the user in case of compiler errors reporting incoherent computations
and wrong assignments involving incompatible quantity types. To address the resulting usability problem,
the bufilt utility has been developed to simplify the compiler messages. It is able to localise, parse, and
replace any occurrences of the complex unit template type, which encodes all aspects of a measurement
unit (dimension, system of units) for the quantity type, by a compact human-readable format. This
facilitates the localisation and correction of many problems before the first execution of the model. Thus,
it gives the designer/programmer more time to test the important behavioural aspects of his model.

To conserve the genericity of bond graph and block diagram primitives despite the usage of the new
quantity types, their interface and behaviour needs to be parameterisable in a flexible but well-defined way
that allows to express constraints between the quantity types. This has been achieved by applying generic
and functional programming techniques to the model writing. These techniques have been demonstrated
through the implementation of a library of flexible block diagram primitives for the TDF MoC of
the SystemC AMS extensions. It has been successfully used to model the nonlinear behaviour of an
electromechanical transducer linked to a micromechanical resonator on the block diagram level without
losing the link to the physical domain. However, it also showed the limitations of TDF MoC concerning
the simulation of block diagram models of physical systems. The fast execution of data flow models is
achieved by avoiding any control of the numerical error and the absence of convergence iterations and
dynamic time stepping features. It showed the need for a more adapted MoC, which offers a similar
flexibility in describing the abstract behaviour of modules, but causes less numerical problems during
simulation.

The new Bond Graph (BG) MoC implemented in the SCAX library using all these techniques
fulfils these needs. It offers a solid base for the modelling and simulation of the conservative and
non-conservative CT behavioural aspects of heterogeneous multiphysical systems. It integrates itself
seamlessly with the Fraunhofer SystemC-AMS library and OSCI SystemC library by exclusively using
the synchronisation layer of SystemC-AMS and thus avoiding any modifications to the base libraries.
Bond graph and block diagram descriptions can be freely mixed with each other and use predefined
and user-defined bond graph and block diagram primitives. These BG models can communicate
directly through converter ports with the TDF and DE MoCs of SystemC-AMS. With the introduction
of the bond graph formalism into the SystemC-AMS simulation framework, this work enables the
adapted, unified, and reusable description of the energy conserving behavioural aspects of heterogeneous
multiphysical systems like it has not been possible before. The BG MoC implements causality analysis
at elaboration time to transform the bond graphs into an equivalent signal flow model that is merged
for execution with the connected block diagram model. This enables their fast execution based on the
static scheduling of the processing member functions describing the input/output behaviour of the block
diagram and bond graph primitives. The BG MoC checks the convergence of the model after each
iteration and performs, if necessary, fixed-point iterations to improve the precision of the solution for

145



5. Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling

the current point in time before advancing the simulation with a variable time step. This procedural
solution achieves an interesting simulation performance advantage over “classical” generalised network
solvers that globally solve the DAE system extracted from the model. The improved convergence of
bond graph and block diagram models employing the BG MoC over equivalent block diagram models
using the TDF MoC has been demonstrated on the electromechanical transducer example, which allowed
to increase the simulation time step by a factor of 200, which translated into a 50 times faster execution
of the model at comparable precision. Together with the possible tight interaction with the other MoCs
of the SystemC-AMS framework, this enables the implementation of high performance models of
heterogeneous systems using adapted description formalisms for its individual analogue, RF, MEMS,
digital, and software components. The causality and dependency analyses performed by the BG MoC at
elaboration time give the designer a unique insight into the physical and computational structure of his
models and enables other formal checks, which provide him with hints regarding modelling problems
such as algebraic loops, multiple drivers, and ill-formed models. It helps him to cope with convergence
problems observed for models containing algebraic loops by hinting him to the problematic region of his
model. This allows a more focused analysis of the bond graph to find potential simplifications and/or
review of the modelling assumptions to add neglected energy storing parasitics with the goal of obtaining
a model with good numeric properties.

The SCAX library with its BG MoC forms a solid base for further developments to improve the
modelling of multiphysical systems. It needs to be evaluated on more complex system examples than
the ones used during its development and presented in this chapter. This might yield new requirements,
which need to be addressed. Future work should target the improvement of the numerical algorithm
employed to locally solve the algebraic constraints imposed by algebraic loops onto bond graph and
block diagram models. This could be achieved by incorporating a suitable root-finding algorithm like the
Newton-Raphson or secant methods into the implementation of the bond and directed signal classes. The
root-finding algorithm could then be selectively activated on those variables, which are adjacent to the
back edges of algebraic loops in the dependency graph of the processing member functions and their
input/output variables registered by the BG modules. Another working direction is the development of a
generic mathematical toolbox for the model author to further support him in the writing of BG modules
by providing different numerical algorithms for integration, differentiation, filtering, etc., which interfaces
are parameterisable to the quantity types used in the behavioural description and integrate well with the
execution semantics of the BG MoC. Stronger support for the modelling of the interaction between the
CT and DE domains is needed. This especially concerns the support for the switching of energy and
signal flows inside bond graphs and block diagrams, respectively, due to digital events and the generation
of digital events due to detected threshold crossings of CT signals. For the BG MoC this means the
implementation of controlled junctions to describe hybrid bond graphs. This will also require work on
the synchronisation layer of SystemC-AMS itself. This layer is missing standardisation from the side
of the OSCI SystemC AMS extensions to offer an official API for the integration of third-party solvers
and MoCs into the simulation framework. Another focus for future work can be put on the development
and implementation of additional (semi)formal checks into the BG MoC to further audit the models
at elaboration time regarding their dynamic and numerical properties to give the user insight into the
modelled systems. Once the new concepts introduced with the SCAX library have been stabilised, their
standardisation as part of the OSCI SystemC AMS extensions can be envisioned.

146



6. Conclusions and Outlook

This Ph.D. thesis described the author’s contribution to the development of an efficient modelling and
simulation methodology for heterogeneous Analogue and Mixed-Signal (AMS) Systems on Chip (SoCs)
based on a common modelling and simulation platform for the system level specification, design, and
verification. Today’s challenges in the design process for such systems were addressed in three thematic
phases.

In the first phase, the improvement of the reuse of existing models in the complex design process for
heterogeneous systems has been addressed. To this end, a prototype of a web-based and thus CAD/EDA-
tool-independent platform for the collection of models from different domains and levels of abstraction
together with their associated structural and semantical meta information has been developed. This
prototype is called ModelLib. Its web interface allows browsing for a model through the model class
hierarchy. The meta information about models, test benches, design languages, design tools, and external
documents that are stored in the meta information database can be displayed. New models can be added
by committing them into the repository and adding/editing their meta information in the meta information
database using the web interface. This work included the implementation of a hierarchical access
control mechanism, which is able to protect the IP constituted by the models at different levels of
detail. The use cases developed for this tool show how it can support the AMS SoC design process
for heterogeneous systems by fostering the reuse and collaborative development of models for tasks
like architecture exploration, system validation, and creation of more and more elaborated models of
the system. The presentation of this early prototype yielded external interest and gave input in the
form of new ideas and requirements to consider additional kinds of meta information and to enable a
tighter tool integration. The ideas included the definition of a tool-independent model meta information
exchange format, partially automated model import into the library using documentation extraction
tools, and the definition of an extensible meta information data model, which would enable the storage
of EDA-tool-specific information to support use cases such as hierarchical synthesis of AMS systems
based on the models provided by ModelLib. These research perspectives and the identified unsatisfying
separation of the application logic and presentation aspects of the PHP-based ModelLib web interface
led to the decision to reimplement the ModelLib application following the 3-tier architecture concept
based on the feature-rich Java EE platform. The usage of Java EE indeed allowed a better modularisation
of the ModelLib application, but unfortunately proved also to be a burden on the prototype development.
In particular, it turned out to be difficult to efficiently propagate the necessary changes of the evolving
meta information data model, which addressed the new requirements, through the different architectural
layers of the ModelLib prototype. The solution of these pure implementation-related problems were
outside the scope of this work so that the ModelLib reimplementation remained unfinished.

However, the experiences from the ModelLib development delivered valuable insight into which
aspects need to be especially addressed throughout the development of a model to make it reusable:
mainly flexibility, documentation, and validation. This was the starting point for the development of
an efficient modelling methodology for the top-down design and bottom-up verification of complex
RF systems based on the systematic usage of behavioural models in the second phase. One outcome
is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models
of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets

147



6. Conclusions and Outlook

of parameters: one based on the performance specifications and one based on the device parameters
back-annotated from the transistor level implementation. The abstraction level used for the description
of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off

between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the
integration of transistor level models for the validation of the behavioural models or the verification of a
component implementation in the system context. These properties make the models suitable for different
design tasks such as architecture exploration or overall system validation. This has been demonstrated on
a model of a binary FSK transmitter parameterised to meet very different target specifications. Its careful
organisation allowed to achieve a full orthogonalisation of the model structure, parametrisation, and
abstraction selection aspects avoiding code duplication as well as simplifying the addition of new design
cases and model configurations for top-down architecture exploration. It can serve as a template for the
implementation of other complex system level test benches. A systematic approach for the individual
validation of transistor level component implementations in the system context has been presented, which
achieves considerable gains in simulation performance compared to a full transistor level verification of
the system. The development of the VHDL-AMS model library RF_TRX helped to establish best practices
regarding the communication between model developers and RF designers as well as the organisation
and documentation of the models. Their application ensures a maximum flexibility, reusability, validity,
and maintainability of the models. This work shows that a complex RF system can be simulated
rapidly and precisely by making the right abstraction choices. Future working directions include the
consideration of different noise forms and the modelling of power consumption in the models as well as
the development of new component models for the library to increase its coverage in the long term on
the whole transceiver chain. However, for a complex heterogeneous SoC, the transceiver will constitute
a just a single component of the overall system. Therefore, even the demonstrated behavioural modelling
approach will show its limitations in terms of simulation performance and modelling capabilities of
“classical” HDLs. New modelling formalisms supporting higher levels of abstractions are needed.

For this reason, the third and last phase was dedicated to further raise the abstraction level for the
description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using
different synchronised MoCs. This work is founded on the C++-based simulation framework SystemC
with its AMS extensions. The author of this Ph.D. thesis actively contributed to the recent standardisation
of these AMS extensions as member of the OSCI AMS Working Group and part of this research
work. New modelling capabilities going beyond the standardised SystemC AMS extensions have
been developed in form of the SystemC AMS extensions eXperiments (SCAX) library to describe the
conservative and non-conservative continuous-time behaviour of heterogeneous multiphysical systems
in a formal and consistent way at a high level of abstraction. Two suitable modelling formalisms were
identified to support the description of these two kinds of behaviour: bond graphs and block diagrams,
respectively. The generic nature of their modelling primitives over “classical” domain-specific modelling
primitives make them more universally applicable. However, their usage requires a more precise
specification of the model component interfaces and their calculations, to not lose the link to the physical
domain, and a more careful assembly of the structural system model, to avoid interconnection errors
especially at physical domain boundaries. To this end, all constants, variables, and parameters of the
system model, which represent a physical quantity, can now declare their dimension and associated
system of units as an intrinsic part of their data type. Assignments to them need to contain the correct
measurement unit besides the numerical value. This allows a much more precise but still compact
definition of the models’ interfaces and computations. Thus, the C++ compiler can check the correct
assembly of the components and the coherency of the computations by means of dimensional analysis.

The implementation is based on the Boost.Units library, which employs template metaprogramming

148



techniques that only increase the compilation time but do not impose any simulation performance penalty.
A dedicated filter for the measurement units data types has been implemented to simplify the compiler
messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite
precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined
manner. The enabling generic and functional programming techniques, to address these requirements,
have been demonstrated with the developed library of generic block diagram component models for
the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques have been also
the key to the implementation of a new Bond Graph (BG) MoC, which seamlessly integrates into
Fraunhofer’s proof-of-concept implementation of the SystemC AMS extensions and efficiently supports
the parallel usage of the bond graph and block diagram formalisms in the same model description. An
extensive library of predefined bond graph and block diagram primitives is provided, which can be
augmented by user-defined primitives. The BG models can communicate directly through converter
ports with the TDF and DE MoCs of the SystemC AMS simulation framework. With the introduction
of the bond graph formalism into the SystemC AMS simulation framework, this work enables the
adapted, unified, and reusable description of the energy conserving behavioural aspects of heterogeneous
multiphysical systems like it has not been possible before. The BG MoC implements causality analysis
at elaboration time to transform the bond graphs into an equivalent signal flow model that is merged
for execution with the connected block diagram model. This enables their fast execution based on the
static scheduling of the processing member functions describing the input/output behaviour of the block
diagram and bond graph primitives. The BG MoC checks the convergence of the model after each
iteration and performs, if necessary, fixed-point iterations to improve the precision of the solution for
the current point in time before advancing the simulation with a variable time step. This procedural
solution achieved, for the presented examples, good simulation performance advantages over “classical”
generalised network solvers and the TDF MoC of the SystemC AMS extensions. Together with the
possible tight interaction with the other MoCs of the SystemC AMS simulation framework, this enables
the implementation of high performance models of heterogeneous systems using well adapted modelling
formalisms for its individual analogue, RF, MEMS, digital, and software components. The causality and
dependency analyses performed by the BG MoC at elaboration time give the designer a unique insight
into the physical and computational structure of his models and enables other formal checks, which
provide him with hints regarding modelling problems such as algebraic loops, multiple drivers, and
ill-formed models. The SCAX library with its BG MoC forms a solid base for further developments to
improve the modelling of multiphysical systems. Its novelty lies in the extension of the SystemC AMS
simulation platform with new modelling capabilities that uniformly integrate all the aspects mentioned
above and thus achieves the fusion of normally very opposing requirements: genericity to privilege reuse
and precision in the specification to privilege verification. The SCAX library needs to be evaluated on
more complex system examples than the ones used during its development and presented in this work.
This might yield new requirements, which need to be addressed.

Future work should target the improvement of the numerical algorithm employed to locally solve
the algebraic constraints imposed by algebraic loops onto bond graph and block diagram models.
Another working direction is the development of a generic mathematical toolbox to facilitate the
writing of user-defined BG primitives by providing different numerical algorithms for integration,
differentiation, filtering, etc., which interfaces are parameterisable to the quantity types used in the
behavioural description and integrate well with the execution semantics of the BG MoC. Stronger
support for the modelling of the interaction between the CT and DE domains is needed to support the
switching of energy and signal flows inside bond graphs and block diagrams, respectively, due to digital
events and the generation of digital events due to detected threshold crossings of CT signals. This will

149



6. Conclusions and Outlook

also require work on the synchronisation layer of the SystemC AMS extensions itself, which currently
lacks the standardisation of an official API for the integration of third-party solvers and MoCs into the
simulation framework. Another focus for future work can be put on the development and implementation
of additional (semi)formal checks into the BG MoC to further audit the models at elaboration time
regarding their dynamic and numerical properties to give the user insight into the modelled system. Once
the new concepts introduced with the SCAX library have been stabilised, their standardisation as part of
the OSCI SystemC AMS extensions can be envisioned.

150



A. Short Reference for the SystemC AMS extensions
eXperiments (SCAX) Library

Table A.1.: Organisation of the SCAX library implementation into several namespaces. Each of the
mentioned namespaces may contain a namespace detail for the implementation details.

Namespace #include header Description

scax_core Common functionality required by all parts of the SCAX library,
i.e., for the moment the release information functions and tracing
support for Boost.Units quantities in SystemC-AMS.

scax_util scax_utility Utilities for the SystemC AMS extensions, which are not
linked to a specific MoC but facilitate the development
of generic modules (cf. to Section 5.6). This includes:
• Cast functions (sc_time_cast<T>() and
sca_time_cast<T>()) to uniformly convert (back and forth)
between the SystemC AMS extensions’ time types
(sc_core::sc_time and sca_core::sca_time) and a user
specified data type T (e.g., double, quantity<si::time).
• Data type traits (scax_data_type_traits<T>) to obtain for

the specified data type T, the data types of its value, unit, and
system of units as well as its associated time data type.
• Waveform functors (cf. to Table A.2) to generate common

CT stimuli, e.g., exponential, pulse, and sinusoidal waves.
• Functors for testing data sequences against a user-specified

condition (e.g. threshold crossing) and react on its change.
• Namespace scax_util::math_functional) with lazily

evaluated function wrappers for the mathematical functions
defined in <cmath> and <boost/units/cmath.hpp> for use
in functors created with the Boost.Lambda library [84].

scax_tdf scax_tdf Generic block diagram modules for the TDF MoC (cf. to Table A.4
and to Section 5.6).

scax_bg scax_bond_graph New model of computation for the SystemC AMS extensions based
on the bond graph formalism (cf. to Section 5.7) supporting also
the block diagram formalism and synchronisation with the TDF
and DE MoCs. A set of generic bond graph and block diagram
primitives (cf. to Tables A.5 and A.6) is provided. The user can
also define new bond graph and block diagram primitives.

151



A. Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library

Table A.2.: Generic waveform functors provided by the scax_utility library in the names-
pace scax_util. The return type of each functor has to be specified with the template
parameter T upon its instantiation.

Functor name Parameter Description

scax_am<T> Amplitude Modulation (AM) waveform.

amp / [T] Signal amplitude.

off / 1 Offset of the modulation signal.

ws / rad/s or fs / Hz Angular velocity or frequency of the modulation signal.

wc / rad/s or fc / Hz Angular velocity or frequency of the carrier signal.

td / s Time delay before the signal starts.

scax_constant<T> Constant waveform.

value / [T] Constant value.

scax_exponential<T> Exponential waveform.

val_0 / [T] Initial value.

val_1 / [T] Target value.

td_1 / s First edge delay time.

tau_1 / s First edge time constant.

td_2 / s Second edge delay time.

tau_2 / s Second edge time constant.

scax_pulse<T> Periodic pulse waveform.

v0 / [T] Initial value.

v1 / [T] Plateau value.

td / s Delay time before starting the pulse.

tr / s 1st edge time (usually rising edge).

tf / s 2nd edge time (usually falling edge).

pw / s Pulse width.

per / s Pulse period.

scax_sffm<T> Single frequency Frequency Modulation (FM) waveform.

off / [T] Offset.

amp / [T] Amplitude.

wc / rad/s or fc / Hz Angular velocity or frequency of carrier.

mdi / rad Modulation index.

ws / rad/s or fs / Hz Angular velocity or frequency of signal.

scax_sinusoidal<T> Sinusoidal waveform.

offset / [T] Offset value.

amplitude / [T] Amplitude.

omega / rad/s or frequency / Hz Angular velocity or frequency.

delay / s Delay time to start the sinusoidal variation.

theta / 1/s Damping factor.

phase / rad or phase / ° Phase delay.

152



Table A.3.: Symbols used to represent the DE, TDF, LSF, ELN, and BG MoC modelling elements in
schematics. Specified TDF attributes are denoted in red and propagated ones in black.

Behavioural Discrete Event (DE) module (with ports
and signals). sc_core::sc_module

Tm:10ns

R:1
D:1

Tp:10ns

To:10ns

DE port.
sc_core::sc_in<T>
sc_core::sc_inout<T>
sc_core::sc_out<T>

DE signal. sc_core::sc_signal<T>

Timed Data Flow (TDF) module (with allowed ports
and signals) and with attribute time step Tm. sca_tdf::sca_module

TDF port with attributes: rate R (default: 1),
delay D (default: 0), time step Tp,
time offset To (default: 0s).

sca_tdf::sca_in<T>
sca_tdf::sca_out<T>

TDF signal. sca_tdf::sca_signal<T>

TDF converter port with attributes:
rate R (default: 1), delay D (default: 0), time step Tp,
time offset To (default: 0s).

sca_tdf::sca_de::sca_in<T>
sca_tdf::sc_in<T>
sca_tdf::sca_de::sca_out<T>
sca_tdf::sc_out<T>

Linear Signal Flow (LSF) module (with allowed
ports and signals) and with attribute time step Tm.

sca_lsf::sca_module
(only available as predefined primitives)

LSF port. sca_lsf::sca_in
sca_lsf::sca_out

LSF signal. sca_lsf::sca_signal

Electrical Linear Network (ELN) module (with
allowed ports and signals) and with attribute
time step Tm.

sca_eln::sca_module
(only available as predefined primitives)

ELN terminal. sca_eln::sca_terminal

ELN node. sca_eln::sca_node

ELN reference node (ground). sca_eln::sca_node_ref

Tm:10ns

Bond Graph (BG) module (with allowed ports and
signals) and with attribute time step Tm for
synchronisation with the TDF and DE MoC via
TDF (converter) ports. Only block diagram
primitives show the block as part of their symbol,
bond graph primitives (e.g., R, C, I) omit it and just
have the ports next to their symbol.

scax_bg::scax_module

BG bond port (a.k.a. power port) to be bound to the
head or tail of a bond.

scax_bg::scax_port<Domain>

BG (power) bond (bidirectional channel for effort e
and flow f variables), which two sides head and tail
have to be bound to exactly one bond port.

scax_bg::scax_bond<Domain>

Tm:10ns

Tm:10ns

BG directed signal port for the block diagram
formalism also supported by the BG MoC.

scax_bg::scax_in<T>
scax_bg::scax_out<T>

BG directed signal for the block diagram formalism
also supported by the BG MoC. scax_bg::scax_signal<T>

Symbol Description C++ classesMoC

D
is

cr
et

e
E

ve
nt

(D
E

)
Ti

m
ed

D
at

a
Fl

ow
(T

D
F)

L
in

ea
rS

ig
na

l
Fl

ow
(L

SF
)

E
le

ct
ri

ca
lL

in
ea

r
N

et
w

or
k

(E
L

N
)

B
on

d
G

ra
ph

(B
G

)w
ith

bl
oc

k
di

ag
ra

m
su

pp
or

t

153



A. Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library

Table A.4.: Generic block diagram modules for the TDF model of computation provided by the
scax_tdf library in the namespace with the same name.

Name Symbol Description

scax_source<T,TimeType> f (t)
sT

TDF samples source module using a waveform func-
tion: f : TimeType → T

scax_sink<T> sinksT
TDF samples sink module.

scax_scale<T1,T2> ksT1 sT2
Scale module.

scax_sum<T> +
sT,i sT,out

sT,1

sT,n
+/−

+/−

+/−

Summing module with variable input number.

scax_mul<T1,T2> ×sT1
sT3

sT2

Multiplier module with two inputs.

scax_func1<T1,T2> f (sT1)sT1 sT2

Time-independent function module with one input:
f : T1 → T2

scax_func2<T1,T2,T3> f (sT1,sT2)sT1
sT3

sT2

Time-independent function module with two inputs:
f : T1 × T2 → T3

scax_func3<T1,T2,T3,T4> f (sT1,sT2,sT3)
sT1

sT4sT2
sT3

Time-independent function module with three inputs:
f : T1 × T2 × T3 → T4

scax_func1t<T1,T2,TimeType> f (sT1, t)sT1 sT2

Time-dependent function module with one input:
f : T1 × TimeType → T2

scax_func2t<T1,T2,T3,TimeType> f (sT1,sT2, t)sT1
sT3

sT2

Time-dependent function module with two inputs:
f : T1 × T2 × TimeType → T3

scax_integ_trapez<T>
∫

sT s∫ Tdt
Trapezoidal integrator module.

scax_dot_secant<T> d
dtsT s dT

dt

Differentiator module using asymmetric evaluation
of Newton’s difference quotient.

154



sc
a_
m
o
d
u
le

+
ki

n
d
()

+
g
et

_t
im

es
te

p
()

+
se

t_
ti

m
es

te
p
()

sc
ax
_v
ie
w

+
se

tu
p
_e

q
u
at

io
n
s(

)
#

fi
ll_

cl
u
st

er
()

#
cr

ea
te

_s
o
lv

er
_f

o
r_

cl
u
st

er
()

sc
ax
_b
o
n
d
_b
as
e

+
ki

n
d
()

+
g
et

_c
au

sa
lit

y_
co

n
st

ra
in

t(
)

+
se

t_
ca

u
sa

lit
y_

co
n
st

ra
in

t(
)

+
re

se
t_

ca
u
sa

lit
y_

co
n
st

ra
in

t(
)

+
g
et

_c
au

sa
lit

y(
)

+
se

t_
ca

u
sa

lit
y(

)
+

re
se

t_
ca

u
sa

lit
y(

)
+
g
et
_a
d
ja
ce
n
t_
p
o
rt
()

+
g
et
_a
d
ja
ce
n
t_
m
o
d
u
le
()

+
g
et

_s
o
lv

er
()

sc
ax
_b
o
n
d
_i
f

+
re
ad
_e
ff
o
rt
()

+
re
ad
_l
as
t_
ef
fo
rt
()

+
in
it
ia
liz
e_
ef
fo
rt
()

+
w
ri
te
_e
ff
o
rt
()

+
re
ad
_f
lo
w
()

+
re
ad
_l
as
t_
fl
o
w
()

+
in
it
ia
liz
e_
fl
o
w
()

+
w
ri
te
_f
lo
w
()

+
ef
fo
rt
()

+
fl
o
w
()

IF
 =

 s
ca

x
_b

o
n
d
_i

f<
D

o
m

ai
n
>

sc
_i
n
te
rf
ac
e

+
re

g
is

te
r_

p
o
rt

()

sc
a_
v
ie
w
_b
as
e

#
vi

ew
_d

at
as

+
se
tu
p
_e
q
u
at
io
n
s(
)

<
<

en
u
m

>
>

sc
ax
_b
o
n
d
_s
id
e_
ty
p
e

+
BO

N
D

_H
EA

D
+

BO
N

D
_T

A
IL

sc
ax
_s
ig
n
al
_b
as
e

+
ki

n
d
()

+
g
et

_c
o
n
n
ec

te
d
_m

o
d

u
le

s(
)

+
g
et

_s
o
lv

er
()

+
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

<
<

ex
ce

p
ti

o
n
>

>

sc
ax
_c
au
sa
li
ty
_c
o
n
fl
ic
t

sc
ax
_b
o
n
d

+
h
ea

d
+

ta
il

+
ef

fo
rt

+
fl

o
w

-
ef

fo
rt

_
-

fl
o
w

_
-

h
ea

d
_

-
ta

il_

+
ki

n
d
()

+
u
n
co

n
ve

rg
ed

()
+

g
et

_a
d
ja

ce
n
t_

m
o
d
u
le

()
+

g
et

_a
d
ja

ce
n
t_

p
o
rt

()
#

re
se

t(
)

#
u
p
d
at

e(
)

sc
ax
_s
ig
n
al

-
va

lu
e_

-
d
ri

ve
r_

p
o
rt

_

+
ki

n
d
()

+
re

ad
()

+
re

ad
_l

as
t(

)
+

in
it

ia
liz

e(
)

+
w

ri
te

()
+

u
n
co

n
ve

rg
ed

()
+

re
g
is

te
r_

p
o
rt

()
+

en
d
_o

f_
el

ab
o
ra

ti
o
n
()

+
tr

ac
e_

in
it

()
+

tr
ac

e(
)

#
re

se
t(

)
#

u
p
d
at

e(
)

<
<

si
n
g
le

to
n
>

>

sc
ax
_s
o
lv
er
_c
o
n
fi
g
u
ra
ti
o
n

+
in

st
an

ce
()

+
g
et

_m
in

_t
im

es
te

p
()

+
se

t_
m

in
_t

im
es

te
p
()

+
g
et

_m
ax

_t
im

es
te

p
()

+
se

t_
m

ax
_t

im
es

te
p
()

+
g
et

_t
im

es
te

p
_f

ra
ct

io
n
()

+
se

t_
ti

m
es

te
p
_f

ra
ct

io
n
()

+
g
et

_m
in

_i
te

ra
ti

o
n
s(

)
+

se
t_

m
in

_i
te

ra
ti

o
n
s(

)
+

g
et

_m
ax

_i
te

ra
ti

o
n
s(

)
+

se
t_

m
ax

_i
te

ra
ti

o
n
s(

)
+

g
et

_a
b
s_

to
le

ra
n
ce

<
T

>
()

+
se

t_
ab

s_
to

le
ra

n
ce

<
T

>
()

+
g
et

_r
el

_t
o
le

ra
n
ce

()
+

se
t_

re
l_

to
le

ra
n
ce

()
+

g
et

_a
b
s_

va
ri

an
ce

<
T

>
()

+
se

t_
ab

s_
va

ri
an

ce
<

T
>

()
+

g
et

_r
el

_v
ar

ia
n
ce

()
+

se
t_

re
l_

va
ri

an
ce

()

sc
ax
_s
ig
n
al
_i
n
o
u
t_
if

sc
ax
_s
ig
n
al
_w
ri
te
_i
f

+
in
it
ia
liz
e(
)

+
w
ri
te
()

sc
a_
in
te
rf
ac
e

<
<

en
u
m

>
>

sc
ax
_c
au
sa
li
ty
_c
o
n
st
ra
in
t_
ty
p
e

+
FR

EE
_C

A
U

SA
LI

T
Y

+
PR

EF
ER

R
ED

_E
FF

O
R

T
_I

N
+

PR
EF

ER
R

ED
_F

LO
W

_O
U

T
+

PR
EF

ER
R

ED
_F

LO
W

_I
N

+
PR

EF
ER

R
ED

_E
FF

O
R

T
_O

U
T

+
R

EQ
U

IR
ED

_E
FF

O
R
T

_I
N

+
R

EQ
U

IR
ED

_F
LO

W
_O

U
T

+
R

EQ
U

IR
ED

_F
LO

W
_I

N
+

R
EQ

U
IR

ED
_E

FF
O

R
T

_O
U

T

sc
a_
tr
ac
ea
b
le
_o
b
je
ct

+
tr
ac
e_
in
it
()

+
tr
ac
e(
)

+
ca

lc
u
la

te
_a

c_
re

su
lt

()

D
o
m

ai
n

D
o
m

ai
n

T

T

T

sc
ax
_i
n

+
ki

n
d
()

+
re

ad
()

+
re

ad
_l

as
t(

)
+

g
et

_v
ar

ia
b
le

_n
am

e(
)

+
g
et

_v
ar

ia
b
le

_i
o
_d

ir
ec

ti
o
n
()

#
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

sc
_m
o
d
u
le

+
ki

n
d
()

#
b
ef

o
re

_e
n
d
_o

f_
el

ab
o
ra

ti
o
n
()

#
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

#
st

ar
t_

o
f_

si
m

u
la

ti
o
n
()

#
en

d
_o

f_
si

m
u
la

ti
o
n
()

sc
ax
_m
et
h
o
d
_d
es
cr
ip
to
r

+
g
et

_m
o
d
u
le

()
+

o
p
er

at
o
r(

)(
)

<
<

en
u
m

>
>

sc
ax
_v
ar
ia
b
le
_i
o
_d
ir
ec
ti
o
n
_t
yp
e

+
N

O
_A

C
C

ES
S_

V
A

R
IA

BL
E

+
IN

_V
A

R
IA

BL
E

+
O

U
T

_V
A

R
IA

BL
E

+
IN

O
U

T
_V

A
R

IA
BL

E

T

M
o
d
u
le

sc
ax
_o
u
t

+
ki

n
d
()

+
re

ad
()

+
in

it
ia

liz
e(

)
+

w
ri

te
()

+
re

ad
_l

as
t(

)
+

g
et

_v
ar

ia
b
le

_n
am

e(
)

+
g
et

_v
ar

ia
b
le

_i
o
_d

ir
ec

ti
o
n
()

#
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

sc
ax
_b
o
n
d
_c
au
sa
li
ty
_i
f

+
g
et
_c
au
sa
lit
y_
co
n
st
ra
in
t(
)

+
se
t_
ca
u
sa
lit
y_
co
n
st
ra
in
t(
)

+
g
et
_c
au
sa
lit
y(
)

+
se
t_
ca
u
sa
lit
y(
)

+
g
et
_b
o
n
d
()

+
g
et
_b
o
n
d
_s
id
e(
)

+
g
et
_a
d
ja
ce
n
t_
p
o
rt
()

+
g
et
_a
d
ja
ce
n
t_
m
o
d
u
le
()

T

sc
ax
_s
im
u
la
ti
o
n
_c
yc
le
_i
f

+
u
n
co
n
ve
rg
ed
()

#
re
se
t(
)

#
u
p
d
at
e(
)

fl
o
w
_h
an
d
le

+
n
am

e(
)

+
b
as

en
am

e(
)

+
ki

n
d
()

+
g
et

_v
ar

ia
b
le

_n
am

e(
)

+
g
et

_v
ar

ia
b
le

_i
o
_d

ir
ec

ti
o
n
()

+
tr

ac
e_

in
it

()
+

tr
ac

e(
)

<
<

ty
p
ed

ef
>

>

sy
st
em

_t
yp
e

<
<

ty
p
ed

ef
>

>

ti
m
e_
ty
p
e

<
<

ty
p
ed

ef
>

>

m
o
m
en
tu
m
_t
yp
e

<
<

ty
p
ed

ef
>

>

v
al
u
e_
ty
p
e

<
<

ty
p
ed

ef
>

>

fl
o
w
_t
yp
e

sc
a_
p
ri
m
_c
h
an
n
el

+
ki

n
d
()

+
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

sc
ax
_v
ar
ia
b
le

+
in

it
ia

liz
e(

)
+

re
ad

()
+

re
ad

_l
as

t(
)

+
w

ri
te

()
+

u
n
co

n
ve

rg
ed

()
+

re
se

t(
)

+
u
p
d
at

e(
)

T

sc
ax
_s
ig
n
al
_i
n
_i
f

+
re
ad
()

+
re
ad
_l
as
t(
)

sc
ax
_m
u
lt
ii
n

+
ki

n
d
()

+
b
in

d
()

+
o
p
er

at
o
r(

)(
)

+
o
p
er

at
o
r[

](
)

+
at

()
+

at
tr

ib
u
te

()
+

at
tr

ib
u
te

_a
t(

)
+

fr
o
n
t(

)
+

b
ac

k(
)

+
b
eg

in
()

+
en

d
()

+
rb

eg
in

()
+

re
n
d
()

+
si

ze
()

+
em

p
ty

()

<
<

ty
p
ed

ef
>

>

d
is
p
la
ce
m
en
t_
ty
p
e

T

T
, 
A

tt
ri

b
u
te

sc
ax
_t
ra
ce
ab
le
_c
re
f

+
ki

n
d
()

+
g
et

_c
re

f(
)

+
tr

ac
e_

in
it

()
+

tr
ac

e(
)

T

<
<

en
u
m

>
>

sc
ax
_c
au
sa
li
ty
_t
yp
e

+
U

N
A

SS
IG

N
ED

_C
A

U
SA

LI
T
Y

+
EF

FO
R
T

_I
N

+
FL

O
W

_O
U

T
+

FL
O

W
_I

N
+

EF
FO

R
T

_O
U

T

<
<

ty
p
ed

ef
>

>

p
o
w
er
_t
yp
e

<
<

ty
p
ed

ef
>

>

en
er
g
y_
ty
p
e

1
1
..
*

<
<

u
se

>
>

<
<

u
se

>
>

<
<

in
st

an
ti

at
e>

>

1 *

<
<

th
ro

w
>

> *

1
*

1
..
*

1

<
<

u
se

>
>

2
1

*

sc
ax
_s
o
lv
er

-
co

n
fi

g
_

-
d
ep

en
d
en

cy
_g

ra
p
h
_

-
sc

h
ed

u
le

_
-

la
st

_t
im

e_
-

so
lu

ti
o
n
_t

im
e_

-
so

lu
ti

o
n
_t

im
es

te
p
_

-
so

lu
ti

o
n
_i

te
ra

ti
o
n
_

-
m

in
_t

im
es

te
p
_

-
m

ax
_t

im
es

te
p
_

-
n
ex

t_
ti

m
es

te
p
_

-
so

lu
ti

o
n
_p

o
in

t_
re

q
u
es

te
d
_

-
so

lu
ti

o
n
_p

o
in

t_
ti

m
e_

-
lim

it
ed

_t
im

es
te

p
_r

eq
u
es

te
d
_

-
lim

it
ed

_t
im

es
te

p
_

+
ki

n
d
()

+
in

it
ia

liz
e(

)
+

in
it

_c
lu

st
er

()
+

p
ro

ce
ss

_c
lu

st
er

()
+

p
o
st

_c
lu

st
er

()
+

g
et

_m
o
d
u
le

s(
)

+
g
et

_b
o
n
d
s(

)
+

g
et

_s
ig

n
al

s(
)

+
g
et

_s
yn

c_
p
o
rt

s(
)

+
g
et

_l
as

t_
ti

m
e(

)
+

g
et

_s
o
lu

ti
o
n
_t

im
e(

)
+

g
et

_s
o
lu

ti
o
n
_i

te
ra

ti
o
n
()

+
re

q
u
es

t_
so

lu
ti

o
n
_p

o
in

t(
)

+
lim

it
_n

ex
t_

ti
m

es
te

p
()

+
ex

p
o
rt

_d
ep

en
d
en

cy
_g

ra
p
h
()

+
re

p
o
rt

_s
im

u
la

ti
o
n
_s

ta
ti

st
ic

s(
)

#
as

si
g
n
_c

au
sa

lit
y(

)
#

ch
ec

k_
ca

u
sa

lit
y_

as
si

g
n
m

en
t(

)
#

cr
ea

te
_d

ep
en

d
en

cy
_g

ra
p
h
()

#
ch

ec
k_

d
ep

en
d
en

cy
_g

ra
p
h
()

#
cr

ea
te

_s
ch

ed
u
le

()
-

m
ar

k_
al

g
eb

ra
ic

_l
o
o
p
()

sc
ax
_m
u
lt
ip
o
rt

+
ki

n
d
()

+
b
in

d
()

+
o
p
er

at
o
r(

)(
)

+
o
p
er

at
o
r[

](
)

+
at

()
+

fr
o
n
t(

)
+

b
ac

k(
)

+
b
eg

in
()

+
en

d
()

+
rb

eg
in

()
+

re
n
d
()

+
si

ze
()

+
em

p
ty

()

D
o
m

ai
n

<
<

fr
ie

n
d
>

>

sc
ax
_m
o
d
u
le

#
m

et
h
o
d
_i

o

+
ki

n
d
()

+
g
et

_s
o
lv

er
()

+
u
n
co

n
ve

rg
ed

()
#

g
et

_t
im

e(
)

#
g
et

_l
as

t_
ti

m
e(

)
#

g
et

_t
im

es
te

p
()

#
g
et

_i
te

ra
ti

o
n
()

#
re

q
u
es

t_
so

lu
ti

o
n
_p

o
in

t(
)

#
lim

it
_n

ex
t_

ti
m

es
te

p
()

#
se

t_
at

tr
ib

u
te

s(
)

#
p
ro

p
ag

at
e_

ca
u
sa

lit
y(

)
#
af
te
r_
ca
u
sa
lit
y_
as
si
g
n
m
en
t(
)

#
in

it
ia

liz
e(

)
#

re
se

t(
)

#
u
p
d
at

e(
)

#
re

g
is

te
r_

m
et

h
o
d
()

b
o
n
d
_s
id
e

+
ki

n
d
()

+
g
et

_c
au

sa
lit

y_
co

n
st

ra
in

t(
)

+
se

t_
ca

u
sa

lit
y_

co
n
st

ra
in

t(
)

+
g
et

_c
au

sa
lit

y(
)

+
se

t_
ca

u
sa

lit
y(

)
+

g
et

_b
o
n
d
()

+
g
et

_b
o
n
d
_s

id
e(

)
+

g
et

_a
d
ja

ce
n
t_

p
o
rt

()
+

g
et

_a
d
ja

ce
n
t_

m
o
d
u
le

()
+

re
ad

_e
ff

o
rt

()
+

re
ad

_l
as

t_
ef

fo
rt

()
+

in
it

ia
liz

e_
ef

fo
rt

()
+

w
ri

te
_e

ff
o
rt

()
+

re
ad

_f
lo

w
()

+
re

ad
_l

as
t_

fl
o
w

()
+

in
it

ia
liz

e_
fl

o
w

()
+

w
ri

te
_f

lo
w

()
+

ef
fo

rt
()

+
fl

o
w

()
+

re
g
is

te
r_

p
o
rt

()
+

en
d
_o

f_
el

ab
o
ra

ti
o
n
()

sc
a_
so
lv
er
_b
as
e

#
in

it
_m

et
h
o
d

#
in

it
_m

et
h
o
d
_o

b
je

ct
#

p
ro

ce
ss

in
g
_m

et
h
o
d

#
p
ro

ce
ss

in
g
_m

et
h
o
d

_o
b
je

ct
#

p
o
st

_m
et

h
o
d

#
p
o
st

_m
et

h
o
d
_o

b
je

ct
#

so
lv

er
_t

ra
ce

s

+
ki

n
d
()

+
in
it
ia
liz
e(
)

+
p
u
sh

_b
ac

k_
to

_a
n
al

o
g
()

+
p
u
sh

_b
ac

k_
fr

o
m

_a
n
al

o
g
()

+
p
u
sh

_b
ac

k_
to

_s
ys

te
m

c(
)

+
p
u
sh

_b
ac

k_
fr

o
m

_s
ys

te
m

c(
)

+
g
et

_c
u
rr

en
t_

ti
m

e(
)

+
g
et

_c
u
rr

en
t_

p
er

io
d
()

+
ad

d
_s

o
lv

er
_t

ra
ce

()

Si
d
e

sc
ax
_p
o
rt

+
ef

fo
rt

+
fl

o
w

+
ki

n
d
()

+
g
et

_c
au

sa
lit

y_
co

n
st

ra
in

t(
)

+
se

t_
ca

u
sa

lit
y_

co
n
st

ra
in

t(
)

+
g
et

_c
au

sa
lit

y(
)

+
se

t_
ca

u
sa

lit
y(

)
+

g
et

_b
o
n
d
()

+
g
et

_b
o
n
d
_s

id
e(

)
+

g
et

_a
d
ja

ce
n
t_

p
o
rt

()
+

g
et

_a
d
ja

ce
n
t_

m
o
d
u
le

()
+

re
ad

_e
ff

o
rt

()
+

re
ad

_l
as

t_
ef

fo
rt

()
+

in
it

ia
liz

e_
ef

fo
rt

()
+

w
ri

te
_e

ff
o
rt

()
+

re
ad

_f
lo

w
()

+
re

ad
_l

as
t_

fl
o
w

()
+

in
it

ia
liz

e_
fl

o
w

()
+

w
ri

te
_f

lo
w

()
+

tr
ac

e_
in

it
()

+
tr

ac
e(

)
#

en
d
_o

f_
el

ab
o
ra

ti
o
n
()

D
o
m

ai
n

<
<

ty
p
ed

ef
>

>

ef
fo
rt
_t
yp
e

sc
ax
_d
o
m
ai
n
_t
ra
it
s

sc
ax
_v
ar
ia
b
le
_h
an
d
le

+
g
et
_v
ar
ia
b
le
_n
am
e(
)

+
g
et
_v
ar
ia
b
le
_i
o
_d
ir
ec
ti
o
n
()

D
o
m

ai
n

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

IF
 =

 s
ca

x
_s

ig
n
al

_i
n
o
u
t_

if
<

T
>

ef
fo
rt
_h
an
d
le

+
n
am

e(
)

+
b
as

en
am

e(
)

+
ki

n
d
()

+
g
et

_v
ar

ia
b
le

_n
am

e(
)

+
g
et

_v
ar

ia
b
le

_i
o
_d

ir
ec

ti
o
n
()

+
tr

ac
e_

in
it

()
+

tr
ac

e(
)

sc
ax
_m
et
h
o
d
_d
es
cr
ip
to
r_
b
as
e

+
g
et
_m
o
d
u
le
()

+
g
et

_m
et

h
o
d
_n

am
e(

)
+

g
et

_m
et

h
o
d
_b

as
en

am
e(

)
+
o
p
er
at
o
r(
)(
)

+
ad

d
_i

n
p
u
t_

va
ri

ab
le

()
+

ad
d
_o

u
tp

u
t_

va
ri

ab
le

()
+

g
et

_i
n
p
u
t_

va
ri

ab
le

s(
)

+
g
et

_o
u
tp

u
t_

va
ri

ab
le

s(
)

IF
 =

 s
ca

x
_s

ig
n
al

_i
n
_i

f<
T
>

<
<

u
se

>
>

<
<

u
se

>
>

sc
a_
p
o
rt

+
ki

n
d
()

+
b
in

d
()

+
o
p
er

at
o
r(

)(
)

+
o
p
er

at
o
r-

>
()

#
en

d
_o

f_
el

ab
o
ra

ti
o
n
()

+
tr

ac
e_

in
it

()
+

tr
ac

e(
)

IF

<
<

b
in

d
>

>

<
<

b
in

d
>

>

<
<

b
in

d
>

>

Fi
gu

re
A

.1
.:

D
ia

gr
am

of
th

e
co

re
cl

as
se

s
of

SC
A

X
’s

B
G

M
oC

fo
rF

ra
un

ho
fe

r’
s

Sy
st

em
C

-A
M

S.

155



A. Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library

Table A.5.: Generic block diagram modules for the BG model of computation provided by the
scax_bond_graph library in the namespace scax_bg.

Name Symbol Description

scax_source<T,TimeType> f (t)
sT

Directed signal source module using a waveform
function: f : TimeType → T

scax_de_source<T,TimeType>
sT,DE sT,BG

DE
BG

DE samples to directed signal conversion module.

scax_tdf_source<T,TimeType>
sT,TDF sT,BG

TDF
BG

TDF samples to directed signal conversion module.

scax_sink<T> sinksT
Directed signal sink module.

scax_de_sink<T>
sT,BG

BG
DE sT,DE

Directed signal to DE samples conversion module.

scax_tdf_sink<T>
sT,BG

BG
sT,TDFTDF

Directed signal to TDF samples conversion module.

scax_scale<T1,T2> ksT1 sT2
Scale module

scax_sum<T> +
sT,i sT,out

sT,1

sT,n
+/−

+/−

+/−

Summing module with variable input number.

scax_mul<T1,T2> ×sT1
sT3

sT2

Multiplier module with two inputs.

scax_func1<T1,T2> f (sT1)sT1 sT2

Time-independent function module with one input:
f : T1 → T2

scax_func2<T1,T2,T3> f (sT1,sT2)sT1
sT3

sT2

Time-independent function module with two inputs:
f : T1 × T2 → T3

scax_func3<T1,T2,T3,T4> f (sT1,sT2,sT3)
sT1

sT4sT2
sT3

Time-independent function module with three inputs:
f : T1 × T2 × T3 → T4

scax_func1t<T1,T2,TimeType> f (sT1, t)sT1 sT2

Time-dependent function module with one input:
f : T1 × TimeType → T2

scax_func2t<T1,T2,T3,TimeType> f (sT1,sT2, t)sT1
sT3

sT2

Time-dependent function module with two inputs:
f : T1 × T2 × TimeType → T3

scax_integ_trapez<T>
∫

sT s∫ Tdt
Trapezoidal integrator module.

scax_dot_secant<T> d
dtsT s dT

dt

Differentiator module using asymmetric evaluation
of Newton’s difference quotient.

156



Table A.6.: Generic bond graph modules for the BG MoC provided by the scax_bond_graph library in
the namespace scax_bg. Note, the bond direction is not imposed by the bond graph modules.
However, their parameter definition assumes the indicated bond directions.

Name Symbol Causality constraints Parameter options

Time-dependent effort source:
scax_Se<D> Se : eD(t)

eD

fD
• eout required • Function eD(t)

Modulated effort sources:
scax_MSe<D> seD

MSe
eD

fD
• eout required

scax_de_MSe<D> seD ,DE
MSe

eD

fD
• eout required

scax_tdf_MSe<D> seD ,TDF
MSe

eD

fD
• eout required

Time-dependent flow source:

scax_Sf<D> S f : fD(t)
eD

fD
• fout required • Function fD(t)

Modulated effort sources:

scax_MSf<D> s fD
MS f

eD

fD
• fout required

scax_de_MSf<D> s fD ,DE
MS f

eD

fD
• fout required

scax_tdf_MSf<D> s fD ,T DF
MS f

eD

fD
• fout required

Effort detectors:
scax_De<D> seD

De
eD

fD
• ein required

scax_de_De<D> seD ,DE
De

eD

fD
• ein required

scax_tdf_De<D> seD ,T DF
De

eD

fD
• ein required

Flow detectors:

scax_Df<D> s fD
D f

eD

fD
• fin required

scax_de_Df<D> s fD ,DE
D f

eD

fD
• fin required

scax_tdf_Df<D> s fD ,T DF
D f

eD

fD
• fin required

(Generalised) resistor:

scax_R<D> R
eD

fD
• Free causality

• Constant RD =
eD
fD

• Functions
eD = ΦR( fD) and
fD = Φ−1

R (eD)
Continued on next page. . .

157



A. Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library

Name Symbol Causality constraints Parameter options

(Generalised) capacitor:

scax_C<D> C
eD

fD = q̇D
• fin preferred

• Constant CD =
qD
eD

• Functions
qD = ΦC(eD) and
eD = Φ−1

C (qD)

(Generalised) inertia:

scax_I<D> I
eD = ṗD

fD
• ein preferred

• Constant ID =
pD
fD

• Functions
pD = ΦI( fD) and
fD = Φ−1

I (pD)

(Generalised) transformer:

scax_TF<D1,D2>
TF

eD1

fD1

eD2

fD2m eD1
eD2

:

• ein,D1 ←→ eout,D2
• fin,D1 ←→ fout,D2

• Constant
mD1,D2 =

eD1
eD2

=
fD2
fD1

Modulated (generalised) transformers:

scax_MTF<D1,D2>
MTF

eD1

fD1

eD2

fD2

mD1,D2 • ein,D1 ←→ eout,D2
• fin,D1 ←→ fout,D2

scax_de_MTF<D1,D2>
MTF

eD1

fD1

eD2

fD2

mD1,D2,DE • ein,D1 ←→ eout,D2
• fin,D1 ←→ fout,D2

scax_tdf_MTF<D1,D2>
MTF

eD1

fD1

eD2

fD2

mD1,D2,TDF • ein,D1 ←→ eout,D2
• fin,D1 ←→ fout,D2

(Generalised) gyrator:

scax_GY<D1,D2>
GY

eD1

fD1

eD2

fD2r eD1
fD2

: • ein,D1 ←→ fout,D2
• fin,D1 ←→ eout,D2

• Constant
rD1,D2 =

eD1
fD2

=
eD2
fD1

Modulated (generalised) gyrators:

scax_MGY<D1,D2>
MGY

eD1

fD1

eD2

fD2

rD1,D2 • ein,D1 ←→ fout,D2
• fin,D1 ←→ eout,D2

scax_de_MGY<D1,D2>
MGY

eD1

fD1

eD2

fD2

rD1,D2,DE • ein,D1 ←→ fout,D2
• fin,D1 ←→ eout,D2

scax_tdf_MGY<D1,D2>
MGY

eD1

fD1

eD2

fD2

rD1,D2,TDF • ein,D1 ←→ fout,D2
• fin,D1 ←→ eout,D2

Continued on next page. . .

158



Name Symbol Causality constraints Parameter options

Flow junction, 0-junction, common effort junction:

scax_J0<D> 0
eD,1

fD,1

eD, j

fD, j

eD,i fD,i

eD,n fD,n

• ein,D,i ←→ eout,D, j,i

Effort junction, 1-junction, common flow junction:

scax_J1<D> 1
eD,1

fD,1

eD, j

fD, j

eD,i fD,i

eD,n fD,n

• fin,D,i ←→ fout,D, j,i

159





Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming. C++ In-Depth
Series. Addison-Wesley Professional, Dec. 10, 2004. isbn: 0-321-22725-5 (cit. on p. 92).

[2] Accellera. Verilog-AMS Language Reference Manual Version 2.3.1: Analog & Mixed-Signal
Extensions to Verilog HDL. Accellera. 1370 Trancas Street, #163, Napa, CA 94558, USA, June 1,
2009. url: http://www.verilog.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-
2-3-1.pdf (visited on 10/10/2010) (cit. on pp. 3, 8, 10, 70, 73).

[3] Accellera Verification Intellectual Property Technical Subcommittee (UVM). Universal Verifi-
cation Methodology (UVM) 1.0 Class Reference. Accellera. 1370 Trancas Street #163, Napa,
CA 94558, USA, Feb. 2011. url: http: / /www.accellera.org/activities/vip/UVM_Class_
Reference_Manual_1.0.pdf (visited on 03/22/2011) (cit. on p. 10).

[4] Accellera Verification Intellectual Property Technical Subcommittee (UVM). Universal Ver-
ification Methodology (UVM) 1.0 User’s Guide. Accellera. 1370 Trancas Street #163, Napa,
CA 94558, USA, Feb. 23, 2011. url: http://www.accellera.org/activities/vip/uvm-1.0p1.tar.gz
(visited on 03/22/2011) (cit. on p. 10).

[5] Sumit Adhikari and Christoph Grimm. “Modeling Switched Capacitor Sigma Delta Modulator
Nonidealities in SystemC-AMS”. In: Proceedings of the 13th International Forum on specifica-
tion & Design Languages (FDL) 2010. (Southampton, UK, Sept. 14–16, 2010). Ed. by Adam
Morawiec and Jinnie Hinderscheit. ECSI. 2, Avenue de Vignate, Parc Equation, 38610 Gières,
France (cit. on p. 15).

[6] Adobe Systems Inc. et al. Boost.TypeTraits. 2000–2006. url: http://www.boost.org/doc/libs/1_
45_0/libs/type_traits/doc/html/index.html (visited on 01/14/2011) (cit. on p. 92).

[7] The Apache Software Foundation. Apache™ Subversion®: Enterprise-class centralized version
control for the masses. The Apache Software Foundation. 2010. url: http://subversion.apache.
org/ (visited on 12/12/2010) (cit. on pp. 25, 28).

[8] The Apache Software Foundation. The Apache HTTP Server Project. The Apache Software
Foundation. 1999–2009. url: http://httpd.apache.org/ (visited on 10/10/2010) (cit. on p. 26).

[9] Rui Esteves Araújo, Américo Vicente Leite, and Diamantino Freitas. “Modelling and simulation
of power electronic systems using bond-graph formalism in SIMULINK environment”. In:
Proceedings of the 10th IEEE Mediterranean Conference on Control and Automation (MED) 2002.
(Lisboa, Portugal, July 8–12, 2002). IEEE. url: https://bibliotecadigital.ipb.pt/bitstream/10198/
2225/1/avtl_MED02.pdf (visited on 01/05/2011) (cit. on p. 16).

[10] Thomas Arndt et al. “Using SystemC-AMS for Heterogeneous Systems Modelling at
TIER-1 Level”. In: Proceedings of the 13th International Forum on specification & Design
Languages (FDL) 2010. (Southampton, UK, Sept. 14–16, 2010). Ed. by Adam Morawiec and
Jinnie Hinderscheit. ECSI. 2, Avenue de Vignate, Parc Equation, 38610 Gières, France (cit. on
p. 15).

161

http://www.verilog.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-2-3-1.pdf
http://www.verilog.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-2-3-1.pdf
http://www.accellera.org/activities/vip/UVM_Class_Reference_Manual_1.0.pdf
http://www.accellera.org/activities/vip/UVM_Class_Reference_Manual_1.0.pdf
http://www.accellera.org/activities/vip/uvm-1.0p1.tar.gz
http://www.boost.org/doc/libs/1_45_0/libs/type_traits/doc/html/index.html
http://www.boost.org/doc/libs/1_45_0/libs/type_traits/doc/html/index.html
http://subversion.apache.org/
http://subversion.apache.org/
http://httpd.apache.org/
https://bibliotecadigital.ipb.pt/bitstream/10198/2225/1/avtl_MED02.pdf
https://bibliotecadigital.ipb.pt/bitstream/10198/2225/1/avtl_MED02.pdf


Bibliography

[11] Modelica Association. Modelica: Modeling of Complex Physical Systems. Modelica Association.
1997–2010. url: http://www.modelica.org/ (visited on 10/12/2010) (cit. on pp. 17, 19).

[12] Ken Bakalar et al. Meeting Minutes of September 19–22, 1995. Minutes. Brighton, UK:
IEEE 1076.1 Language Design Committee, Sept. 19–22, 1995 (cit. on p. 70).

[13] F. Balarin et al. “Metropolis: an integrated electronic system design environment”. In: IEEE Com-
puter 36 (4 Apr. 2003), pp. 45–52. issn: 0018-9162. doi: 10.1109/MC.2003.1193228 (cit. on
p. 8).

[14] Martin Barnasconi et al. SystemC AMS extensions User’s Guide. Open SystemC Initiative (OSCI).
Mar. 8, 2010. url: http://www.systemc.org/members/download_files/check_file?agreement=
ams_ext_10std (visited on 10/12/2010) (cit. on pp. 14, 72, 73, 84).

[15] Ntongo Christian Bazungula. “Development of a high-level VHDL-AMS simulation model of
an RF transmitter based on a direct modulation architecture”. MA thesis. EPFL/STI/IEL/LSM,
Station 11, CH-1015 Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne (EPFL),
Jan. 16, 2009 (cit. on pp. 53, 58).

[16] Christopher D. Beers et al. “Building Efficient Simulations from Hybrid Bond Graph Models”.
In: Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems. (Alghero,
Italy, June 7–9, 2006), pp. 71–76. url: http://www.diee.unica.it/~adhs06/CD/PAPERS/WB1.3.
pdf (visited on 01/05/2011) (cit. on pp. 16, 88, 110).

[17] K. Besbes. “Modelling semiconductor devices using bond graph techniques”. In: Proceedings of
the IEEE International Symposium on Industrial Electronics (ISIE) 1997. (Guimaraes, July 7–11,
1997). Vol. 2, pp. 201–205. doi: 10.1109/ISIE.1997.648934. url: http://ieeexplore.ieee.org/
iel4/5230/14143/00648934.pdf (visited on 01/05/2011) (cit. on p. 16).

[18] G. Biagetti et al. “Extending SystemC to analog modeling and simulation”. In: Languages for
System Specification. Selected Contributions on UML, SystemC, System Verilog, Mixed-Signal
Systems, and Property Specifications from FDL’03. Ed. by Christoph Grimm. ChDL. Dordrecht,
The Netherlands: Springer, 2004, pp. 229–242. isbn: 978-1-4020-7990-0 (cit. on p. 11).

[19] P. Bjuréus and A. Jantsch. “Modeling of Mixed Control and Dataflow Systems in MASCOT”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9 (5 Oct. 2001), pp. 690–703.
issn: 1063-8210. doi: 10.1109/92.953502 (cit. on p. 8).

[20] David C. Black et al. SystemC: From the Ground Up. 2nd ed. New York, Dordrecht, Heidelberg,
London: Springer, 2010. isbn: 978-0-387-69957-8 (cit. on pp. 8, 9, 71).

[21] Thomas Böhm. “Development of a Web-Based Application for Collecting Models and Supporting
the Design of AMS Systems”. Diplomarbeit. Fakultät für Informatik (FIN), Postfach 4120, D-
39016 Magdeburg: Otto-von-Guericke-Universität Magdeburg, Feb. 1, 2007 (cit. on pp. 31,
33).

[22] T. E. Bonnerud, B. Hernes, and T. Ytterdal. “A mixed-signal, functional level simulation frame-
work based on SystemC for system-on-a-chip applications”. In: Proceedings of the IEEE Con-
ference on Custom Integrated Circuits (CICC) 2001. (San Diego, CA, May 6–9, 2001). IEEE,
pp. 541–544. isbn: 0-7803-6591-7. doi: 10.1109/CICC.2001.929838 (cit. on p. 11).

[23] Matthew Bowen. Handel-C Language Reference Manual Version 2.1. Embedded Solutions
Limited. url: http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF (visited on
01/08/2011) (cit. on p. 8).

162

http://www.modelica.org/
http://dx.doi.org/10.1109/MC.2003.1193228
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.diee.unica.it/~adhs06/CD/PAPERS/WB1.3.pdf
http://www.diee.unica.it/~adhs06/CD/PAPERS/WB1.3.pdf
http://dx.doi.org/10.1109/ISIE.1997.648934
http://ieeexplore.ieee.org/iel4/5230/14143/00648934.pdf
http://ieeexplore.ieee.org/iel4/5230/14143/00648934.pdf
http://dx.doi.org/10.1109/92.953502
http://dx.doi.org/10.1109/CICC.2001.929838
http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF


Bibliography

[24] Peter Breedveld. “Bond Graphs”. In: Proceedings of the Geoplex Summer School 2003. (Berti-
noro, Italy, July 2003), pp. 1–27. url: http://www-lar.deis.unibo.it/euron-geoplex-sumsch/files/
lectures_1/Breedveld/Breedveld_03_BGConcepts.pdf (visited on 01/05/2011) (cit. on p. 16).

[25] David Broman, Peter Aronsson, and Peter Fritzson. “Design Considerations for Dimensional
Inference and Unit Consistency Checking in Modelica”. In: Proceedings of the 6th International
Modelica Conference. (Bielefeld, Germany, Mar. 3–4, 2008). The Modelica Association, pp. 3–12.
url: https://www.modelica.org/events/modelica2008/Proceedings/sessions/session1a1.pdf
(visited on 01/05/2011) (cit. on p. 71).

[26] I. N. Bronstein et al. Taschenbuch der Mathematik. German. 5th ed. Thun und Frankfurt am
Main: Verlag Harri Deutsch, 2000. isbn: 3-8171-2015-X (cit. on p. 110).

[27] Cadence Design Systems and Mentor Graphics, Inc. Open Verification Methodology User’s
Guide – Product Version 2.0. OVM World. USA, Sept. 2008. url: http://www.ovmworld.org/
(visited on 03/22/2011) (cit. on p. 10).

[28] Cadence Design Systems and Mentor Graphics, Inc. OVM Class Reference – Version 2.0.
OVM World. USA, Sept. 2008. url: http://www.ovmworld.org/ (visited on 03/22/2011) (cit. on
p. 10).

[29] Cadsim Engineering. CAMP-G: The Universal Bondgraph™ Preprocessor for Modeling and Sim-
ulation of Mechatronics Systems. Cadsim Engineering. 1993–2010. url: http://www.bondgraph.
com/ (visited on 01/10/2011) (cit. on p. 16).

[30] Ken Caluwaerts, Dimitri Galayko, and Philippe Basset. “SystemC-AMS Heterogeneous Model-
ing of a Capacitive Harvester of Vibration Energy”. In: Proceedings of the IEEE International
Behavioral Modeling and Simulation Workshop (BMAS) 2008. (San José, CA, USA, Sept. 25–26,
2008). IEEE. url: http://www.bmas-conf.org/2008/5-4_Paper.pdf (visited on 01/06/2011)
(cit. on p. 13).

[31] François E. Cellier. “World Wide Web – The Global Library: A Compendium of Knowledge
About Bond Graph Research”. In: Proceedings of the 3rd International Conference on Bond
Graph Modeling and Simulation (ICBGM) 1997. (Sheraton-Crescent Hotel, Phoenix, Arizona,
Jan. 12–15, 1997). Society for Computer Simulation International (SCS). url: http://www.ece.
arizona.edu/~cellier/bg.html (visited on 01/05/2011) (cit. on p. 16).

[32] François E. Cellier. BondLib: Bond Graph Library. Modeling and Simulation Research Group,
Department of Computer Science, ETH Zurich. 1987–2007. url: http://people.inf.ethz.ch/
fcellier/Soft/Soft_index_engl.html (visited on 01/10/2011) (cit. on p. 17).

[33] François E. Cellier and Robert T. McBride. “Object-Oriented Modeling of Complex Physical
Systems Using the Dymola Bond-Graph Library”. In: Proceedings of the 6th SCS International
Conference on Bond Graph Modeling and Simulation (ICBGM) 2003. (Orlando, Florida, Jan. 19–
23, 2003). SCS, pp. 157–162. url: http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/icbgm_
03_bglib.pdf (visited on 01/05/2011) (cit. on p. 17).

[34] François E. Cellier and Àngela Nebot. “The Modelica Bond Graph Library”. In: Proceedings
of the 4th International Modelica Conference. (Hamburg, Germany, Mar. 7–8, 2005). Vol. 1.
The Modelica Association, pp. 57–65. url: http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/
modelica_05.pdf (visited on 01/05/2011) (cit. on p. 17).

163

http://www-lar.deis.unibo.it/euron-geoplex-sumsch/files/lectures_1/Breedveld/Breedveld_03_BGConcepts.pdf
http://www-lar.deis.unibo.it/euron-geoplex-sumsch/files/lectures_1/Breedveld/Breedveld_03_BGConcepts.pdf
https://www.modelica.org/events/modelica2008/Proceedings/sessions/session1a1.pdf
http://www.ovmworld.org/
http://www.ovmworld.org/
http://www.bondgraph.com/
http://www.bondgraph.com/
http://www.bmas-conf.org/2008/5-4_Paper.pdf
http://www.ece.arizona.edu/~cellier/bg.html
http://www.ece.arizona.edu/~cellier/bg.html
http://people.inf.ethz.ch/fcellier/Soft/Soft_index_engl.html
http://people.inf.ethz.ch/fcellier/Soft/Soft_index_engl.html
http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/icbgm_03_bglib.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/icbgm_03_bglib.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/modelica_05.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/modelica_05.pdf


Bibliography

[35] Srikanth Chandrasekaran. Verilog-AMS Integration with P1800 SV Standard. Requirements
presentation. Accellera Verilog Analog Mixed-Signal Group, Feb. 10, 2010. url: http://www.
verilog.org/verilog-ams/htmlpages/public-docs/SystemVerilogMerge/P1800_VerilogAMS_
Requirements_Feb10.ppt (visited on 01/11/2011) (cit. on p. 10).

[36] Jesse E. Chen. Modeling RF Systems. Tech. rep. The Designer’s Guide Community, Mar. 6,
2005. url: http://www.designers-guide.org/Modeling/modeling-rf-systems.pdf (visited on
10/11/2010) (cit. on p. 47).

[37] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Subver-
sion. 2nd ed. Sebastopol, USA: O’Reilly Media, Inc., Sept. 23, 2008. url: http://svnbook.red-
bean.com/ (visited on 10/11/2010) (cit. on pp. 25, 28).

[38] Controllab Products B.V. 20-sim: The Software for Modeling Dynamic Systems. Controllab
Products B.V. 1995–2010. url: http://www.20sim.com/ (visited on 01/10/2011) (cit. on p. 16).

[39] Markus Damm et al. “Connecting SystemC-AMS models with OSCI TLM 2.0 models using
temporal decoupling”. In: Proceedings of the 11th International Forum on specification & Design
Languages (FDL) 2008. (Stuttgart, Germany, Sept. 23, 2008–Sept. 25, 2009). ECSI. isbn: 978-1-
4244-2266-1. doi: 10.1109/FDL.2008.4641416 (cit. on p. 13).

[40] Dassault Systèmes. Dymola: Multi-Engineering Modeling and Simulation. Dassault Systèmes.
2002–2011. url: http://www.dymola.com/ (visited on 01/08/2011) (cit. on pp. 17, 71).

[41] Beman Dawes, David Abrahams, Rene Rivera, et al. Boost C++ Libraries. 1998–2010. url:
http://www.boost.org/ (visited on 01/05/2011) (cit. on p. 97).

[42] Beman Dawes, David Abrahams, Rene Rivera, et al. Boost Library Documentation. 1998–2010.
url: http://www.boost.org/doc/libs (visited on 01/05/2011) (cit. on pp. 100, 101).

[43] Joel de Guzman and Hartmut Kaiser. Spirit 2.4.1. 2001–2010. url: http://www.boost.org/libs/
spirit/doc/html/index.html (visited on 01/13/2011) (cit. on p. 97).

[44] B. De Smedt and G. Gielen. “Models for systematic design and verification of frequency
synthesizers”. In: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 46 (10 Oct. 1999), pp. 1301–1308. issn: 1057-7130. doi: 10.1109/82.799680 (cit. on
p. 8).

[45] Krister Edström, Jan-Erik Stromberg, and Jan Top. “Aspects on simulation of switched bond
graphs”. In: Proceedings of the 35th IEEE Conference on Decision and Control (CDC) 1996.
(Kobe, Japan, Dec. 11–13, 1996). Vol. 3, pp. 2642–2647. doi: 10.1109/CDC.1996.573502. url:
http://ieeexplore.ieee.org/iel3/4303/12402/00573502.pdf (visited on 01/05/2011) (cit. on
p. 16).

[46] Karsten Einwich. “Application of SystemC/SystemC-AMS for the Specification of Complex
Wired Telecommunication System”. In: Proceedings of the 8th International Forum on specifica-
tion and Design Languages (FDL) 2005. (École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, Sept. 27–30, 2005). ECSI, pp. 49–60 (cit. on pp. 12, 14, 72, 84).

[47] Karsten Einwich et al. “SystemC-AMS Extension Library for Modeling Conservative Nonlin-
ear Dynamic Systems”. In: Proceedings of the 9th Forum on Specification and Design Lan-
guages (FDL) 2006. (Darmstadt University, Germany, Sept. 19–22, 2006). ECSI, pp. 113–120.
isbn: 978-3-00-019710-9 (cit. on pp. 14, 15).

164

http://www.verilog.org/verilog-ams/htmlpages/public-docs/SystemVerilogMerge/P1800_VerilogAMS_Requirements_Feb10.ppt
http://www.verilog.org/verilog-ams/htmlpages/public-docs/SystemVerilogMerge/P1800_VerilogAMS_Requirements_Feb10.ppt
http://www.verilog.org/verilog-ams/htmlpages/public-docs/SystemVerilogMerge/P1800_VerilogAMS_Requirements_Feb10.ppt
http://www.designers-guide.org/Modeling/modeling-rf-systems.pdf
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://www.20sim.com/
http://dx.doi.org/10.1109/FDL.2008.4641416
http://www.dymola.com/
http://www.boost.org/
http://www.boost.org/doc/libs
http://www.boost.org/libs/spirit/doc/html/index.html
http://www.boost.org/libs/spirit/doc/html/index.html
http://dx.doi.org/10.1109/82.799680
http://dx.doi.org/10.1109/CDC.1996.573502
http://ieeexplore.ieee.org/iel3/4303/12402/00573502.pdf


Bibliography

[48] Karsten Einwich et al. Requirements Specification for SystemC Analog Mixed Signal (AMS)
extensions. Tech. rep. Version 2.1. Open SystemC Inititiative (OSCI), Mar. 8, 2010. url: http:
//www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std (visited
on 10/12/2010) (cit. on pp. 14, 72–74).

[49] J. Eker et al. “Taming Heterogeneity – The Ptolemy Approach”. In: Proceedings of the IEEE 91
(1 Jan. 2003), pp. 127–144. issn: 0018-9219. doi: 10.1109/JPROC.2002.805829 (cit. on pp. 7,
73).

[50] John Ellson et al. Graphviz – Graph Visualization Software. AT&T. 1996–2004. url: http:
//www.graphviz.org/ (visited on 01/19/2011) (cit. on p. 131).

[51] Erhard Fehlbauer et al. Dokumentation von VHDL-AMS-Modellen. German. Version 1.0.
Fraunhofer-Institut für Integrierte Schaltungen IIS, Außenstelle Entwurfsautomatisierung EAS.
Zeunerstraße 38, DE-01069 Dresden, Germany, July 2004 (cit. on p. 19).

[52] Jenny Montbrun-Di Filippo et al. “A survey of bond graphs : Theory, applications and programs”.
In: Journal of the Franklin Institute 328.5-6 (1991), pp. 565–606. issn: 0016-0032. doi: 10.1016/
0016-0032(91)90044-4 (cit. on p. 16).

[53] Fraunhofer IIS/EAS. Homepage of the SystemC-AMS Proof-of-Concept (PoC) implementation
develoveped by Fraunhofer IIS/EAS. Fraunhofer-Institut für Integrierte Schaltungen IIS, Insti-
tutsteil Entwurfsautomatisierung EAS. 2010. url: http://systemc-ams.eas.iis.fraunhofer.de/
(visited on 01/08/2011) (cit. on pp. 14, 74, 101, 109).

[54] Ronny Frevert, Joachim Haase, and Roland Jancke. Modeling and Simulation for RF System
Design. Berlin: Springer, Dec. 2005. isbn: 978-0387275840 (cit. on pp. 10, 38).

[55] Daniel Frey. TextFilt. Aug. 7–Sept. 5, 2002. url: http://textfilt.sourceforge.net/ (visited on
01/12/2011) (cit. on p. 95).

[56] Thaddaeus Frogley. “An introduction to C++ Traits”. In: Overload Journal 43 (2001-06). url:
http://accu.org/index.php/journals/442 (visited on 01/14/2011) (cit. on p. 92).

[57] D. D. Gajski et al. SpecC: Specification Language and Methodology. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 2000. isbn: 978-0-7923-7822-8 (cit. on p. 8).

[58] Emden R. Gansner and Stephen C. North. “An open graph visualization system and its applica-
tions to software engineering”. In: Software: Practice and Experience 30 (11 2000-09): Special
Issue: Discrete algorithm engineering, pp. 1203–1233. doi: 10.1002/1097-024X(200009)30:
11<1203::AID-SPE338>3.0.CO;2-N. url: http://www.graphviz.org/Documentation/GN99.pdf
(visited on 01/19/2011) (cit. on p. 131).

[59] Peter Gawthrop. Model Transformation Tools (MTT). Department of Mechanical Engineering,
Faculty of Engineering, Glasgow University. 2004. url: http://www.mech.gla.ac.uk/~peterg/
software/MTT/ (visited on 01/10/2011) (cit. on p. 16).

[60] Gert-Helge Geitner. Add-on library BG V.2.1 for graphical programming of Bondgraphs by
means of Simulink. ETI, TU Dresden. 2008. url: http://eeiwzg.et.tu-dresden.de/ae2_files/ae_
8_1e.htm (visited on 01/10/2011) (cit. on p. 17).

[61] A. Gerstlauer et al. System Design. A Practical Guide with SpecC. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 2001. isbn: 978-0-7923-7387-2 (cit. on p. 8).

[62] Frank Ghenassia, ed. Transaction-Level Modeling with SystemC. TLM Concepts and Applications
for Embedded Systems. Springer, 2005. isbn: 978-0-387-26232-1 (cit. on p. 9).

165

http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://dx.doi.org/10.1109/JPROC.2002.805829
http://www.graphviz.org/
http://www.graphviz.org/
http://dx.doi.org/10.1016/0016-0032(91)90044-4
http://dx.doi.org/10.1016/0016-0032(91)90044-4
http://systemc-ams.eas.iis.fraunhofer.de/
http://textfilt.sourceforge.net/
http://accu.org/index.php/journals/442
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
http://www.graphviz.org/Documentation/GN99.pdf
http://www.mech.gla.ac.uk/~peterg/software/MTT/
http://www.mech.gla.ac.uk/~peterg/software/MTT/
http://eeiwzg.et.tu-dresden.de/ae2_files/ae_8_1e.htm
http://eeiwzg.et.tu-dresden.de/ae2_files/ae_8_1e.htm


Bibliography

[63] Georges G. E. Gielen. “CAD tools for embedded analogue circuits in mixed-signal integrated
systems on chip”. In: IEE Proceedings – Computers and Digital Techniques 152.3 (2005),
pp. 317–332. issn: 1350-2387. doi: 10.1049/ip-cdt:20045116 (cit. on pp. 5, 8, 38).

[64] J.J. Granda and J. Reus. “New developments in bond graph modeling software tools: the com-
puter aided modeling program CAMP-G and MATLAB”. In: Computational Cybernetics and
Simulation. Proceedings of the 1997 IEEE International Conference on Systems, Man, and
Cybernetics (ICSMC) 1997. (Orlando, FL, USA, Oct. 12–15, 1997). Vol. 2, pp. 1542–1547. isbn:
0-7803-4053-1. doi: 10.1109/ICSMC.1997.638215 (cit. on p. 16).

[65] Christoph Grimm et al. An Introduction to Modeling Embedded Analog/Mixed-Signal Systems
using SystemC AMS Extensions. Tech. rep. OSCI, June 9, 2008. url: http://www.systemc.org/
downloads/standards/ams10/OSCI_Whitepaper_SystemC_AMS_extensions.pdf (visited on
10/11/2010) (cit. on p. 74).

[66] T. Grötker et al. System Design with SystemC. Springer, 2002. isbn: 978-1-4020-7072-3 (cit. on
pp. 8, 9, 13, 71).

[67] Joachim Haase. “Rules for Analog and Mixed-Signal VHDL-AMS Modeling”. In: Proceedings
of the Forum on Specification and Design Languages (FDL) 2003. (Frankfurt/Main, Sept. 23–26,
2003). ECSI, 2003, pp. 98–107. url: http://www.eas.iis.fhg.de/publications/papers/2003/023/
paper.pdf (visited on 01/05/2011) (cit. on p. 15).

[68] Joachim Haase. Guidelines for the Development of a VHDL-AMS Model Library. Draft Pro-
posal. Version 2.0. Fraunhofer-Institut für Integrierte Schaltungen IIS, Außenstelle Entwurf-
sautomatisierung EAS, Zeunerstraße 38, DE-01069 Dresden, Germany: VDA/FAT working group
AK 30 on “Simulation of Mixed Systems with VHDL-AMS”, June 11, 2008. url: http://fat-
ak30.eas.iis.fraunhofer.de/pd/vhdl-ams_rules_2.0.pdf (visited on 10/11/2010) (cit. on p. 20).

[69] A. Hajimiri and T. H. Lee. “A general theory of phase noise in electrical oscillators”. In:
IEEE Journal of Solid-State Circuits 33.2 (Feb. 1998), pp. 179–194. issn: 0018-9200. doi:
10.1109/4.658619 (cit. on p. 40).

[70] P. A. Hartmann et al. “Modelling control systems in SystemC AMS – Benefits and limitations”.
In: Proceedings of the IEEE International SOC Conference (SOCC) 2009. (Sept. 9–11, 2009),
pp. 263–266. isbn: 978-1-4244-4940-8. doi: 10.1109/SOCCON.2009.5398043 (cit. on p. 15).

[71] F. Herrera and E. Villar. “A framework for embedded system specification under different
models of computation in SystemC”. In: Proceedings of the 43rd ACM/IEEE Design Automation
Conference (DAC) 2006. (San Francisco, CA, USA, 2006). ACM/IEEE, pp. 911–914. isbn:
1-59593-381-6. doi: 10.1109/DAC.2006.229411 (cit. on pp. 9, 13).

[72] F. Herrera, E. Villar, and C. Grimm. “A general approach to the interoperability of HetSC
and SystemC-AMS”. In: Proceedings of the 10th Forum on specification & Design Lan-
guages (FDL) 2007. (Barcelona, Sept. 18–20, 2007). ECSI, pp. 18–24. isbn: 978-2-9530504-0-0.
url: http://www.ecsi-association.org/ecsi/fdl/fdl07/ (cit. on p. 13).

[73] Ewald Hessel et al. “Development of VHDL-AMS-Libraries for Automotive Applications”. In:
Proceedings of the 8th International Forum on specification and Design Languages (FDL) 2005.
(École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Sept. 27–30, 2005).
ECSI. 2005, pp. 101–110 (cit. on pp. 19, 25).

[74] HighTech Consultants. Bondgraphs.com: Everything about Bondgraphs. HighTech Consultants.
2007. url: http://bondgraph.org/ (visited on 01/10/2011) (cit. on p. 16).

166

http://dx.doi.org/10.1049/ip-cdt:20045116
http://dx.doi.org/10.1109/ICSMC.1997.638215
http://www.systemc.org/downloads/standards/ams10/OSCI_Whitepaper_SystemC_AMS_extensions.pdf
http://www.systemc.org/downloads/standards/ams10/OSCI_Whitepaper_SystemC_AMS_extensions.pdf
http://www.eas.iis.fhg.de/publications/papers/2003/023/paper.pdf
http://www.eas.iis.fhg.de/publications/papers/2003/023/paper.pdf
http://fat-ak30.eas.iis.fraunhofer.de/pd/vhdl-ams_rules_2.0.pdf
http://fat-ak30.eas.iis.fraunhofer.de/pd/vhdl-ams_rules_2.0.pdf
http://dx.doi.org/10.1109/4.658619
http://dx.doi.org/10.1109/SOCCON.2009.5398043
http://dx.doi.org/10.1109/DAC.2006.229411
http://www.ecsi-association.org/ecsi/fdl/fdl07/
http://bondgraph.org/


Bibliography

[75] HighTech Consultants. SYMBOLS Sonata™. HighTech Consultants. 2007. url: http://htcinfo.
com/ (visited on 01/10/2011) (cit. on p. 16).

[76] IEEE Computer Society. 1076.1-2007 IEEE Standard VHDL Analog and Mixed-Signal Exten-
sions. 1076.1-2007. IEEE. Nov. 15, 2007. isbn: 0-7381-5627-2. doi: 10.1109/IEEESTD.2007.
4384309 (cit. on pp. 3, 8, 70, 73).

[77] IEEE Computer Society. 1076-2008 IEEE Standard VHDL Language Reference Manual. 1076-
2008. IEEE. Jan. 26, 2009. isbn: 978-0-7381-5801-3. doi: 10.1109/IEEESTD.2009.4772740
(cit. on pp. 3, 8).

[78] IEEE Computer Society. IEC/IEEE Behavioural Languages – Part 4: Verilog Hardware Descrip-
tion Language (Adoption of IEEE Std 1364-2001). 1364-2001. IEEE. 2004. isbn: 2-8318-7675-3.
doi: 10.1109/IEEESTD.2004.95753 (cit. on pp. 3, 8, 9).

[79] IEEE Computer Society. 1666-2005 IEEE Standard SystemC Language Reference Manual.
1666-2005. IEEE. Mar. 31, 2006. isbn: 0-7381-4871-7. doi: 10.1109/IEEESTD.2006.99475
(cit. on pp. 3, 8, 9, 71, 75, 99, 101, 111, 118, 120).

[80] IEEE Computer Society. 1800-2005 IEEE Standard for System Verilog—Unified Hardware
Design, Specification, and Verification Language. 1800-2005. IEEE. 2005. isbn: 0-7381-4810-5.
doi: 10.1109/IEEESTD.2005.97972 (cit. on p. 9).

[81] IEEE Computer Society. 1800-2009 IEEE Standard for System Verilog—Unified Hardware
Design, Specification, and Verification Language. 1800-2009. IEEE. 2009. isbn: 978-0-7381-
6129-7. doi: 10.1109/IEEESTD.2009.5354441 (cit. on p. 9).

[82] Open SystemC Inititiative (OSCI). Homepage of the Open SystemC Inititiative (OSCI). Open
SystemC Initiative (OSCI). 2010. url: http://www.systemc.org/ (visited on 10/12/2010) (cit. on
pp. 3, 9, 14, 101).

[83] ITI GmbH. SimulationX: Multi-domain System Simulation and Modeling. ITI GmbH. 2002–2010.
url: http://www.simulationx.com/ (visited on 01/08/2011) (cit. on p. 71).

[84] Jaakko Järvi. Boost.Lambda. 1999–2004. url: http://www.boost.org/doc/html/lambda.html
(visited on 01/05/2011) (cit. on pp. 101, 107, 151).

[85] Eric Jendrock et al. The Java EE 5 Tutorial for Sun Java System Application Server Platform
Edition 9. Sun Microsystems. Sept. 2006. url: http://java.sun.com/javaee/5/docs/tutorial/doc/
(visited on 12/09/2010) (cit. on p. 33).

[86] J. J. van Dixhoorn J. J. A. J. Beukeboom and J. W. Meerman. “Simulation of Mixed Bond Graphs
and Block Diagrams on Personal Computer Using TUTSIM”. In: Journal of the Franklin Institute
319.1-2 (1985-01/1985-02), pp. 257–267. doi: 10.1016/0016-0032(85)90079-1 (cit. on p. 16).

[87] Paul M. Jones. YaWiki: Yet Another Wiki for PHP. 2005. url: http://www.yawiki.com/ (visited on
03/27/2006) (cit. on pp. 26, 28).

[88] JTC1/SC22. ISO/IEC 14977:1996(E). Information technology – Syntactic metalanguage –
Extended BNF. 14977. ISO/IEC. 1996. url: http : / / standards . iso . org / ittf /
PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip (visited on 01/13/2011)
(cit. on p. 97).

[89] JTC1/SC22/WG21 – The C++ Standards Committee. ISO/IEC 14882:2003. Standard for Pro-
gramming Language C++. 14882. ISO/IEC. Oct. 16, 2003 (cit. on pp. 100, 101).

167

http://htcinfo.com/
http://htcinfo.com/
http://dx.doi.org/10.1109/IEEESTD.2007.4384309
http://dx.doi.org/10.1109/IEEESTD.2007.4384309
http://dx.doi.org/10.1109/IEEESTD.2009.4772740
http://dx.doi.org/10.1109/IEEESTD.2004.95753
http://dx.doi.org/10.1109/IEEESTD.2006.99475
http://dx.doi.org/10.1109/IEEESTD.2005.97972
http://dx.doi.org/10.1109/IEEESTD.2009.5354441
http://www.systemc.org/
http://www.simulationx.com/
http://www.boost.org/doc/html/lambda.html
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://dx.doi.org/10.1016/0016-0032(85)90079-1
http://www.yawiki.com/
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip


Bibliography

[90] JTC1/SC22/WG21 – The C++ Standards Committee. ISO/IEC DTR 19768: Draft Technical
Report on C++ Library Extensions. Tech. rep. N1836=05-0096. June 24, 2005. url: http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf (visited on 01/15/2011)
(cit. on pp. 103, 107).

[91] Hessa Al-Junaid, Tom Kazmierski, and Leran Wang. “SystemC-A Modeling of an Automotive
Seating Vibration Isolation System”. In: Proceedings of the 9th Forum on Specification and
Design Languages (FDL) 2006. (Darmstadt University, Germany, Sept. 19–22, 2006). ECSI,
pp. 107–112. isbn: 978-3-00-019710-9 (cit. on pp. 12, 71).

[92] H. Al-Junaid and T. Kazmierski. “Analogue and mixed-signal extension to SystemC”. In: IEE Pro-
ceedings on Circuits, Devices and Systems 152 (6 2005), pp. 682–690 (cit. on p. 12).

[93] D. C. Karnopp et al., eds. 308.3 (1979): Bond Graph Techniques for Dynamic Systems in
Engineering and Biology. special issue (cit. on p. 16).

[94] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dynamics: Modeling
and Simulation of Mechatronic Systems. 4th ed. New York, USA: Wiley, Jan. 2006 (cit. on pp. 16,
84, 87, 88, 90, 91, 109, 125, 129, 140).

[95] Dean C. Karnopp and Ronald C. Rosenberg. Analysis and Simulation of Multiport Systems – The
Bond Graph Approach to Physical Systems Dynamics. Cambridge, Mass., USA: M.I.T. Press,
1968 (cit. on p. 16).

[96] Dean C. Karnopp and Ronald C. Rosenberg. System Dynamics: A Unified Approach. 1st ed.
New York, USA: John Wiley, 1974 (cit. on p. 16).

[97] William O. Keese. An Analysis and Performance Evaluation of a Passive Filter Design Technique
for Charge Pump PLL’s. Application Note 1001. 1111 West Bardin Road, Arlington, TX 76017,
USA: National Semiconductor Corporation, May 1996. url: http://www.national.com/an/AN/
AN-1001.pdf (visited on 10/12/2010) (cit. on p. 42).

[98] Andrew John Kennedy. “Types for Units-of-Measure: Theory and Practice”. In: Proceedings
of the 3rd Central European Functional Programming School (CEFP) 2009. (Selye Janos
University, Komarno, Slovakia, May 25–30, 2009) (cit. on p. 71).

[99] Hans-Peter Kreuter et al. “System Level Modeling of Smart Power Switches using SystemC-AMS
for Digital Protection Concept Verification”. In: Proceedings of the 2009 IEEE International
Behavioral Modeling and Simulation (BMAS) Workshop. (Doubletree Hotel, San Jose, California,
USA, Sept. 17–18, 2009). IEEE. 2009. url: http://www.bmas-conf.org/2009/2-3_Paper.pdf
(visited on 01/11/2011) (cit. on p. 15).

[100] C. Lallement et al. “Compact Modeling of MOSFET in VHDL-AMS”. In: Transistor Level
Modeling for Analog/RF IC Design. Ed. by W. Grabinski, B. Nauwelaers, and D. Schreurs.
Springer, 2006. isbn: 1-4020-4555-7 (cit. on p. 10).

[101] Thomas H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, UK:
Cambridge University Press, 1998. isbn: 0-521-63061-4 (cit. on p. 42).

[102] Ping Lu et al. “Mixed-Signal Test Development using Open Standard Modeling and Description
Languages”. In: Proceedings of the 2009 IEEE International Behavioral Modeling and Simula-
tion (BMAS) Workshop. (Doubletree Hotel, San Jose, California, USA, Sept. 17–18, 2009). IEEE.
2009. url: http://www.bmas-conf.org/2009/4-1_Paper.pdf (visited on 01/11/2011) (cit. on
p. 15).

168

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.national.com/an/AN/AN-1001.pdf
http://www.national.com/an/AN/AN-1001.pdf
http://www.bmas-conf.org/2009/2-3_Paper.pdf
http://www.bmas-conf.org/2009/4-1_Paper.pdf


Bibliography

[103] John Maddock and Steve Cleary. “C++ Type Traits”. In: Dr. Dobb’s Journal 25 (10 Oct. 1, 2000).
url: http://www.drdobbs.com/184404270 (visited on 01/14/2011) (cit. on p. 92).

[104] Torsten Mähne. ModelLib Prototype. Laboratoire de Systèmes Microélectroniques (LSM), École
Polytechnique Fédérale de Lausanne (EPFL). July 13, 2006. url: https:// lsmpc4.epfl.ch/
modellib/ (visited on 10/11/2010) (cit. on p. 25).

[105] Torsten Mähne and Alain Vachoux. “ModelLib: A Web-Based Platform for Collecting Be-
havioural Models and Supporting the Design of AMS Systems”. In: Proceedings of the 9th

International Forum on Specification and Design Languages (FDL) 2006. (Darmstadt Uni-
versity, Germany, Sept. 19–22, 2006). ECSI. 2006, pp. 91–97. isbn: 978-3-00-019710-9. url:
http://infoscience.epfl.ch/search.py?recid=88137 (visited on 10/11/2010) (cit. on p. 35).

[106] Torsten Mähne and Alain Vachoux. “ModelLib: A Web-Based Platform for Collecting Be-
havioural Models and Supporting the Design of AMS Systems”. In: Advances in Design and
Specification Languages for Embedded Systems. Selected Contributions from FDL’06. Ed. by
Sorin A. Huss. ChDL. Dordrecht, The Netherlands: Springer Verlag, July 2007. Chap. 4, pp. 53–
72. isbn: 978-1-4020-6147-9 (cit. on p. 25).

[107] Torsten Mähne, Alain Vachoux, and Yusuf Leblebici. “Fostering the Reuse and Collaborative
Development of Models in the AMS SoC Design Process”. In: Proceedings of the 2007 Ph.D. Re-
search in Microelectronics and Electronics (PRIME) Conference. (Bordeaux, France, July 2–5,
2007). IEEE. 2007, pp. 285–288. isbn: 1-4244-1000-2. doi: 10.1109/RME.2007.4401868. url:
http://prime07.ixl.fr/ (visited on 10/11/2010) (cit. on p. 35).

[108] Torsten Mähne et al. “Creating Virtual Prototypes of Complex MEMS Transducers Using
Reduced-Order Modelling Methods and VHDL-AMS”. In: Applications of Specification and
Design Languages for SoCs. Selected papers from FDL’05. ChDL. Dordrecht, The Netherlands:
Springer, 2006, pp. 135–153. isbn: 1-4020-4997-8 (cit. on pp. 2, 10, 70).

[109] E. Markert et al. “Untersuchung der Anwendbarkeit von SystemC-AMS bei der Beschreibung
von MEMS”. German. In: Tagungsband des 5. GMM/ITG/GI-Workshop „Multi-Nature-Systems:
Optoelektronische, mechatronische und andere gemischte Systeme“. (Dresden, Germany, Feb. 18,
2005). GMM, ITG, GI, pp. 13–18 (cit. on p. 12).

[110] E. Markert et al. “SystemC-AMS Assisted Design of an Inertial Navigation System”. In: IEEE
Sensors Journal 7.5 (May 2007), pp. 770–777. issn: 1530-437X. doi: 10.1109/JSEN.2007.
894130 (cit. on p. 12).

[111] Deepak A. Mathaikutty et al. “UMoC++: A C++-Based Multi-MoC Modeling Environment”.
In: Applications of Specification and Design Languages for SoCs. Selected papers from FDL’05.
ChDL. Springer, 2006, pp. 115–130. isbn: 1-4020-4997-8 (cit. on p. 9).

[112] The MathWorks, Inc. MATLAB - The Language Of Technical Computing. The MathWorks, Inc.
1984–2011. url: http://www.mathworks.com/products/simulink/ (visited on 01/06/2011) (cit. on
pp. 8, 17).

[113] The MathWorks, Inc. Simulink – Simulation and Model-Based Design. The MathWorks, Inc.
1990–2011. url: http://www.mathworks.com/products/simulink/ (visited on 01/06/2011) (cit. on
pp. 17, 73).

[114] The MathWorks, Inc. Simscape. The MathWorks, Inc. 2008–2011. url: http://www.mathworks.
com/products/simscape/ (visited on 01/06/2011) (cit. on p. 71).

169

http://www.drdobbs.com/184404270
https://lsmpc4.epfl.ch/modellib/
https://lsmpc4.epfl.ch/modellib/
http://infoscience.epfl.ch/search.py?recid=88137
http://dx.doi.org/10.1109/RME.2007.4401868
http://prime07.ixl.fr/
http://dx.doi.org/10.1109/JSEN.2007.894130
http://dx.doi.org/10.1109/JSEN.2007.894130
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simscape/
http://www.mathworks.com/products/simscape/


Bibliography

[115] Jan Mehner. Entwurf in der Mikrosystemtechnik. German. 1st ed. Vol. 9. Dresdner Beiträge zur
Sensorik. Zugl.: Chemnitz, Techn. Univ., Habil., 1999. Dresden, München: Dresden University
Press, 2000 (cit. on p. 7).

[116] Mentor Graphics Corporation. ADVance MS User’s Manual: Release AMS 2008.2. Mentor
Graphics Corporation. 2008 (cit. on p. 65).

[117] Mentor Graphics Corporation. CommLib RF VHDL-AMS Library: Release AMS 2008.2. Mentor
Graphics Corporation. 2008 (cit. on pp. 19, 38).

[118] Mentor Graphics Corporation. Handel-C Synthesis Methodology. Mentor Graphics Corporation.
2009–2011. url: http://www.mentor.com/products/fpga/handel-c/ (visited on 01/08/2011)
(cit. on p. 8).

[119] Wolfgang Menz and Jürgen Mohr. Mikrosystemtechnik für Ingenieure. German. 2nd ed. Postfach
101161, D-6940 Weinheim: VCH Verlagsgesellschaft, 1997 (cit. on p. 7).

[120] N. Milet-Lewis et al. “A VHDL-AMS Library of RF Blocks Models”. In: Proceedings of the
Fifth IEEE International Workshop on Behavioral Modeling and Simulation (BMAS) 2001. (Santa
Rosa, CA, USA, Oct. 10–12, 2001). 2001, pp. 12–14. isbn: 0-7803-7291-3. doi: 10.1109/BMAS.
2001.962490 (cit. on p. 38).

[121] Modelica Association. Modelica® – A Unified Object-Oriented Language for Physical Systems
Modeling: Language Specification Version 3.2. Modelica Association. Linköping, Sweden,
Mar. 24, 2010. url: https://www.modelica.org/documents/ModelicaSpec32.pdf (visited on
01/08/2011) (cit. on pp. 70, 71).

[122] Eduard Moser and Wolfgang Nebel. “Case Study: System Model of Crane and Embedded
Control”. In: Proceedings of the Design, Automation and Test in Europe Conference (DATE) 1999.
(Munich, Germany, Mar. 9–12, 1999). Ed. by Dominique Borrione and Rolf Ernst. IEEE. 1999.
url: http://www.date-conference.com/proceedings/PAPERS/1999/DATE99/pdffiles/11b_1.
pdf (visited on 01/11/2011) (cit. on p. 15).

[123] Pieter J. Mosterman. “HyBrSim – A Modeling and Simulation Environment for Hybrid Bond
Graphs”. In: Journal of Systems and Control Engineering 216.1 (Feb. 1, 2002), pp. 35–46. url:
http://elib.dlr.de/11830/01/hybrsm-mosterman.pdf (visited on 01/05/2011) (cit. on p. 16).

[124] Wolfgang Müller, Wolfgang Rosenstiel, and Jürgen Ruf, eds. SystemC. Methodologies and
Applications. Springer, 2003. isbn: 978-1-4020-7479-0 (cit. on pp. 8, 9, 71).

[125] Nathan C. Myers. “Traits: a new and useful template technique”. In: C++ Report (June 1995).
url: http://www.cantrip.org/traits.html (visited on 01/14/2011) (cit. on p. 92).

[126] Lutz Näthke et al. “Hierarchical automatic behavioral model generation of nonlinear analog
circuits based on nonlinear symbolic techniques”. In: Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition (DATE) 2004. (CNIT, La Défense, Paris, France,
Feb. 16–20, 2004). Vol. 1, pp. 442–447. doi: 10.1109/DATE.2004.1268886 (cit. on p. 8).

[127] James Oberg. “Why The Mars Probe Went Off Course”. In: IEEE Spectrum Magazine 36.12
(Dec. 1999) (cit. on p. 70).

[128] Ian O’Connor et al. “UML/XML-Based Approach to Hierarchical AMS Synthesis”. In: Applica-
tions of Specification and Design Languages for SoCs. Selected papers from FDL’05. ChDL.
Springer, 2006, pp. 205–225. isbn: 1-4020-4997-8 (cit. on pp. 1, 35).

170

http://www.mentor.com/products/fpga/handel-c/
http://dx.doi.org/10.1109/BMAS.2001.962490
http://dx.doi.org/10.1109/BMAS.2001.962490
https://www.modelica.org/documents/ModelicaSpec32.pdf
http://www.date-conference.com/proceedings/PAPERS/1999/DATE99/pdffiles/11b_1.pdf
http://www.date-conference.com/proceedings/PAPERS/1999/DATE99/pdffiles/11b_1.pdf
http://elib.dlr.de/11830/01/hybrsm-mosterman.pdf
http://www.cantrip.org/traits.html
http://dx.doi.org/10.1109/DATE.2004.1268886


Bibliography

[129] Simone Orcioni, Giorgio Biagetti, and Massimo Conti. “SystemC-WMS: Mixed-Signal Sim-
ulation Based on Wave Exchanges”. In: Applications of Specification and Design Languages
for SoCs. Selected Contributions from FDL’05. Ed. by Alain Vachoux. ChDL. Dordrecht, The
Netherlands: Springer, Oct. 2006. isbn: 1-4020-4997-8 (cit. on pp. 11, 71).

[130] OSCI AMS Working Group. Draft Standard SystemC AMS Extensions Language Reference
Manual. Draft 1. Open SystemC Initiative (OSCI), Dec. 3, 2008. url: http://www.systemc.org/
members/download_files/check_file?agreement=AMS_draft1_120308 (visited on 10/12/2010)
(cit. on pp. 14, 72).

[131] OSCI AMS Working Group. Standard SystemC AMS extensions Language Reference Manual.
Version 1.0. Open SystemC Initiative (OSCI). Mar. 8, 2010. url: http://www.systemc.org/
members/download_files/check_file?agreement=ams_ext_10std (visited on 10/12/2010)
(cit. on pp. 3, 14, 72–74, 84, 88, 99, 101, 109, 111–113, 120, 125).

[132] OSCI Analog/Mixed-signal Working Group (AMSWG). Homepage of the Analog/Mixed-signal
Working Group (AMSWG). Open SystemC Initiative (OSCI). 2006–2010. url: http://www.
systemc.org/apps/group_public/workgroup.php?wg_abbrev=amswg (visited on 01/05/2011)
(cit. on pp. 14, 72).

[133] OSCI TLM Working Group. OSCI TLM-2.0 Language Reference Manual. Version 2.0.1. Open
SystemC Initiative (OSCI). July 2009. url: http://www.systemc.org/members/download_files/
check_file?agreement=tlm_2-0-1_090723 (visited on 01/11/2011) (cit. on p. 9).

[134] M. Pastre, M. Kayal, and H. Blanchard. “A Hall sensor analog front end for current measurement
with continuous gain calibration”. In: Digest of Technical Papers of the IEEE International Solid-
State Circuits Conference (ISSCC) 2005. (San Francisco, CA, Feb. 6–10, 2005), pp. 242–596.
doi: 10.1109/ISSCC.2005.1493959 (cit. on p. 7).

[135] H. D. Patel and S. K. Shukla. “Towards a heterogeneous simulation kernel for system-level mod-
els: a SystemC kernel for synchronous data flow models”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 24 (8 Aug. 2005), pp. 1261–1271. issn: 0278-
0070. doi: 10.1109/TCAD.2005.850819 (cit. on pp. 9, 13).

[136] Hiren D. Patel and Sandeep K. Shukla. Ingredients for Successful System Level Design Method-
ology. Springer, 2008. isbn: 978-1-4020-8471-3 (cit. on p. 9).

[137] Hiren Patel and Sandeep K. Shukla. SystemC Kernel Extensions for Heterogeneous System
Modeling. The Netherlands: Kluwer Academic Publishers, 2004. isbn: 978-1402080876 (cit. on
pp. 9, 71).

[138] Henry M. Paynter. Analysis and Design of Engineering Systems. Cambridge, Mass., USA:
M.I.T. Press, 1961 (cit. on p. 16).

[139] Henry M. Paynter. “An Epistemic Prehistory of Bond Graphs”. In: Bond Graphs for Engineers.
Ed. by P. C. Breedveld and G. Dauphin-Tanguy. Amsterdam: Elsevier, 1992, pp. 3–17 (cit. on
p. 16).

[140] F. Pêcheux, C. Lallement, and A. Vachoux. “VHDL-AMS and Verilog-AMS as alternative
hardware description languages for efficient modeling of multidiscipline systems”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 24 (2 2005), pp. 204–
225. doi: 10.1109/TCAD.2004.841071 (cit. on p. 10).

171

http://www.systemc.org/members/download_files/check_file?agreement=AMS_draft1_120308
http://www.systemc.org/members/download_files/check_file?agreement=AMS_draft1_120308
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.systemc.org/apps/group_public/workgroup.php?wg_abbrev=amswg
http://www.systemc.org/apps/group_public/workgroup.php?wg_abbrev=amswg
http://www.systemc.org/members/download_files/check_file?agreement=tlm_2-0-1_090723
http://www.systemc.org/members/download_files/check_file?agreement=tlm_2-0-1_090723
http://dx.doi.org/10.1109/ISSCC.2005.1493959
http://dx.doi.org/10.1109/TCAD.2005.850819
http://dx.doi.org/10.1109/TCAD.2004.841071


Bibliography

[141] François Pêcheux and Amr Habib. “Towards High-Level Executable Specifications of Hetero-
geneous Systems with SystemC-AMS: Application to a Manycore PCR-CE Lab on Chip for
DNA Sequencing”. In: Proceedings of the 13th International Forum on specification & Design
Languages (FDL) 2010. (Southampton, UK, Sept. 14–16, 2010). Ed. by Adam Morawiec and
Jinnie Hinderscheit. ECSI. 2, Avenue de Vignate, Parc Equation, 38610 Gières, France (cit. on
p. 15).

[142] François Pêcheux et al. “Modeling and Simulation of Multi-Discipline Systems using
Bond Graphs and VHDL-AMS”. In: Proceedings of the International Conference on Bond Graph
Modeling and Simulation (ICBGM) 2005. (New Orleans, USA, Jan. 23–27, 2005). The Society
for Modeling and Simulation International (SCS), pp. 149–155. url: http://infoscience.epfl.ch/
getfile.py?mode=best&recid=54126 (visited on 01/05/2011) (cit. on p. 17).

[143] The PHP Group. PHP: Hypertext Preprocessor. The PHP Group. 2001-2010. url: http://www.
php.net/ (visited on 10/12/2010) (cit. on p. 26).

[144] The PHP Group. PEAR: The PHP Extension and Application Repository. The PHP Group.
2001–2010. url: http://pear.php.net/ (visited on 10/12/2010) (cit. on p. 28).

[145] J. L. Pino and K. Kalbasi. “Cosimulating synchronous DSP applications with analog RF cir-
cuits”. In: Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems &

Computers 1998. (Pacific Grove, CA, Nov. 1–4, 1998). Vol. 2, pp. 1710–1714. doi: 10.1109/
ACSSC.1998.751617 (cit. on p. 8).

[146] PostgreSQL Global Development Group. PostgreSQL 8.1.22 Documentation. The PostgreSQL
Global Development Group. 1996–2010. url: http://www.postgresql.org/docs/8.1/interactive/
index.html (visited on 10/12/2010) (cit. on p. 31).

[147] PostgreSQL Global Development Group. PostgreSQL: The World’s Most Advanced Open Source
Database. PostgreSQL Global Development Group. 1996–2010. url: http://www.postgresql.org/
(visited on 10/12/2010) (cit. on pp. 25, 26).

[148] Derek Robert Price. CVS: Open Source Version Control. Ximbiot. Dec. 3, 2006. url: http:
//www.nongnu.org/cvs/ (visited on 10/12/2010) (cit. on p. 28).

[149] Vladimir Prus. Boost.Program_options. 2002–2004. url: http://www.boost.org/doc/html/
program_options.html (visited on 01/13/2011) (cit. on p. 97).

[150] Monica Rafaila et al. “Design of Experiments for Reliable Operation of Electronics in Automotive
Applications”. In: Proceedings of the 13th International Forum on specification & Design
Languages (FDL) 2010. (Southampton, UK, Sept. 14–16, 2010). Ed. by Adam Morawiec and
Jinnie Hinderscheit. ECSI. 2, Avenue de Vignate, Parc Equation, 38610 Gières, France (cit. on
p. 15).

[151] Jean Ravatin et al. “Full Transceiver Circuit Simulation Using VHDL-AMS”. In: Microwave
Engineering (May 2002), pp. 29–33. url: http://www.bausch-gall.de/gsmtrans.pdf (visited on
04/30/2009) (cit. on p. 38).

[152] John Rogers, Calvin Plett, and Foster Dai. Integrated Circuit Design for High-Speed Frequency
Synthesis. Artech House, Jan. 2006. isbn: 978-1580539821 (cit. on pp. 40, 53).

172

http://infoscience.epfl.ch/getfile.py?mode=best&recid=54126
http://infoscience.epfl.ch/getfile.py?mode=best&recid=54126
http://www.php.net/
http://www.php.net/
http://pear.php.net/
http://dx.doi.org/10.1109/ACSSC.1998.751617
http://dx.doi.org/10.1109/ACSSC.1998.751617
http://www.postgresql.org/docs/8.1/interactive/index.html
http://www.postgresql.org/docs/8.1/interactive/index.html
http://www.postgresql.org/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.boost.org/doc/html/program_options.html
http://www.boost.org/doc/html/program_options.html
http://www.bausch-gall.de/gsmtrans.pdf


Bibliography

[153] Frank Rogin et al. “Automatische Generierung von Dokumentationen für VHDL-AMS-
Modellbibliotheken”. German. In: Simulations- und Testmethoden für Software in Fahrzeugsys-
temen (Proceedings der Jahrestagung der ASIM/GI-Fachgruppe 4.5.5 ‚Simulation technischer
Systeme‘). (Berlin, Mar. 1–2, 2005). Ed. by Mirko Conrad, Christoph Nytsch-Geusen, and Achim
Wohnhaas. Technische Universität Berlin – Forschungsberichte der Fakultät IV 2005-1. url:
http://swt.cs.tu-berlin.de/asim-sts-05/folien/rogin.pdf (visited on 12/12/2010) (cit. on pp. 19,
25, 35).

[154] Ronald C. Rosenberg. “Computer-Aided Teaching of Dynamic System Behavior”. PhD thesis.
Boston, Mass., USA: M.I.T., 1965 (cit. on p. 16).

[155] Ronald C. Rosenberg. A User’s Guide to ENPORT-4. New York, USA: Wiley, 1974 (cit. on
p. 16).

[156] SAE Electronic Design Automation Standards Committee. Model Specification Process Standard.
J2546. 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA, Feb. 1, 2002 (cit. on pp. 19,
22, 23).

[157] I. Sander and A. Jantsch. “System modeling and transformational design refinement in
ForSyDe [formal system design]”. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 23.1 (Jan. 2004), pp. 17–32. issn: 0278-0070. doi: 10.1109/TCAD.
2003.819898 (cit. on p. 8).

[158] Matthias Christian Schabel and Steven Watanabe. Boost.Units 1.1.0. 2003–2010. url: http:
//www.boost.org/doc/html/boost_units.html (visited on 01/05/2011) (cit. on pp. 92, 96, 107).

[159] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. C++ In-Depth Series. Boston, Massachusetts, USA: Addison Wesley
Professional, Dec. 20, 2001. isbn: 978-0-201-72914-6. url: http://www.boost.org/libs/graph/
doc/index.html (visited on 01/05/2011) (cit. on pp. 124, 126).

[160] Arvind Sridhar et al. “3D-ICE: Fast compact transient thermal modeling for 3D-ICs with inter-tier
liquid cooling”. In: Proceedings of the 2010 International Conference on Computer-Aided Design
(ICCAD 2010). (San Jose, CA, USA, Nov. 7–11, 2010). Vol. 1. IEEE. New York: ACM and
IEEE Press, 2010, pp. 463–470. isbn: 978-1-4244-8193-4. doi: 10.1109/ICCAD.2010.5653749
(cit. on p. 7).

[161] Greg Stein and Jim Whitehead. WebDAV Resources. 1999–2010. url: http://www.webdav.org/
(visited on 10/12/2010) (cit. on p. 28).

[162] Horst Stöcker, ed. Taschenbuch mathematischer Formeln und moderner Verfahren. German.
4th ed. Thun und Frankfurt am Main: Verlag Harri Deutsch, 1999. isbn: 3-8171-1573-3 (cit. on
pp. 110, 118, 131, 140).

[163] Bjarne Stroustrup. Die C++ Programmiersprache. German. Trans. from the English by Nicolai
Josuttis and Achim Lörke. 4th ed. Addison-Wesley, 2000. isbn: 3-8272-1660-X (cit. on pp. 92,
95, 100).

[164] SystemC-AMS Study Group. Homepage of the SystemC-AMS Study Group. SystemC-AMS
Study Group. 2002–2010. url: http://www.systemc-ams.org/ (visited on 10/12/2010) (cit. on
pp. 14, 15, 72).

[165] Jean U. Thoma. Introduction to Bond Graphs and Their Applications. Oxford: Pergamon Press,
1975 (cit. on p. 16).

173

http://swt.cs.tu-berlin.de/asim-sts-05/folien/rogin.pdf
http://dx.doi.org/10.1109/TCAD.2003.819898
http://dx.doi.org/10.1109/TCAD.2003.819898
http://www.boost.org/doc/html/boost_units.html
http://www.boost.org/doc/html/boost_units.html
http://www.boost.org/libs/graph/doc/index.html
http://www.boost.org/libs/graph/doc/index.html
http://dx.doi.org/10.1109/ICCAD.2010.5653749
http://www.webdav.org/
http://www.systemc-ams.org/


Bibliography

[166] Dirk Thomas, Quinn Taylor, and Tim Armes. WebSVN—Online subversion repository browser.
2008–2010. url: http://www.websvn.info/ (visited on 12/12/2010) (cit. on pp. 25, 28).

[167] Jonathan Turkanis. The Boost Iostreams Library. 2004–2008. url: http://www.boost.org/libs/
iostreams/doc/index.html (visited on 01/13/2011) (cit. on p. 97).

[168] Thomas Uhle and Karsten Einwich. “A SystemC AMS Extension for the Simulation of Non-
linear Circuits”. In: Proceedings of the 23 IEEE International SoC Conference (SOCC) 2010.
(Las Vegas, NV, USA, Sept. 27–29, 2010). IEEE. 2010, pp. 193–198. isbn: 978-1-4244-6683-2.
url: http://www.ieee-socc.org/SOCC2010/ (visited on 12/23/2010) (cit. on pp. 15, 84).

[169] A. Vachoux, C. Grimm, and K. Einwich. “SystemC-AMS requirements, design objectives and
rationale”. In: Design, Automation and Test in Europe Conference and Exhibition (DATE) 2003.
(Messe Munich, Germany, Mar. 3–7, 2003), pp. 388–393. url: http://www.date-conference.
com/proceedings/PAPERS/2003/DATE03/pdffiles/05a_5.pdf (visited on 01/05/2011) (cit. on
p. 12).

[170] Alain Vachoux, Christoph Grimm, and Karsten Einwich. “Extending SystemC to support mixed
discrete-continuous system modeling and simulation”. In: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS) 2005. (Kobe, Japan, May 23–26, 2005). Vol. 5.
IEEE. 2005, pp. 5166–5169. isbn: 0-7803-8834-8. doi: 10.1109/ISCAS.2005.1465798 (cit. on
pp. 12–14, 71, 125).

[171] Geert Van der Plas, Georges Gielen, and Willy Sansen. A Computer-Aided Design and Synthesis
Environment for Analog Integrated Circuits. Boston, Dordrecht, London: Kluwer Academic
Publishers, 2002 (cit. on p. 2).

[172] Jan J. van Dixhoorn. “Network Graphs and Bond Graphs in Engineering Modelling”. In: Annals
of Systems Research 2 (1972), pp. 22–38 (cit. on p. 16).

[173] Dimitri van Heesch. Doxyen: Generate documentation from source code. 1997–2010. url:
http://www.doxygen.org/ (visited on 12/09/2010) (cit. on pp. 19, 25, 101).

[174] Michel Vasilevski et al. “Modeling and Refining Heterogeneous Systems with SystemC-AMS:
Application to WSN”. In: Proceedings of the Design Automation & Test in Europe (DATE)
Conference 2008. (Munich, Germany, Mar. 10–14, 2008). EDAA. 2008. isbn: 978-3-9810801-3-
1. url: http://www.date-conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/02.
2_4.PDF (visited on 11/11/2011) (cit. on p. 15).

[175] Todd Veldhuizen. Using C++ Trait Classes for Scientific Computing. Tech. rep. Waterloo,
Ontario, Canada, N2L 3G1: Dept. of Systems Design Engineering, University of Waterloo,
1996-03-30. url: http://www.oonumerics.org/blitz/traits.html (visited on 01/14/2011) (cit. on
p. 92).

[176] Virtual Dynamics. Bond graph toolbox for Mathematica. The native symbolic bond graph
tool to enhance your mechatronics creativity. Virtual Dynamics. 1995–2010. url: http://www.
virtualdynamics.fr/softwares.html (visited on 01/10/2011) (cit. on p. 17).

[177] Daniel von dem Knesebeck. “Development of a Web-Based Model Library of AMS Hardware
Systems”. Diplomarbeit. Fakultät für Informatik (FIN), Postfach 4120, D-39016 Magdeburg:
Otto-von-Guericke-Universität Magdeburg, July 4, 2008 (cit. on pp. 33, 34).

174

http://www.websvn.info/
http://www.boost.org/libs/iostreams/doc/index.html
http://www.boost.org/libs/iostreams/doc/index.html
http://www.ieee-socc.org/SOCC2010/
http://www.date-conference.com/proceedings/PAPERS/2003/DATE03/pdffiles/05a_5.pdf
http://www.date-conference.com/proceedings/PAPERS/2003/DATE03/pdffiles/05a_5.pdf
http://dx.doi.org/10.1109/ISCAS.2005.1465798
http://www.doxygen.org/
http://www.date-conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/02.2_4.PDF
http://www.date-conference.com/proceedings/PAPERS/2008/DATE08/PDFFILES/02.2_4.PDF
http://www.oonumerics.org/blitz/traits.html
http://www.virtualdynamics.fr/softwares.html
http://www.virtualdynamics.fr/softwares.html


Bibliography

[178] P. Wambacq et al. “Dataflow simulation of mixed-signal communication circuits using a local
multirate, multicarrier signal representation”. In: IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 49 (Nov. 2002), pp. 1554–1562. issn: 1057-7122. doi:
10.1109/TCSI.2002.804579 (cit. on p. 8).

[179] Wolfram Research. Wolfram Mathematica: Technical Computing Software—Taking You from
Idea to Solution. Wolfram Research. 1988–2011. url: http://www.wolfram.com/mathematica/
(visited on 01/06/2011) (cit. on p. 17).

[180] Tao Xu et al. “A precise SystemC-AMS model for Charge Pump Phase Lock Loop with mul-
tiphase outputs”. In: Proceedings of the IEEE 8th International Conference on ASIC (ASI-
CON) 2009. (Changsha, Hunan, China, Oct. 20–23, 2009), pp. 50–53. isbn: 978-1-4244-3868-6.
doi: 10.1109/ASICON.2009.5351608 (cit. on p. 15).

[181] Yaseen Zaidi, Christoph Grimm, and Jan Haase. “On Mixed Abstraction, Languages, and
Simulation Approach to Refinement with SystemC AMS”. In: EURASIP Journal on Embedded
Systems 2010 (2010): Design Methodologies and Innovative Architectures for Mixed-Signal
Embedded Systems. Ed. by Sergio Saponara et al., p. 13. doi: 10.1155/2010/489365 (cit. on
p. 13).

[182] Jun Zhu, Ingo Sander, and Axel Jantsch. “HetMoC: Heterogeneous Modelling in SystemC”. In:
Proceedings of the 13th International Forum on specification & Design Languages (FDL) 2010.
(Southampton, UK, Sept. 14–16, 2010). ECSI (cit. on p. 13).

[183] Leor Zolman. “An STL Error Message Decryptor for Visual C++”. In: Dr. Dobb’s C/C++ Users
Journal (July 2001). url: http://www.ddj.com/cpp/184401416?pgno=7 (visited on 01/12/2011)
(cit. on p. 95).

[184] Leor Zolman. STLFilt: An STL Error Message Decryptor for C++. BD Software. 2001–2008.
url: http://www.bdsoft.com/tools/stlfilt.html (visited on 01/12/2011) (cit. on p. 95).

175

http://dx.doi.org/10.1109/TCSI.2002.804579
http://www.wolfram.com/mathematica/
http://dx.doi.org/10.1109/ASICON.2009.5351608
http://dx.doi.org/10.1155/2010/489365
http://www.ddj.com/cpp/184401416?pgno=7
http://www.bdsoft.com/tools/stlfilt.html




Curriculum Vitæ

Personal Details

Torsten Mähne
Avenue Edouard-Dapples 5
CH-1006 Lausanne
Switzerland

Phone: +41 (21) 6 01 37 49
Mobile: +41 (78) 9 20 83 49
E-mail: torsten.maehne@a3.epfl.ch

Date/place of birth: 14/12/1979 in Lutherstadt Eisleben, Germany
Nationality: German; Gender: Male; Marital status: Single

Education

03/2005–02/2011 Ph.D. degree in microsystems and microelectronics, Laboratoire de Systèmes
Microélectroniques (LSM), École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland.

Research on efficient modelling and simulation methodologies for mixed-signal systems-on-
a-chip.

05/2004–10/2004 “Diplomarbeit” (Master’s thesis), research department FV/FLD, Robert
Bosch GmbH, Gerlingen-Schillerhöhe, Germany. “Ordnungsreduktionsverfahren
zur automatischen Generierung von Systemmodellen bei mikroelektromechanischen
Systemen”.

Development of a reduced order modelling methodology for electrostatically actuated surface
micromechanical systems (e.g., yaw rate sensors).

06/2003–08/2003 “Studienarbeit” (semester project), Institut für Sensor- und Mikrosysteme (IMOS),
Otto-von-Guericke-Universität, Magdeburg, Germany. “Erstellen eines Differenz-
druckgebers anhand des Prandtlschen Staurohrs”.

Design and simulation of a piezo-resistive differential pressure sensor suited for a pito-
static tube with the help of a developed parametrisable finite elements model in ANSYS.

10/1999–12/2004 “Diplom-Ingenieur (Dipl.-Ing.)” (comp. to Master of Science) in informa-
tion technology with a major in microsystems and microelectronics, Otto-von-
Guericke-Universität, Magdeburg, Germany.

177



Curriculum Vitæ

Special emphasis on semiconductor technology, integrated circuits, sensors, and microsystem
technology. Passing with distinction the “Diplomprüfung” (final examination). Laureate of
the “Fakultätspreis 2005” for the best alumnus of the faculty of electrical engineering.

08/1991–07/1998 Secondary school education, Martin-Luther-Gymnasium, L. Eisleben, Germany.

Granting of “Allgemeine Hochschulreife” (university entrance qualification) with mark 1.0
(excellent).

Working Experience

03/2005–02/2011 Research assistant, Laboratoire de Systèmes Microélectroniques (LSM), École
Polytechnique Fédérale de Lausanne (EPFL) in partial collaboration with CSEM SA
at Neuchâtel, Switzerland.

• Development of support for dimensional analysis and bond graphs in SystemC-AMS to
improve its modelling capabilities for multiphysical systems.

• Contributions (proposals, reviews, examples) to the standardisation of AMS extensions
for SystemC as member of the OSCI AMSWG since 07/2007.

• Development of a modelling methodology and behavioural model library for
RF transceivers.

• Development of a web-based platform “ModelLib” for collecting behavioural models and
supporting the design of AMS systems.

• Supervision of three Master’s student projects.
• Teaching assistance for courses on hardware systems modelling (7 terms), semi-custom

digital design flows (5 terms), and C++ programming (1 term) in English and French
language.

10/2003–10/2004 Work placement and “Diplomarbeit” (final thesis), research department FV/FLD,
Robert Bosch GmbH, Gerlingen-Schillerhöhe, Germany.

Development of a reduced-order modelling methodology for electrostatically actuated sur-
face micromechanical systems (e.g., yaw rate sensors) allowing to augment their mechanical
FE models in ANSYS with electrostatic transducer elements and to extract VDHL-AMS
models for system-level simulations.

08/2002–08/2003 Research assistant and semester project, Institut für Sensor- und Mikrosyste-
me (IMOS), Otto-von-Guericke-Universität, Magdeburg, Germany.

• Development of a parametrisable FE model in ANSYS to design a piezo-resistive differ-
ential pressure sensor.

• Setting up a PVD System and a wafer on adhesive film mounter.
• Operating the wafer dicing saw.

04/2000–07/2002 Research assistant, Institut für Technische und Betriebliche Informationssyste-
me (ITI), Otto-von-Guericke-Universität, Magdeburg, Germany.

• Co-authoring the book and developing examples for the lecture “Grundlagen der Informa-
tik für Ingenieure”.

• Converting a casting technology database from Informix HyperScript Tools to Oracle 8.

178



Publications

Books

[1] Georg Paul et al. Grundlagen der Informatik für Ingenieure – Eine Einführung mit C/C++.
German. Stuttgart, Leipzig: B.G. Teubner Verlag, 2003. isbn: 3-519-00428-3. url: http://wwwiti.
cs.uni-magdeburg.de/iti_ti/IngInf/.

Book Chapters

[2] Torsten Maehne et al. “A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up De-
sign of RF Systems”. In: Advances in Design Methods from Modeling Languages for Embedded
Systems and SoC’s – Selected Contributions on Specification, Design, and Verification from
FDL 2009. Ed. by Dominique Borrione. 1st ed. Vol. 63. Lecture Notes in Electrical Engineer-
ing (LNEE). Springer, Aug. 2010. isbn: 978-90-481-9303-5.

[3] Torsten Mähne and Alain Vachoux. “ModelLib: A Web-Based Platform for Collecting Be-
havioural Models and Supporting the Design of AMS Systems”. In: Advances in Design and
Specification Languages for Embedded Systems. Selected Contributions from FDL’06. Ed. by
Sorin A. Huss. ChDL. Dordrecht, The Netherlands: Springer Verlag, July 2007. Chap. 4, pp. 53–
72. isbn: 978-1-4020-6147-9.

[4] Torsten Mähne et al. “Creating Virtual Prototypes of Complex MEMS Transducers Using
Reduced-Order Modelling Methods and VHDL-AMS”. In: Applications of Specification and
Design Languages for SoCs. Selected papers from FDL’05. ChDL. Springer, 2006, pp. 135–153.
isbn: 1-4020-4997-8.

Conference Papers

[5] Torsten Maehne et al. “A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up
Design of RF Systems”. In: Proceedings of the 12th International Forum on specification &

Design Languages (FDL) 2009. (Sophia Antipolis, France, Sept. 22–24, 2009). ECSI. 2009. url:
http://infoscience.epfl.ch/record/138641 (visited on 10/12/2010).

[6] Torsten Maehne and Alain Vachoux. “Supporting Dimensional Analysis in SystemC-AMS”.
In: Proceedings of the 2009 IEEE International Behavioral Modeling and Simulation (BMAS)
Workshop. (Doubletree Hotel, San Jose, California, USA, Sept. 17–18, 2009). IEEE. 2009,
pp. 108–113. doi: 10.1109/BMAS.2009.5338878. url: http://infoscience.epfl.ch/record/140571
(visited on 03/17/2010).

[7] Torsten Mähne, Alain Vachoux, and Yusuf Leblebici. “Support pour l’analyse dimensionnelle
en SystemC-AMS”. French. In: Résumé des présentations de l’École d’hiver Francophone
sur les Technologies de Conception des systèmes embarqués Hétérogènes (FETCH) 2009.
(Hôtel Préalpina, Chexbres, Suisse, Jan. 12–14, 2009). École Politechnique Fédérale de Lau-
sanne (EPFL). 2009, pp. 50–51. url: http://infoscience.epfl.ch/record/131186 (visited on
10/12/2010).

179

http://wwwiti.cs.uni-magdeburg.de/iti_ti/IngInf/
http://wwwiti.cs.uni-magdeburg.de/iti_ti/IngInf/
http://infoscience.epfl.ch/record/138641
http://dx.doi.org/10.1109/BMAS.2009.5338878
http://infoscience.epfl.ch/record/140571
http://infoscience.epfl.ch/record/131186


Curriculum Vitæ

[8] Alain Vachoux and Torsten Maehne. “SystemC-Based Modeling of Embedded Heterogeneous
Systems”. In: Proceedings of the Joint 6th International IEEE Northeast Workshop on Cir-
cuits and Systems and TAISA Conference (NEWCAS-TAISA) 2008. (Montréal, Québec, Canada,
June 22–25, 2008). IEEE. 2008, pp. 277–280. isbn: 978-1-4244-2331-6. doi: 10.1109/NEWCAS.
2008.4606375.

[9] Torsten Maehne, Alain Vachoux, and Yusuf Leblebici. “Development of a Bond Graph Based
Model of Computation for SystemC-AMS”. In: Proceedings of the 4th Conference on Ph.D. Re-
search in Microelectronics and Electronics (PRIME) 2008. (Boğaziçi Üniversitesi, İstanbul,
Turkey, June 22–25, 2008). IEEE. 2008. isbn: 978-1-4244-1983-8. doi: 10.1109/RME.2008.
4595729. url: http://infoscience.epfl.ch/record/121405 (visited on 10/12/2010).

[10] Torsten Mähne, Alain Vachoux, and Yusuf Leblebici. “Développement d’un modèle de calcul
Bond Graph pour SystemC-AMS”. French. In: École d’hiver Francophone sur les Technolo-
gies de Conception des systèmes embarqués Hétérogènes (FETCH) 2008 : Présentations des
Doctorants. (Montebello, Canada, Jan. 7–9, 2008). École Polytechnique Montréal. 2008. url:
http://infoscience.epfl.ch/record/116443 (visited on 10/12/2010).

[11] Torsten Maehne and Alain Vachoux. “Proposal for a Bond Graph Based Model of Compu-
tation in SystemC-AMS”. In: Proceedings of the 10th Forum on specification & Design Lan-
guages (FDL) 2007. (Barcelona, Sept. 18–20, 2007). ECSI. 2007, pp. 25–31. isbn: 978-2-
9530504-0-0. url: http://infoscience.epfl.ch/record/108824 (visited on 10/11/2010).

[12] Torsten Mähne, Alain Vachoux, and Yusuf Leblebici. “Fostering the Reuse and Collaborative
Development of Models in the AMS SoC Design Process”. In: Proceedings of the 2007 Ph.D. Re-
search in Microelectronics and Electronics (PRIME) Conference. (Bordeaux, France, July 2–5,
2007). IEEE. 2007, pp. 285–288. isbn: 1-4244-1000-2. doi: 10.1109/RME.2007.4401868. url:
http://prime07.ixl.fr/ (visited on 10/11/2010).

[13] Torsten Maehne, Alain Vachoux, and Yusuf Leblebici. “Proposal to Extend SystemC-AMS with
a Bond Graph Based Model of Computation”. In: Proceedings of the C/C++-Based Modelling
of Embedded Mixed-Signal Systems Workshop 2007. (Dresden, June 25–26, 2007). Fraunhofer
Institut für Integrierte Schaltungen, Außenstelle Entwurfsautomatisierung, 2007, pp. 41–53. url:
http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/index_de.html.

[14] Torsten Mähne, Alain Vachoux, and Yusuf Leblebici. “Méthodes de modélisation efficaces pour la
conception de systèmes monopuces hétérogènes”. French. In: Ecole d’hiver Francophone sur les
Technologies de Conception des systèmes embarqués Hétérogènes (FETCH) 2007 : Programme
et Résumés de thèses. (Villard-de-Lans, France, Jan. 10–12, 2007). Ed. by Ahmed-Amine Jerraya.
EPFL et al. 2007. url: http://leom.ec-lyon.fr/fetch/ (visited on 10/11/2010).

[15] Torsten Mähne and Alain Vachoux. “ModelLib: A Web-Based Platform for Collecting Be-
havioural Models and Supporting the Design of AMS Systems”. In: Proceedings of the 9th

International Forum on Specification and Design Languages (FDL) 2006. (Darmstadt Uni-
versity, Germany, Sept. 19–22, 2006). ECSI. 2006, pp. 91–97. isbn: 978-3-00-019710-9. url:
http://infoscience.epfl.ch/search.py?recid=88137 (visited on 10/11/2010).

[16] Torsten Mähne et al. “Creating Virtual Prototypes of Complex Micro-Electro-Mechanical Trans-
ducers Using Reduced-Order Modelling Methods and VHDL-AMS”. In: Proceedings of the
8th International Forum on specification and Design Languages (FDL) 2005. (École Polytech-

180

http://dx.doi.org/10.1109/NEWCAS.2008.4606375
http://dx.doi.org/10.1109/NEWCAS.2008.4606375
http://dx.doi.org/10.1109/RME.2008.4595729
http://dx.doi.org/10.1109/RME.2008.4595729
http://infoscience.epfl.ch/record/121405
http://infoscience.epfl.ch/record/116443
http://infoscience.epfl.ch/record/108824
http://dx.doi.org/10.1109/RME.2007.4401868
http://prime07.ixl.fr/
http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/index_de.html
http://leom.ec-lyon.fr/fetch/
http://infoscience.epfl.ch/search.py?recid=88137


nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Sept. 27–30, 2005). ECSI. 2005,
pp. 209–221. url: http://infoscience.epfl.ch/search.py?recid=62708 (visited on 10/11/2010).

Other Publications

[17] F. Giroud et al. “A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up Design of
RF Systems”. In: CSEM Scientific and Technical Report 2009. Rue Jaquet-Droz 1, P.O. Box, CH-
2002 Neuchâtel, Switzerland: Centre Suisse d’Électronique et de Microtechnique SA (CSEM),
2010, p. 34. url: http://www.csem.ch/docs/show.aspx?id=12660 (visited on 10/20/2010).

[18] Martin Barnasconi et al. SystemC AMS extensions User’s Guide. Open SystemC Initiative (OSCI).
Mar. 8, 2010. url: http://www.systemc.org/members/download_files/check_file?agreement=
ams_ext_10std (visited on 10/12/2010).

[19] Torsten Mähne. “Ordnungsreduktionsverfahren zur automatischen Generierung von System-
modellen bei mikroelektromechanischen Systemen”. German. Diplomarbeit. Fakultät für Elek-
trotechnik und Informationstechnik (FEIT), Postfach 4120, D-39016 Magdeburg, Germany:
Otto-von-Guericke-Universität Magdeburg, Nov. 1, 2004.

[20] Torsten Mähne. “Erstellen eines Differenzdruckgebers anhand des Prandtlschen Staurohrs”. Ger-
man. Studienarbeit. Fakultät für Elektrotechnik und Informationstechnik (FEIT), Postfach 4120,
D-39016 Magdeburg, Germany: Otto-von-Guericke-Universität Magdeburg, Sept. 2003.

Invited Presentations

[21] Torsten Maehne and Alain Vachoux. Multi-domain SoC Modeling With SystemC-AMS: Employ-
ing Dimensional Analysis and Bond Graphs. Invited presentation in the scope of SoC seminar at
University of British Columbia, Vancouver, British Columbia, Canada. Sept. 15, 2009.

[22] Torsten Maehne and Alain Vachoux. Bond Graph as a Model of Computation in SystemC-AMS.
Invited presentation at the Hardware Verification Group of Concordia University, Montréal,
Québec, Canada. Jan. 8, 2008.

[23] Alain Vachoux and Torsten Maehne. SystemC-Based Modeling of Embedded Heterogeneous
(AMS) Systems. Invited presentation at the Hardware Verification Group of Concordia University,
Montréal, Québec, Canada. June 26, 2008.

181

http://infoscience.epfl.ch/search.py?recid=62708
http://www.csem.ch/docs/show.aspx?id=12660
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std
http://www.systemc.org/members/download_files/check_file?agreement=ams_ext_10std



	Title
	Résumé
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	2 State of the Art
	2.1 Heterogeneous System Design Environments
	2.2 Application of Modelling Languages to Hardware Design
	2.3 Overview of AMS extensions to SystemC
	2.4 Unified Description of Multiphysical Systems with Bond Graphs
	2.5 Conclusions

	3 ModelLib: A Web-Based Platform for Collecting Behavioural Models
	3.1 Introduction
	3.2 Use Cases and Requirements for a Model Library
	3.3 Implementation of the ModelLib Prototype
	3.4 Fine-Grained Access Control Mechanism for the Meta Information
	3.5 Towards a 3-Tier Reimplementation of ModelLib
	3.6 Conclusions and Outlook

	4 A VHDL-AMS-Based Methodology to Efficiently Model RF Systems
	4.1 Introduction
	4.2 Modelling Methodology
	4.3 Modelling the Frequency Synthesiser
	4.3.1 Specification of the Frequency Synthesiser Behaviour
	4.3.2 Specification of the Voltage Controlled Oscillator Behaviour
	4.3.3 Design and Implementation of the Component Models
	4.3.4 Validation of the Frequency Synthesiser Component Models

	4.4 Application of the RF_TRX Library to the Design of a Binary FSK Transmitter
	4.4.1 Implementation of the FSK Transmitter Model
	4.4.2 Top-Down Design Exploration for Different Target Specifications
	4.4.3 Bottom-Up Verification of a Design Case Implementation

	4.5 Conclusions and Outlook

	5 Enhancing the SystemC AMS extensions for Multiphysical Systems Modelling
	5.1 Introduction
	5.2 Overview on the OSCI SystemC AMS extensions
	5.2.1 Timed Data Flow Model of Computation
	5.2.2 Structural refinement using the LSF and ELN Models of Computation
	5.2.3 Conclusions about the OSCI SystemC AMS extensions

	5.3 Modelling Multiphysical Systems on Different Abstraction Levels
	5.3.1 Using Domain-Specific Modelling Primitives
	5.3.2 Using Generic Bond Graph Primitives
	5.3.3 Using a Block Diagram

	5.4 Integrating Dimensional Analysis with SystemC AMS extensions
	5.4.1 Compile-time dimensional analysis with Boost.Units
	5.4.2 Facilitating the Debugging of Errors Related to Quantity Types
	5.4.3 Using Quantity Types in SystemC Models

	5.5 SystemC AMS extensions eXperiments Library
	5.6 Generic TDF Modules for Common Block Diagram Primitives
	5.6.1 Implementation
	5.6.2 Application Example

	5.7 SCAX Bond Graph (BG) MoC for the SystemC AMS extensions
	5.7.1 Requirements for the BG MoC
	5.7.2 Architecture of the BG MoC
	5.7.3 Module Layer of the BG MoC
	5.7.3.1 Overview on the Classes implementing the Module Layer
	5.7.3.2 Definition of Physical Domains
	5.7.3.3 Implementation of Non-Conservative and Conservative BG Modules

	5.7.4 Elaboration and Simulation Cycle of the Bond Graph Model of Computation
	5.7.4.1 Elaboration of BG Models
	5.7.4.2 Simulation of BG Models

	5.7.5 Application Examples
	5.7.5.1 Electromechanical Transducer with Linked Micromechanical Resonator
	5.7.5.2 Interaction of the BG, TDF, and DE Models of Computation
	5.7.5.3 Treatment of Algebraic Loops


	5.8 Conclusions and Outlook

	6 Conclusions and Outlook
	A Short Reference for the SystemC AMS extensions eXperiments (SCAX) Library
	Bibliography
	Curriculum Vitæ



